Mathematics 741

ASSIGNMENT 1

due Tuesday, October 8, 2019 – BEFORE CLASS BEGINS

Please begin the solution to each question on a new page and then arrange the solutions in the correct order to assist marking.

1. Use the **Method of Successive Approximations** to solve the IVP:

$$x'(t) = x, x(0) = 1.$$

What function is your sequence of approximations converging to? Is this the correct solution?

2. Let r, k, and f be real-valued, continuous functions that satisfy $r(t) \ge 0$, $k(t) \ge 0$, and

$$r(t) \le f(t) + \int_a^t k(s)r(s) \ ds, \ a \le t \le b,$$

for some fixed constants a and b. Use the Method of Successive Approximations to prove that

$$r(t) \le \int_a^t f(s)k(s) \exp\left[\int_s^t k(u) \ du\right] \ ds + f(t) \ a \le t \le b.$$

- 3. Consider $T: [-\frac{1}{2}, \frac{1}{2}] \longrightarrow \mathbb{R}$ where $Tx = x^3$. Let $\rho(x, y) = |x y|$.
 - (a) Verify that ALL of the hypotheses of the Contraction Mapping Theorem are satisfied, and hence conclude that there is a unique fixed point.
 - (b) What is the fixed point?
 - (c) Starting with $x_0 = \frac{1}{4}$, at most how many iterations does the error estimate predict that you would require to get within 0.001 of the fixed point?
 - (d) How many iterations do you actually need to get within 0.001 of the fixed point if $x_0 = \frac{1}{4}$?
- 4. Assume that $(t, x) \in \mathcal{D} \subseteq \mathbb{R} \times \mathbb{R}^n$ is a non-empty, open, and connected set, and that $f : \mathcal{D} \to \mathbb{R}^n$.
 - (a) Prove that $C^1(\mathcal{D}) \subseteq locallyLip_x(\mathcal{D}) \subseteq C(\mathcal{D})$ with respect to x.
 - (b) Show by counterexamples that the inclusions are proper.
- 5. Consider the initial value problems:

(a)
$$\frac{dy}{dt} = (t^2 + y^4)^{\frac{1}{2}}, \quad y(t_0) = y_0,$$

- (b) $\frac{dy}{dt} = \frac{1}{(1-t)^2} \sin((t-1)^4 y), \quad y(t_0) = y_0.$
- (a) Discuss whether these functions are uniformly or locally Lipschitz with respect to x on $\mathbb{R} \times \mathbb{R}$ or neither.
- (b) In each case, justifying all of your assertions carefully, discuss existence, uniqueness, and continuation of solutions (i.e. the maximal interval of existence of each solution) through each point $(t_0, y_0) \in \mathbb{R}^2$. (DO NOT SOLVE) *Hint: Discuss sets of initial conditions with the same* properties together.

Extra Practice Problems (not to be submitted)

- 1. Consider the function $f(t, x) = t \sin(x)$ where $(t, x) \in D = \mathbb{R} \times \mathbb{R}$. Determine whether this function is locally Lipschitz with respect to x on D, uniformly Lipschitz with respect to x on D, or neither.
- 2. Consider the function $f(t, x) = x \sin(t)$ where $(t, x) \in D = \mathbb{R} \times \mathbb{R}$. Determine whether this function is locally Lipschitz with respect to x on D, uniformly Lipschitz with respect to x on D, or neither.

THE END