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Abstract
A probabilistic framework is introduced that represents stylized banking networks

and aims to predict the size of contagion events. Most previous work on random finan-
cial networks assumes independent connections between banks, whereas our frame-
work explicitly allows for disassortative edge probabilities (an above average tendency
for small banks to link to large banks). We give a new construction of general directed
configuration graphs in the fully (dis)assortative setting and characterize the locally
tree-like nature of such graphs. Using this locally tree-like independence assumption,
we give a probabilistic analysis of the default cascade triggered by shocking the net-
work. We find that the cascade can be understood as an explicit iterated mapping on
a set of edge probabilities that converges to a fixed point. A cascade condition is de-
rived that characterizes whether or not an infinitesimal shock to the network can grow
to a finite size cascade, in analogy to the basic reproduction number R0 in epidemic
modelling. It provides an easily computed measure of the systemic risk inherent in
a given banking network topology. An analytic formula is given for the frequency of
global cascades, derived from percolation theory on the random network. Although
the analytical methods are derived for infinite networks, large-scale Monte Carlo sim-
ulations are presented that demonstrate the applicability of the results to finite-sized
networks. Two simple models are used to demonstrate that edge-assortativity can
have a strong effect on the level of systemic risk as measured by the cascade condi-
tion. However, the effect of assortativity on systemic risk is subtle, and we propose
a simple graph theoretic quantity, which we call “graph-assortativity”, that seems to
best capture systemic risk.
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1 Introduction

The study of contagion in financial systems is very topical in light of the recent global
credit crisis and the resultant damage inflicted on financial institutions. “Contagion”
refers to the spread of defaults through a system of financial institutions, with each
successive default causing increasing pressure on the remaining components of the
system. The term “systemic risk” refers to the contagion-induced threat to the fi-
nancial system as a whole, due to the default of one (or more) of its component
institutions.

It is widely held that financial systems (see [14] and references therein), defined
for example as the collection of banks and financial institutions in a developed coun-
try, can be modelled as a random network of nodes or vertices with stylized balance
sheets, connected by directed links or edges that represent exposures (“interbank
loans”), each edge with a positive weight that represents the size of the exposure.
If ever a node becomes “insolvent” and ceases to operate as a bank, it will create
balance sheet shocks to other nodes, creating the potential of chains of insolvency
that we will call “default cascades”. Financial networks are difficult to observe be-
cause interbank data is often not publicly available, but studies have indicated that
they share characteristics of other types of technological and social networks, such
as the world wide web and Facebook. For example, the degree distributions of fi-
nancial networks are thought to be “fat-tailed” since a significant number of banks
are very highly connected. A less studied feature observed in financial networks (and
as it happens, also the world wide web) is that they are highly “disassortative” (see
[13]). This refers to the property that any bank’s counterparties (i.e. their graph
neighbours) have a tendency to be banks of an opposite character. For example, it is
observed that small banks tend to link preferentially to large banks rather than other
small banks. Commonly, social networks are observed to be assortative rather than
disassortative. Structural characteristics such as degree distribution and assortativity
are felt (see [9]) to be highly relevant to the propagation of contagion in networks but
the nature of such relationships is far from clear.

Our aim here is to develop a mathematical framework that will be able to de-
termine the systemic susceptibility in a rich class of infinite random network models
with enough flexibility to include the most important structural characteristics of real
financial networks, in particular with general degree distributions and a prescribed
degree of edge-assortativity. Our starting point will be the Gai-Kapadia cascade
model ([5], hereafter referred to as GK for short) and the analytical methods devel-
oped there and in [6] for this model. The basic assumptions introduced in the GK
model are:

1. The network is a large (actually infinite) random directed graph with a pre-
scribed degree distribution;

2. Each node is labelled with a stylized banking balance sheet that identifies its
external assets and liabilities, its internal (i.e. total interbank) assets and liabili-
ties, and γ, its net worth or equity (i.e. its total assets minus its total liabilities).
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Initially, the system is in equilibrium, meaning each node has positive net worth
γ > 0.

3. Each directed edge is labelled with a deterministic weight that represents the
positive exposure of one bank to another. These weights depend deterministi-
cally on the in-degree of the edge, and are consistent with the interbank (IB)
assets and liabilities at each node;

4. A random shock is applied to the balance sheets in the system that triggers the
default or insolvency of a fixed fraction of nodes;

5. The residual value available to creditors of a defaulted bank is zero, and thus
the shock has the potential to trigger a cascade of further bank defaults.

The principle of limited liability for banks means that equity holders are never asked to
cover a negative net worth of an insolvent firm. Instead, the insolvent firm is assumed
to “default”, meaning it ceases to operate as a going concern, and its creditors divide
the residual value. Since this residual value is always less than the nominal liabilities,
creditor banks thus receive a shock to their balance sheets, creating the potential for
a default cascade. The GK model makes a very simple zero recovery assumption that
residual values of defaulted banks will be zero, and thus every time a bank defaults
a maximal possible shock will be transmitted to its creditors.

Our paper makes the following contributions towards developing a mathematical
theory of systemic risk.

1. We generalize the GK model in an important respect, namely that the edge de-
gree distribution Q is arbitrary, allowing for any desired amount of assortativity
or disassortativity in the network.

2. We present a simple algorithm for constructing general assortative random di-
rected graphs of the configuration class.

3. We identify the “locally-treelike independence assumption” that characterizes
the mathematical nature of the locally tree-like structure of configuration graphs.

4. We offer a simple graph theoretical notation as a useful alternative to the more
standard “generating function” approach.

5. We derive probabilistic formulas for the result of general cascades, including
the fixed point equation, the spectral “cascade condition” and the frequency of
global cascades.

6. We introduce the concept of “graph assortativity” for directed graphs.

7. We present numerical experiments in a family of network models to test the
accuracy of our analysis compared to Monte Carlo. We also test whether graph
assortativity correlates well with the degree of systemic risk.

8. We identify a number of “next steps” for research that will move our theory to
a new level of applicability.
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The remainder of this paper is structured as follows. In Section 2 the extended
GK model is described in detail, and the analytical description of its solution is
given in Section 3. Section 4 discusses the cascade condition, and Section 5 derives a
formula for the frequency of large scale cascades arising from an infinitesimally small
seed. Numerical results of large-scale Monte Carlo simulations are compared with
the analytical predictions in Section 6. Section 7 concludes.

2 The Extended GK Model

In this section we completely specify the extended GK modelling framework for which
our analytical techniques will apply. The specification will consist of three levels:
first, the random directed graph model for the “skeleton” of the network; second, a
specification of balance sheet values for all nodes and edges, representing the state
of the system in equilibrium prior to a systemic shock; thirdly, a specification of the
type of systemic shocks that will be considered. We shall work within a probability
space (ΩN ,FN , P) for some N ≤ ∞, where a general outcome ω ∈ ΩN is a directed
graph with N nodes, with specified balance sheet values and an initial shock.

2.1 The Skeleton Network

The first step in building a random financial network is to build the skeleton directed
graph that labels the banks and their interbank connections. Our construction is an
extension of the well-known configuration graph model (see [3]), and to describe it
we introduce certain graph theoretic definitions and notation:

1. A node v ∈ N = ∪jkNjk has type (j, k) means its in-degree is deg−(v) = j and
its out-degree is deg+(v) = k. We shall write kv = k, jv = j for any v ∈ Njk

and allow degrees to be any non-negative integer.

2. An edge ` ∈ E = ∪kjEkj is said to have type (k, j) with out-degree k and in-
degree j if it is an out-edge of a node with out-degree k and an in-edge of a
node with in-degree j. We shall write deg+(`) = k` = k and deg−(`) = j` = j
for any ` ∈ Ekj .

3. We write E+
v (or E−v ) for the set of out-edges (respectively, in-edges) of a given

node v and v+
` (or v−` ) for the node for which ` is an out-edge (respectively,

in-edge).

4. We will always write j, j′, j′′, etc. to refer to in-degrees while k, k′, k′′, etc. refer
to out-degrees.

Figure 1 illustrates the neighbourhood of a type (3, 2) bank.

Definition 1. The directed configuration graph model on (ΩN ,FN , P) for any N ≤ ∞
is defined by the following construction based on probability laws P,Q for nodes and
edges:
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Figure 1: The skeleton structure of the network locality of a bank v. Bank v is in the
(j, k) = (3, 2) class, since it has 3 debtors and 2 creditors in the interbank (IB) network.

1. For each j, k ∈ K, Pjk := P[Njk] is the probability of a type (j, k) node. This
distribution has marginals P+

k :=
∑

j Pjk, P
−
j :=

∑
k Pjk and mean in and out

degree z =
∑

j jP−
j =

∑
k kP+

k .

2. For each j, k ∈ K, Qkj := P[Ekj ] is the probability of a type (k, j) edge. This
distribution has marginals Q+

k :=
∑

j Qkj , Q
−
j :=

∑
k Qkj.

3. To simplify the analysis that follows, we fix a finite set of possible degrees K =
{0, 1, . . . ,K−1} for some K and assume that P−

j , P+
k > 0 for all j, k ∈ K\{0}.

The following construction can be used to define directed configuration graphs for
any finite N provided “consistency conditions” hold. For each j, k:

• NPjk ∈ Z+ = {0, 1, 2, . . . } , NzQjk ∈ Z+ = {0, 1, 2, . . . };
•

Q+
k = kP+

k /z; Q−
j = jP−

k /z. (1)

Under these conditions, the directed graph construction goes as follows

1. Make a list of N nodes of which exactly NPjk are of type j, k and a list of zN
edges of which exactly NzQkj have type k, j. Let the unpaired out (in) arrows
of each node and edge be called “k-stubs” (or “j-stubs”).

2. For ` = 1, . . . , Nz:

• Pick a random edge from the unmatched edges. Let its type be (k, j);
• Match its k-stub to a random unpaired k-stub of a node, chosen with equal

probability from unmatched k-stubs.
• Match its j-stub to a random unpaired j-stub of a node, chosen with equal

probability from unmatched j-stubs.

One can readily check that the consistency condition (1) implies that for each j,
all j- stubs will be matched, and likewise for the k-stubs, so the graph construction is
consistent. However, it is important to recognize that this graph construction leads
for finite N to multiple edges between node pairs with positive probability, as well as
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the positive probability of having self-edges. We allow such anomalies (normally ruled
inadmissible in graph theory) since they do not seriously affect finance interpretations
and more importantly occur with vanishing probability as N goes to ∞.

By following work of [10] and [1], we can consider consistent sequences (N i, P i, Qi)i=1,2,...

of finite random graphs such that N i → ∞, P i → P and Qi → Q. We conjecture
that one can define the N = ∞ configuration model for any pair P,Q of probability
distributions that satisfy (1) (plus possible moment conditions in case K →∞), but
leave the details of such a construction as an open problem. The important and
highly restrictive property of configuration graphs we expect in the N = ∞ limit,
called the locally tree-like (LT) property, is that cycles of any fixed finite length oc-
cur only with zero probability. The following condition is a heuristic (not proven)
consequence of the LT property for configuration graphs with N = ∞, that we will
assume throughout this paper:

The LT independence assumption (LTIA): Let N1,N2 ⊂ N be any two subsets
that share exactly one node N1∩N2 = {v}, and let the corresponding sigma-algebras1

be denoted G1,G2,Gv. Then G1 and G2 are statistically independent, conditioned on
Gv:

(G1 ⊥⊥ G2) |Gv . (2)

The LT independence assumption (2) leads to an important result that will be
used throughout this paper2: For all j, j′, j′′, k, k′, k′′,

P[v+
` ∈ Njk, v

−
` ∈ Nj′k′ |` ∈ Ek′′j′′ ] = δj′j′′δkk′′P[jv = j|kv = k] P[kv = k′|jv = j′] . (3)

Remark 2. (Independent edge condition) The special case Qkj = kjP−
j P+

k /z2 =
Q−

j Q+
k corresponds to the usual notion of a random configuration graph and arises

from a simpler construction. One lists the nodes and their types (but not the edges),
and sequentially matches each node’s in-stubs to node out-stubs selected uniformly
from the collection of all unmatched out-stubs. We are interested in the general as-
sortative case described above because observed financial networks do not appear to
satisfy the independent edge condition. Apparently (see [13]) real financial networks
have the “edge-disassortative property” that high degree banks attach preferentially to
low degree banks.

Remark 3. A natural measure of edge-assortativity by degree is the “edge-assortativity
coefficient” rQ ∈ [−1, 1] given by

rQ =

∑
jk jk[Qkj −Q−

j Q+
k ]√(∑

j j2Q−
j − (

∑
j jQ−

j )2
) (∑

k k2Q+
k − (

∑
k kQ+

k )2
) . (4)

1To any subset of nodes N ′ ⊂ N we associate the sigma-algebra G′ generated by the balance sheets,
shocks and degrees of nodes in N ′ and edges in N ′ ×N ′.

2A conditional independence structure more general than (3), not arising from the above graph con-
struction, is analyzed in [2].
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However, we will find some evidence that systemic risk of a network is related more
strongly to a combination of edge-assortativity and node-assortativity (arising from
the dependence between in- and out- degrees of nodes). We therefore define a measure
we call the “graph-assortativity coefficient” r ∈ [−1, 1] given by

r =

∑
jj′ jj

′[Bjj′ −B−
j B+

j′ ]√(∑
j j2B−

j − (
∑

j jB−
j )2

) (∑
j′ j

′2B+
j′ − (

∑
j′ j

′B+
j′ )

2
) . (5)

where Bjj′ is the joint distribution of the in-degree of pairs of nodes connected by an
edge:

Bjj′ = P[jv = j, jv′ = j′|v is joined by a single out-edge ` to v′]

=
∑

k

PjkQkj′

P+
k

,

and B−
j =

∑
j′ Bjj′ , B

+
j′ =

∑
j Bjj′ are the marginals. Here, the formula for Bjj′ is

derived from (3).

2.2 Balance Sheets

To build a financial network with full accounting information, consistent with a given
skeleton graph, one specifies the external assets Yv and external liabilities Zv for each
node v, and for each edge ` of the network, an exposure size or weight w`. All these
quantities are positive. From this one defines the net worth or capital buffer of a node
v to be

γv = Yv +
∑
`∈E−v

w` − Zv −
∑
`∈E+

v

w` . (6)

We will always assume that the system is initially in a “cascade equilibrium” (or
“equilibrium” for short) in which all banks are solvent, which means that γv > 0 at
every node v. Thus γv can be thought of as a buffer that keeps the bank solvent when
subjected to balance sheet shocks up to a certain size.

The cascade dynamics in the GK framework do not depend on full accounting
information, but only on the partial information

{γv, v ∈ N} ∪ {w`, ` ∈ E}. (7)

We adopt a deterministic rule for which buffers may depend on the node type (j, k)
but the edge weights depend only on the in-degree deg−(`):{

γv = γjk, v ∈ Njk

w` = wj , ` ∈ Ekj
. (8)

For the original GK model described in [5], which we will call the GK specification,
the following choices are made:

γjk = γ := 0.035; wj =
1
5j

,
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but the analytical results of that paper clearly hold for general prescriptions of the
form (8).

Figure 2: Schematic balance sheet of banks in the (j, k) = (3, 2) class.

2.3 Shocks and the Solvency Condition

Insolvencies arise in a system initially in equilibrium only when a shock hits that is
hard enough to cause at least one node to suffer a loss larger than its buffer γv. For
simplicity, we suppose that such an initial shock to our system causes an initial set
M̄ ⊂ N of nodes to become insolvent (for example by hitting their external assets),
but leaves other banks’ balance sheets unchanged. The set M̄ is drawn randomly,
with the fraction of type (j, k) nodes that are defaulted denoted by

ρ̄jk := P[v ∈ M̄|v ∈ Njk] .

Under the GK “zero recovery” assumption that an insolvent bank can pay none of
its interbank credit obligations, each insolvent node v ∈ M̄ triggers all its out-edges
to have zero value. This triggering of edges to default is an instance of what we call
an “edge update” step of the cascade: corresponding to any default node set M there
is a default edge set D ⊂ E defined by the condition ` ∈ D if and only if v+

` ∈M.
Each such defaulted edge ` now transmits a maximal shock w` to the asset side

of the balance sheet of its in-node v−` (the creditor bank). If all balance sheets are
determined by the reduced accounting information {γjk} ∪ {wj}, then when D is a
set of defaulted edges, the solvency condition on a node v ∈ Njk is3

γjk >
∑
`∈E−v

1{`∈D} wj .

3The indicator function 1A of any set A is the random variable that is 1 on the set and 0 on its
complement.
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We call this triggering of nodes to default a “node update” step of the cascade:
corresponding to the default edge set D there is a default node set M′ defined by the
condition v ∈M′ if and only if

#{E−v ∩ D} ≥ Mjk := dγjk/wje , (9)

where (j, k) is the type of v. Here dxe denotes the “ceiling” function, i.e. the smallest
integer greater than or equal to x, and so Mjk is the threshold for the number of
defaulted in-edges that will cause a type (j, k) node to default.

To summarize, a specification (N,P, Q, γ, w, ρ̄) of an extended GK financial sys-
tem is the following information: (i) a skeleton directed graph structure, defined by
the probabilities Pjk, Qkj over all node and edge types; (ii) reduced accounting infor-
mation, denoted by {γjk} ∪ {wj} and (iii) an initial shocked set M̄ with the default
probabilities ρ̄jk for each node type.

Given any realization of a shocked financial system so specified, the complete
default cascade will be an alternating sequence of edge and node updates (finite if N
is finite), beginning with the initial shocked set M̄. The cascade can now be resolved,
and the expected fraction of total defaulted nodes and edges (and other statistics)
will be determined by the inductive analysis given in the next section.

3 Default Cascade Steps

The proofs of all the results of this section depend strongly on the LT independence
assumption (2), which in our setting requires N = ∞. Given any realization of a
shocked financial system (N,P, Q, γ, w, ρ̄) as specified above, with an initial shocked
set M̄, the default cascade can be thought of as a sequence of updates:

D1

��

D2

��

D3

��
M̄

::uuuuuuuuuu
M̄ ∪M1

88ppppppppppp
M̄ ∪M2

77ooooooooooooo
M̄ ∪M3 · · ·

Note that the above set unions are assumed to be disjoint, since we prefer to distin-
guish the initial default set M̄ from the sets of “newly defaulted” nodes. Inductively,
we have nondecreasing sequences of sets:

Dn := defaulted edges “triggered” by nodes in M̄ ∪Mn−1 (10)
Mn := defaulted nodes not in M̄ “triggered” by edges in Dn. (11)

for n = 1, 2, . . . , and we take D0,M0 = ∅. The initial default set M̄ has probabilities

ρ̄jk := P[v ∈ M̄|v ∈ Njk] (12)
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and we define probabilities for n = 0, 1, 2, . . .

σ
(n)
kj := P[` ∈ Dn|` ∈ Ekj ] (13)

a
(n)
j := P[` ∈ Dn|j` = j] (14)

ρ
(n)
jk := P[v ∈Mn|v ∈ Njk] . (15)

Now the set D1 is determined from M̄ by an edge update step. Similarly, for each
n > 1 the set Dn is determined from M̄∪Mn−1 by an edge update step. In all these
cases the probabilities σ

(n)
kj are determined by the following general lemma.

Lemma 4. (Edge update) Suppose M̄ ∪ M ⊂ N ,M̄ ∩ M = ∅ denotes a set of
defaulted nodes and for all j, k let ρjk := P[v ∈ M|v ∈ Njk]. If the set of defaulted
edges triggered by M̄ ∪M is denoted D ⊂ E then for all j, k

σkj := P[` ∈ D|` ∈ Ekj ] =

∑
j′(ρ̄jk + ρj′k)Pj′k

P+
k

.

We note that σkj does not depend on j.

Proof: Using the LTIA (2) we compute that

P[` ∈ D|` = Ekj ] =
∑
j′

P[v+
` ∈ (M̄ ∪M) ∩Nj′k|` = Ekj ]

=
∑
j′

P[v ∈ M̄ ∪M|v ∈ Nj′k] P[v+
` ∈ Nj′k|` = Ekj ]

=
∑
j′

(ρ̄jk + ρj′k)P[jv = j′|kv = k]

=

∑
j′(ρ̄jk + ρj′k)Pj′k

P+
k

Given any set D of defaulted edges, each of the nodes (excluding the initially
defaulted nodes in M̄) recomputes its balance sheet and the node update step leads
to a subset M ⊂ N \ M̄ of defaulted nodes triggered by D. We separate out the
originally defaulted nodes M̄ since these were not triggered by defaulted edges. The
probabilities associated to M are characterized by the following result.

Lemma 5. (Node update) Suppose D ⊂ E denotes a set of defaulted edges with
associated probabilities σkj := P[` ∈ D|` ∈ Ekj ]. Then for all j, aj = P[` ∈ D|j` = j]
is given by

aj =
∑

k(Qkjσkj)
Q−

j

.
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If M denotes the subset of N \M̄ of defaulted nodes triggered by D, then for all j, k,
ρjk := P[v ∈M|v ∈ Njk] is given by

ρjk = (1− ρ̄jk)
j∑

m=Mjk

(
j

m

)
am

j (1− aj)j−m

where the default thresholds are defined as in (9) by Mjk = dγjk/wje.

Proof: First we compute that

aj = P[` ∈ D|j` = j] =
∑

k P[` ∈ D ∩ Ekj ]
P[j` = j]

=
∑

k(Qkjσkj)
Q−

j

. (16)

Note that P[` ∈ D|v−` ∈ Njk] = P[` ∈ D|j` = j] and also that

P[v ∈M|v ∈ Njk] = P[v ∈M|v ∈ Njk \ M̄] P[v /∈ M̄|v ∈ Njk]
= (1− ρ̄jk)P[v ∈M|v ∈ Njk \ M̄] . (17)

Under our assumptions, a node v ∈ Njk \ M̄ will be in default if and only if at
least Mjk in-edges to v are in D. One notes that LTIA (2) implies that the random
variables 1`∈D for all ` ∈ E−v , under the condition that v ∈ Njk \ M̄, are a collection
of j identical independent Bernoulli random variables with probability aj . Putting
these facts together gives

P[v ∈M|v ∈ Njk \ M̄] =
j∑

m=Mjk

(
j

m

)
am

j (1− aj)j−m

which combined with (17) leads to the required result.

Using these lemmas and the definitions (13)-(15), it is straightforward to piece
together the steps of the default cascade and obtain the main result of the paper.

Theorem 6. Consider the extended GK financial network (N,P, Q, γ, w, ρ̄) with N =
∞. Then

1. For n = 1, 2, . . . , the quantities σ(n), a(n), ρ(n) satisfy the recursive formulas

σ
(n)
kj =

∑
j′(ρ̄j′k + ρ

(n−1)
j′k )Pj′k

P+
k

, (18)

a
(n)
j =

∑
k(Qkjσ

(n)
kj )

Q−
j

, (19)

ρ
(n)
jk = (1− ρ̄jk)

j∑
m=Mjk

(
j

m

)
(a(n)

j )m(1− a
(n)
j )j−m , (20)

where Mjk = dγjk/wje and ρ
(0)
jk = 0. The total probabilities for defaulted (j, k)

edges and nodes at step n ≥ 1 are σ
(n)
kj and ρ̄jk + ρ

(n)
jk .
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2. The new probabilities ~a(n) = {a(n)
j } are a function G(~a(n−1)) which is explicit in

terms of the specification (N,P, Q, c, w, ρ̄).

3. G maps [0, 1]K onto itself, and is monotonic under the partial ordering relation
defined by ~a ≤ ~b if and only if aj ≤ bj for all j ∈ K. That is, G(~a) ≤ G(~b)
whenever ~a ≤ ~b.

Proof: In Part 1, (18) follows from Lemma 4 while (19) and (20) follow from Lemma
5. Part 2 is simply a composition of (18), (19), (20). Part 3 follows by inspection.

Remark 7. In the case of edge independence when Qkj = Q+
k Q−

j , the quantities

a
(n)
j = a(n) no longer depend on j. Then the fixed point equation simplifies to the

scalar equation a = G(a) where

G(a) =
∑
j,k

jk

z
Pjk(ρ̄jk + ρjk(a)), ρjk(a) = (1− ρ̄jk)

j∑
m=Mjk

(
j

m

)
am(1− a)j−m (21)

4 The Cascade Condition

The expected size of global cascades in a given extended GK financial network has
essentially been reduced to solving the vector valued fixed point equation

~a = G(~a) (22)

by iteration of the mapping G. Scalar equations similar to (21), giving the expected
size of cascades on directed networks, have been previously derived in various contexts
without assortativity. In [8], the main focus is on percolation-type phenomena (see
also the undirected networks case [7]), while [1] considers more complicated dynamics
but takes the limit ρ̄ → 0. The case considered in [6], where initial default fractions
can be different for each (j, k) class, has not, to our knowledge, been considered
previously. In the current work, we include for the first time (through Qkj) the effect
of non-trivial correlations between the degrees of nodes at either end of a randomly
chosen edge.

As a consequence of Part 3 of Theorem 6 and the Knaster-Tarski Fixed Point
Theorem, equation (22) always has at least one solution ~a∞ and this will be a vector
of probabilities a∞j ∈ [0, 1] for all j. Let us consider initial probabilities ερ̄ for a fixed
set of default probabilities ρ̄ and small ε > 0. We write G(~a(n−1)) = G(~a(n−1), ε)
to highlight the dependence on the parameter ε. One important question is to ask
whether the fixed points ~a(∞)(ε) are of order ε or of order 1 as ε → 0. In other
words, what is the “cascade condition” that determines if an infinitesimally small
seed fraction will grow to a large-scale cascade? It turns out this depends on the
spectral radius of the derivative matrix D = {Djj′} with Djj′ = ∂Gj/∂aj′ |~a=0,ε=0.
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Recall that the spectral radius of D, ‖D‖ := max~a:‖~a‖=1 ‖D~a‖, is the largest eigenvalue
of D in absolute value. In our framework, the derivatives Djj′ are easy to calculate:

Djj′ =
∑

k

j′QkjPj′k1{γj′k≤wj′}

Q−
j P+

k

. (23)

Note each component of D is non-negative: To enable an elementary proof of the
following result, we assume each component is strictly positive.

Proposition 8. Suppose the extended GK financial network (N = ∞, P, Q, γ, w, ρ̄)
is such that D and ρ̄ are positive matrices (i.e. all components are positive).

1. If ‖D‖ > 1 , then there is ε̄ > 0 and δ > 0 such that for all 0 < ε < ε̄,
‖~a(∞)(ε)‖ > δ. That is, in this network, an infinitesimal seed will trigger a large
scale cascade almost surely.

2. If ‖D‖ < 1, then there is ε̄ > 0 and C ′′ such that for all 0 < ε < ε̄, ‖~a(∞)(ε)‖ ≤
C ′′ε. That is, this network will not exhibit large scale cascades for any infinites-
imal seed.

Proof: See the Appendix.

In Section 6, we shall see that the cascade condition is indeed a strong measure of
systemic risk in simulated networks. One can check that in the setting of independent
edge probabilities Qkj = Q+

k Q−
j , the spectral radius becomes

‖D‖ =
∑
jk

jk

z
Pjk1{γj′k≤wj′} ,

a result that has been derived in a rather different fashion in [5] and [1]. [5] also
extends the [15] percolation theory approach from undirected networks to the case of
directed nonassortative networks. We will see in the next section that the percolation
approach to the cascade condition also extends to our directed assortative networks.

We can understand the cascade condition more clearly by introducing the notion
of vulnerable node, that is any node that becomes insolvent if any one of its debtors
defaults. In our specifications, a (j, k) node is thus vulnerable if and only if γjk ≤ wj .
The matrix element Djj′ has a simple explanation that gives more intuition about the
nature of the cascade condition: it is the expected fraction of edges `′ with j`′ = j′

that connect through a vulnerable node to an edge ` with j` = j.Then for small values
of ~a, one has a linear approximation for the change in ~a in a single cascade step:

am+1
j − am

j =
∑
j′

Djj′ (am
j′ − am−1

j′ ) + O(‖a‖2) . (24)

The condition for a global cascade starting from an infinitesimal seed is that the
matrix D must have an expanding direction, i.e. an eigenvalue with magnitude bigger
than 1.
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5 Frequency of global cascades and the giant

vulnerable cluster

The previous argument does not tell us directly about the frequency of global cas-
cades. However, it is well-known [11, Chapter 13.11] that the frequency of global
cascades in infinite random graphs is related to (in fact, bounded from below by)
the fractional size of the so-called in-component associated to the giant vulnerable
cluster.

To facilitate the discussion we make the following further definitions:

• V ⊂ N is the set of vulnerable nodes.

• Ss is the giant strongly connected set of vulnerable nodes (the “giant vulnerable
cluster”);

• the “in-component” of the giant vulnerable cluster Si is the set of (possibly not
vulnerable) nodes that are connected to Ss by a path of in-edges and vulnerable
nodes;

• Γjk = 1{γjk≤wj}.

We are interested in the following probabilities ~b = {bk}, bk := P[v /∈ Si|kv = k]
and note that v ∈ Sc

i (i.e. the complement of Si) is equivalent to the condition that
all the downstream nodes v−` , ` ∈ E+

v are in the set (Sc
i ∩ V) ∪ Vc. Thus, letting v′

denote any node one edge downstream from v, one has:

bk = (ck)k (25)

where

ck =
∑
j′,k′

P[v′ ∈ (Sc
i ∩ V) ∪ Vc|v′ ∈ Nj′k′ , k` = k]P[v′ ∈ Nj′k′ |k` = k] .

The LTIA implies

P[v′ ∈ (Sc
i ∩ V) ∪ Vc)|v′ ∈ Nj′k′ , k` = k] = Γj′k′bk′ + (1− Γj′k′)

P[v′ ∈ Nj′k′ |k` = k] =
Pj′k′Qkj′

P−
j′ Q

+
k

and thus
ck =

∑
j′,k′

(
Γj′k′bk′ + (1− Γj′k′)

) Pj′k′Qkj′

P−
j′ Q

+
k

(26)

Since bk = (ck)k it follows that ~c = {ck} satisfies the fixed point equation ~c = h(~c)
where

hk(~c) =
∑
j′,k′

(
Γj′k′(ck′)k′ + (1− Γj′k′)

) Pj′k′Qkj′

P−
j′ Q

+
k

(27)
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Note that the equation ~c = h(~c) has a trivial fixed point ~e = (1, 1, . . . ) that
corresponds to the set Si having probability zero. We now verify that the cascade
condition ‖D‖ > 1 is equivalent to the condition that e is an unstable fixed point, in
which case there will be a nontrivial fixed point 0 ≤ ~c∞ < ~e. A sufficient (and almost
necessary) condition for ~e to be an unstable fixed point is that ‖D̃‖ > 1 where the
derivative D̃kk′ = (∂hk/∂ck′)|~c=~e is given by

D̃kk′ =
∑
j′

k′Qkj′Pj′k′Γj′k′

Q+
k P−

j′
(28)

One can verify directly that

D̃ =
(
ΛBAΛ−1

)T
, D = AB

for matrices

Ajk =
Qkj

Q−
j

, Bkj′ =
j′Pj′kΓj′k

P+
k

, Λkk′ = δkk′kP+
k

and from this it follows that the spectrum, and hence the spectral radii and spectral
norms, of D̃ and D are equal. Hence ‖D‖ > 1 if and only if ‖D̃‖ > 1.

As long as the cascade condition is satisfied, the cascade frequency f is bounded
by the fractional size of the in-component Si:

f ≥
∑

k

P[v ∈ Si|kv = k] P[kv = k] =
∑

k

(1− ck,∞)P+
k . (29)

Repeating this type of argument to determine the size of the out-component of
the giant vulnerable cluster, one also obtains an upper bound on the mean size of the
global cascade.

6 Numerical Results

In this section we present results from large-scale Monte Carlo simulations on ran-
dom networks, and show that the analytical theory of Section 3 matches well to the
numerical results when N , the number of nodes in the network, is sufficiently large.

6.1 A Simple Random Network Model

We consider networks constructed with nodes of types (3, 3), (3, 12), (12, 3), (12, 12)
and edges of the same types. We fix the marginal probabilities P+

3 = P+
12 = 1/2

which lead to an average degree z = 15/2 and the marginals Q+
3 = 1/5, Q+

12 = 4/5.
For parameters a ∈ [0, 1/2] and b ∈ [0, 1/5] the following P and Q probabilities are
consistent:(

P3,3 P3,12

P12,3 P12,12

)
=

(
1/2− a a

a 1/2− a

)
;

(
Q3,3 Q3,12

Q12,3 Q12,12

)
=

(
1/5− b b

b 4/5− b

)
.

(30)
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We first fix the value of a to be 0.5, which means that the in- and out-degrees of
all nodes are negatively correlated: nodes with in-degree 3 have out-degree 12, and
vice versa. We examine three different values of the parameter b: the independent
connections case b = 0.16, the (almost) maximally assortative case b = 0.01 and the
(almost) maximally disassortative case b = 0.19. Note that the independent edge
condition has been assumed in all previous work on such problems. We also note
that with b = 0, edges are maximally assortative and link nodes of out-degree 3 to
nodes of in-degree 3 only, and nodes of out-degree 12 to nodes of in-degree 12 only.
In this case, the network falls into two disjoint pieces.

The balance sheet quantities are those of [5] (except for the percentage net worth
γ, which we vary over the range 0% to 10%), while the initial shock distribution is
taken to be ρ̄jk = 1/N for all types (j, k), corresponding to the shocking of a single,
randomly-chosen, bank.

Figure 3 compares theory curves for cascade size (found by iterating equations
(18)–(20) to convergence) as well as cascade frequency (assuming equality in (29))
with results from numerical simulations on random networks with N = 104, 103 and
200 nodes. The nodal correlation parameter is fixed at a = 0.5, while the edge
correlation parameter takes the values b = 0.01, 0.16, 0.19. Results are plotted as
functions of the percentage net worth parameter γ. In each case, 500 realizations are
used to find the extent of global cascades (a global cascade is defined, similarly to
[5, 6], as one in which more than 5% of nodes default), and the frequency with which
such global cascades occur. As expected, the analytical approach accurately predicts
the size of the global cascades. Some discrepancies may be noted in Figure 3, where
the theory does not predict some global cascades, but note that these occur with only
very small frequencies.

The cascade condition (23) predicts that the critical values of the buffer parameter
γ are: γc = 0.067 for the parameters of Figure 3(a), and γc = 0.017 for the case of
Figure 3(b). These values match very accurately to the locations of the dramatic
transitions in the theory curve (and in the expected size of cascades in numerical
experiments): for buffer values in excess of γc global cascades are extremely rare,
while for γ values less than γc the entire financial system is likely to fail following
a single bank’s default. These result indicate the potential usefulness of the cascade
condition as a measure of systemic risk.

We consider in Figure 4 the joint dependences on a, b of various theoretical quanti-
ties in the infinite limit. In the top figures, the critical value of γ and cascade size are
seen to be discontinuous, and not directly related to edge-assortativity (parametrized
by b). On the other hand (see bottom figures), the frequency of cascades is contin-
uously varying, and does appear to correlate somewhat with the graph assortativity
coefficient r given by (5).

6.2 Another Simple Random Network Model

Now we have shown that the infinite N theory meets our expectations, we can further
explore the implications of the analytical method. Since the specification of extended
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GK networks has many components, one must be rather careful in the questions one
wishes to address: we choose here to try by means of a simple network specification
to shed some additional light on the role the assortative properties of a network play
in its susceptibility to systemic risk as measured by the cascade frequency.

We consider stylized networks with many small banks and a few large banks.
The set of node types will be {(2, 2), (4, 4), (8, 8), (16, 16)} with a diagonal node
probability matrix:

P := (Pjk) = diag(8, 4, 2, 1)/15

The following edge probability matrices Q = (Qkj) are consistent with P :

Q(1) =
1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Q(2) =
1
4


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

Q(3) =
1
4


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Q(4) =
1
4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

and their convex combinations q1Q
(1) + q2Q

(2) + q3Q
(3) + q4Q

(4), q1 + q2 + q3 + q4 =
1, qi ≥ 0 span a simplex of possible edge probability matrices. We can see that as
measured by rQ, Q(1) is maximally assortative, while Q(3) and Q(4) are maximally
disassortative, and the independent case is Q(0) := [Q(1) + Q(2) + Q(3) + Q(4)]/4.

For the remaining components of the specification we adopt the default GK bal-
ance sheet values but with γ a variable parameter and consider shocking a single
randomly selected node (this is an infinitesimal shock in the infinite network limit).
We then compute the critical γc using the cascade formula (23), the cascade size from
Proposition 8, and the default frequency using equation (29).

Figure 5 shows how the theoretical values of γc and cascade size depend on the
particular Q matrix. Figure 6 shows how the theoretical values of the graph assor-
tativity coefficient and cascade frequency depend on Q. In both figures, the four
rows correspond to the simplices of Q matrices with q4 = 0, q3 = 0, q2 = 0, q1 = 0
respectively.

We see again in these networks that r and f vary continuously, while γc and
cascade size take on only discrete values. Of particular interest is the discernable
covariation of f with r. Since r depends only on the skeleton graph and not on the
balance sheet data, we cannot expect a one-to-one relationship between the quantities
f and r. However, we conjecture that r is in some sense the best possible purely
graph theoretic measure of systemic susceptibility. Heuristically, we might expect
that systemic risk is lowered if, all else being equal, the network is such that the
correlation between in-degrees of neighbouring nodes is lowered.
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7 Concluding Remarks

In summary, we have described here a rigorous analytical framework which can predict
the systemic risk of “deliberately simplified models” such as [5]. The qualitative type
of networks one can address has been extended compared to most existing work, in
particular by the inclusion of the non-independent connections between nodes. In
this more general setting we find the cascade is described by a vector-valued fixed
point problem that reduces to well-understood scalar problems in special cases. The
examples of Section 6 demonstrate that the finite size effects that break the LT
independence assumption do not appear to dramatically impact systemic risk as long
as N & 100. More subtly, we also observed that graph-assortativity, rather than
edge- or node-assortativity, can strongly affect the course of contagion cascades, and
hence show the importance of incorporating assortativity in numerical and analytical
treatments of banking network models. Our analytic framework will enable extensive
studies of alternative network topologies. In these studies the cascade condition and
cascade frequency provide two easily computed and useful measures of systemic risk
by which to compare different network topologies. However, the daunting range of
network variables means that both analytical and numerical studies must be carefully
framed to address specific issues, for example, to uncover other key determinants of
systemic risk. Finally, we anticipate that future work can show how the approach
described here may be further extended to include partial recovery models (such as
[12]) and stochastic balance sheets.
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Appendix: Proof of Proposition 8

Part 1: By continuous dependence, there are values ε̄ > 0 and λ > 1 such that
the matrix Dε = ∂G/∂a|~a=0,ε is positive and has spectral radius ‖Dε‖ ≥ λ for all
0 < ε < ε̄. Let us fix any such ε.

By the Perron-Frobenius Theorem for positive matrices, there is a unique normal-
ized eigenvector ~v such that Dε~v = ‖Dε‖~v: it has all positive entries and normalization
‖v‖ = 1. Taylor’s Theorem implies that for ε̄ small enough there is C > 0 such that

G(a, ε) = G(0, ε) + Dεa + R(a), ‖R(a)‖ ≤ C‖a‖2

for all a with ‖a‖ ≤ ε̄ (note we drop the~· notation in the following).
Now we show that the sequence a(1) = G(0, ε), a(n+1) = G(a(n), ε) leaves the set

‖a‖ ≤ ε̄ provided ε̄ is chosen small enough (independently of ε). For this, since ρ̄ > 0

18



there is β1 > 0 and a non-negative vector y1 such that a(1) = β1v + y1. Assuming
inductively that a(n) = βnv + yn for some βn > 0 and a non-negative vector yn and
that ‖a(n)‖ ≤ ε̄ the monotonic property of G combined with Taylor’s Theorem implies

a(n+1) = G(a(n), ε) ≥ G(βnv, ε)
= G(0, ε) + βnDεv + R(βnv)

≥ β1v + y1 +
1
2
(1 + λ)βnv +

(
1
2
(λ− 1)βnv + R(βnv)

)
Let βn+1 = β1 + 1

2(1 + λ)βn and note that yn+1 = a(n+1) − βn+1v ≥ 0 provided
ε̄ ≤ 1

2C (λ− 1) minj vj . Since the sequence βn increases without bound, we can iterate
the inductive argument only a finite number of steps before ‖a(n+1)‖ > ε.

Part 2: By continuous dependence, there are now values ε̄ > 0 and λ = 1
2(1 +

‖D‖) < 1 such that the matrix Da,ε = ∂G/∂a|~a,ε has spectral radius ‖Da,ε‖ ≤ λ for
all 0 ≤ ε < ε̄ and ‖a‖ ≤ ε̄. Fix any such ε. Now we note that for vectors a, b with
‖a‖, ‖b‖ ≤ ε̄ we can use Taylor’s Theorem again to write

G(a, ε)−G(b, ε) = Dε(a− b) + R(a, b)

where the remainder has bound C‖a− b‖2 for some C > 0. Then provided
‖a(n+1)‖, ‖a(n)‖ ≤ ε̄ and ε̄ ≤ 1−‖D‖

4C

‖a(n+1) − a(n)‖ = ‖G(a(n), ε)−G(a(n−1), ε)‖

≤ 1
2
(λ + 1)‖a(n) − a(n−1)‖+

(
1
2
(λ− 1)‖a(n) − a(n−1)‖+ ‖R(a(n), a(n−1))‖

)
≤ 1

2
(λ + 1)‖a(n) − a(n−1)‖

for all n ≥ 1. Since ‖G(0, ε)‖ ≤ C ′ε for some C ′ > 0, we can iterate this inequality to
show ‖a(∞)‖ ≤ C ′′ε with C ′′ = 4C′

1−‖D‖ .
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Figure 3: Numerical simulation results (symbols) and theoretical results (curves) for the
random network model of Equation (30), on networks of N nodes with parameter a = 0.5,
as functions of the net worth γ. The average size and frequency of global cascades in
simulations are shown by red circles and blue crosses, respectively. Theoretical results for
the expected cascade size (black solid curve) are from Section 3; those for the frequency
of cascades (dashed magenta curve) are from Section 5. Each column shows results for a
different network size N , and the parameter b takes a different value on each row of the
figure.
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Figure 4: Theoretical joint dependences on the graph parameters (a, b). Top left: critical γ
value for the random network model of Equation (30). Top right: Expected size of cascades
(from Section 3) when γ = 0.05 and ρ̄jk = 10−4. Bottom left: the graph assortativity
parameter r. Bottom right: Frequency of cascades (from Section 5) when γ = 0.05.
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Figure 5: Critical value of γ (left column) and expected size (right column) for cascades on
the random network model of Section 6.2 with γ = 0.0375 and ρ̄jk = 10−4. The triangles
shown correspond to Q matrices with (from top to bottom) q4 = 0, q3 = 0, q2 = 0, and
q1 = 0.
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Figure 6: Graph assortativity parameter r (left column) and frequency (right column) for
the same parameters as Fig. 5.
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