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Abstract

In this article we provide a general identity useful for computing expectations

of the form
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for diffusion processes X; and certain functions ¢. In the case of CIR and Jacobi
diffusions, this identity leads to explicit formulas for the Laplace transform of a

multidimensional family of random variables constructed from X; and its integrals.
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1 Introduction

The modelling of financial time series such as stock prices, interest rates, and foreign
exchange rates has been important in the development of the theory of stochastic pro-
cesses. The solution to practical problems such as option pricing, model calibration, and
portfolio selection relies to a great extent on the solvability properties of the underlying
one-dimensional stochastic processes. Since financial mathematics is not a fundamental
science like physics, the criteria for useful models are mostly pragmatic: models are of
interest if they fit certain “stylized facts”, and retain an adequate degree of computational
tractability.

For example, the recent popularity of Lévy models for stock returns is due in large
part to the possibility of using the fast Fourier transform to compute option prices (see
[11]). Similarly, the class of affine processes (see [6]) derives its popularity for interest rate
theory, stock modelling, and other financial applications in large part because explicit or
close to explicit formulas are available for key functionals of the underlying processes.
The so-called solvable Markov models, studied by [1], constitute a further distinct family
of models that includes geometric Brownian motion, the Ornstein-Uhlenbeck processes,
the Cox-Ingersoll-Ross (CIR) model, and the Jacobi process: these processes have found
hundreds of applications in finance and other areas of stochastic phenomena.

It is this last family of solvable diffusion models that provide the natural setting for
the present paper. For a one-dimensional stationary diffusion process X; on a filtered

probability space (€2, F, Fi<r,P), we present an argument involving a measure change

2



from P to Q which yields an identity of the form
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for certain functions ¢, f,g. We are then able to provide a number of interesting cases
where the new expectation can be evaluated in terms of special functions.

The identity (1) is closely related to results contained in a recent article [2], where
the authors present the complete classification scheme of diffusion processes (and also
birth and death processes) X, and functions ¢(x), for which the expectation (1) can be
computed in terms of hypergeometric functions. By using a PDE approach, non-singular
transformations and spectral resolution, they were able not only to give a complete classi-
fication of these processes, but also to provide explicit series formulas in many important
cases.

Our results, while of intrinsic interest in the theory of stochastic processes and partial
differential equations, are motivated by financial mathematics, and they suggest a number
of new applications in finance that we hope to explore in future papers. As just one
example, we note here a connection between our new results and the theory of utility
based pricing and hedging in incomplete markets. Utility theory, the proper economic
foundation for financial decision making and contract valuation in general markets, has
been under rapid development in the past decade. However, the list of explicitly solvable
problems in utility theory is not long, despite the efforts of a large number of researchers,
a fact which has hampered both the development of the theory, and the adoption of utility
methods by finance practitioners. A recent paper [9] shows how the utility based prices of
important volatility derivatives in certain stochastic volatility models including the classic
Heston model boil down to natural Feynman-Kac type expectations. Serendipitously,

these expectations turn out to be of the precise form we address here and thus can be
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expressed explicitly in terms of our new formulas.

Section 2 provides two alternative heuristic derivations of the formula for general
diffusion processes, one purely probabilistic involving the Girsanov theorem, the other
by partial differential equations. When the underlying process X; is a Cox-Ingersoll-Ross

V1T

(CIR) process (a positive mean reverting diffusion), and we choose f(z) = e™""*2"2, g(x) =

e~ "1%g"2 Theorem 3.1 provides the precise conditions under which
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can be computed in closed form in terms of the confluent hypergeometric function. To
facilitate computations of this formula over a wide range of parameter values, in Appendix
6 we provide a simple asymptotic expansion which complements the standard power series
expansion of the hypergeometric function.

In Section 4, we investigate the lesser known Jacobi process (a mean reverting diffusion
taking its values on [0, 1], see [5]). When we take f(z) = 2" (1 —z)"2, g(z) = 2" (1 —x)"2,
we are able to show conditions under which the method leads to a convergent and tractable

representation of

—d f(%)dsfdg f( Xe—)ds
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in terms of hypergeometric functions. In this case, the formula is in terms of a rapidly
convergent series of Jacobi polynomials (see [10]). Appendix 7 examines the asymptotic

properties of this expansion as t — 0.



2 The general method

In this section, we present two heuristic derivations of the basic identity, one probabilistic,
the other via partial differential equations. At the end of the section, we discuss the general
technical conditions under which the formula holds. Let X; € D,t € [0,T], T > 0 be a
one-dimensional stationary diffusion process under the measure P, defined by its initial

condition Xy = x, and its Markov generator

£° = (), + 50" ()32 )

Here D is a (possibly infinite) interval on the real line.

From the generator we identify the stochastic differential equation followed by X;:
dX, = p(Xy)dt + o(X)dW), Xo =z,

where WP is a P-Brownian motion. We also assume that o(z) > 0 inside domain D.

Identity 1. For any “good” functions f(x) > 0 and g(x) we have

Tpx Sg(XT) = f(z)E® {Q(XT)} )

f(Xz)

where under the measure Q the Markov generator of X; has a modified drift:

Q _ T UQxf/(x) lazx 2
£2= (o) + 202 ) 0, 4 oz (@)

For a probabilistic justification of this identity, we start with the integrated Ito6 formula



for the process log(f(X;)):

log(f(Xx)) = log(f()) + /

By exponentiation, multiplication by g(X;), and rearrangement of factors, one finds

T .p
e ol _ f(Xo)
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where Z; = [ ];((;((:))U(Xs)de is a P local martingale. Application of the Girsanov
0

theorem with Radon—Nikodym derivative

d 1
d_(]g = %1342, (5)

leads finally to the desired expectation formula. The Girsanov theorem also implies that

f'(Xt)
f(X)

AW = dwf — (X)) dt,

is a Brownian motion under the measure Q, and one obtains that the dynamics of X,
under Q is given by (4).

We observe that the probabilistic argument can be made rigorous by imposing two-
times differentiability of f(x) (for the Itd formula), plus the condition f(x) # 0 for any
x inside domain D, which we need for the process Z; to be well defined. Using the same
argument as in [3], [4] and [6], one can prove that a sufficient condition to justify the use

of the Girsanov theorem is the following:



Assumption 1. The boundaries of the interval D are unattainable both under measure

P and under measure Q.

It is also of interest to give the heuristic derivation of Identity 1 by partial differential
equations. The Feynman-Kac formula implies that under suitable conditions the left side
of (3), which we denote by ¢(7,x), can be obtained as the ¢ = T" value of the solution
¢(t, x) of partial differential equation:

LY f

o — LY ¢+ (T) =0, te(0,T] (6)

with initial condition ¢(0, ) = g(z). One can now easily check that if ¢(¢, ) = f(x)¥(t, x),
then

L= fILU) + (L7f)e .

Therefore ¢ (T, z) is the t = T" value of the solution of
Op =LY% =0, e (0,T] (7)

with initial condition ¢(0,z) = g¢(z)/f(x), which again by the Feynman-Kac formula
equals the right side of (3) divided by f(z), thus justifying the identity.

For the PDE argument to be made rigorous, the double use of the Feynman-Kac
formula requires careful attention to the boundary conditions of the partial differential
equation.

In the next two sections, we investigate the CIR diffusion and the Jacobi diffusion,
for which the probabilistic argument can be made rigorous, and moreover the identity
leads to new and useful formulas. The paper [2] gives a general classification of processes
for which similar results may be expected to hold. Examples discussed there include

geometric Brownian motion, Ornstein-Uhlenbeck process, CIR process, Jacobi process,

7



and a number of discrete Markov processes, for which they prove a number of results

related to our formulas.

3 The CIR process

Let X; € [0,00) be the CIR process with generator
P Lo oo
L= (a—bx)d, + 3¢ z0;. (8)

Assume o = i—‘; —-1>0,0= % > 0: it is known that the process X; has an unattainable
boundary at 0 if and only if a > 0.
In this section we will give a closed form expression for the function

—f(d Xo+ 52 )d
J 1As Xs S

G(T, 25 dy, dy, wy, wy) = Ey, |€ e W XT X W2 | 9)

Theorem 3.1. Suppose di > — D and dy > —"‘2802. Then the measure Q obtained from

2c2

5) by choosing f(x) = e "%2¥ withv, = 2 (=B 4+ /B2 + 8L ) o =3 (—a+ /a2 + 3L
2 c 2 c

1
is well defined and equivalent to P. Define vp = (6 + 2vy) (1 - e_(ﬁ/“”l)CQT) .
1 Ifat+ve+wy+1<0 ory +w —v; <0 then GER(T, z;dy, dy, wy, ws) = 0.

2. Ifa+wy+vy+1>0 and vy + wy — vy > 0 then

_ 2 —a—v9—wo—1
GCIR(T,.T; dl, d27 ’LUl,U}Q) —e (aU1+bU2+C vlvg)Txvz (’YT + wl . ,Ul) A—V2 —W2 7?-‘,—21}2—{-1

X exp <—x (v1 + Dr(wr = v) e_(5/2+”1)°2T>)

Yr + w1 — V1

(o + vy +wy + 1) N2 e (B/2vn)e*T
X F — 2 1;— . 10
Dla+ 205 + 1) 1 | v2 —wa, a+ 202 + 1 W — 0 (10)




Remarks:

1. Formula 10 is convenient when the argument of the confluent hypergeometric func-
tion 1 F} is small, that is when either x is small or T" is large. One then uses the

Taylor series for 1 F}

a lLa(a+1) ,
Filabz) =1+ %4 =20t )2
labiz) =1+ pet ooy +

When the argument is large (i.e. when z is large or 7' is small or both), one should

instead use an asymptotic formula such as the one given in Appendix 6.

2. If wy — vy = n, where n is a nonnegative integer, then formula 10 can be simplified,

since

F(a+v2+w2+1)
I'a+2vy+ 1)

1Fi(vg —wo, 0 + 200+ 15 —2) = n!ngQO) (—2),

where Lg{l)(z) is a Laguerre polynomial (see [10]), defined as

. - n+a\z" (a+1),
L9 (z) = Z(_l)k (n N k‘)y = TlFl (—n,a+1;2).
k=0 ’

In particular, when vy = wy = 0, we obtain the well known exponential affine

formula.

Proof: Let f(z) = e "2 and g = e “""z*2. Since d; = bv; + 3¢*} and dy =
avy + %02’02(1}2 — 1), we can compute
LY f 2 Loy 1 1,
T = —(avy + buy + c“v1v9) + x | buy + 50 v ) + - avy + 50 vo(vg — 1)
dy

= —(avy + bvg + Pviva) + dyx + —



Thus G™(T, x; dy, dy, wy, ws) equals

-/ El;&X)S>
s —w1 X ywa
e X5

—(avi+bva+-c?v1v)T P
e E,

By following the argument of Section 2, one computes from (4) that X; under the measure
Q has the generator

~ 1
LR = (@ — bx)0, + 562:683 )

where @ = a + 2vy and b = b + 2v;. By the assumptions, & = Z—1=a+2v >0.
Therefore Assumption 1 holds, the measure change is justified, and we have the following
identity:

$v2€—v1xE(()Qm [X;UQ—UZQ(UI—UH)XT}

[e.e]

= amen [y gy ()
0

The transition probability density function p*(z,y) of the CIR process X, is given by

Q yeét : bt bt
pe(T,y) =" ) exp [—%(we +y)] Is | 29\ wye™ |,

where v, = —2b/ (cQ(e_i’t — 1)) and I, is the modified Bessel function of the first kind.
Moreover, the integral on the right side of (11) is finite if o + we + vo +1 > 0 and

yr + wy —v; > 0, and given in closed form by using the formula (see [8]):

i # P Ttvt}) 1 P
= ay = 2 — -2
/ T~ L, (268+/y) dy S T D) 1Filv—p+ = 5 22U+ 1; - (12)

0
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This proves (10). On the other hand, if either a + wy +v5 +1 > 0 or vp + wy; — vy > 0,

then the right side of (11) is infinite.

O
4 The Jacobi process
Let X; € [0,1] be the Jacobi diffusion process with generator
P L, 2
L= (a—bx)0, + ¢ z(l —x)0; . (13)

Define oo = z—‘; —land g = 2“’;‘1) — 1. It is known that the process X; has unattainable

boundaries if and only if & > 0, 5 > 0.

In this section we provide methods to compute the function

T
. — [y (555 )+ do (125
GJaCObl(T,(L’; dl,dQ,wl,’wg) _ Eé:jx e o 1( Xs ) 2(1 Xs)

ds
X1l — XL (14)

Theorem 4.1. Let the parameters of the Jacobi process satisfy a« > 0,3 > 0, and assume

dy > —a?c?/8,dy > —3*c*/8. Then the measure Q obtained from (5) by choosing f(z) =

" (1 — x)"* where vy = %(—a#—ﬂoﬂ#—%) and vy = %(—[3%—\/&2—1—%) is well

defined, and equivalent to P.

1 Ifa+w +v; < =1 orB+wy+vy < —1, then GI2PY(T, x:dy, dy, wy, wy) = 0.
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2. Ifa4+w +v; > —1 and B+ wy + vy > —1, then

GJaCObi(T,J?; dla dg, wwa) — e—((b—a)vl—l—avz-‘rc?vlvz)Txvl(1 . x)vg

[(a+ B+ 20 + 20y + 1)
F(a+2v + 1)IN(G + 20y + 1)

v Z et f+20 20 +1) ST (a+B+201 + 20+ 1),
(Oé + 2'1}1 + 1)n

X (2n + a4 B+ 2u; + 2ug + 1)g, P20 (90 1) (15)

xB(a+w; +v+ 1,0+ wy+vy+ 1)

n=0

The coefficients q, are defined as

—n, a+ 0+ 2v +2v+n+1, G+ vy +wy+1
an = 33 ;1] (16)
a+pB+w +vi+ws+ve+2, B+2v+1

and can be computed via a three term recurrence relation:

AnQn+1 = (6 + vo + 1+ An + Cn)‘]n - Cnanl y -1 = 0; qo = 1 ) (17)

where A,, and C,, are given by the following formulas

m+a+G+2v1+2v+1)n+B+2v+ 1) (n+a+ 0+ w + v, +wy + vy + 2)

A=
(2n+a+ B4 20 + 20y + 1)(2n + a + B+ 201 + 209 + 2)
n(n+ vy + vy —w; —wy — 1)(n + a + 2v1)
"o Cnta+B+2v +20+1)2n 4+ a+ B+ 20 +20y)
Remark:

If dy = wy = 0, then also vy = 0, and (15) can be simplified, since the 3F; function

collapses to o F}:

¢ = 2F1(—n,a+8+201+n+La+B+w +v1+2;1)
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which can be computed explicitly (see [8])

(v —wy)p(a+ B+ 201 + 1),
(a+ B +w +v1+2)(a+2v+ 1),

n = (_1)n

This leads to

(a-nyry L@+ wi +ov + D+ G+ 20 +1)
Dla+f+w +v +2)0(a+ 201 + 1)
(v —wy)p(a+ B+ 201 + 1),
(a+B+w + v +2),(a+ 201 + 1),

X(2n + o+ B+ 2uy + 1) Plet2nh (o 1) (18)

GP*M(T 2;dy, 0, wy,0) = 2'%e

oo

2T

% § (_ 1)n€7n(n+a+ﬁ+2v1+l)7
n=0

Proof: Let f(z) = 2" (1 —x)*, and g(z) = 2" (1 —z)"2. Since d; = avy + 5c*v; (v1 — 1)

and dy = (b — a)vy + 3¢%v2(v2 — 1), we can compute

LPf

S

1
— (b(v1 + vg) + Auyvy + 502(1)1(7)1 — 1) + vo(vg — 1))) +

1 1
+ - (avl + =ty (vy — 1)> +

2 1—2z

<(b s + %c%g(vg _ 1)>
_ 4 (1 - 1) +dy (L - 1) (b= a)or + avs + Poyws) .

T l1—=x

Thus G72°PY(T x: dy, dy, wy, wy) equals

7fﬁpf(Xs)
0

6—((b—(1)1}1+av2+02v1v2)TE(§’7w f(Xs) SX;?I (1 _ XT)w2
By following the argument of Section 2, one computes from (4) that X; under the measure

Q has the generator
~ 1
LR = (@ — bx)0, + 5(:2:c(1 —2)0?, (19)

where @ = a+ c*v; and b = b+ c(vy +v9). By the assumptions, & = i—g —1l=a+4+2v; >0
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and B —2-a) g B+ 2vy > 0. Therefore Assumption 1 holds, the measure change is

c2

justified, and we have the following identity:

_fﬁpf(xs)

E(ljp,x e 0 F(Xs) SX;”I(l — XT)WQ — $U1<1 o x)szg?x [qufufvl(l _ XT)U,Q,UQ]

1
= 2" (1 —x)™ /y““”l(l — )2 2pQ(z, y)dy.  (20)
0

The transition probability density function p?(x, y) of the Jacobi process is given by

o} 3 © _n(n+é+B 2t
Q AU
Ba+1,0+1) = i

p(a,y) = P92z — 1) PP (2y — 1),

where

2 (@+Dn(B+ D

n ~

(@4 B+2)p_1(2n+a+ 5+ 1)n!’

The integral on the right side of (20) is finite if and only if a+w;+v; > —1, f+we +vy >

—1, and can be computed explicitly using the following formula (see [7] and [8]):

1
/ya+w1+v1 (1 _ y)ﬁ+w2+v2pr(ba+2vlﬁ+2v?)(2y _ 1)dy
0
(6+2vy+ 1),

=Bla+w +v1+1,8+w, +v2+1) o

dn -

The three term recurrence relation (17) for the coefficients ¢, follows from the fact that

¢» are related to the continuous Hahn polynomials

Pn(0; 8+ vg +wy + 1,01 —wi,a+ vy +wy + 1,03 —wy)
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(see [10], page 31).

5 Conclusion

We have presented two families of diffusion processes for which explicit formulas for im-
portant expectations are proved. These results are consequences of a simple expectation
identity derived for general diffusions. In the case where X; is a CIR process, we have
derived an explicit formula for the Laplace transform of the four dimensional random
variable (Xr,log X7, fOT X,ds, fOT X tds). The closest result we know is a well known
closed formula for the Laplace transform of (Xr, fOT Xsds). The more general formula
(10) has potential uses in interest rate theory and credit risk.

For the less known Jacobi process, we have derived an explicit formula for the Laplace

Xs
1-X

transform of the four dimensional random variable (log X7, log(1—X7), fOT %ds, fOT

This process has properties which may also prove useful in finance. For example, the re-

lated process Y; = 1}XS has the character of the spot interest rate or a default hazard

rate. X, itself could be taken as a stochastic recovery rate in credit risk modelling. In
such approaches, (15) will no doubt prove to be very useful.

Our results are explicit realizations of integral formulas given in [2]. Their classifica-
tion suggests that in the diffusion case, geometric Brownian motion and the Ornstein-

Uhlenbeck process are the only further processes which admit identities of this type.
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6 CIR process: asymptotic expansion for small ¢

The following asymptotic formula [7] is useful when the argument of | F; is large and

negative (i.e. as Re(z) — —o0):

Fifa b z) = (_Z>_GF(E(E)a) )3 e ;!b e (127,

This leads to an approximation to (10):

—1
GCIR(t’x; dy, dy, wy,wy) = 2" exp ($ <U1 — (w1 + vy) (1 + wit vl) e(’gm)cQt))

Vi

wy + vy > —(a+2wa+1)

Yt

% [i (V2 — wa)p(—a — vy — w?)'ﬂ(_z>fn L0 <|Z‘w2—v2—N—1)] 7

(21)

X exp G (o + 1)o1 — ws(B — 201)) c2t> (1 +

n!
n=0

s -1 .
where z = —%xef(fﬂ”)(’gt (1 + wlTJ:m> is the argument of ; F7 function. We find that
this formula is very convenient for computations when ¢ is small and/or when z is large,

all other parameters being bounded.
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7 Jacobi process: asymptotic expansion for small ¢

In this section we will derive an asymptotic expansion for G72°P(¢ x: d;, dy, w1, wy) for

small ¢. For fixed z € (0, 1), we start with (20) and write

Egy [ X7 (1= X)) = B,

ch WX — ) ] ch W (t, x) (22)

n>0 n>0

where ¢, (1) = L& [zrv1(1 — 2)v272] and M, (t) := M, (t,r) = E(%m [(X: — x)"]. Coef-

n! dx™

ficients ¢, (x) can be computed explicitly as ¢,(x) = "1~ (1 — x)*27"2¢,(z), where

=S ) s

k=0

By applying Ito’s lemma to the process (X; — z)" we find that functions M, (¢) can be

found by recursively solving differential equations

%Mn(t) = <62—2n(n —1)— nl;) M, (t) + (n(d — bx) + gn(n —1)(1 - 2x)) M, ()
+§n(n — Da(l —x) M, (), (23)

with initial conditions M,,(0) = d,0. It follows at once from this equation that M, (t) =
Otz ) as t — 0.
Using this method one could obtain approximations of any order O(t"). Here, as an

example, we provide the first four functions M, (¢, ) which combined with (22) will give
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us a useful approximation to G72°P\(t, z; dy, dy, wy, ws) of order O(t3).

(

My(t) = (a—bo) (= b5 ) +O(F)
M(t) = (1 — 2)t + ((2(@ —ba) + (1 — 21;)) (@ —bz) — (2 + P)z(1 — x)) 24O

My(t) = 3 (2(@ —ba) + A1 — 2@) r(l— )L + Ot

My(t) = 6c*22(1 — 2)?% 4 O(#?)

\

Thus we have the following approximation

4
GJaCObi(t,l’; dl, dg, wth) ~ Iw1<1 . :L,)wz6—((b—a)v1+av2+c2v1v2)t (1 + Zén(x)Mn(t)> —+ O(t3).

n=1
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