From Sample Test 2
March 26, 2020 3:32 PM (1st paflink, but 2nd test)
2. Find the sum of the series $\sum_{n=0}^{\infty} n(n-1)x^{n-2}$ (a) $\frac{6}{(1-x)^4}$ (b) $\frac{1}{(1-x)^2}$ (c) $\frac{-2}{(1-x)^3}$ (d) $\frac{2}{(1-x)^3}$ (e) $-\frac{6}{(1-x)^4}$ Soln: Recognizing this as a BINDMIAL SERIES. $(1+x)^{k} = \underbrace{5}^{n} \binom{n}{k} \times^{n}.$ $(1 + (-\times))^k = \underbrace{2}_{k} \binom{n}{k} (-x)^n$ $\binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}$ Shifting index. $\sum_{n=2}^{n-2} n(n-1)x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)x^{n}$ $\binom{-3}{n} = \frac{(-3)(-4)...(-3-n+1)}{}$ cont'à on next page. factoring (-1) from each term

March 26, 2020 3:47 PM

in the Inomerator: $\begin{pmatrix} -3 \end{pmatrix} = (-1)^n (x)(y)...(n+i)(n+2)$ $\frac{(1)(2)(3)(4)...(n+i)(n+2)}{(1)(2)(3)(4)...(n+i)(n+2)}$ $= (-1)^n (n+1)(n+2)$ $(1+(-x))^{-3} = 2 (-1)^{n} (n+1)(-x)^{n}$ $= 2 (-1)^{n} (n+1)(-x)^{n}$ $=\underbrace{\frac{2}{2}(n+1)(n+2)}_{n=2}\times^{n}$ $= \underbrace{5(n-1)(n-2)}_{n=2} \times \frac{n-2}{2}$ shifting indox back. $\frac{2}{(1+x)^3} = \frac{5}{(n-1)(n-3)} \times^{n-2}$