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Abstract

A critical issue in the credit risk industry is the accurate, efficient and
robust pricing of collateralized debt obligations (CDO) in a variety of math-
ematical models. These and many similar basket default products are very
complex, due to characteristics of the large number of individual firms upon
which they depend. Despite this complexity and because of their versatil-
ity, such products have become popular in the market. A central difficulty
which arises in most models of CDOs is the efficient computation of condi-
tional default loss distributions. Since exact computation is feasible only in
highly symmetric situations, it is necessary to have a variety of acceptable
approximation schemes. The present paper explores one general method, the
saddlepoint approximation, and shows that it offers an improvement when
compared with simpler methods.
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1 Introduction

A collateralized debt obligation (CDO), or more generally any asset–backed security
(ABS), is a structured product based on an underlying portfolio of default risky
reference credits, such as corporate bonds, mortgages or loans. In essence, the
portfolio is sliced into separate securities called “tranches” ordered by seniority,
each of which receives its fair share of the revenue stream generated by the reference
credits. CDOs have become very popular in the market and it is now important to
price them accurately and efficiently, a problem which has been attracting more and
more attention from both practitioners and academic researchers. The problem is
intrinsically difficult regardless of the modeling approach adopted. The number of
credits or names in a typical CDO is moderately large: for example the highly traded
CDX index products are based on a portfolio of 125 credits. The credit structure
of the collateral pool is also complicated, comprising firms from different sectors
and with different credit ratings and in many cases the products are structured
with credit having different notional amounts. Finally, since the different CDO
tranches span the entire range of default probabilities, practical schemes must be
very robust with respect to underlying parameters. Computational schemes which
work in certain symmetric cases become infeasible in the general nonhomogeneous
setting. The goal of this paper is to investigate whether the method of saddlepoint
approximations, also called large deviation theory in probability, performs flexibly,
robustly and accurately enough to be a reliable and general method for pricing
CDOs.

The cash flow from a CDO is determined by the cumulative loss over time by
default of the underlying reference credits. Understanding this involves modeling
each credit’s default probability, its loss given default, and the correlations among
these quantities. There are a number of competing models which address this prob-
lem. [6] focused on modeling the correlation of default times by intensity-based
models; [3], [11] have continued along these lines. The normal copula approach,
pioneered by [15] and developed by [13], [1] and [10], is a simpler approach to mod-
eling multifirm default, and forms the basis for most practical CDO computations
because in important special cases it leads to tractable calibration and evaluation.
The basic ingredient of models such as these which controls default correlations is
the presence of one or more conditioning factors or common risk factors thought
of as “macro–environmental variables”. Conditional on knowing the values of these
latent factors, firms’ default times and loss amounts are assumed to be independent
random variables. Therefore, conditional on the risk factors, the cumulative loss
random variable is the sum of a large number of independent, but not identical
Bernoulli random variables.

Many approximation schemes focus on this conditional independence structure.
The normal proxy methods approximate the conditional loss by a normal random
variable with the same mean and variance. More generally, Edgeworth expansions
match the first n moments, and generate an asymptotic expansion for loss probabil-
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ities [9]. Other authors investigate Poisson approximations and compound Poisson
approximations [12].

One promising approach to estimating conditional loss probabilities is the sad-
dlepoint approximation method pioneered by [8] and [14]. In probability, the saddle-
point method is more generally known as large deviation theory [5], [9]. The papers
[4] and [7] have successfully applied this theory to the general problem of estimating
large portfolio losses. A recent work [2] has extended the saddlepoint approach to
both risk measures and CDO pricing. This last paper finds that applied to typical
CDOs, the saddlepoint method is a “clear winner” when compared to any moment
matching method.

A key drawback of saddlepoint approximation methods is the lack of known
general theoretical error estimates. Because of this gap in theory, it is important to
have a good experimental knowledge of how the saddlepoint method applies to prac-
tical problems. The present paper focusses on how the saddlepoint approximation
method performs when applied to the “tranche function”, an important distribution
function which governs the cashflows of CDOs.

Typically, an asset backed security (ABS) such as a CDO is constructed by
“tranching” the profit X derived from a portfolio of underlying assets, where X is
taken to be a random variable with support on the bounded set [0, Xmax]. For a
set of K + 1 “attachment points” a0 = 0 < a1 < · · · < aK = 1 one decomposes the
payoff as follows

X = Xmax

K∑
k=1

[
(X/Xmax − ak−1)

+ − (X/Xmax − ak)
+
]
, (x)+ := max(x, 0),

where each term of the decomposition is called a “tranche”. Valuing each tranche by
taking discounted expectations leads to an expression involving F (ak−1)− F (ak) +
(ak − ak−1) where

F (a) = E[(a−X/Xmax)
+].

The tranche construction has obvious financial merits. Mathematically, it turns out
that all cashflows for ABS pricing can be formulated in terms of the tranche function
F (a) (thought of as a function of time), for which the saddlepoint approximation
method is admirably suited. There is even a further elegant feature related to the
saddlepoint method: Since the tranche function F (a) is formally the integral of the
cumulative distribution function of X/Xmax, the smoothing effect of integration ac-
tually improves the performance of the saddlepoint method for the tranche function,
over and above what is possible for the probability distribution function itself.

The paper is organized as follows. Section 2 puts in place the probabilistic as-
sumptions underlying the loss process. Section 3 describes the cashflows for a typical
synthetic CDO, and derives their basic mathematical properties. In section 4 we
specify two standard copula models of multifirm default which are ideal test cases
for CDO computations. Section 5 presents the theory of the saddlepoint approxima-
tion, and derives certain results which are specific to computing loss distributions.
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It is important to note that the specific implementation of the saddlepoint we give
is different from the method of [2]. Numerical results for both the tranche function
and the components of a CDO are given in Section 6 which compare exact and
approximate methods for four model realizations. Section 7 summarizes the main
conclusions of the paper.

2 Default and portfolio loss distributions

We begin with probabilistic assumptions for a general framework for the default of
the reference credits underlying a CDO, and derive basic formulas for the distribution
of portfolio loss up to any time t ∈ [0, T ]. Let (Ω,F ,Ft, P ) be a filtered probability
space that contains all of the random elements. Throughout this paper we will
interpret P as the risk–neutral or pricing probability measure. The basic entities
are:

• M reference credits with notional amounts of Nj, j = 1, 2, . . . ,M ;

• the default time τj of the jth credit, an Ft stopping time;

• the fractional recovery Rj after default of the jth credit;

• the loss lj = (1−Rj)Nj/N caused by default of the jth credit as a fraction of
the total notional N =

∑
j Nj;

• the cumulative portfolio loss L(t) =
∑

j ljI(τj ≤ t) up to time t as a fraction
of the total notional.

The following assumptions will hold throughout this paper.

Assumptions:

1. The discount factor is v(t) = e−rt for a constant interest rate r ≥ 0.

2. The fractional recovery values Rj and hence lj are deterministic constants;

3. There is a sub σ–algebraH ⊂ F generated by a d–dimensional random variable
Y , the “condition”, such that the default times τj are mutually conditionally
independent under H. The marginal distribution of Y is denoted by PY and
has probability density function ρY (y), y ∈ Rd.

Remark: Assumption 2 is for simplicity. The computational methods we develop
extend easily to models with stochastic recovery. In that more general setting,
Assumption 3 should then state that {Rj, τj} are mutually conditionally independent
under H.

The most important consequence of these assumptions is that conditioned on
H, the fractional loss L(t) is a sum of independent (but not identical) Bernoulli
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random variables: this is the object of mathematical interest. For the next few
sections, we fix a value for the time t and conditioning random variable Y , and denote
L̂ := L(t)|Y . Then L̂ ∼

∑
j ljXj where Xj ∼ Bern(pj), pj = Prob(τj ≤ t|Y = y).

We introduce the following functions associated to the random variable L̂:

1. The probability distribution function (PDF) ρ(x) (it is a sum of delta functions
supported on the interval [0, 1]);

2. The cumulative distribution function (CDF) F (0)(x) = E[I(L̂ ≤ x)];

3. The higher conditional moment functions F (m)(x) = E[((x − L̂)+)m],m =
1, 2, . . . ;

4. The cumulant generating function of L̂ (CGF) Ψ(u) = log(E[e−uL̂]).

Remarks and further definitions:

1. In later sections, we will make explicit the dependence on t, Y by writing

F (m)(x|t, y) = E[((x− L(t))+)m|Y = y],

F (m)(x|t) = E[((x− L(t))+)m] =

∫
Rd

F (m)(x|t, y)ρY (y)dy. (1)

2. It will be seen in later sections that the values of basic contingent claims con-
nected with CDO tranches are all expressible in terms of the function F (1).
We will therefore sometimes call it the “tranche function”. The tranche func-
tion also arises in the study of portfolio risk measures, specifically conditional
value–at–risk.

3. We shall measure the accuracy of an approximation F̃ (x|t, y) of F (x|t, y) for
(x, t, y) ∈ [0, 1] × [0, T ] × Rd using the following norm depending on x, T, ρY

(T will be the maturity date of the CDO):

‖F̃ − F‖x,T,ρY
:= sup

t∈[0,T ]

∫
Rd

|F̃ (x|t, y)− F (x|t, y)|ρY (y)dy. (2)

The explicit form of the CGF of L̂ is Ψ(u) =
∑

j log[1−pj +pje
−ulj ]. The Fourier

integral

ρ(x) =
1

2π

∫ ∞+iα

−∞+iα

eikxeΨ(ik)dk (3)

for the PDF exists as a distribution (generalized function) for any α ∈ R. The value
of this integral is independent of α ∈ R since the moment generating function eΨ(u)

is entire analytic in u. After noting

dF (m)(x)

dx
= mF (m−1)(x), m = 1, 2, . . .
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one can prove that the CDF and higher conditional moment functions are given by
related Fourier transforms

F (m)(x) =
m!

2π

∫ ∞+iα

−∞+iα

(ik)−m−1eikxeΨ(ik)dk, m = 0, 1, 2, . . . . (4)

Now one needs to account for the presence of the single pole at k = 0: One can check
that (4) is consistent with the boundary condition F (m)(0) = 0 for any contour with
α < 0. For use in the next sections, we also define

G(m)(x) =
m!

2π

∫ ∞+iα

−∞+iα

(ik)−m−1eikxeΨ(ik)dk, m = 0, 1, 2, . . . . (5)

for any contour with α > 0. An easy application of the Cauchy Integral Formula
shows that

F (1)(x) = G(1)(x)− E[L̂] + x (6)

with similar formulas relating F (m) and G(m) for m = 2, 3, . . . .

3 The structure of CDOs

CDOs can be schematically decomposed into two types of basic contingent claims
whose cash flows depend on the default losses of the underlying portfolio where
the reference credits are corporate bonds of similar maturity issued by a number of
firms. These cash flows are analogous to insurance and premium payments paid to
cover default events.

The writer (the insurer) of one unit of a basic default leg with attachment level
a pays the holder (the buyer of insurance) all default losses up to a certain level
0 < a ≤ 1 over [0, T ], the term of the contract. This means that at the default time
τj ≤ T of any firm, the parties exchange cash of the amount

(a− L(τj−))+ − (a− L(τj))
+ ,

where L(τj−) denotes the left limit of the cádlág process Lt.
The writer of one unit of a basic premium leg with attachment level a (the insured)

pays the holder (the insurer) on prespecified payment dates tk < tK = T , k =
0, 1, . . . , K − 1 an amount jointly proportional to the year fraction tk+1 − tk and
the residual portfolio value below a. In practice there is also a reduction called the
accrual term to account for defaults between payment dates which we ignore in this
paper. Thus the cash exchanged on date tk is

(tk+1 − tk)(a− L(tk))
+.

To avoid unnecessary complication, in this paper we treat only the limiting case
when payments are made continuously in time.
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Proposition 3.1. Under the assumptions and definitions stated in section 2

1. The fair price of the basic default leg with attachment level a is

W (a) = a− e−rTF (1)(a|T )−
∫ T

0

re−rtF (1)(a|t)dt; (7)

2. The fair price of the basic premium leg with attachment level a and continuous
payments is

V (a) =

∫ T

0

e−rtF (1)(a|t)dt. (8)

The following approximation result is an easy consequence:

Corollary 3.2. Under the assumptions and definitions stated in section 2, if F̃ (1) is
an approximation of the tranche function F (1), then the accuracy of the corresponding
tranche leg approximations Ṽ (a), W̃ (a) is given by

|Ṽ (a)− V (a)| ≤ r−1(1− e−rT )‖F̃ (1) − F (1)‖a,T,ρY
(9)

|W̃ (a)−W (a)| ≤ ‖F̃ (1) − F (1)‖a,T,ρY
(10)

where the norm is defined by (2).

Remarks and definitions:

1. This proposition and corollary underscore the need for accurate and efficient
computation of the tranche functions F (1)(x|t, y), F (1)(x|t) over the full range
of parameters t, y, x, for portfolios with a large number M of possibly non-
homogeneous reference credits. This, the main challenge for any numerical
algorithm, will be efficiently solved by the saddlepoint method. The t and y
integrals implicit in (7) and (8) can be computed by a discrete approximation
of the form ∫

[0,T ]×Rd

f(t, y)ρY (y)dtdy ∼
∑
i,j

wivjf(ti, yj) (11)

over a grid of points (ti, yj) with suitable integration weights wi, vj.

2. A CDO tranche is defined by upper and lower attachment levels 0 ≤ a < b ≤ 1,
usually expressed as percentages. The so-called base tranche are those with
a = 0. In the following, we take tranches defined by the attachment levels
3%, 7%, 10%, 15%, 30% as used for the CDX index products. The lowest
tranche [0, .03] is called the equity tranche or toxic waste; the middle tranches
are called mezzanine tranches; the highest tranche [0.3, 1] is called the super-
senior tranche. The default [a, b]–tranche leg pays the amount

(b− L(τj−))+ − (b− L(τj))
+ − (a− L(τj−))+ − (a− L(τj))

+
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at each default time τj ≤ T and its fair price is therefore W (b) −W (a). The
premium [a, b]–tranche leg pays periodic amounts

(tk+1 − tk)
(
(b− L(tk))

+ − (a− L(tk))
+)

and hence the fair price for the continuous time premium leg is V (b)− V (a).

3. The [a, b]–tranche spread is that multiplierX of the premium tranche leg which
solves the balance equation

X ((V (b)− V (a)) = W (b)−W (a). (12)

Proof of Proposition 3.1:

1. Over the term of the basic default leg, the payments have present value

∑
j

I(τj ≤ T )e−rτj
[
(a− L(τj−))+ − (a− L(τ))+

]
= −

∫ T

0

e−rt d(a− L(t))+.

Since e−rt is differentiable and (a− L(t))+ is right-continuous, integration by
parts gives the value

a− e−rT (a− L(T ))+ −
∫ T

0

(a− L(t))+re−rtdt. (13)

Formula (7) is given by taking expectations and using the definition (1).

2. Over the term of the basic premium leg, the payments have present value
which is a Riemann sum approximation of the integral

∑
j

(tj+1 − tj)e
−rtj(a− L(tj))

+ →
∫ T

0

e−rt(a− L(t))+dt.

Formula (8) is given by taking expectations of the right hand side and using
the definition (1).

ut

4 Standard copula default models

We now briefly describe two standard models of multifirm default which are ideal
test cases for comparing the saddlepoint method to the exact computation.

8



4.1 One factor normal copula default model

In this model, the joint distribution of default times {τj} is specified by an arbitrary
choice of marginal cumulative distribution function Fj(t) := E[I(τj ≤ t)] for each
firm and the selection of a one factor normal copula to describe the correlation
structure. The default times {τj} are defined in terms of a multidimensional normal

random variable ~Z = (Z1, . . . , ZM) by Zj = Hj(τj), j = 1, 2, . . . ,M . The marginals
of Zj are assumed to be standard normals, and Hj = Φ−1 ◦ Fj where Φ−1 denotes
the inverse cumulative distribution function of the standard normal random variable.
This guarantees that the marginal CDF of τj is Fj.

The joint distribution function of default is given by

P [τj ≤ tj, j = 1, . . . ,M ] = P
[
Zj ≤ Hj(tj), j = 1, . . . ,M

]
.

The one factor normal copula arises by taking ~Z to have mean zero and covariance
matrix

E[ZiZj] =

{
1 i = j
aiaj i 6= j

with the values aj in [−1, 1].
Assumption 3 can be verified for this model. If we let {Y, Y1, . . . , YM} be iid stan-

dard normal random variables, then the random variables Zj = ajY+
√

1− a2
jYj, j =

1, . . . ,M have the required joint distribution. If H is defined to be σ(Y ), the sigma
algebra of the single factor Y , then one can compute that the Z’s are independent
conditionally on Y :

P [τj ≤ tj, j = 1, . . . ,M ] = E
[
P [Zj ≤ zj, j = 1, . . . ,M |H]

]
=

∫
R
P

[
ajY +

√
1− a2

jYj ≤ zj, j = 1, . . . ,M |Y = y
]
φ(y)dy

=

∫
R

∏
j

P
[
Yj ≤ (zj − ajy)/

√
1− a2

j

]
φ(y)dy

=

∫
R

∏
j

Φ

(
(zj − ajy)/

√
1− a2

j

)
φ(y)dy, (14)

Here Φ, φ are the CDF and PDF respectively of the standard normal random vari-
able.

4.2 Clayton copula default model

In this model, discussed in [13], the joint distribution of default times {τj} is spec-
ified by an arbitrary choice of marginal cumulative distribution function Fj(t) :=
E[I(τj ≤ t)] for each firm and correlation structure given by a Clayton copula
parametrized by θ > 0. The M–dimensional Clayton copula C(u1, . . . , uM) is the
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joint cumulative distribution function of random variables {Uj}M
j=1 constructed in

the form Uj = ψθ(Zj). Here Zj = −Y −1 log Yj where {Y, Y1, . . . , YM} are mutually
independent random variables. Y has a Gamma (1/θ, 1) distribution with distribu-
tion function Γ(y) and Laplace transform ψθ(z) = (z+1)−1/θ. Each Yj has a uniform
[0, 1] distribution. One can then check that the marginals of Uj are uniform:

P [Uj ≤ u] =

∫ ∞

0

P [Zj ≥ ψ−1
θ (u)|Y = y]dΓ(y)

=

∫ ∞

0

P [Yj ≤ exp(−yψ−1
θ (u))]dΓ(y)

=

∫ ∞

0

exp(−yψ−1
θ (u))dΓ(y)

= ψθ(ψ
−1
θ (u)) = u. (15)

One can also check that the copula has the “arithmetic” form:

C(u1, . . . , uM) =

∫ ∞

0

∏
j

(
P [Zj ≥ ψ−1

θ (uj)|Y = y]
)
dΓ(y)

=

∫ ∞

0

∏
j

(
P [Yj ≤ exp(−yψ−1

θ (uj))]
)
dΓ(y)

=

∫ ∞

0

exp
(
−y

∑
j

ψ−1
θ (uj)

)
dΓ(y)

= ψθ

(
ψ−1

θ (u1) + · · ·+ ψ−1
θ (uM)

)
. (16)

Putting these pieces together leads to default times τj which are defined by

τj = F−1
j (Uj) = F−1

j (ψθ(−Y −1 log Yj)). (17)

Note in particular that Assumption 3 holds for H = σ(Y ).

5 The saddlepoint method

This method is a part of the theory of large deviations which develops generalizations
of the central limit theorem. In the present context, we use it to approximate Fourier
integrals such as (4) which have the form∫ ∞+iα

−∞+iα

eG(ik)dk

by exercising our freedom to choose α so that the contour passes through a critical
point of G, i.e. a value u∗ ∈ C where G′(u∗) = 0. Taylor expansion of G about u∗

then leads to an asymptotic expansion of the integral which in some circumstances
yield very useful approximations. For a review of the method, see [5].
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We illustrate the method for the PDF Fourier integral (3) in the symmetric case
pj = p, lj = l. Now Ψ(u) = M log[1− p+ pe−ul] and for any x ∈ (0, lM) the unique
critical point u∗ solving x+ Ψ′(u) = 0 is given by

u∗ = u∗(x,M) =
1

l
log

[
p(lM − x)

(1− p)x

]
. (18)

The Taylor expansion ikx + Ψ(ik) = u∗x + Ψ(u∗) +
∑∞

n=2
1
n!

Ψ(n)(u∗)(ik − u∗)n is
plugged into the exponent, and the contour is chosen with α = −u∗, leading to

ρ(x) =
1

2π

∫ ∞

−∞
exp

[
u∗x+ Ψ(u∗) +

∞∑
n=2

1

n!
Ψ(n)(u∗)(ik)n

]
dk (19)

∼ eu∗x+Ψ(u∗)

2π

∫ ∞

−∞
e−Ψ(2)(u∗)k2/2

[
1− i

3!
Ψ(3)(u∗)k3 +

1

4!
Ψ(4)(u∗)k4 + · · ·

]
dk

One can do the resulting Gaussian integrals, noting that the odd order terms vanish,
and obtain the asymptotic expansion

ρ(x) ∼ eu∗x+Ψ(u∗)√
2πΨ(2)(u∗)

[
1 +

Ψ(4)(u∗)

8(Ψ(2)(u∗))2
− 5(Ψ(3)(u∗))2

24(Ψ(2)(u∗))3
+ · · ·

]
(20)

This example is interesting because the left hand side is a sum of delta functions:
the approximation must be understood in a weak or distributional sense. In this
example, Ψ(n)(u∗) = O(M) for all orders of differentiation, from which one can see
that the second and third terms in (20) are O(M−1) while the first omitted term is
O(M−2). We therefore expect the asymptotic estimate for the relative error of the
first order approximation (which omits the second and third terms) to be O(M−1)
while the second order approximation, which includes these two terms, should be
O(M−2). Figure 1 illustrates the first and second approximation functions of the loss
distribution over a five year time horizon for baskets of M = 32 and M = 128 firms,
with identical independent Exponential(λ) distributed default times with λ = 0.1.
Note that both approximations fit the tail of the distribution well, but the second
approximation fits the mode better.

The saddlepoint approximation method can be extended to the computation of
the integrals (4) for F (m)(x) and (5) for G(m)(x) in the fully nonsymmetric case with
pj, lj all different. Care must now be taken over the placement of the contour around

the pole at k = 0. Since E[L̂] is explicit and F (1)(x) = G(1)(x) − E[L̂] + x (with
similar formulas relating F (m) and G(m)), one can compute F (m) either directly by
(4) or indirectly from (5). In both cases, the saddlepoint method is implemented by
rewriting the integrands in exponential form, for example,

F (m)(x) =
m!

2π

∫ ∞+iα

−∞+iα

eikx+Ψ(ik)−(m+1) log ikdk, α < 0, (21)
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Figure 1: The first and second order saddlepoint approximation functions of the
discrete binomial distribution when M = 32, 128, λ = 0.1 and T = 5. In the first
graph, the second approximation is the lower curve.

and numerically solving the saddlepoint condition

x+ Ψ′(u)− (m+ 1)/u = 0. (22)

The next proposition shows that a choice of two saddlepoints solving this equation
is typically available:

Proposition 5.1. Suppose that pj, lj > 0 for all j. Then

1. There is a solution u∗, unique if it exists, of x + Ψ′(u) = 0 if and only if
0 < x <

∑
j lj. If E[L̂] > x > 0 then u∗ > 0 and if E[L̂] < x <

∑
j lj then

u∗ < 0.

2. For each m ≥ 0 there is exactly one solution u−m of (22) on (−∞, 0) if x <∑
j lj and no solution on (−∞, 0) if x ≥

∑
j lj. Moreover, when x <

∑
j lj the

sequence {u−m}m≥0 is monotonically decreasing in m.

3. For each m ≥ 0 there is exactly one solution u+
m of (22) on (0,∞) if x > 0 and

no solution on (0,∞) if x ≤ 0. Moreover, when x > 0 the sequence {u+
m}m≥0

is monotonically increasing in m.
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Remarks:

1. Interestingly, [2] apply the saddlepoint method differently: In that paper, the
saddlepoint u∗ is used rather than one of the points u±m. We have not attempted
to compare the relative merits of the two schemes.

2. In the range of interest 0 < x <
∑

j lj, for each m ≥ 0, we always have
the choice between the positive and negative saddlepoints. When the positive
saddlepoint u+

m is used, F (m) is computed directly by (20) with Ψ(u) replaced
by Ψ(u)− (m + 1) log |u|. On the other hand, when the negative saddlepoint
u−m is used, F (m) is computed indirectly using (6) and its generalizations, with
G(m) approximated by (20) with Ψ(u) replaced by Ψ(u)− (m+ 1) log |u|. We
argue below that it is reasonable to pick the saddlepoint with the same sign
as u∗.

3. The monotonicity in m seems to relate to the beneficial effects of integration
in the saddlepoint method.

Proof of Proposition 5.1:

1. For Ψ(u) =
∑

j log(1− pj + pje
−ulj), we have

Ψ′(u) =
∑

j

−pjlje
−ulj

1− pj + pje−ulj

Ψ(2)(u) =
∑

j

pjl
2
je
−ulj(1− pj)

(1− pj + pje−ulj)2
> 0.

These equations show that Ψ′(u) is strictly increasing on u ∈ (−∞,∞) and
that

Ψ′(0) = −E(L̂), Ψ′(∞) = 0, Ψ′(−∞) = −
∑

j

lj.

The above properties tell us that u∗ exists if and only if 0 < x <
∑

j lj. If

0 < x < E[L̂], then u∗ > 0; if E[L̂] < x <
∑

j lj, then u∗ < 0.

2. Notice that for fixed x, x+ Ψ′(u)− m+1
u

is strictly increasing over the interval
(−∞, 0) and

lim
u→−∞

(
x+ Ψ′(u)− m+ 1

u

)
= x−

∑
j

lj, lim
u↑0

(
x+ Ψ′(u)− m+ 1

u

)
= ∞.

Thus for −∞ < x <
∑

j lj, there is exactly one solution u−m on (−∞, 0) of the

equation x+ Ψ′(u)− m+1
u

= 0; For x ≥
∑

j lj, there is no solution on (−∞, 0).
To prove the monotonicity result of part 2, note that the mean value theorem
implies that for any m ≥ 1(

Ψ′(u−m)−m/u−m
)
−

(
Ψ′(u−m−1)−m/u−m−1

)
= (Ψ(2)(ξ) +m/ξ2)(u−m − u−m−1)
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for some intermediate value ξ. Combining this equation with (22) for m − 1
and m yields the equation

(Ψ(2)(ξ) +m/ξ2)(u−m − u−m−1) = 1/u−m.

Since (Ψ(2)(ξ) +m/ξ2) is everywhere positive, u−m < 0 implies u−m − u−m−1 < 0.

3. The results of part 3 are proved in a similar manner.

ut

To approximate the tranche function F (m) on a grid of (t, y) values, the solution
of (22) must be computed numerically for each (t, y) pair. This can always be done
using a modified Newton-Raphson method, by starting from an initial value u(0) and
iterating the formula:

u(k) = u(k−1) − Ψ′(u(k−1))− (m+ 1)/u(k−1) + x

Ψ(2)(u(k−1)) + (m+ 1)/(u(k−1))2
, k = 1, 2, . . . . (23)

We searched for the fixed point with the same sign as u(0): if ever the value of
u(k) changed sign, we simply replaced (23) by u(k) = u(k−1)/10. This modification
takes care of any instability in the iterations which might otherwise develop, and the
resulting sequence converges to u−m whenever u(0) < 0 and to u+

m whenever u(0) > 0.
The remaining question concerns the choice of initial value u(0), and hence which

of u±m to be used. Part (1) of Proposition 5.1 implies that NR iteration beginning
from u(0) = u∗ will lead to u−m if E[L̂] < x <

∑
j lj and u+

m if 0 < x < E[L̂]. In

nonhomogeneous cases where u∗ is not explicit, we instead take u(0) given by (18)
with l =

∑
j lj/M and p =

∑
j pjlj/

∑
j lj, with the same result guaranteed. The

resulting NR iterations typically converge in 5 or 6 steps.

6 Numerical results

In this section, we survey the performance of the saddlepoint method over a wide
range of models with an aim to test the following criteria: their effectiveness com-
pared to the Edgeworth approximation and Monte Carlo simulation; accuracy and
how it varies over the parameter set; computational efficiency; and robustness and
sensitivity to roundoff errors of the numerical algorithm; sensitivity to nonhomo-
geneity of the underlying firms. We will be focusing on the dependence on four key
parameters M, t, y, x. The number of firms varies over the values M = 2m,m =
2, 3, . . . , 10; the time t ranges over [0, T ] for a time horizon T = 5 years; the condi-
tioning random variable y ranges over [−3, 3] for the normal copula and [0, 5] for the
Clayton copula; and finally the tranche variable x ranges over the standard attach-
ment points (0.3, 0.15, 0.10, 0.07, 0.03). All remaining parameters are set by one
of the following four fixed specifications of one factor copula models whose marginal
default times are exponentially distributed with parameter λ:

14



1. Problem A (Homogeneous default probabilities, normal copula and loss amounts):
λj = 0.01, aj =

√
0.3, lj = 0.6/M ;

2. Problem B (Homogeneous normal copula and loss amounts, nonhomogeneous
default probabilities): aj =

√
0.3, lj = 0.6/M and either λj = 0.01 or λj = 0.04

with equal likelihood.

3. Problem C (Homogeneous Clayton copula, homogeneous loss amounts, nonho-
mogeneous default probabilities): θ = 0.173, lj = 0.6/M and either λj = 0.01
or λj = 0.04 with equal likelihood.

4. Problem D (Homogeneous normal copula, nonhomogeneous default probabil-
ities and loss amounts): Here we take all firms with aj =

√
0.3, and the firms

falling into four equal size groups with parameters (λj, lj) one of (0.01, 0.6/M),
(0.01, 0.15/M) (0.04, 0.6/M), (0.04, 0.15/M).

We computed the various model specifications on a grid of (t, y) pairs in four
different ways.

1. Method 1 (Exact): Problems A, B, C, D can all be computed exactly using
“shortcuts” not applicable to fully nonhomogeneous portfolios. Problem A is
computable in O(M) flops in terms of binomial probabilities. Problems B,
C, can be computed in O(M2) flops by a pairwise convolution of binomial
distributions. Problem D can be computed in O(M4) flops by a four-fold
convolution of binomial distributions.

2. Method 2 (Edgeworth method); This method approximates the conditional
loss distribution by a Gaussian distribution N(µ, σ2) with first and second
moments computed by the formulas:

µ =
∑

j

pjlj, σ2 =
∑

j

pj(1− pj)l
2
j .

3. Method 3 (First order saddle method): This method computes one of the
saddlepoints u±1 by NR iteration and takes the first term of (20), leading to
a relative error which is heuristically O(M−1). The rule for selecting which
saddlepoint to use is given in the last paragraph of Section 5.

4. Method 4 (Second order saddle method): This method computes one of the
saddlepoints u±1 by NR iteration and takes the first three terms of (20), leading
to a relative error which is heuristically O(M−2). The rule for selecting which
saddlepoint to use is given in the last paragraph of Section 5.

We repeat the observation that Methods 2, 3, 4 all work for fully nonhomogeneous
portfolios in O(M) flops.
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6.1 Results on the tranche function

In this section we focus on the tranche function F (x, t, y) := F (1)(x|t, y). Table 1
shows the saddlepoints computed as an intermediate step for problem A for various
values of t, x and with y = 0,M = 128:

t = 1 t = 2 t = 3 t = 4 t = 5
x = 0.03 -655.25280476 -460.75355618 -351.31097847 -277.22907362 -223.05280579
x = 0.07 -837.83258066 -637.19755394 -521.31324452 -440.07509682 -377.85318316
x = 0.1 -923.73264541 -722.10761622 -605.25181996 -522.98398033 -459.63397500
x = 0.15 -1030.87663034 -828.62318833 -711.17793620 -628.31017117 -564.32754966
x = 0.3 -1263.83462458 -1061.12171124 -943.26415657 -859.99419953 -795.60487253

Table 1: The saddlepoints computed for problem A with t = 1, 2, · · · , 5, x =
[0.03, 0.07, 0.1, 0.15, 0.3] and y = 0.

The graphs shown in Figures 2, 3, 4, 5 represent the norm (2) of the difference
between the exact method and the three approximations as a function of the number
of firms M , for each of the five attachment points, for problems A, B, C, D. The
norm is computed over a discrete set of 40×20 (t, y) pairs. A number of observations
can be made based on these figures:

1. Absolute errors are not very sensitive to tranche level;

2. Method 2 typically shows O(M−p) accuracy with p between 1 and 2;

3. The accuracy of both Methods 3,4 tends to flatten out for large M ;

4. Method 4 usually outperforms Method 2 for M smaller than 100, but not
always when M gets large;

5. Method 4 always outperforms Method 3, and is typically about ten times more
accurate;

6. Comparison of Problems B, C, D to Problem A shows that nonhomogeneity
of the firms degrades the accuracy of saddlepoint methods somewhat;

7. The NR iterations needed for Methods 3 and 4 typically converge in 4 to 10
steps. Thus Methods 3 and 4 run on average about 7 times slower than Method
2.

Programming methods 3 and 4, the saddlepoint methods, present some difficul-
ties not encountered using the other methods. The Newton–Raphson root finding
method at the core of the saddlepoint presents three extra difficulties: initializing the
recursion, finding a robust termination condition for the iteration, and the choice of
positive or negative saddlepoint. All three difficulties did arise in practise for some
parts of the parameter space of interest, but were overcome satisfactorily with the
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detailed approach described in Section 5. Some further issues were noticed: roundoff
error became an important limit on accuracy for Methods 3 and 4 when the firm
number exceeded 210; roundoff error also led to the possibility of (theoretically im-
possible) cycles in the NR iteration when the firm size exceeded 210. Beyond these
difficulties, the saddlepoint methods were easy to program.

6.2 Results for CDOs

We computed CDO spreads using equations (7), (8), (11), (12) for a wide range of
model specifications, and overall found consistency with the numerics of the tranche
function itself. Tables 2 and 3 show typical results: these tables compare CDO
spreads computed for Problems A and B for various values of M , using Methods 1,
2, 3 and 4.

The one surprising aspect of these tables is that for CDO spreads Method 4 does
not outperform Method 3 to the extent one would guess from Figures 2 and 3: it
appears that Method 3 does better than one might expect.

7 Conclusion

The present paper has shown that the second order saddlepoint method offers gen-
erally superior performance in computing the loss tranche function and CDO prices,
for large credit portfolios. Compared to the alternatives, the normal proxy and Edge-
worth expansions, the saddlepoint method adds little extra computational cost or
programming difficulty, and usually yields better results. The second order method
usually outperforms the first order method. The saddlepoint methods are applica-
ble to fully nonhomogeneous portfolios where no exact computations are possible.
Although no general theoretical bounds are known for saddlepoint methods, their
accuracy is apparently in line with the heuristics of asymptotic expansions.
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Figure 2: Performance of the three approximation schemes on Problem A, showing
averaged error E versus number of firms M . Subgraphs one to five show the five
tranche levels 0.3, 0.15, 0.10, 0.07, 0.03.
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Figure 3: Performance of the three approximation schemes on Problem B, showing
averaged error E versus number of firms M . Subgraphs one to five show the five
tranche levels 0.3, 0.15, 0.10, 0.07, 0.03.
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Figure 4: Performance of the three approximation schemes on Problem C with
Clayton Copula where θ = 0.173, showing averaged error E versus number of firms
M . Subgraphs one to five show the five tranche levels 0.3, 0.15, 0.10, 0.07, 0.03,
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Figure 5: Performance of the three approximation schemes on Problem D, showing
averaged error E versus number of firms M . Subgraphs one to five show the five
tranche levels 0.3, 0.15, 0.10, 0.07, 0.03.
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M=32
Tranche (%) Exact 1st order 2nd order Edgeworth

0-3 1269.4 1287.0(17.6) 1281.7(12.3) 1509.3(-239.9)
3-7 460.0 456.0(-4.0) 454.7(-5.3) 453.0(-7.0)
7-10 203.4 199.0(-4.4) 203.0(-0.4) 200.8(-2.6)
10-15 96.9 95.7(-1.2) 95.9(-1) 94.1(-2.8)
15-30 20.3 20.4(0.1) 20.5(0.2) 20.1(-0.2)
30-60 0.7 0.7(0.002) 0.7(0.008) 0.7(-0.002)

M=128
0-3 1496.8 1500.1(3.3) 1497.4(0.6) 1539.6(42.8)
3-7 420.6 420.4(-0.2) 420.0(-0.6) 419.4(-1.2)
7-10 173.2 171.7(-1.5) 173.5(0.3) 173.5(0.3)
10-15 82.0 82.1(0.1) 82.0(-0.06) 81.8(-0.2)
15-30 15.8 15.7(-0.1) 15.8(0.02) 15.8(-0.02)
30-60 0.5 0.5(-3e4) 0.5(5e-4) 0.5(-2e-4)

M=512
0-3 1559.5 1560.1(0.6) 1559.5(0) 1565.9(6.4)
3-7 412.8 413.3(0.5) 412.8(-0.02) 412.5(-0.3)
7-10 158.3 157.5(-0.8) 158.4(0.02) 158.3(-0.07)
10-15 81.2 81.3(0.1) 81.2(-0.01) 81.2(0.02)
15-30 14.1 14.1(-0.05) 14.2(0.003) 14.1(0.002)
30-60 0.5 0.5 (-3e-5) 0.5(0) 0.5(-2e-5)

Table 2: CDO Spreads for Problem A for different tranches and M = 32, 128, 512.
Numbers in parentheses are absolute spread errors in bps.
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M=32
Tranche (%) Exact 1st order 2nd order Edgeworth

0-3 2938.1 3146.2(208.1) 2986.6(48.5) 3316.7(-378.6)
3-7 1302.9 1283.5(-19.4) 1294.5(-8.4) 1303.3(0.4)
7-10 698.3 669.2(-29.1) 692.9(-5.4) 698.2(-0.1)
10-15 388.4 374.3(-14.1) 383.5(-4.9) 382.8(-5.6)
15-30 103.0 101.7(-1.3) 103.6(0.6) 102.9(-0.1)
30-60 4.5 4.4(-0.1) 4.5(0.03) 4.5(0.01)

M=128
0-3 3546.9 3674.0(127.1) 3572.3(25.4) 3605.9(59.0)
3-7 1297.6 1281.3(-16.3) 1294.1(-3.5) 1296.6(-1.0)
7-10 658.9 653.4(-5.5) 657.8(-1.1) 660.3(1.4)
10-15 361.3 354.6(-6.7) 359.4(-1.9) 360.6(-0.7)
15-30 88.5 87.5(-1.0) 88.4(-0.01) 88.5(0.005)
30-60 3.3 3.2(-0.1) 3.2(-0.01) 3.3(0)

M=512
0-3 3730.5 3747.9(17.4) 3741.5(11.0) 3737.8(7.3)
3-7 1300.0 1290.0(-10.0) 1299.0(-1.0) 1299.7(-0.3)
7-10 634.5 644.2(9.7) 633.9(-0.6) 634.6(0.1)
10-15 363.0 362.9(-0.1) 362.3(-0.7) 363.0(0.05)
15-30 83.0 82.8 (-0.2) 82.9(-0.1) 83.0(0)
30-60 3.0 3.0(0.004) 3.0(-0.005) 3.0(1e-4)

Table 3: CDO Spreads for Problem B for different tranches and M = 32, 128, 512.
Numbers in parentheses are absolute spread errors in bps.
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