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Abstract

We propose a method for extending a given asset pricing formula to account
for two additional sources of risk: the risk associated with future changes in
market–calibrated parameters and the remaining risk associated with idiosyn-
cratic variations in the individual assets described by the formula. The paper
makes simple and natural assumptions for how these risks behave. These extra
risks should always be included when using the formula as a basis for portfolio
management. We investigate an idealized typical portfolio problem, and argue
that a rational and workable trading strategy can be based on minimizing the
quadratic risk over the time intervals between trades. The example of the vari-
ance gamma pricing formula for equity derivatives is explored, and the method
is seen to yield tractable decision strategies in this case.

1 Introduction

Any rational and practical approach to managing a financial portfolio naturally involves
finding an optimal balance between a number of competing criteria. For example, a
manager will wish to make good (but not excessive) use of available market data. They
will also need to work with a pricing model in order to estimate risk and project to
the future. However, the pricing model must balance complexity and accuracy against
simplicity and implementability. They will want to trade but not too frequently, and
before each trade will need to choose from many alternatives. They may need a set of
investment decision strategies which are explicable to their boss, and will stand up to
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stringent scrutiny. They must be aware that strategies and parameters alike need to
be updated continuously.

The paper focuses on an idealized market of derivatives on a single underlying asset
St over a time period t ∈ [0, T ]. We address the hypothetical situation of a manager
who has written (sold) to a client a large and risky over-the-counter (nontradable)
contingent claim F on S, with maturity date T (which we think of as quite large,
say three years). Having accepted the large fee, and the large liability, the manager
must now create a portfolio of investments in the exchange traded derivatives with the
aim of adequately or even optimally hedging the risk. Thus the market consists of a
number of different securities: a bank account, a non–dividend–paying stock, a family
of derivatives on the stock and finally the over–the–counter claim. We assume

1. the bank account pays and charges a constant rate of interest r, which we take
to be zero for simplicity. There is no limit on borrowing;

2. the stock price at time t, denoted St, is always positive;

3. the exchange traded derivatives are taken to be european puts and calls over
a variety of strikes Kα and maturities Tα whose prices at time t are denoted
Dα
t , α = 2, . . . ,M . By convention, we denote the stock itself by Dα with α = 1.

4. the over–the–counter claim price ft is the value at time t of a claim given by
a function F of the stock price history {St}t≤T . That is, FT is an FT random
variable. By convention, we denote the over–the–counter claim value by Dα with
α = 0.

5. the market is frictionless: there is perfect liquidity, no transaction costs, unlimited
shortselling, and the market is open at all times.

We assume the manager will set up an initial portfolio at t = 0, and then be making
single trades at certain times t1 < t2 < . . . < tk < . . . < T . In principle, these will
be stopping times, but for this paper we take the deterministic values ti = iδt for δt
fixed. Our problem is to provide this manager with a consistent, workable strategy for
trading, and to measure the performance of this strategy. The following two questions
are addressed in this paper:

Q1 What is the condition for optimal allocation at time t = 0?

Q2 What is the optimal single (or double or triple) trade which can be made at time
ti, i > 0?

It is supposed that the rational manager will base their strategy on a derivative
pricing model whose historical performance has been studied, benchmarked, and found
to lead to acceptable modeling errors. This model is taken to be a finite parameter
“risk neutral” pricing formula, whose parameters θa, a = 1, . . . , N are to be calibrated
to the observed prices of the M − 1 derivatives (where N << M). Of course, in
contradiction to the modeling assumptions, the calibrated values θ̂at will depend on the
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time t, reflecting changing market conditions. Furthermore, the calibrated model will
generally fail to match all observed prices at a given time, the differences being thought
of as “idiosyncratic errors”. The key point of the paper is to extend the original model
by including minimal additional assumptions on changing parameters and idiosyncratic
errors which are consistent with the observed performance of the model. These extra
effects must be included in any rational portfolio strategy.

We argue that a rational strategy for the manager will be to minimize the total risk–
neutral variance of the portfolio returns over each inter–trading time interval, without
regard to the mean portfolio return. “Risk–neutral” refers to the measure which cor-
rectly prices the current market but not historical values. Variance optimization is
equivalent to optimization with a quadratic utility function, which is an acceptable
approximation to the general utility function over short time–intervals. Disregarding
the mean return is consistent with a no–arbitrage condition true in an efficient market,
but also justifiable pragmatically because the manager is profiting from the large fee
collected for underwriting the claim F , and needs only consolidate that fee with mini-
mal risk. Furthermore, estimating mean returns over short time intervals is a game for
speculators and arbitrageurs, not hedgers.

Before each trade the manager will perform a number of steps:

1. place the payoff of newly expired options (if any) in the bank account;

2. observe the market prices;

3. recalibrate the risk–neutral parameters to the new data;

4. estimate the value of the liability F using the recalibrated pricing model;

5. find the optimal single trade which will minimize the estimated risk–neutral vari-
ance of the portfolio over the period until the next trading time.

The main theorem of this paper states that the risk-minimal portfolio for any trading
time-interval is unique, as is the optimal single trade at any time.

We then discuss models such as the VG model [MCC99] for which the stock process
is Markovian and has a closed form characteristic function. It is shown that the Fourier
transform pricing method of [CM00] extends and allows for efficient computation of
portfolio variances, and hence optimal portfolios and trades.

One important outcome of the present discussion is a clear operational definition
of essential concepts of hedging which shows how these concepts can be refined and
extended: delta hedging, gamma hedging, vega hedging, model recalibration. Further-
more, the inclusion of risk associated to “idiosyncratic errors” breaks the degeneracy
(nonuniqueness) of the hedging decisions derived from naive delta–hedging (in practise
by biasing trading toward near–the–money instruments). For a detailed discussion of
hedging and derivatives from the trading perspective, see [Tal97]. For a discussion of
model risk, see [Reb01]. For another approach to optimal investment in derivatives see
[CJM01].
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2 The model

2.1 The option pricing formula

The option pricing formula is assumed to arise via arbitrage pricing theory set in the
risk–neutral filtered probability space (Ω,F , {Ft}t∈[0,T ],Q) over a time horizon [0, T ].
For each fixed set of parameters θ = (θa)Na=1 ∈ RN , the stock is a positive Q–martingale
(“cádlág”) (recall the interest rate is taken to be zero). We consider models in which
St is one component of a multidimensional Markov process (St, Yt) whose values are
observable in the market: in our examples Y will have dimensions zero and one. Let
Yt = σ{Sτ , Yτ , τ ≤ t} ⊂ Ft be the filtration of market observables.

The pricing formula giving the value at time t for any European style contingent
claim with payoff FT at date T is simply

F (t, S, Y, θ) = E(FT (ST )|Yt, St = S, Yt = Y, θ fixed), t ∈ [0, T ] (1)

Examples:

1. Black–Scholes model: The single parameter can be taken as θ = log σ and the
stock process is given by St = S0 exp[eθWt − e2θt/2] (there are no extra Y vari-
ables). The pricing formula if FT = (ST −K)+ is simply the Black–Scholes call
option formula.

2. Variance–Gamma model ([MCC99]) Here the log return process Xt = log (St/S0)
is defined to be the Lévy process [Ber96],[IW89]:

Xt = µθt+
∫ t

0

∫ ∞
−∞

xN (νθ)(dxdt) (2)

whose jump intensity measure is

νθ(x) =
αe−|x|/η±

|x|
, ±x > 0 (3)

for three positive parameters θ = (α, η+, η−). The characteristic function turns
out to be

ΦXt(u) = E(eiuXt) = [Φ(u)]t

Φ(u) =

[
1

(1− iη+u)(1 + iη−u)

]α
· eiµθu (4)

The martingale condition on S needs η+ < 1 and is then equivalent to Φ(−i) = 1,
so

e−µθ =

[
1

(1− η+)(1 + η−)

]α
(5)



5

With this condition satisfied, then the stock process St has the form

St = S0 +
∫ t

0

∫ ∞
−∞

(ex − 1)Sτ−Ñ
(νθ)(dx dτ) (6)

where Ñ denotes the compensated (martingale) process

Ñ (νθ)(dx dt) = N (νθ)(dx dt)− νθ(x) dx dt (7)

3. Stochastic volatility models: Standard stochastic volatility models [Hes93],[PS00b],
[PS00a],[DPS00] such as

dSt =
√
vt St dW

1
t

dvt = (a− bvt) dt+ σ
√
vt dW

2
t (8)

can be considered. This model is Markovian in (St, vt), not in St alone and the
option pricing formula at time t depends on the values (St, vt). Our approach will
be to follow [BZ01] and treat the stochastic squared volatility vt as the “effective
observable” defined by

vt = lim
∆t↓0

lim
N→∞

N−1
N∑
i=1

| log(Si/Si−1)|2 (9)

where Si ≡ St−(N−i)∆t/N . This model has four parameters (a, b, σ, ρ) where
d 〈W 1,W 2〉 = ρdt.

Many models like the VG model and some stochastic volatility models have a closed
formula for the characteristic function ΦXt . In such cases [CM00] have shown how the
Fast Fourier transform method provides a numerically efficient method for evaluating
(1). For example, the European call payoff function with a strike K = ek can be written
as a complex contour integral along the shifted contour (−∞− iε,∞− iε) for any ε > 0:

(S − ek)+ =
1

2π

∫ ∞−iε
−∞−iε

Siu+1 e−iukQ(u) du (10)

where

Q(u) =
1

iu− u2
(11)

To take the expectation to evaluate (1), plug in this formula and interchange the du
and E(·) integrals

F (t, S) =
1

2π

∫ ∞−iε
−∞−iε

E
(
Siu+1
T ei(u−i)XT−t e−iukQ(u)

)
du

=
1

2π

∫ ∞−iε
−∞−iε

Siu+1
t Φ(u− i)T−t e−iukQ(u) du (12)

The explicit integral can now be evaluated (approximately) very efficiently for a linearly
spaced family of log strike values {k0 +nδk}n=0,±1,±2,... using the fast Fourier transform.
Similar formulas hold for put options and the over–the–counter claim itself if its payoff
has a known Fourier transform.
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2.2 Varying market conditions

A careful trader using a pricing formula such as (1) will wish to correct for changing
market conditions. It will be supposed that prior to its practical application (to hedg-
ing) the performance of the formula has been carefully benchmarked against real market
data and a historical time series of mean square estimated values θ̂t (as described in
section §3.1) has been observed. When we allow the vector of parameters θ to become
a process, it is natural to pick a gaussian mean–reverting process and therefore we
assume:

A1 The time varying parameters θit form an RN–valued Ornstein–Uhlenbeck Ito dif-
fusion (gaussian, mean reverting). The noise process driving θt is independent of
the noise process driving St.

Let Gt = σ{θs, s ≤ t} ⊂ Ft.
A consistent pricing formula based on the filtration Yt × Gt is given by

F̃ (t, S, Y, θ) = E(FT (ST )|Yt × Gt, St = S, Yt = Y, θt = θ), t ∈ [0, T ] (13)

Note that F̃ depends on the detailed modeling of the process (described of course by
extra parameters), and hence F̃ 6= F . For the present paper we regard use of F̃ in place
of F as a change in the underlying pricing model, and is hence “against the rules”.

Since our purpose is rather to use F to find a hedging strategy which will include
low order approximations to account for variations in θ, the point of view of varying
parameters can be simplified. We adopt a natural compromise position which is to
regard the parameters θ as constant over the intertrading intervals [ti−1, ti). At each
time ti the parameters are assumed to jump according to a discrete RN -valued OU
process which is independent of the stock price Sti . Over the time period [ti−1, ti),
the stock price is assumed to evolve according to the model with fixed θ = θti−1

. The
distribution of θti conditioned on θti−1

is gaussian. To keep the discussion simple, we
will focus on the conditional covariance estimated by the quadratic variation statistic:

Θ̂ab =
1

n

n∑
k=1

[θ̂at̃k − θ̂
a
t̃k−1

][θ̂bt̃k − θ̂
b
t̃k−1

], a, b = 1, . . . N (14)

obtained from a series of times t̃0, t̃1, . . . , t̃n (all prior to the trading times) with t̃i −
t̃i−1 = δt.

2.3 Idiosyncratic variations

Even if the model parameters θ are confidently known at time t, the observed option
prices Dα will not fit the formula perfectly. There are certainly model errors which are
idiosyncratic to each exchange traded security, and a careful trader must also account
for this. As before, it is supposed that these idiosyncratic errors have been benchmarked
by observing how the formula matches real data and that the process

Eαt = Dα
t̃ − F

α(t, St, θt) (15)

has been sampled over time. We assume
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A2 the errors Et form a multidimensional Ornstein–Uhlenbeck Ito diffusion, indepen-
dent of the noise processes driving St and θt. For simplicity, we assume that the
covariance of Eti conditioned on Eti−1

is diagonal.

Trading instincts suggest that the predicted variances will depend most strongly on
two variables, namely moneyness κ = K/S and time to maturity τ = T − t, both of
which vary in time for a specific derivative α. Therefore we adopt the following crude
method for predicting the idiosyncratic variances: Let the variance of Eαt+δt conditioned
on Eαt be

V̂ α
t = S2

t v̂(Kα/St, T
α − t) (16)

where v̂ is the following historically observed quantity which depends on moneyness
and time to maturity:

v̂(κ, τ) =
1

nδt

n∑
k=1

S−2
t̃k

[Êα(t̃k,κ,τ)

t̃k+δt
− Êα(t̃k,κ,τ)

t̃k
]2 (17)

where {t̃k} is a sequence of times prior to the trading times ti. Here α(t, κ, τ) is defined
to be that derivative whose characteristics (Kα, Tα) at time t most nearly match (κ, τ),
i.e. the α which minimizes

d(α; (κ, τ)) = (Kα/St − κ)2 + ((Tα − t)/τ − 1)2 (18)

3 Optimal trading

We now develop in detail the problem of optimal trading at time ti. In what follows
we use the shorthand notation Si ≡ Sti , etc. for quantities evaluated at time ti. The
formulation we will adopt will take into account the following information at time ti: the
observed market prices Dα

i , the empirical covariance Θ̂ab, and the empirical variances
V̂ α
i .

We assume that immediately following the previous trading time ti−1 the (self–
financing) portfolio consists of παi−1 units of each derivative, the liability for the claim
D0 (so π0 = −1 always), and the remaining value Bi−1 in the bank account. The
portfolio value X is

Xi−1 =
M∑
α=0

παi−1D
α
i−1 +Bi−1 (19)

Bi−1 = Xi−1 −
∑
α

παi−1D
α
i−1 (20)

3.1 Calibration to observed prices

At time ti, we compare the observed market prices Dα
i , α = 1, . . . , N to the model

prices to update the market parameters θ. Following [MCC99], the vector of estimated
parameters θ̂i is the minimizer of

min
θ
{
∑
α

| log(Dα
i )− log(Fα(ti, Si, θ))|2} (21)
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Note that by definition D0 = F 0 and D1 = F 1 = S so the sum is over α = 2, . . . , N .
Refining (21) by weighting by trading volume might be considered.

3.2 Marking to market

Given the recalibrated market parameters θ̂i and current market prices Dα
i , α ≥ 1, the

updated portfolio value can be calculated for time ti. The best estimate of the current
value of the contingent claim D0 is the expected value at ti of the (discounted) final
claim:

D0
i = F 0(ti, Si, θ̂i) (22)

(this explains why E0 = 0 always). Therefore the updated portfolio value, just prior to
trading, can be written

Xi =
∑
α≥0

παi−1F
α(ti, Si, θ̂i) +

∑
α≥2

παi−1Eαi +Bi−1 (23)

3.3 Finding the optimal trade

To determine the optimal trade (i.e. to find the best new portfolio weights παi , Bi), we
project

Xi =
∑
α≥0

παi F
α(ti, Si, θ̂i) +

∑
α≥2

παi Eαi +Bi (24)

forward to the next trading time ti+1 and consider the (stochastic) value Xi+1. This is
characterized by the values παi , Bi, the new market prices Dα

i+1, and the new parameter

values θ̂i+1. Consider the difference ∆X ≡ Xi+1 −Xi =
∑
α≥0 π

α
i ∆Xα where

∆Xα = [Fα(ti+1, Si+1, θ̂i)− Fα(ti, Si, θ̂i)]

+[Fα(ti+1, Si+1, θ̂i+1)− Fα(ti+1, Si+1, θ̂i)] + [Eαi+1 − Eαi ]

≡ ∆Xα
1 + ∆Xα

2 + ∆Xα
3

The middle term ∆X2 will become a bit awkward, so we reorganize it by Taylor
expanding in powers of ∆̂θi = θ̂i+1 − θ̂i:

Fα(ti+1, Si+1, θ̂i+1)− Fα(ti+1, Si+1, θ̂i) =
∑
n≥1

(∂nθ F
α)(ti+1, Si+1, θ̂i)∆̂θi

n
(25)

We have adopted a condensed multiindex notation so that ∂nθ ≡ ∂n1

θ1 . . . ∂
nN
θN and ∆̂θ

n
≡

(θ̂1)
n1
. . . (θ̂N)

nN
with n = (n1, . . . , nN). n ≥ 1 is shorthand for

∑
i ni ≥ 1.

In what follows, let Ei(·) denote conditional expectations EQ(·|Fti). We consider
first the mean of ∆X. Note Ei(∆X

α
1 ) = 0 since Fα is a martingale. In general,

however, Ei(∆X
α
2 ) 6= 0, Ei(∆X

α
3 ) 6= 0 since conditional means of OU processes are

never identically zero. Statistically, mean returns are small, difficult to measure and
very unstable in time. From a trading point–of-view, seeking mean returns over short
time intervals is the job of the speculator, the day–trader and the arbitrageur. For
our hedger, it makes no sense to trade on expected returns. Therefore, from both the
statistical and trading points of view it makes sense to introduce an extra assumption
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A3 The trader will ignore the mean returns of ∆X2,∆X3, and will trade as ifEi(∆X
α
2 ) =

0 and Ei(∆X
α
3 ) = 0.

Thus we assume that when conditioned on Fi, ∆̂θi and Eαi+1 − Eαi are taken to be

mean zero gaussians, with conditional covariances Θ̂ab and V̂ α
i .

Under these assumptions, the variance or total quadratic risk

R ≡ vari(∆X) =
∑
αβ

παi π
β
i R

αβ

decomposes into three terms

Rαβ ≡ Covi(∆X
α
1 ; ∆Xβ

1 ) + Covi(∆X
α
2 ; ∆Xβ

2 )

+ Covi(∆X
α
3 ; ∆Xβ

3 )

= Rαβ
1 +Rαβ

2 +Rαβ
3

• R1 is the risk associated with changes in the underlier S;

• R2 is the risk associated with changes in the market reflected in evolving param-
eter values;

• R3 is the risk associated with deviations between observed prices and model prices.

This type of decomposition is quite general.
We have now succeeded in expressing the quadratic portfolio risk in terms of the

pricing formulas Fα, the conditional covariance matrix Θ̂ab and the variances V̂ α.

Proposition 1 Consider a pricing model of the above type under assumptions A1,A2,A3.
Then

1. there is a unique portfolio π∗i with π0
i = −1 which minimizes the quadratic risk

π∗i = arg minπ:π0=−1

∑
α,β≥0

παπβ[Rαβ
1 +Rαβ

2 +Rαβ
3 ] (26)

over the period [ti, ti+1] given by the solution of

R0α =
∑
β>0

Rαβπ∗βi , α > 0 (27)

2. for any portfolio πi−1 with π0 = −1, there is a unique optimal single trade con-
sisting of λ∗ units of the γ∗th derivative, γ∗ ≥ 1 where:

(λ∗, γ∗) = arg minλ,γ≥1

∑
α,β≥0

(παi−1 + λδαγ )(πβi−1 + λδβγ )[Rαβ
1 +Rαβ

2 +Rαβ
3 ] (28)

Here arg min denotes the solution of the associated minimization problem.
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Proof: We need only note that R1 is positive definite while R2, R3 are positive semidef-
inite matrices.

2

Selecting the optimal single trade given πi−1 is a simple matter given the matrix R.
The optimal amount λ∗,γ to trade of a given derivative γ is

λ∗,γ = −
∑
β R

γβπβi−1

Rγγ
(29)

Such a trade decreases the unimproved portfolio risk
∑
α,β π

α
i−1π

β
i−1R

αβ by the amount

(
∑
β R

γβπβi−1)2/Rγγ; the optimal asset to trade is simply that γ∗ which shows the max-
imal improvement.

Similar arguments give one the optimal double, triple trade etc.

4 Implementing the method

Implementation of the method for a particular trading formula depends on efficient
determination of the risk matrix Rαβ before every trade. We demonstrate how this can
be done by generalizing the Fast Fourier Transform (FFT) method of [CM00] when
the log-return process Xt = log(St/S0) has a known characteristic function Φ(u). We
suppose that for each α = 0, 1, . . . ,M the payoff function Fα(ST ) has a Fourier formula
similar to (10) but with the function Q(u) replaced by Qα(u).

First note that R3 is always simply the diagonal matrix

Rαβ
3 = δαβV̂ α

i = δαβS2
i v̂(Kα/Si, T

α − ti) (30)

R1, R2 are more complicated. We note that they are symmetric matrices which fall
naturally into block submatrices

R =


R00 R01 R0c R0p

R10 R11 R1c R1p

Rc0 Rc1 Rcc Rcp

Rp0 Rp1 Rpc Rpp

 (31)

where R0c is 1×Mc,Rcp is Mc ×Mp etc. where Mc,Mp are the number of traded calls
and puts. Put–call parity leads to a number of relations amongst the components:

Rcc −Rcp = Rc1, Rcp −Rpp = R1p, etc. (32)

We indicate here how to compute the parts of Rcc with fixed maturities Tα, T β and any
log strikes kα, kβ.

For R1 terms note that

Rαβ
1,cc = Ei

(
[Fα
i+1 − Fα

i ][F β
i+1 − F

β
i ]
)

= Ei
(
Fα
i+1F

β
i+1

)
− Fα

i F
β
i (33)
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The usual approach is to Taylor expand in powers of ∆t which leads to generalized
delta–gamma hedging. However with the FFT method, we can perform the one re-
maining expectation leading to an explicit double Fourier integral

Rαβ
1,cc =

1

(2π)2

∫ ∫
S
i(u1+u2)+2
i e−iu1kα−iu2kβQ(u1)Q(u2)

×
[
Φ(u1 + u2 − 2i)∆t − Φ(u1 − i)∆tΦ(u2 − i)∆t

]
×Φ(u1 − i)T

α−ti+1 Φ(u2 − i)T
β−ti+1 du1 du2 (34)

A single application of the two dimensional FFT solves this problem for a family of
calls with linearly spaced log strikes but with fixed dates Tα, T β.

Now we seek a similar formula for

Rαβ
2,cc = Ei

[(
Fα
i+1(θ̂i+1)− Fα

i+1(θ̂i)
) (
F β
i+1(θ̂i+1)− F β

i+1(θ̂i)
)]

−Ei
[
Fα
i+1(θ̂i+1)− Fα

i+1(θ̂i)
]
Ei
[
F β
i+1(θ̂i+1)− F β

i+1(θ̂i)
]

(35)

When we plug in the Fourier integral, we highlight the θ̂–dependence of Φ by writing
Φ(u; θ̂). Then using the independence of S and θ expectations leads to

Rαβ
2,cc =

1

(2π)2

∫ ∫
e−iu1kα−iu2kβQ(u1)Q(u2)

×Ei
(
S
i(u1+u2)+2
i+1

[
Φ(u1 − i; θ̂i+1)T

α−ti+1 − Φ(u1 − i; θ̂i)T
α−ti+1

]
×
[
Φ(u2 − i; θ̂i+1)T

β−ti+1 − Φ(u2 − i; θ̂i)T
β−ti+1

])
du1 du2

− 1

(2π)2

∫ ∫
e−iu1kα−iu2kβQ(u1)Q(u2)

×Ei
(
Siu1+1
i+1

[
Φ(u1 − i; θ̂i+1)T

α−ti+1 − Φ(u1 − i; θ̂i)T
α−ti+1

])

×Ei
(
Siu2+1
i+1

[
Φ(u2 − i; θ̂i+1)T

β−ti+1 − Φ(u2 − i; θ̂i)T
β−ti+1

])
du1 du2 (36)

which becomes

=
1

(2π)2

∫ ∫
S
i(u1+u2)+2
i e−iu1kα−iu2kβQ(u1)Q(u2)(

Φ(u1 + u2 − 2i; θ̂i)
∆tEi

[[
Φ(u1 − i; θ̂i+1)T

α−ti+1 − Φ(u1 − i; θ̂i)T
α−ti+1

]
×
[
Φ(u2 − i; θ̂i+1)T

β−ti+1 − Φ(u2 − i; θ̂i)T
β−ti+1

]]
− Φ(u1 − i; θ̂i)∆tΦ(u2 − i; θ̂i)∆tEi

[
Φ(u1 − i; θ̂i+1)T

α−ti+1 − Φ(u1 − i; θ̂i)T
α−ti+1

]
×Ei

[
Φ(u2 − i; θ̂i+1)T

β−ti+1 − Φ(u2 − i; θ̂i)T
β−ti+1

])
du1 du2 (37)
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The remaining θ–expectations will be quite complicated since they involve differencing
the function Φ. A pragmatic approach is simply to Taylor expand in powers of ∆̂θ.
Then the leading term is

1

(2π)2

∫ ∫
S
i(u1+u2)+2
i e−iu1kα−iu2kβQ(u1)Q(u2) Φ(u1 + u2 − 2i; θ̂i)

∆t ×

N∑
a,b=1

[
∂θa(Φ(u1 − i; θ̂i)T

α−ti+1)∂θb(Φ(u2 − i; θ̂i)T
β−ti+1)Θ̂ab

]
du1 du2 (38)

with higher order terms given by more complicated integrals. These integrals are effi-
ciently calculated by FFT as before.

4.1 Example: the Black–Scholes model

The Fourier technique above applies to this model, since the characteristic function is
simply

Φ(u) = exp[−e2θ(u2 + iu)/2] (39)

The matrices R1, R2, R3 can be interpreted in the standard language of hedging.
For example, by taking the second order Taylor approximation to R1 in powers of ∆t
and setting

∑
α,β R

αβ
1 παπβ = 0, we obtain the conditions for a delta–gamma–hedged

portfolio. Note that in our present formulation, the optimal solutions make this term
small but not zero. Similarly, setting the lowest order ∆t term of R2 equal to zero
yields a vega–hedged portfolio which shows vanishing first–order sensitivity to changes
in the estimated volatility. Again our optimal portfolios will be approximately but not
perfectly vega–hedged. Finally, making R3 small amounts to choosing preferentially
amongst the more liquid derivatives, since their idiosyncratic risks are generally rela-
tively smallest. In practise, this means favoring investment in near–the–money assets
to far in/out–of–the–money derivatives.

We illustrate the method with an example which shows the optimal hedge for a
Euro–call contract with strike 1 and maturity T = 3 (all times in years) whose total
Black–Scholes value is $1. In a pure Black–Scholes market where the current stock price
is $1, with puts and calls with maturity 1/2 and 11 log strikes k = (−0.5,−0.6, . . . , 1.5),
we calculated the optimal hedge (excluding the underlier S) for the period δt = 1/12.
For illustrative purposes, we take the other parameters to be Θ̂ = 10−2, v̂c = v̂p =
10−3(6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6). The graph shows the value bought of each call option (+)
and the value (×) sold of each put. The ratio of quadratic hedged risk to unhedged risk
is 0.0319, the hedged to unhedged delta ratio is −0.0441 and the hedged to unhedged
gamma ratio is −0.7411. With optimized choices for FFT parameters the computation
required 21.3 megaflops.
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4.2 Example: the VG model

We begin by noting that for this model the parameterization θ̂ = (α, η+, η−) is not a
linear space, but can be associated with a natural riemannian manifold with metric
given by the Fisher information metric. Therefore, we replace assumption A1 by the
natural family of Ornstein-Uhlenbeck processes which constitute a preferred class of
mean–reverting processes on a general riemannian manifold. However, we expect this
nontrivial geometry to affect only the higher order ∆̂θ terms in the Taylor expansion for
R2 and for a preliminary implementation we would work in the tangent space and keep
only first order Taylor terms. Thus we would use (38) with the estimated Θ̂ matrix as
before.

Now, since the characteristic function for the VG model has the simple analytic
expression (4), the important double integrals can be efficiently calculated via the
FFT.

It is now known that the VG model does not work well in pricing derivatives across
maturities, and so our framework cannot be expected to perform adequately. Work is
in progress to extend the VG model to include nontrivial time correlations.

4.3 Example: the affine stochastic volatility model

In the model given by equation (8) the characteristic function Φ(t, u) = E(eiXtu) for
Xt = log(St/S0) depends on the current level of squared volatility v0:

Φ(t, u) = exp[C(t, u) +D(t, u)v0] (40)

where

C(t, u) =
a

σ2

[
(b− iρσu+ d)t− 2 log

(
1− gedt

1− g

)]

D(t, u) =
b− iρσu+ d

σ2

[
1− edt

1− gedt

]

g =
b− iρσu+ d

b− iρσu− d
d =

√
(iρσu− b)2 − σ2(−iu− u2) (41)

where ρ is the correlation between W 1,W 2. Our general method still applies, however
the dependence on v0 leads to more complicated integrals for R1, R2 which are deserving
of further study.

5 Conclusions

The general picture is that a finite parameter pricing model can be augmented by an as-
sumption that parameters vary stochastically (hopefully slowly) in time, independently
of other sources of randomness. Furthermore, one need not assume idiosyncratic errors
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are zero: these too can be modeled by a simple independent random process. These
assumptions can be built naturally into hedging strategies which minimize risk over a
given time interval between trades. This risk naturally decomposes into a sum of three
terms: a term involving changes in the underlier, a term involving changes in the pa-
rameters and a term involving the idiosyncratic errors. Expectations involving changes
in the underlier are with respect to the risk–neutral measure, and thus incorporate
a non-zero price of risk, whereas the remaining probabilities are with respect to the
physical (historical) probabilities. Decision making for the resulting hedging strategy
at a given trading time requires knowing how to calculate model prices and generalized
greeks for fixed values of the parameters (using the analytical formulas, Monte Carlo
or some other method) and knowing the following data:

1. the current prices of all exchange traded securities;

2. historically estimated unconditional variances for the changes in parameters and
idiosyncratic pricing errors.

The strategy which results has a number of practical advantages:

• It provides a systematic treatment of model errors, hence leading to smaller ab-
solute hedging errors;

• Since decision making depends only on current market prices and benchmark
statistics which are relatively robust and stable in time, we expect hedging errors
over successive trading intervals to exhibit only small statistical dependence. This
means that the probability distribution of the hedging error over longer terms can
be estimated by the central limit theorem;

• The method can be implemented efficiently in a wide variety of models, both
simple and sophisticated, which include pure diffusions, jump diffusions and pure
jump models.

It should be observed once more that we are introducing new parameters (here
V̂ , Θ̂) which describe idiosyncratic errors and the changes in model parameters. Of
course these themselves are best estimated dynamically in time. Thus the finicky
practitioner might be lead to introduce further parameters which describe the changes
in the parameters which describe the changes in model parameters, etc! The logic of
the paper still applies.

Further work is suggested along a number of lines:

• A comparison of the performance of our method relative to the standard discrete
time hedging strategies;

• The statistical dependence of successive hedging errors should be studied and
compared to that of other strategies;
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• A study of whether the strategy is consistent with observed trading patterns in
the market or whether on the contrary traders use different criteria in decision
making;

• In the current paper we avoid discussing transaction costs by assuming a fixed
schedule of single trades. The work should be extended to include transaction
costs, and which will allow questions of when it is optimal to trade, and when
double or higher order trades are preferable over single trades;

• The method should also be applied to models for other markets, such as the
commodity, bond and foreign exchange markets.

To conclude, the current paper is not intended to present a mathematically con-
sistent model. On the contrary, it addresses the question of how any mathematically
consistent pricing model can be extended for use by a rational and prudent practitioner
who cares about the inevitable errors made by the model.
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