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Abstract

We propose to randomize the initial condition of a generalized structure model,

where the solvency ratio instead of the asset value is modeled explicitly. This ini-

tial randomization assumption is motivated by the fact that market players cannot

observe the solvency ratio accurately. We find that positive short spreads can be

produced due to imperfect observation on the risk factor. The two models we have

considered, the Randomized Merton II (RM-II) and the Randomized Black-Cox II

(RBC-II), both have explicit expressions for Probability of Default (PD), Loss Given

Default (LGD) and Credit Spreads (CS). In the RM-II model, both PD and LGD are

found to be of order of
√

T , as the maturity T approaches zero. It therefore provides

an example that has no well-defined default intensity but still admits positive short

spreads. In the RBC-II model, the positive short spread is generated through the

positive default intensity of the model. Because explicit formulas are available, these

two Randomized Structure (RS) models are easily implemented and calibrated to the

market data. This is illustrated by a calibration exercise on Ford Motor Corp. Credit

Default Swap (CDS) spread data.
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1 Introduction

Quantitative modeling of credit risk is becoming an essential tool to assess and con-

trol credit exposures for banks and other financial institutions. The first approach to

assess credit risk, known as structure models, was introduced by Merton (1974). In

this model, the firm’s asset value Vt is specified to be a Geometric Brownian motion

(GBM), and is perfectly observed by investors. The debt of the firm is assumed to

be a constant, K, maturing at a future time, T . Default time τ is defined to equal

T if the firm’s asset value is insufficient to repay the promised debt K. It is well

documented in the literature that the term structure of credit spreads (TSCS) gen-

erated by Merton’s model are too low, especially for short maturities (see Black &

Cox (1976) and Giesecke & Goldberg (2004)). The short spreads in Merton’s model

are zero, which is counterfactual to empirical data (see Giesecke & Goldberg (2004)).

Generalizations include Black & Cox (1976) first passage time model, Longstaff &

Schwartz (1995) treatment of stochastic interest rates, Leland & Toft (1996) en-

dogenous default and optimal capital structure, Collin-Dufresne & Goldstein (2001)

mean-reverting leverage ratio model and Fouque, Sircar & Solna (2006) consideration

of stochastic volatility. However, none of the models mentioned above can produce

positive short spreads.

Zhou (2001) and Chen & Kou (2006) introduce jumps to the dynamics of the firm

asset value in first passage time setting and they successfully obtain positive short

spreads. A more promising method, known as the incomplete information approach,

is introduced by Duffie & Lando (2001) and Giesecke (2006). Duffie & Lando (2001)

notice that the observations of the asset value may not be exact but are realized

with some random noise. Giesecke (2006), on the other hand, argues that the default

barrier is not constant but may also be stochastic. Both of their efforts succeed
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in raising the short spreads above zero. Without modeling the firm asset value or

debt value, Coculescu, Geman & Jeanblanc (2006) define the default time to be the

first passage time of some fundamental process through the default barrier. The real

fundamental process is not observable and the observed process is modeled to be a

Stochastic Differential Equation (SDE). Although both jump diffusion models and

incomplete information models can produce positive short spreads, these models in

the literature are too mathematically complicated to be implemented in practice.

In general, neither jump diffusion models nor first passage models with incomplete

information admit explicit expressions of credit spreads. These models then have

to rely on numerical methods, which utilize either Laplace transforms, see Chen &

Kou (2006), or Fortet’s lemma, see Coculescu et al. (2006). However, calibration

becomes problematic when it comes to implementation of these models. On one

hand, the difficulty comes from the mathematical complexity of the models. On the

other hand, the expenses to raise short spreads bring too many extra parameters.

For example, Chen & Kou (2006) add extra four parameters in order to introduce

double exponential jumps. Hence, most of the papers on these models are silent on

the calibration issue.

In this paper, we propose to randomize the initial condition of a generalized struc-

ture model, where the solvency ratio instead of the asset value is modeled explicitly.

This initial randomization assumption is motivated by the fact that market players

cannot observe the solvency ratio accurately. The two models we have considered, the

Randomized Merton II (RM-II) and the Randomized Black-Cox II (RBC-II), both

have explicit expressions for Probability of Default (PD), Loss Given Default (LGD)

and Credit Spreads (CS). Because explicit formulas are available, these two Ran-

domized Structure (RS) models are easily implemented and calibrated to the market

data.

The rest of this paper is organized as follows. In Section 1, we give a brief

introduction of our motivation. In Section 2, we briefly review Merton’s model. In

Section 3, we introduce the idea of modeling the solvency ratio. The Black-Cox

model is treated in a simplified version in Section 4. In Section 5, two versions of the
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RM model are introduced with different assumptions on the initial distribution. In

Section 6, two versions of the RBC model are introduced, where the default time is

defined similarly as in the Black-Cox model. Section 7 provides a delayed information

perspective on the RS model. In Section 8, a calibration exercise is conducted. We

summarize this chapter in Section 9. All proofs are given in the appendix.

2 Merton’s Model

Merton (1974) assumed that the firm’s value Vt follows a Geometric Brownian Motion

(GBM) under the risk-neutral measure, starting from a known constant V0 at time

zero. That is

dVt = rVtdt + σVtdWt,

where r denotes constant interest rate, σ is the volatility, and Wt is a Standard

Brownian Motion (SBM).

The firm is obliged to pay the debt holders a constant K at maturity T . Default

happens at maturity T , when the firm has insufficient funds to pay back to the debt

holders at that time, namely when VT < K. Thus, the probability of default PD(T ),

as a function of maturity T , can easily be calculated through

PD(T ) := P (VT < K)

= Φ

(
− log V0

K + (r − 1
2σ2)T

σ
√

T

)
, (1)

where Φ stands for the Cumulative Distribution Function (cdf) of a standard normal

distribution.

Following Altman, Resti & Sironi (2004), the expected recovery rate RR(T ) (under

the risk-neutral measure), as a function of maturity T , given default at maturity T ,
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can be evaluated as1

RR(T ) := E[
VT

K
|VT < K]

=
V0

K
erT

Φ
(
− log

V0
K

+(r+ 1
2
σ2)T

σ
√

T

)

PD(T )
,

where PD(T ) is the probability of default given in (1).

Expected LGD (under the risk-neutral measure), LGD(T ), as a function of ma-

turity T , is defined to be LGD(T ) := 1−RR(T ).

Under the assumption of a constant interest rate, the TSCS in Merton’s model

can be expressed as

CS(T ) := − 1
T

log[1− PD(T )× LGD(T )] (2)

= − 1
T

log

(
Φ(

log V0
K + (r − 1

2σ2)T

σ
√

T
) +

V0

K
erT Φ(− log V0

K + (r + 1
2σ2)T

σ
√

T
)

)
,

which is a function of maturity T , interest rate r, asset volatility σ and the initial

leverage ratio K
V0

. Setting interest rate r to 0.02 and initial leverage ratio K
V0

to 0.8,

Figure 1 plots Merton’s TSCS given by equation (2), for varying volatility σ.

The short spread is defined to be the right limit of CS as maturity T goes to zero.

CS(+0) := lim
T→+0

CS(T ) = lim
T→+0

PD(T ) ∗ LGD(T )
T

.

If V0 > K, using L’Hospital’s rule, one can show that Merton’s short spread is always

zero. If V0 < K, Merton’s short spread is positive infinity.

3 Modeling The Solvency Ratio

Merton (1974) modeled the firm’s asset value Vt explicitly as a GBM and the debt

Kt as a constant K. As a consequence, the solvency ratio in Merton’s model, i.e.

log(Vt/Kt), is a Drifted Brownian Motion (DBM). Instead of specifying the dynamics

1This recovery rate is the recovery of face value of the bond. Other recovery rate assumptions include

recovery of treasury and recovery of market value, see Duffie & Singleton (1999) for a discussion.
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Figure 1: Merton’s term structure of credit spreads, varying asset volatility σ. We set

K
V0

= 0.8 and r = 0.02.

of the firm’s asset value and the debt value separately, we can model the solvency

ratio itself directly.

Assume that the solvency ratio Xt follows a DBM under the risk-neutral measure

Xt = x0 + µt + σWt, (3)

where x0 is a constant. Default happens at time T if XT < 0. Then, the probability

of default PD(T ), expected recovery rate RR(T ) and the credit spread CS(T ) are

given by

PD(T ) := P (XT < 0) = Φ
(
−x0 + µT

σ
√

T

)
,

RR(T ) := E[eXT |XT < 0] =
Φ

(
−x0+µT+σ2T

σ
√

T

)
ex0+µT+ 1

2
σ2T

Φ
(
−x0+µT

σ
√

T

) ,

CS(T ) = − 1
T

log
(

Φ(
x0 + µT

σ
√

T
) + Φ(−x0 + µT + σ2T

σ
√

T
)ex0+µT+ 1

2
σ2T

)
.
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This is exactly Merton’s model with the following parameter constrains:

x0 = log(V0/K),

µ = r − 1
2
σ2 > −1

2
σ2.

Our setting here is more general than Merton (1974), since we do not specify either

asset or debt processes. The debt can be a constant, a random variable, such as

Giesecke (2006) or a stochastic process, such as Collin-Dufresne & Goldstein (2001).

Practically speaking, corporate restructuring is allowed in this model, but not in

Merton’s model. By Ito’s lemma, it is easy to see that the drift of the solvency ratio

equals the default free interest rate minus half of the squared volatility of the solvency

ratio in Merton (1974). This implies that the drift of the solvency ratio has to be

larger than negative half of the squared volatility of the solvency ratio in Merton’s

model, considering positive interest rates. However, we do not impose any restriction

on the relationship between the drift and volatility of the solvency ratio. We have a

broader set of admissible parameters than in Merton’s case.

4 The Black-Cox Model

In Merton’s model, the default event can only happen at the maturity. However,

in reality, defaults could happen before the maturity of an indenture. Black & Cox

(1976) then proposed the well known first passage time model. Instead of describing

what Black and Cox have done exactly in the 1976 paper, we give a simplified version

of the model which maintains the essence of the original one.

For a given company, let its solvency ratio Xt be a DBM given by Equation (3)

(under the risk-neutral measure). In addition, we impose positivity assumption on

x0 to ensure that no default has happened up to now. The risk-neutral default time

τ is defined as the first time Xt crosses the zero boundary, i.e.

τ = inf{t ≥ 0;Xt = 0}. (4)

For a given future time T > 0, the default probability P (τ < T |X0 = x0) can be
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calculated using the reflection principle of Brownian motion and it is given by

P (τ < T |X0 = x0) = Φ
(
−x0 + µT

σ
√

T

)
+ e−2x0µ/σ2

Φ
(
−x0 − µT

σ
√

T

)
. (5)

Detailed derivation could be found in Steele (2004). Note that the first term is exactly

the Merton’s default probability (the probability of default at T ). The second term

comes from possibilities of default before T .

Assuming constant risk-neutral LGD = l, then the TSCS is given by

CS(T ) = − 1
T

log[1− lP (τ < T |X0 = x0)]. (6)

This TSCS has similar shapes as in Figure 1. Define the default intensity λ at time

zero as

λ :=
∂P (τ < T |X0 = x0)

∂T
|T=0. (7)

Using L’Hospital’s rule, one can show that λ = 0 in the Black-Cox model. Conse-

quently, the short spread in this model is always zero.

5 Randomized Merton Model

In the classical structure models discussed previously, the solvency ratio Xt has a

constant initial value X0 = x0. This means that we can fully observe the solvency

ratio at current time. However, in reality, the current solvency ratio cannot be exactly

observed by the market players. It is therefore reasonable to randomize the initial

value X0.

Assume that the solvency ratio Xt follows a DBM under the risk-neutral measure

Xt = X0 + µt + σWt, (8)

with a random initial value X0. At time zero, we cannot observe the initial value X0

accurately, but instead, we observe X0 plus some random noise. We also assume that

X0 and Wt are independent for all t > 0. This is a reasonable assumption, since the

noise should not affect the evolution of the solvency ratio process. However, it does

contaminate the information observed by market players.
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In the following two subsections, the solvency ratio is assumed to follow Equation

(8). The default probability is defined as in Merton’s model. The interest rate is

assumed to be constant and the credit spread is calculated using Equation (2). Two

models with different assumptions on the initial randomization are studied respec-

tively. We focus on how the the short spread is influenced by the randomization of

the initial value.

5.1 Randomized Merton I (RM-I)

In this RM-I model, we assume the following distribution for X0

• RM-I Assumption on X0: X0 ∼ N(x0, σ
2
0).

This is a natural assumption, since the DBM is normally distributed. It follows that

XT ∼ N(x0 + µT, σ2
0 + σ2T ). As in Merton’s model, we define the default time to

be T , if XT < 0. The default probability PD(T ), the expected recovery rate RR(T )

and the credit spreads CS(T ) are given by

PD(T ) := P (XT < 0) = Φ

(
− x0 + µT√

σ2
0 + σ2T

)
,

RR(T ) := E[eXT |XT < 0] =
ex0+µT+ 1

2
(σ2

0+σ2T )Φ
(
−x0+µT+σ2

0+σ2T√
σ2
0+σ2T

)

Φ
(
− x0+µT√

σ2
0+σ2T

) ,

CS(T ) = − 1
T

log

(
Φ(

x0 + µT√
σ2

0 + σ2T
) + Φ(−x0 + µT + σ2T√

σ2
0 + σ2T

)ex0+µT+ 1
2
(σ2

0+σ2T )

)
.

When σ0 = 0, this becomes the original Merton’s model. When T = 0, both PD(0)

and RR(0) are positive constants. As a result, the short spread becomes positive

infinity. Therefore the RM-I model is inappriate for pricing the short spread.

5.2 Randomized Merton II (RM-II)

In the RM-I model, infinite short spread is due to nonzero default probability at time

zero, which in turn is due to the positive probability that X0 < 0. In this RM-II

model, we assume the following distribution for X0, which has no mass on (−∞, 0).
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• RM-II Assumption on X0: its Probability Density Function (pdf) f(x0; y0, σ0)

is given by

f(x0; y0, σ0) =





φ(x0; y0, σ0)/Φ(y0/σ0) if x0 ≥ 0

0 if x0 < 0.
(9)

where function φ(x;µ, σ) denotes the pdf of N(µ, σ2) given by

φ(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (10)

This initial randomization will ensure zero default probability at time zero, namely

P (X0 < 0) = 0.

Remark 5.1 As time progresses from zero to t ∈ (0, T ), the solvency ratio Xt can be

negative without triggering a default in Merton’s model. Therefore, the nonnegative

assumption on X0 is not a consistent assumption for a dynamic model. Nevertheless,

this assumption is reasonable for a static model which can be used to price the current

short spread.

The default probability PD(T ) and the recovery rate RR(T ) can be calculated by

conditioning

PD(T ) := E[P (XT < 0|X0)], (11)

RR(T ) :=
E[E[eXT 1{XT <0}|X0]]
E[P (XT < 0|X0)]

. (12)

The following Proposition gives explicit formulas for PD(T ), RR(T ) and CS(T ), as

well as their asymptotics when T → +0.

Proposition 5.1 In the RM-II model, the default probability PD(T ), the recovery

rate RR(T ) and the credit spreads CS(T ) have the following representations2

PD(T ) =
A

Φ(y0/σ0)
, (13)

RR(T ) =
Bey0+µT+ 1

2
σ2T+ 1

2
σ2
0

A
, (14)

CS(T ) = − 1
T

log

(
Φ(y0/σ0)−A + Bey0+µT+ 1

2
σ2T+ 1

2
σ2
0

Φ(y0/σ0)

)
, (15)

2Pykhtin (2003) obtained a similar expression for the recovery rate in his recovery risk model.
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where the function Φ2(x1, x2, ρ) denotes the cdf of a bivariate normal distribution with

marginal distributions being standard normal and correlation coefficent ρ and3

A = Φ2

(
− y0 + µT√

σ2
0 + σ2T

,
y0

σ0
,− σ0√

σ2
0 + σ2T

)
,

B = Φ2

(
−y0 + µT + σ2

0 + σ2T√
σ2

0 + σ2T
,
y0

σ0
+ σ0,− σ0√

σ2
0 + σ2T

)
.

Moreover, we have

lim
T→+0

PD(T )√
T

=
σf(0; y0, σ0)√

2π
, (16)

lim
T→+0

LGD(T )√
T

=
σ
√

2π

4
, (17)

lim
T→+0

CS(T ) =
σ2f(0; y0, σ0)

4
. (18)

From the above proposition, we can see that PD(T ) indeed vanishes to zero as ma-

turity T approaches zero. When there is no random noise of the initial observation,

i.e. σ0 = 0, the RM-II model reduces to Merton’s model. Both PD(T ) and LGD(T )

are found to have an order of
√

T , as T → +0. As a result, the default intensity does

not exist in the RM-II model, but it can still generate positive short spread. This

positive short spread has an explicit formula given by Equation (18).

The short spread only depends on σ, y0 and σ0, and it does not depend on the drift

µ. However, if we allow y0 to be a function of µ, the short spread may depend on µ

too, as we can see in section 7. Equation (18) implies that the short spread increases

when σ increases while holding other parameters constant. If we fix σ and σ0, the

short spread is a decreasing function of y0/σ0. The ratio y0/σ0 can be regarded

as Distance to Default (DD). More uncertainty about the observed solvency ratio

indicates higher risk and hence the short spread should be higher. This uncertainty

should be measured by DD instead of σ0. This result may also imply that a firm’s

credit spreads will fall after its annual report. This awaits empirical results from

testing the model. The situation for σ0 is more complicated. When σ0 increases

3A series expansion of these functions are given by Vasicek (1998). We thank Michael Gordy for pointing

out this.
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from zero, the short spread first increases to a maximum and then decreases. The

maximum is reached at a σmax
0 , which solves the following equation

(y2
0σ

2
0 − 1)Φ(y0/σ0) + y0φ0 = 0.

This equation is obtained by setting the first order derivative of CS(+0) with respect

to σ0 to be zero.

Figures 2 and 3 show term structure of credit spreads for varying σ0 and µ respec-

tively, while holding other parameters constant. The short spread of the RM-II model

is clearly above zero as seen from both figures. Figure 2 also shows that CS(T ) may

decrease when σ0 increases. Some people may argue that this is counter-intuitive,

since more uncertainty about the current observation should require to pay more for

the protection of default. Hence the credit spread should be higher for larger σ0. This

argument is only correct if we replace the risk measure σ0 by DD (i.e. y0/σ0). The

credit spread is indeed a monotone decreasing function of DD. Figure 3 also demon-

strates that the RM-II model is capable of generating upwarding term structure of

credit spreads by choosing sufficient negative µ. Merton’s model cannot produce

upward increasing term structure of credit spreads because of the nonnegativity re-

striction on the constant interest rate. In the RM-II, however, we do not specify the

dynamics of the asset value Vt. We allow µ+ 1
2σ2 to be negative in the RM-II model,

because µ + 1
2σ2 does not necessarily represent the interest rate. As a result, the

RM-II model is able to generate varying shapes of term structure of credit spreads.

Figure 4 plots the short spread defined in Equation (18) as a function of y0, σ0

and DD. The middle picture in Figure 4 shows a hump-shaped curve of the short

spread as a function of σ0. The maximum short spread is achieved at σmax
0 = 0.4167,

in the case when σ = 0.12 and y0 = 0.35.

We have used the techniques of randomizing the initial condition of the solvency

ratio and have studied two models with Merton’s definition of default. The short

spread in RM-I model is infinity while the RM-II model successfully generates positive

short spreads. We conclude that the RM-I model is inapproriate for modeling short

spreads and the RM-II model is recommended.

In order to prove Proposition 5.1, the following two lemmas are needed.
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Figure 2: Term structure of credit spreads of RM-II model for varying σ0: µ = 0.01,

σ = 0.12, y0 = 0.35.

Lemma 5.2 Let (X, Y ) be a bivariate normal with correlation coefficient ρ and

marginals X ∼ N(µx, σ2
x), Y ∼ N(µy, σ

2
y). Then the following equation holds

Φ2

(
−µx

σx
,−µy

σy
, ρ

)
=

∫ +∞

0
Φ

(
yρσx/σy + µyρσx/σy − µx

σx

√
1− ρ2

)
φ(y;−µy, σx)dy. (19)

Lemma 5.3 As T → +0 the following expansion holds

Φ2

(
− y0 + µT√

σ2
0 + σ2T

,
y0

σ0
,

−σ0√
σ2

0 + σ2T

)
=

σφ(0; y0, σ0)
√

T√
2π

+
y0σ

2φ(0; y0, σ0)T
4σ2

0

+O(T 3/2).

(20)

6 Randomized Black-Cox (RBC) Model

As mentioned in the Remark 5.1, the assumption that X0 > 0 is inconsistant for a

dynamic model in Merton’s definition of default. However, it is natural to make this

assumption in the Black-Cox setting.
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Figure 3: Term structure of credit spreads of RM-II model for varying µ: σ = 0.12,

y0 = 0.35, σ0 = 0.20.
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Figure 4: RM-II short spread as a function of y0, σ0 and DD.
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In this section, we apply the randomization technique to the Black-Cox model

and study two different models which have different assumptions on the initial distri-

bution. In the following two subsections, the solvency ratio is still assumed to follow

Equation (8). The default time is assumed to be the first passage time defined by

Equation (4). The interest rate and the expected recovery rate are assumed to be

constant and the credit spreads are calculated using Equation (6).

6.1 Randomized Black-Cox I (RBC-I)

In this RBC-I model, we make the following assumption about X0

• RBC-I Assumption on X0: assume the pdf of X0 is given by Equation (9).

The probability of default P (τ < T ) can be calculated through

P (τ < T ) = E[P (τ < T |X0)], (21)

where P (τ < T |X0 = x0) is given by Equation (5). The following Proposition gives

an explicit expression of the default probability.

Proposition 6.1 For the RBC-I model, the default probability has the following ex-

pression

P (τ < T ) =
Φ2

(
− y0+µT√

σ2
0+σ2T

, y0

σ0
,− σ0√

σ2
0+σ2T

)

Φ(y0/σ0)
(22)

+
Φ2

(
−y0−2µσ2

0/σ2−µT√
σ2
0+σ2T

,
y0−2µσ2

0/σ2

σ0
,− σ0√

σ2
0+σ2T

)
e−2µy0/σ2+2µ2σ2

0/σ4

Φ(y0/σ0)
.

Moreover, we have4

lim
T→+0

P (τ < T )√
T

=
2σf(0; y0, σ0)√

2π
. (23)

This Proposition implies that P (τ < T ) has an order of
√

T , as T → +0. For

constant LGD assumption, the short spread in the RBC-I model becomes infinity.

4The Right Hand Side (RHS) of Equation (23) is exactly twice of the RHS of Equation (16). This

implies that the ratio of the first passage default probability and the Merton’s default probability is 2 when

T → +0, see Yi (2006) for a discussion.
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Similar to the RM-I, the RBC-I model is inappropriate for modeling the short spread.

Different choices of the distribution of the initial state X0 will yield different order of

convergence for P (τ < T ), as T → +0. The next session provides a better alternative.

6.2 Randomized Black-Cox II (RBC-II)

In this RBC-II model, we propose the following distribution for X0:

• RBC-II Assumption on X0: its pdf f(x0; a, v0, σ0) is assumed to be

f(x0; a, v0, σ0) =





φ(x0;a+v0,σ0)−e−2av0/σ2
0φ(x0;v0−a,σ0)

Φ
“

a+v0
σ0

”
−e−2av0/σ2

0Φ
“

v0−a
σ0

” if x0 ≥ 0

0 if x0 < 0
(24)

where σ0 > 0 and a > |v0|.

Direct integration shows that f(x0; a, v0, σ0) is indeed a valid pdf. Figure 5 shows an

example of the pdf.
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Figure 5: Probability Density Function f(x0; a, v0, σ0) with parameters a = 0.4, v0 = 0.1

and σ0 = 0.3.
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The motivation of this distribution is that the conditional first passage probability

P (t < τ < T |τ > t) can be written as an integral of a pdf which has a form of

f(x0; a, v0, σ0) defined above. Using Lemmas 5.2 and 5.3, the explicit formula for

P (τ < T ) and its asymptotics (as T → +0) are given by the following Proposition.

Proposition 6.2 For the RBC-II model, the default probability has the following

expression

P (τ < T ) =
A + B − C −D

Φ
(

a+v0
σ0

)
− e−2av0/σ2

0Φ
(

v0−a
σ0

) ,

where

A = Φ2

(
−a + v0 + µT√

σ2
0 + σ2T

,
a + v0

σ0
, ρ

)
,

B = Φ2

(
−a + v0 − 2µσ2

0/σ2 − µT√
σ2

0 + σ2T
,
a + v0 − 2µσ2

0/σ2

σ0
, ρ

)
e2µ2σ2

0/σ4−2µ(a+v0)/σ2
,

C = Φ2

(
−v0 − a + µT√

σ2
0 + σ2T

,
v0 − a

σ0
, ρ

)
e−2av0/σ2

0 ,

D = Φ2

(
−v0 − a− 2µσ2

0/σ2 − µT√
σ2

0 + σ2T
,
v0 − a− 2µσ2

0/σ2

σ0
, ρ

)
e2µ2σ2

0/σ4−2av0/σ2
0−2µ(v0−a)/σ2

,

ρ =
−σ0√

σ2
0 + σ2T

.

Moreover, we have

lim
T→+0

P (τ < T )
T

=
aσ2φ(0; a + v0, σ0)/σ2

0

Φ
(

a+v0
σ0

)
− e−2av0/σ2

0Φ
(

v0−a
σ0

)

=
σ2

2
∂f(x0; a, v0, σ0)

∂x0
|x0=0.

The above Proposition ensures positive intensity for the RBC-II model. Consequently,

positive short spreads are generated in the RBC-II model. Note that we have obtained

an equivalent expression of the intensity as in Duffie & Lando (2001). In their model,

the log of asset value follows DBM with a constant initial value z0: Zt = z0+mt+σWt.

The default time τ is defined to be τ := inf{s > 0 : Zs = 0}. Consider fixed time

t > 0, assume the only information available is Ht := {1{τ>s} : s ≤ t}. Conditional on

τ > t, Zt has a conditional density f(·) which is bounded and has bounded derivative
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with f(0) = 0 and f ′(0) is defined from the right. Duffie & Lando (2001) stated that,

the default intensity λ := limh→+0 P (t < τ ≤ t + h|τ > t)/h, is given by 1
2σ2f ′(0).

However, in their model, there is perfect information at time zero and they can only

establish the existence of an intensity for t > 0. By randomizing the initial value of

the solvency ratio, the RBC-II model avoids this difficulty.

Example 6.1 When µ/σ2 = v0/σ2
0.

In this case, the probability of default is reduced to

P (τ < T ) =
Φ

(
− a+v0+µT√

σ2T+σ2
0

)
+ e−2aµ/σ2

Φ
(
− a−v0−µT√

σ2T+σ2
0

)
− Φ

(
−a+v0

σ0

)
− e−2aµ/σ2

Φ
(

v0−a
σ0

)

Φ
(

a+v0
σ0

)
− e−2av0/σ2

0Φ
(

v0−a
σ0

) ,

where Φ2 functions disappear and only Φ functions are involved. The reduction of

dimensionalities of the integrals can be proved either by Vasicek’s expansions, or by

separation of integration techniques.
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Figure 6: Term structure of credit spreads of RBC-II model for varying a: µ = −0.0417,

σ = 0.2030, v0 = 0.2402, σ0 = 0.2162 and l = 1.
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Figure 7: Term structure of credit spreads of RBC-II model for varying v0: µ = −0.0417,

σ = 0.2030, a = 0.4615, σ0 = 0.2162 and l = 1.

Figures 6 and 7 show that the TSCS increases as a or v0 decreases. Since for smaller

a or v0, the initial distribution of X0 has more mass close to zero. It is therefore more

likelly to default which in turn implies higher credit spreads. Figure 8 shows that the

credit spread does not depend on σ0 in a monotonic way. For some maturities the

credit spread increases with σ0 while it may decrease with σ0 for other maturities.

Figure 9 shows the short spread as a function of parameters a, v0, σ0 and σ. The

short spread increases as a decreases, or v0 decreases or σ increases. As similar to

the RM-II model, the short spread of the RBC-II model first increases to a maximum

and then decreases, as σ0 increases from zero. This maximum achieved at some σ0

which can be solved by setting ∂CS(+0)/∂σ0 = 0.
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Figure 8: Term structure of credit spreads of RBC-II model for varying σ0: µ = −0.0417,

σ = 0.2030, v0 = 0.2402, a = 0.4615 and l = 1.

7 Delayed Information vs. Randomized Struc-

ture Model

Randomization of the initial value in the RS model may look awkward at first glance.

This section gives a natural construction of the RS model through delayed informa-

tion.

7.1 Delayed Information vs. RM-II

Assume the solvency ratio Xt is given by Equation (3) with constant initial value

X0 = x0. Let time t be the current time and T be a future time. Let ε be a

small positive number. At the current time t, we assume two sets of information

available. First, we assume Xt > 0. Second, Xt is not observed, but the delayed

solvency ratio Xt−ε = a is realized at time t. Then, conditional on Xt−ε = a, we have
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Figure 9: RBC-II short spread as a function of a, v0, σ0 and σ.

Xt ∼ N(a + µε, σ2ε). This is because

Xt = Xt−ε + µε + σ(Wt −Wt−ε).

The conditional default probability can be calculated through

P (XT < 0|Xt > 0, Xt−ε = a) =
P (XT < 0,−Xt ≤ 0|Xt−ε = a)

P (−Xt < 0|Xt−ε = a)

=
Φ2

(
−a+µ(T−t+ε)

σ
√

T−t+ε
, a+µε

σ
√

ε
,−

√
ε√

T−t+ε

)

Φ
(

a+µε
σ
√

ε

) .

This is equivalent to the RM-II model if we set y0 = a + µε and σ0 = σ
√

ε. This

construction suggests that uncertainty about the current solvency ratio may come
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from the delayed realization of the solvency ratio. The longer the observation is

delayed (i.e. for larger ε), the more uncertainty is the current solvency ratio (i.e.

larger σ0). The short spread derived from this construction becomes

σ2

4
√

2πσ2ε
e−

(a+µε)2

2σ2ε

Φ
(

a+µε
σ
√

ε

) .

The short spread derived from this delayed information depends on the drift param-

eter µ through y0. This is because y0 is a linear function of µ. Figure 10 shows that

the short spread increases as a or µ decreases, or σ or ε increases. This indicates that

the longer the information is delayed, the higher the short spread.

7.2 Delayed Information vs. RBC-II

This delayed information approach can easily be extended to first passage models,

where the default time τ is defined as in Equation (4). As before, Xt denotes the

solvency ratio process which we assume staionary increments. At the current time t,

we assume the following information are available. First, default has not happened

up to now, namely τ > t is known. Second, at current time t, we can only observe

the path of the solvency ratio up to a previous time t− ε, particulary Xt−ε = a > 0

is realized at time t but Xt is not. Let Ft−ε denote the filtration generated by the

solvency ratio process up to time t− ε. Then, the default time for a given future time

T > t can be calculated through

P (τ < T |Ft−ε, τ > t) =
P (t < τ < T |Ft−ε)

P (τ > t|Ft−ε)

=
P (ε < τ < T − t + ε|X0 = a)

P (τ > ε|X0 = a)

=
P (τ < T − t + ε|X0 = a)− P (τ < ε|X0 = a)

1− P (τ < ε|X0 = a)
. (25)

The above formula can be calculated explicitly if P (τ < ε|X0 = a) has explicit

expression. The default intensity is then given by

λt =
∂P (τ < η + ε|X0 = a)/∂η|η=0

P (τ > ε|X0 = a)
. (26)
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Figure 10: The short spread curve derived from delayed information as a function of a, µ,

σ and ε.

Note that the numerator is exactly the pdf of the first passage time taking value at

ε. We thus have obtained positive intensities through delayed information.

Consider the case when Xt is a DBM. We know that P (τ < ε|X0 = a) has explicit

formula given by Equation (5). Then the default probability is given by

P (τ < T |Ft−ε, τ > t) =

Φ
(
−a+µ(T−t+ε)

σ
√

T−t+ε

)
+ e−2aµ/σ2

Φ
(
−a−µ(T−t+ε)

σ
√

T−t+ε

)
− Φ

(
−a+µε

σ
√

ε

)
− e−2aµ/σ2

Φ
(

µε−a
σ
√

ε

)

Φ
(

a+µε
σ
√

ε

)
− e−2aµ/σ2Φ

(
µε−a
σ
√

ε

) .

This is equivalent to the RBC-II model discussed in Example 6.1 with v0 = µε and
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σ2
0 = σ2ε. These parameter constrains satisfy µ/σ2 = v0/σ2

0. The default intensity λt

has the following elegant expression:

λt =
ae−

(a+µε)2

2σ2ε /
√

2πσ2ε3

Φ
(

a+µε
σ
√

ε

)
− e−2aµ/σ2Φ

(
µε−a
σ
√

ε

) (27)

Note that this construction only makes sense when t > ε > 0, since F−ε is not well-

defined here. We can therefore only establish the existence of an intensity for t > 0

through the construction of delayed information. The Duffie-Lando approach is thus

equivalent to the delayed information approach.

8 Calibration Excercise

In this section, we demonstrate the incomplete information effects on TSCS by fitting

the theoretical CS in both the RM-II model and the RBC-II model to the observed

CDS spread curve. A thorough investigation of an optimal calibration procedure is

beyond the scope of this paper.

In the RM-II model, the parameters of interest are µ, σ, y0 and σ0. In the RBC-II

model, the parameters of interest are µ, σ, a, v0 and σ0. In this calibration exercise,

we set the LGD = 1 for the RBC-II model and the Black-Cox model.

For comparison, we also fit the Merton’s CS and the Black-Cox’s CS to the market

data. The parameters of interest in both the Merton and the Black-Cox models are

µ, σ and y0. However, in fact, only two parameters need to be calibrated in Merton’s

model because µ and σ are related through r = µ + 0.5σ2, where the short rate r is

proxied by the 1-month U.S Treasury yield. Parameters are calibrated by minimizing

the cross-sectional Mean Absolute Error(MAE).

We take the CDS curve of Ford Motor Corp. on March 16, 2007, with 0.25-, 1-,

2-, 3-, 4-, 5-, 7-, and 10-year maturities.5 The short rate r is taken to be 5.18%, which

is the 1-month U.S Treasury yield on March 16, 2007.

5The 3-month CDS is not directly available from Bloomberg. It is interpolated from its nearest two

points available, namely 1-year and 2-year CDS data.
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Figures 11 and 12 show the calibrated results. It can be seen from the picture that

both RM-II and RBC-II models outperform the classical structure models in fitting

the CDS spreads, especially for short maturities. We also find that the RBC-II model

fits better than the RM-II model. In fact, the MAE for the RBC-II, the RM-II, the

Black-Cox and the Merton’s model are 7 basis points (bps), 15 bps, 68 bps and 30

bps respectively. For the short end maturities, such as 3-month, both Merton’s and

Black-Cox’s spreads are close to zero (0.3709 bps and 4 bps respectively), but catering

for incomplete information allows the RM-II and RBC-II to generate a positive value

of 83.327 bps and 89 bps respectively.

The calibrated parameters are illustrated in Table 1. Note that µ + 0.5σ2 is

negative (-0.1033) in the RM-II model, which does not represent the interest rate.
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Figure 11: RM-II model vs. Merton model fit to Ford Motor CDS curve on March 16,

2007.
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Figure 12: RBC-II model vs. Black-Cox model fit to Ford Motor CDS curve on March 16,

2007.

Model µ σ y0 σ0 v0 a MAE (bps)

Merton -0.2449 0.7703 1.4852 30

RM-II -0.1432 0.2825 0.4926 0.2045 15

Black-Cox -0.3220 0.6288 1.9588 68

RBC-II -0.0417 0.2030 0.2162 0.2402 0.4615 7

Table 1: Calibrated parameters for the three models.

9 Summary

Motivated by Merton’s model, we proposed to treat the solvency ratio directly as the

risk factor. Based on the classical structure models, we then proposed to randomize

the initial value of the solvency ratio to take account of imperfect information. We

have mainly looked at four different RS models, which cover two types of definition

of default and different assumptions on the initial randomization.

From the RM-II and the RBC-II models, we found that positive short spreads
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can be produced due to imperfect observation on the solvency ratio. We also found

that various shapes of the term structure of credit spreads can be generated. The

PD, the LGD and the CS are given in explicit formulae for both models, which have

explicit expressions for their short spreads. In the RM-II model, we found that both

PD(T )/
√

T and LGD(T )/
√

T converge to positive constants as T → +0. The default

intensity is thus not defined in the RM-II model, but positive short spreads can still

be produced. In the RBC-II model, we found that PD(τ < T )/T converges to a

positive constant. Therefore, the default intensity does exist in the RBC-II model

and it generates positive short spreads under the assumption of constant LGD.

Merton’s model becomes a special case of the RM-II model while the Black-Cox

model is a special case of the RBC-II model. Numerical analysis and a calibration

exercise illustrate that the randomized structure models outperforms the classical

structure model in fitting the term structure of credit spreads, especially for short

maturities. These two RS models generalize the classical structure models in two

folds. First, instead of modeling the asset value and debt separately, we modeled the

solvency ratio directly as a DBM. Second, imperfect information is considered and

positive short spreads are generated. From the RM-I and the RBC-I, we also noticed

that the short spread may become infinity if the random initial distribution has too

much mass close to the default barrier.

We next provided a delayed information perspective on the RS models. The

models constructed through delayed information are special cases in our general RS

models in two ways. First, number of parameters are reduced due to some parameter

constrains. Second, positive short spreads can be generated for only t > 0.

10 Appendix I

• Proof of Proposition 5.1:
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From Equations (9-12), we have

PD(T ) =
1

Φ(y0/σ0)

∫ +∞

0
P (XT < 0|X0 = x0)φ(x0; y0, σ0)dx0

=
1

Φ(y0/σ0)

∫ +∞

0
Φ

(
−x0 + µT

σ
√

T

)
φ(x0; y0, σ0)dx0,

=
Φ2

(
− y0+µT√

σ2
0+σ2T

, y0

σ0
,− σ0√

σ2
0+σ2T

)

Φ(y0/σ0)
,

RR(T ) =

∫ +∞
0 ex0+µT+ 1

2
σ2T Φ

(
−x0+µT+σ2T

σ
√

T

)
φ(x0; y0, σ0)dx0

Φ(y0/σ0)PD(T )

=
ey0+µT+ 1

2
(σ2

0+σ2T )
∫ +∞
0 Φ

(
−x0+µT+σ2T

σ
√

T

)
φ(x0; y0 + σ2

0, σ0)dx0

Φ(y0/σ0)PD(T )

=
Φ2

(
−y0+µT+σ2

0+σ2T√
σ2
0+σ2T

, y0

σ0
+ σ0,− σ0√

σ2
0+σ2T

)
ey0+µT+ 1

2
σ2T+ 1

2
σ2
0

Φ2

(
− y0+µT√

σ2
0+σ2T

, y0

σ0
,− σ0√

σ2
0+σ2T

) .

We have used Lemma 5.2 for the last steps of each calculation. Then the formula

for CS(T ) comes in handy. For the asymptotics, Equation (16) is a direct result

from Lemma 5.3. Note that LGD(T ) = 1−RR(T ), Equation (17) is obtained by

applying Lemma 5.3 to 1−RR(T ). Equation (18) is a direct result of Equations

(16) and (17).

• Proof of Lemma 5.2:

The Left Hand Side (LHS) of Equation 19 is the probability that both X and Y

are less than zero, i.e. P (X < 0, Y < 0). We can also calculate this probability

by conditioning

P (X < 0, Y < 0) =
∫ 0

−∞
P (X < 0|Y = y)φ(y; µy, σy)dy

=
∫ 0

−∞
Φ

(
−yρσx/σy + µyρσx/σy − µx

σx

√
1− ρ2

)
φ(y; µy, σy)dy

=
∫ +∞

0
Φ

(
yρσx/σy + µyρσx/σy − µx

σx

√
1− ρ2

)
φ(y;−µy, σy)dy

For the second step, we have used the fact that X is still normally distributed

conditional on Y = y, i.e. X|Y = y ∼ N(yρσx/σy−µyρσx/σy +µx, σx

√
1− ρ2).
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• Proof of Lemma 5.3:

From Lemma 5.2, the LHS of Equation (20) can be written as

LHS =
1√
2πσ2

0

∫ +∞

0
Φ

(
−x + µT

σ
√

T

)
e
− (x−y0)2

2σ2
0 dx

=
σ
√

T√
2πσ2

0

∫ +∞

µ
√

T/σ
Φ(−z)e

− (zσ
√

T−µT−y0)2

2σ2
0 dz

= σ
√

Tφ(0; y0, σ0)
∫ +∞

µ
√

T/σ
Φ(−z)e

−−2y0zσ
√

T+O(T )

2σ2
0 dz

= σ
√

Tφ(0; y0, σ0)
∫ +∞

µ
√

T/σ
Φ(−z)[1 + y0zσ

√
T/σ2

0 + O(T )]dz

→ σφ(0; y0, σ0)
√

T√
2π

+
y0σ

2φ(0; y0, σ0)T
4σ2

0

+ O(T 3/2).

For the last step, we have used the following two equalities
∫ +∞

0
Φ(−z)dz =

1√
2π

,

∫ +∞

0
zΦ(−z)dz =

1
4
.

• Proof of Proposition 6.1:

Recall that P (τ < T |X0 = x0) is given by Equation (5), we have

P (τ < T ) =
1

Φ(y0/σ0)

∫ +∞

0
P (τ < T |X0 = x0)φ(x0; y0, σ0)dx0

=
1

Φ(y0/σ0)

∫ +∞

0
Φ

(
−x0 + µT

σ
√

T

)
φ(x0; y0, σ0)dx0

+
1

Φ(y0/σ0)

∫ +∞

0
e−2x0µ/σ2

Φ
(
−x0 − µT

σ
√

T

)
φ(x0; y0, σ0)dx0

=
1

Φ(y0/σ0)

∫ +∞

0
Φ

(
−x0 + µT

σ
√

T

)
φ(x0; y0, σ0)dx0

+
e−2y0µ/σ2+2µ2σ2

0/σ4

Φ(y0/σ0)

∫ +∞

0
Φ

(
−x0 − µT

σ
√

T

)
φ(x0; y0 − 2µσ2

0/σ2, σ0)dx0

=
Φ2

(
− y0+µT√

σ2
0+σ2T

, y0

σ0
,− σ0√

σ2
0+σ2T

)

Φ(y0/σ0)

+
Φ2

(
−y0−2µσ2

0/σ2−µT√
σ2
0+σ2T

,
y0−2µσ2

0/σ2

σ0
,− σ0√

σ2
0+σ2T

)
e−2µy0/σ2+2µ2σ2

0/σ4

Φ(y0/σ0)
.
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Lemma 5.2 is used for the last step. From Lemma 5.3, we have

lim
T→+0

P (τ < T )√
T

=
σ[φ(0; y0, σ0) + φ(0; y0 − 2µσ2

0/σ2, σ0)e−2µy0/σ2+2µ2σ2
0/σ4

]√
2πΦ(y0/σ0)

=
2σφ(0; y0, σ0)√

2πΦ(y0/σ0)
.

• Proof of Proposition 6.2

P (τ < T ) =
∫ +∞

−∞
P (τ < T |X0 = x0)f(x0; a, v0, σ0)dx0

=
A + B − C −D

Φ
(

a+v0
σ0

)
− e−2av0/σ2

0Φ
(

v0−a
σ0

) ,

where A, B, C and D are given by

A =
∫ +∞

0
Φ

(
−x0 + µT

σ
√

T

)
φ(x0; a + v0, σ0)dx0,

B =
∫ +∞

0
e−2x0µ/σ2

Φ
(
−x0 − µT

σ
√

T

)
φ(x0; a + v0, σ0)dx0,

C =
∫ +∞

0
e−2av0/σ2

0Φ
(
−x0 + µT

σ
√

T

)
φ(x0; v0 − a, σ0)dx0,

D =
∫ +∞

0
e−2av0/σ2

0−2x0µ/σ2
Φ

(
−x0 − µT

σ
√

T

)
φ(x0; v0 − a, σ0)dx0.

Note that C and D can also be written as

C = e−2µ(a+v0)/σ2+2µ2σ2
0/σ4

∗
∫ +∞

0
Φ

(
−x0 − µT

σ
√

T

)
φ(x0; a + v0 − 2µσ2

0/σ2, σ0)dx0,

D = e−2av0/σ2
0−2µ(v0−a)/σ2+2µ2σ2

0/σ4

∗
∫ +∞

0
Φ

(
−x0 − µT

σ
√

T

)
φ(x0; v0 − a− 2µσ2

0/σ2, σ0)dx0.

Explicit expressions for A, B, C and D are finally obtained by invoking Lemma

5.2. The asymptotic equation of P (τ < T ) is obtained by using Lemma 5.3 and

the following identities:

φ(0; a + v0, σ0) = φ(0; v0 − a, σ0)e−2av0/σ2
0

= e2µ2σ2
0/σ4−2µ(a+v0)/σ2

φ(0; a + v0 − 2µσ2
0/σ2, σ0)

= e2µ2σ2
0/σ4−2av0/σ2

0−2µ(v0−a)/σ2
φ(0; v0 − a− 2µσ2

0/σ2, σ0).

30



References

Altman, E., Resti, A. & Sironi, A. (2004), ‘Default recovery rates in credit risk

modelling: A review of the literature and empirical evidence’, Economic Notes

33(2).

Black, F. & Cox, J. C. (1976), ‘Valuing corporate securities: Some effects of bond

indenture provisions’, Journal of Finance 31(2), 351–367.

Chen, N. & Kou, S. (2006), ‘Credit spreads, optimal capital stucture, and implied

volatility with endogenous default and jump risk’, Working Paper, Columbia

University .

Coculescu, D., Geman, H. & Jeanblanc, M. (2006), Valuation of default sensitive

claims under imperfect information. Working paper, Universite Paris-Dauphine.

Collin-Dufresne, P. & Goldstein, R. S. (2001), ‘Do credit spreads reflect stationary

leverage ratios?’, Journal of Finance 56(5), 1929–1957.

Duffie, D. & Lando, D. (2001), ‘Term structures of credit spreads with incomplete

accounting information’, Econometrica 69(3), 633–664.

Duffie, D. & Singleton, K. J. (1999), ‘Modeling term structures of defaultable bonds’,

Review of Financial Studies 12(4), 687–720.

Fouque, J.-P., Sircar, R. & Solna, K. (2006), ‘Stochastic volatility effects on default-

able bonds’, Applied Mathematical Finance 13(3), 215–244.

Giesecke, K. (2006), ‘Default and information’, Journal of Economic Dynamics and

Control 30(11), 2281–2303.

Giesecke, K. & Goldberg, L. (2004), ‘Forecasting default in the face of uncertainty’,

Journal of Derivatives 12(1), 14–25.

Leland, H. & Toft, K. B. (1996), ‘Optimal capital structure, endogenous bankruptcy,

and the term structure of credit spreads’, Journal of Finance 51(3), 987–1019.

Longstaff, F. & Schwartz, E. S. (1995), ‘A simple approach to valuing risky fixed and

floating rate debt’, Journal of Finance 50(3), 789–819.

31



Merton, R. (1974), ‘On the pricing of corporate debt: The risk structure of interest

rates’, Journal of Finance 29(2), 449–470.

Pykhtin, M. (2003), ‘Unexpected recovery risk’, Risk 16(8), 74–78.

Steele, J. (2004), Stochastic Calculus and Financial Applications, Springer.

Yi, C. (2006), A useful result on first passage OU process. Working paper,

http://www.math.mcmaster.ca/∼yichuang.

Zhou, C. (2001), ‘The term structure of credit spreads with jump risk’, Journal of

Banking and Finance 25, 2015–2040.

32


