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Abstract

In this article we provide a general identity useful for computing expectations

of the form

E

e
−

TR
0

φ(Xs)ds
g(XT )


for diffusion processes Xt and certain functions φ. In the case of CIR and Jacobi

diffusions, this identity leads to explicit formulas for the Laplace transform of a

multidimensional family of random variables constructed from Xt and its integrals.
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1 Introduction

The modelling of financial time series such as stock prices, interest rates, and foreign

exchange rates has been important in the development of the theory of stochastic pro-

cesses. The solution to practical problems such as option pricing, model calibration, and

portfolio selection relies to a great extent on the solvability properties of the underlying

one-dimensional stochastic processes. Since financial mathematics is not a fundamental

science like physics, the criteria for useful models are mostly pragmatic: models are of

interest if they fit certain “stylized facts”, and retain an adequate degree of computational

tractability.

For example, the recent popularity of Lévy models for stock returns is due in large

part to the possibility of using the fast Fourier transform to compute option prices (see

[11]). Similarly, the class of affine processes (see [6]) derives its popularity for interest rate

theory, stock modelling, and other financial applications in large part because explicit or

close to explicit formulas are available for key functionals of the underlying processes.

The so-called solvable Markov models, studied by [1], constitute a further distinct family

of models that includes geometric Brownian motion, the Ornstein-Uhlenbeck processes,

the Cox-Ingersoll-Ross (CIR) model, and the Jacobi process: these processes have found

hundreds of applications in finance and other areas of stochastic phenomena.

It is this last family of solvable diffusion models that provide the natural setting for

the present paper. For a one-dimensional stationary diffusion process Xt on a filtered

probability space (Ω,F ,Ft≤T ,P), we present an argument involving a measure change
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from P to Q which yields an identity of the form

EP

e− TR
0

φ(Xs)ds
g(XT )

 = f(X0)E
Q

[
g(XT )

f(XT )

]
(1)

for certain functions φ, f, g. We are then able to provide a number of interesting cases

where the new expectation can be evaluated in terms of special functions.

The identity (1) is closely related to results contained in a recent article [2], where

the authors present the complete classification scheme of diffusion processes (and also

birth and death processes) Xt and functions φ(x), for which the expectation (1) can be

computed in terms of hypergeometric functions. By using a PDE approach, non-singular

transformations and spectral resolution, they were able not only to give a complete classi-

fication of these processes, but also to provide explicit series formulas in many important

cases.

Our results, while of intrinsic interest in the theory of stochastic processes and partial

differential equations, are motivated by financial mathematics, and they suggest a number

of new applications in finance that we hope to explore in future papers. As just one

example, we note here a connection between our new results and the theory of utility

based pricing and hedging in incomplete markets. Utility theory, the proper economic

foundation for financial decision making and contract valuation in general markets, has

been under rapid development in the past decade. However, the list of explicitly solvable

problems in utility theory is not long, despite the efforts of a large number of researchers,

a fact which has hampered both the development of the theory, and the adoption of utility

methods by finance practitioners. A recent paper [9] shows how the utility based prices of

important volatility derivatives in certain stochastic volatility models including the classic

Heston model boil down to natural Feynman-Kac type expectations. Serendipitously,

these expectations turn out to be of the precise form we address here and thus can be
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expressed explicitly in terms of our new formulas.

Section 2 provides two alternative heuristic derivations of the formula for general

diffusion processes, one purely probabilistic involving the Girsanov theorem, the other

by partial differential equations. When the underlying process Xt is a Cox-Ingersoll-Ross

(CIR) process (a positive mean reverting diffusion), and we choose f(x) = e−v1xxv2 , g(x) =

e−w1xxw2 , Theorem 3.1 provides the precise conditions under which

EP

e− TR
0
(d1Xs+

d2
Xs

)ds
e−w1XTXw2

T


can be computed in closed form in terms of the confluent hypergeometric function. To

facilitate computations of this formula over a wide range of parameter values, in Appendix

6 we provide a simple asymptotic expansion which complements the standard power series

expansion of the hypergeometric function.

In Section 4, we investigate the lesser known Jacobi process (a mean reverting diffusion

taking its values on [0, 1], see [5]). When we take f(x) = xv1(1−x)v2 , g(x) = xw1(1−x)w2 ,

we are able to show conditions under which the method leads to a convergent and tractable

representation of

EP

e−d1

TR
0
( 1−Xs

Xs
)ds−d2

TR
0
( Xs

1−Xs
)ds
e−w1XTXw2

T


in terms of hypergeometric functions. In this case, the formula is in terms of a rapidly

convergent series of Jacobi polynomials (see [10]). Appendix 7 examines the asymptotic

properties of this expansion as t→ 0.
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2 The general method

In this section, we present two heuristic derivations of the basic identity, one probabilistic,

the other via partial differential equations. At the end of the section, we discuss the general

technical conditions under which the formula holds. Let Xt ∈ D, t ∈ [0, T ], T ≥ 0 be a

one-dimensional stationary diffusion process under the measure P, defined by its initial

condition X0 = x, and its Markov generator

LP = µ(x)∂x +
1

2
σ2(x)∂2

x . (2)

Here D is a (possibly infinite) interval on the real line.

From the generator we identify the stochastic differential equation followed by Xt:

dXt = µ(Xt)dt+ σ(Xt)dW
P
t , X0 = x ,

where WP is a P-Brownian motion. We also assume that σ(x) > 0 inside domain D.

Identity 1. For any “good” functions f(x) > 0 and g(x) we have

EP
x

e− TR
0

LPf(Xs)
f(Xs)

ds
g(XT )

 = f(x)EQ
x

[
g(XT )

f(XT )

]
, (3)

where under the measure Q the Markov generator of Xt has a modified drift:

LQ =

(
µ(x) + σ2(x)

f ′(x)

f(x)

)
∂x +

1

2
σ2(x)∂2

x. (4)

For a probabilistic justification of this identity, we start with the integrated Itô formula

5



for the process log(f(Xt)):

log(f(XT )) = log(f(x)) +

T∫
0

f ′(Xs)

f(Xs)

(
µ(Xs)ds+ σ(Xs)dW

P
s

)

+
1

2

T∫
0

(
f ′′(Xs)

f(Xs)
−
(
f ′(Xs)

f(Xs)

)2
)
σ2(Xs)ds.

By exponentiation, multiplication by g(XT ), and rearrangement of factors, one finds

e
−

TR
0

LPf(Xs)
f(Xs)

ds
g(XT ) =

f(X0)

f(XT )
g(XT )eZT− 1

2
〈Z,Z〉T

where Zt =
t∫

0

f ′(Xs)
f(Xs)

σ(Xs)dW
P
s is a P local martingale. Application of the Girsanov

theorem with Radon–Nikodym derivative

dQ

dP
= eZT− 1

2
〈Z,Z〉T , (5)

leads finally to the desired expectation formula. The Girsanov theorem also implies that

dWQ
t = dWP

t − σ(Xt)
f ′(Xt)

f(Xt)
dt,

is a Brownian motion under the measure Q, and one obtains that the dynamics of Xt

under Q is given by (4).

We observe that the probabilistic argument can be made rigorous by imposing two-

times differentiability of f(x) (for the Itô formula), plus the condition f(x) 6= 0 for any

x inside domain D, which we need for the process Zt to be well defined. Using the same

argument as in [3], [4] and [6], one can prove that a sufficient condition to justify the use

of the Girsanov theorem is the following:

6



Assumption 1. The boundaries of the interval D are unattainable both under measure

P and under measure Q.

It is also of interest to give the heuristic derivation of Identity 1 by partial differential

equations. The Feynman-Kac formula implies that under suitable conditions the left side

of (3), which we denote by φ(T, x), can be obtained as the t = T value of the solution

φ(t, x) of partial differential equation:

∂tφ− LPφ+

(
LPf

f

)
φ = 0, t ∈ (0, T ] (6)

with initial condition φ(0, x) = g(x). One can now easily check that if φ(t, x) = f(x)ψ(t, x),

then

LPφ = f(LQψ) + (LPf)ψ .

Therefore ψ(T, x) is the t = T value of the solution of

∂tψ − LQψ = 0, t ∈ (0, T ] (7)

with initial condition ψ(0, x) = g(x)/f(x), which again by the Feynman-Kac formula

equals the right side of (3) divided by f(x), thus justifying the identity.

For the PDE argument to be made rigorous, the double use of the Feynman-Kac

formula requires careful attention to the boundary conditions of the partial differential

equation.

In the next two sections, we investigate the CIR diffusion and the Jacobi diffusion,

for which the probabilistic argument can be made rigorous, and moreover the identity

leads to new and useful formulas. The paper [2] gives a general classification of processes

for which similar results may be expected to hold. Examples discussed there include

geometric Brownian motion, Ornstein-Uhlenbeck process, CIR process, Jacobi process,
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and a number of discrete Markov processes, for which they prove a number of results

related to our formulas.

3 The CIR process

Let Xt ∈ [0,∞) be the CIR process with generator

LP = (a− bx)∂x +
1

2
c2x∂2

x. (8)

Assume α = 2a
c2
− 1 ≥ 0, β = 2b

c2
≥ 0: it is known that the process Xt has an unattainable

boundary at 0 if and only if α ≥ 0.

In this section we will give a closed form expression for the function

GCIR(T, x; d1, d2, w1, w2) = EP
0,x

e− TR
0
(d1Xs+

d2
Xs

)ds
e−w1XTXw2

T

 . (9)

Theorem 3.1. Suppose d1 ≥ − b2

2c2
and d2 ≥ −α2c2

8
. Then the measure Q obtained from

(5) by choosing f(x) = e−v1xxv2 with v1 = 1
2

(
−β +

√
β2 + 8d1

c2

)
, v2 = 1

2

(
−α+

√
α2 + 8d2

c2

)
is well defined and equivalent to P. Define γT = (β + 2v1)

(
1− e−(β/2+v1)c2T

)−1

.

1. If α+ v2 + w2 + 1 ≤ 0 or γT + w1 − v1 ≤ 0 then GCIR(T, x; d1, d2, w1, w2) = ∞.

2. If α+ w2 + v2 + 1 > 0 and γT + w1 − v1 > 0 then

GCIR(T, x; d1, d2, w1, w2) = e−(av1+bv2+c2v1v2)Txv2 (γT + w1 − v1)
−α−v2−w2−1 γα+2v2+1

T

× exp

(
−x
(
v1 +

γT (w1 − v1)

γT + w1 − v1

e−(β/2+v1)c2T

))
×Γ(α+ v2 + w2 + 1)

Γ(α+ 2v2 + 1)
1F1

(
v2 − w2, α+ 2v2 + 1;−γ

2
Txe

−(β/2+v1)c2T

γT + w1 − v1

)
. (10)
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Remarks:

1. Formula 10 is convenient when the argument of the confluent hypergeometric func-

tion 1F1 is small, that is when either x is small or T is large. One then uses the

Taylor series for 1F1

1F1(a, b; z) = 1 +
a

b
z +

1

2!

a(a+ 1)

b(b+ 1)
z2 + . . .

When the argument is large (i.e. when x is large or T is small or both), one should

instead use an asymptotic formula such as the one given in Appendix 6.

2. If w2− v2 = n, where n is a nonnegative integer, then formula 10 can be simplified,

since

Γ(α+ v2 + w2 + 1)

Γ(α+ 2v2 + 1)
1F1 (v2 − w2, α+ 2v2 + 1;−z) = n!L(α+2v2)

n (−z) ,

where L
(a)
n (z) is a Laguerre polynomial (see [10]), defined as

L(a)
n (z) =

n∑
k=0

(−1)k

(
n+ a

n− k

)
zk

k!
=

(a+ 1)n

n!
1F1 (−n, a+ 1; z) .

In particular, when v2 = w2 = 0, we obtain the well known exponential affine

formula.

Proof: Let f(x) = e−v1xxv2 and g = e−w1xxw2 . Since d1 = bv1 + 1
2
c2v2

1 and d2 =

av2 + 1
2
c2v2(v2 − 1), we can compute

LPf

f
= −(av1 + bv2 + c2v1v2) + x

(
bv1 +

1

2
c2v2

1

)
+

1

x

(
av2 +

1

2
c2v2(v2 − 1)

)
= −(av1 + bv2 + c2v1v2) + d1x+

d2

x
.
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Thus GCIR(T, x; d1, d2, w1, w2) equals

e−(av1+bv2+c2v1v2)TEP
0,x

e− TR
0

LPf(Xs)
f(Xs)

ds
e−w1XTXw2

T

 .

By following the argument of Section 2, one computes from (4) that Xt under the measure

Q has the generator

LQ = (ã− b̃x)∂x +
1

2
c2x∂2

x ,

where ã = a + c2v2 and b̃ = b + c2v1. By the assumptions, α̃ = 2ã
c2
− 1 = α + 2v2 ≥ 0.

Therefore Assumption 1 holds, the measure change is justified, and we have the following

identity:

EP
0,x

e− TR
0

LPf(Xs)
f(Xs)

ds
e−w1XTXw2

T

 = xv2e−v1xEQ
0,x

[
Xw2−v2

T e(v1−w1)XT
]

= xv2e−v1x

∞∫
0

yw2−v2e(v1−w1)ypQ
T (x, y)dy . (11)

The transition probability density function pQ
t (x, y) of the CIR process Xt is given by

pQ
t (x, y) = γt

(
yeb̃t

x

) α̃
2

exp
[
−γt(xe

−b̃t + y)
]
Iα̃

(
2γt

√
xye−b̃t

)
,

where γt ≡ −2b̃/(c2(e−b̃t − 1)) and Iν is the modified Bessel function of the first kind.

Moreover, the integral on the right side of (11) is finite if α + w2 + v2 + 1 > 0 and

γT + w1 − v1 > 0, and given in closed form by using the formula (see [8]):

∞∫
0

yµ− 1
2 e−αyI2ν (2β

√
y) dy = e

β2

α
β2ν

αµ+ν+ 1
2

Γ(µ+ ν + 1
2
)

Γ(2ν + 1)
1F1

(
ν − µ+

1

2
, 2ν + 1;−β

2

α

)
.(12)
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This proves (10). On the other hand, if either α + w2 + v2 + 1 > 0 or γT + w1 − v1 > 0,

then the right side of (11) is infinite.

4 The Jacobi process

Let Xt ∈ [0, 1] be the Jacobi diffusion process with generator

LP = (a− bx)∂x +
1

2
c2x(1− x)∂2

x . (13)

Define α = 2a
c2
− 1 and β = 2(b−a)

c2
− 1. It is known that the process Xt has unattainable

boundaries if and only if α ≥ 0, β ≥ 0.

In this section we provide methods to compute the function

GJacobi(T, x; d1, d2, w1, w2) = EP
0,x

e− TR
0

d1( 1−Xs
Xs

)+d2( Xs
1−Xs

)ds
Xw1

T (1−XT )w2

 . (14)

Theorem 4.1. Let the parameters of the Jacobi process satisfy α ≥ 0, β ≥ 0, and assume

d1 ≥ −α2c2/8, d2 ≥ −β2c2/8. Then the measure Q obtained from (5) by choosing f(x) =

xv1(1 − x)v2 where v1 = 1
2

(
−α+

√
α2 + 8d1

c2

)
and v2 = 1

2

(
−β +

√
β2 + 8d2

c2

)
is well

defined, and equivalent to P.

1. If α+ w1 + v1 ≤ −1 or β + w2 + v2 ≤ −1, then GJacobi(T, x; d1, d2, w1, w2) = ∞.
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2. If α+ w1 + v1 > −1 and β + w2 + v2 > −1, then

GJacobi(T, x; d1, d2, w1, w2) = e−((b−a)v1+av2+c2v1v2)Txv1(1− x)v2

×B(α+ w1 + v1 + 1, β + w2 + v2 + 1)
Γ(α+ β + 2v1 + 2v2 + 1)

Γ(α+ 2v1 + 1)Γ(β + 2v2 + 1)

×
∞∑

n=0

e−n(n+α+β+2v1+2v2+1) c2T
2

(α+ β + 2v1 + 2v2 + 1)n

(α+ 2v1 + 1)n

×(2n+ α+ β + 2v1 + 2v2 + 1)qnP
(α+2v1,β+2v2)
n (2x− 1) . (15)

The coefficients qn are defined as

qn = 3F2

 −n, α+ β + 2v1 + 2v2 + n+ 1, β + v2 + w2 + 1

α+ β + w1 + v1 + w2 + v2 + 2, β + 2v2 + 1
; 1

 (16)

and can be computed via a three term recurrence relation:

Anqn+1 = (β + v2 + 1 + An + Cn)qn − Cnqn−1 , q−1 = 0, q0 = 1 , (17)

where An and Cn are given by the following formulas

An = −(n+ α+ β + 2v1 + 2v2 + 1)(n+ β + 2v2 + 1)(n+ α+ β + w1 + v1 + w2 + v2 + 2)

(2n+ α+ β + 2v1 + 2v2 + 1)(2n+ α+ β + 2v1 + 2v2 + 2)

Cn =
n(n+ v1 + v2 − w1 − w2 − 1)(n+ α+ 2v1)

(2n+ α+ β + 2v1 + 2v2 + 1)(2n+ α+ β + 2v1 + 2v2)
.

Remark:

If d2 = w2 = 0, then also v2 = 0, and (15) can be simplified, since the 3F2 function

collapses to 2F1:

qn = 2F1(−n, α+ β + 2v1 + n+ 1;α+ β + w1 + v1 + 2; 1) ,
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which can be computed explicitly (see [8])

qn = (−1)n (v1 − w1)n(α+ β + 2v1 + 1)n

(α+ β + w1 + v1 + 2)n(α+ 2v1 + 1)n

.

This leads to

GJacobi(T, x; d1, 0, w1, 0) = xv1e((a−b)v1T ) Γ(α+ w1 + v1 + 1)Γ(α+ β + 2v1 + 1)

Γ(α+ β + w1 + v1 + 2)Γ(α+ 2v1 + 1)

×
∞∑

n=0

(−1)ne−n(n+α+β+2v1+1) c2T
2

(v1 − w1)n(α+ β + 2v1 + 1)n

(α+ β + w1 + v1 + 2)n(α+ 2v1 + 1)n

×(2n+ α+ β + 2v1 + 1)P (α+2v1,β)
n (2x− 1) . (18)

Proof: Let f(x) = xv1(1−x)v2 , and g(x) = xw1(1−x)w2 . Since d1 = av1 + 1
2
c2v1(v1− 1)

and d2 = (b− a)v2 + 1
2
c2v2(v2 − 1), we can compute

LPf

f
= −

(
b(v1 + v2) + c2v1v2 +

1

2
c2(v1(v1 − 1) + v2(v2 − 1))

)
+

+
1

x

(
av1 +

1

2
c2v1(v1 − 1)

)
+

1

1− x

(
(b− a)v2 +

1

2
c2v2(v2 − 1)

)
= d1

(
1

x
− 1

)
+ d2

(
1

1− x
− 1

)
− ((b− a)v1 + av2 + c2v1v2) .

Thus GJacobi(T, x; d1, d2, w1, w2) equals

e−((b−a)v1+av2+c2v1v2)TEP
0,x

e− TR
0

LPf(Xs)
f(Xs)

ds
Xw1

T (1−XT )w2

 .

By following the argument of Section 2, one computes from (4) that Xt under the measure

Q has the generator

LQ = (ã− b̃x)∂x +
1

2
c2x(1− x)∂2

x , (19)

where ã = a+ c2v1 and b̃ = b+ c2(v1 + v2). By the assumptions, α̃ = 2ã
c2
− 1 = α+2v1 ≥ 0
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and β̃ = 2(b̃−ã)
c2

− 1 = β + 2v2 ≥ 0. Therefore Assumption 1 holds, the measure change is

justified, and we have the following identity:

EP
0,x

e− TR
0

LPf(Xs)
f(Xs)

ds
Xw1

T (1−XT )w2

 = xv1(1− x)v2EQ
0,x

[
Xw1−v1

T (1−XT )w2−v2
]

= xv1(1− x)v2

1∫
0

yw1−v1(1− y)w2−v2pQ
T (x, y)dy. (20)

The transition probability density function pQ
t (x, y) of the Jacobi process is given by

pQ
t (x, y) =

yα̃(1− y)β̃

B(α̃+ 1, β̃ + 1)

∞∑
n=0

e−n(n+α̃+β̃+1) c2t
2

p2
n

P (α̃,β̃)
n (2x− 1)P (α̃,β̃)

n (2y − 1),

where

p2
n =

(α̃+ 1)n(β̃ + 1)n

(α̃+ β̃ + 2)n−1(2n+ α̃+ β̃ + 1)n!
.

The integral on the right side of (20) is finite if and only if α+w1 +v1 > −1, β+w2 +v2 >

−1, and can be computed explicitly using the following formula (see [7] and [8]):

1∫
0

yα+w1+v1(1− y)β+w2+v2P (α+2v1,β+2v2)
n (2y − 1)dy

= B(α+ w1 + v1 + 1, β + w2 + v2 + 1)
(β + 2v2 + 1)n

n!
qn .

The three term recurrence relation (17) for the coefficients qn follows from the fact that

qn are related to the continuous Hahn polynomials

pn(0; β + v2 + w2 + 1, v1 − w1, α+ v1 + w1 + 1, v2 − w2)
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(see [10], page 31).

5 Conclusion

We have presented two families of diffusion processes for which explicit formulas for im-

portant expectations are proved. These results are consequences of a simple expectation

identity derived for general diffusions. In the case where Xt is a CIR process, we have

derived an explicit formula for the Laplace transform of the four dimensional random

variable (XT , logXT ,
∫ T

0
Xsds,

∫ T

0
X−1

s ds). The closest result we know is a well known

closed formula for the Laplace transform of (XT ,
∫ T

0
Xsds). The more general formula

(10) has potential uses in interest rate theory and credit risk.

For the less known Jacobi process, we have derived an explicit formula for the Laplace

transform of the four dimensional random variable (logXT , log(1−XT ),
∫ T

0
1−Xs

Xs
ds,
∫ T

0
Xs

1−Xs
ds).

This process has properties which may also prove useful in finance. For example, the re-

lated process Yt = 1−Xs

Xs
has the character of the spot interest rate or a default hazard

rate. Xt itself could be taken as a stochastic recovery rate in credit risk modelling. In

such approaches, (15) will no doubt prove to be very useful.

Our results are explicit realizations of integral formulas given in [2]. Their classifica-

tion suggests that in the diffusion case, geometric Brownian motion and the Ornstein-

Uhlenbeck process are the only further processes which admit identities of this type.
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6 CIR process: asymptotic expansion for small t

The following asymptotic formula [7] is useful when the argument of 1F1 is large and

negative (i.e. as Re(z) → −∞):

1F1(a, b; z) = (−z)−a Γ(b)

Γ(b− a)

N∑
k=0

(a)n(a− b+ 1)n

n!
(−z)−n +O

(
|z|−a−N−1

)
.

This leads to an approximation to (10):

GCIR(t, x; d1, d2, w1, w2) ≈ xw2 exp

(
x

(
v1 − (w1 + v1)

(
1 +

w1 + v1

γt

)−1

e−(β
2
−v1)c2t

))

× exp

(
1

2
((α+ 1)v1 − w2(β − 2v1)) c

2t

)(
1 +

w1 + v1

γt

)−(α+2w2+1)

(21)

×

[
N∑

n=0

(v2 − w2)n(−α− v2 − w2)n

n!
(−z)−n +O

(
|z|w2−v2−N−1

)]
,

where z = −γtxe
−(β

2
−v1)c2t

(
1 + w1+v1

γt

)−1

is the argument of 1F1 function. We find that

this formula is very convenient for computations when t is small and/or when x is large,

all other parameters being bounded.
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7 Jacobi process: asymptotic expansion for small t

In this section we will derive an asymptotic expansion for GJacobi(t, x; d1, d2, w1, w2) for

small t. For fixed x ∈ (0, 1), we start with (20) and write

EQ
0,x

[
Xw1−v1

t (1−Xt)
w2−v2

]
= EQ

0,x

[∑
n≥0

cn(x)(Xt − x)n

]
≈
∑
n≥0

cn(x)Mn(t, x), (22)

where cn(x) = 1
n!

dn

dxn [xw1−v1(1− x)w2−v2 ] and Mn(t) := Mn(t, x) = EQ
0,x [(Xt − x)n]. Coef-

ficients cn(x) can be computed explicitly as cn(x) = xw1−v1(1− x)w2−v2 ĉn(x), where

ĉn(x) =
n∑

k=0

(−1)k

(
n

k

)
(v1 − w1)k(v2 − w2)n−k

xk(1− x)n−k
.

By applying Ito’s lemma to the process (Xt − x)n we find that functions Mn(t) can be

found by recursively solving differential equations

d

dt
Mn(t) =

(
c2

2
n(n− 1)− nb̃

)
Mn(t) +

(
n(ã− b̃x) +

c2

2
n(n− 1)(1− 2x)

)
Mn−1(t)

+
c2

2
n(n− 1)x(1− x)Mn−2(t), (23)

with initial conditions Mn(0) = δn0. It follows at once from this equation that Mn(t) =

O(t[
n+1

2
]) as t→ 0.

Using this method one could obtain approximations of any order O(tN). Here, as an

example, we provide the first four functions Mn(t, x) which combined with (22) will give

18



us a useful approximation to GJacobi(t, x; d1, d2, w1, w2) of order O(t3).



M1(t) = (ã− b̃x)
(
t− b̃ t2

2

)
+O(t3)

M2(t) = c2x(1− x)t+
((

2(ã− b̃x) + c2(1− 2x)
)

(ã− b̃x)− c2(2b̃+ c2)x(1− x)
)

t2

2
+O(t3)

M3(t) = 3
(
2(ã− b̃x) + c2(1− 2x)

)
c2x(1− x) t2

2
+O(t3)

M4(t) = 6c4x2(1− x)2 t2

2
+O(t3)

Thus we have the following approximation

GJacobi(t, x; d1, d2, w1, w2) ≈ xw1(1− x)w2e−((b−a)v1+av2+c2v1v2)t

(
1 +

4∑
n=1

ĉn(x)Mn(t)

)
+O(t3).
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