Mathematics 741 ASSIGNMENT 2 due Tuesday, Oct. 29, 2019 – BEFORE CLASS

Please begin the solution to each question on a new page and then arrange the solutions in the correct order to assist marking.

1. Let x(t) and y(t) denote the density at time t of a hare and a fox population, respectively, where fox eat hare. Assuming that the populations are "homogeneous" in space (i.e., "wellmixed") and that there are no other predators or prey. A simple model of this prey-predator system is:

$$\begin{array}{rcl} x' &=& rx(1-x/K) - yf(x) \\ y' &=& -dy + \eta yf(x), \end{array}$$

where r, K, η , and d are positive constants and where x(0) > 0 and y(0) > 0. Define $\mathbb{R}_+ \equiv \{x \in \mathbb{R} : x \ge 0\}$. Assume also that $f : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuously differentiable function for all $x \in \mathbb{R}_+$ and that f(0) = 0. Using existence and uniqueness theory and results on the continuation of solutions (without trying to solve) prove that

- (a) Neither the hare nor the fox population can die out within a *finite* period of time and hence conclude that all solutions remain positive.
- (b) Solutions are defined for all time $t \ge 0$.
- 2. Consider the planar I.V.P.

$$\begin{array}{rcl} x' &=& xf(y),\\ y' &=& g(y),\\ x(t_0) = x_0, \ y(t_0) = y_0, \end{array}$$

where $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and $g : \mathbb{R} \to \mathbb{R}$ is a uniformly Lipschitz function. Prove that the solution of this I.V.P. is unique.

3. Assume that $f : \mathcal{D} \to \mathbb{R}^n$ where $\mathcal{D} \subseteq \mathbb{R} \times \mathbb{R}^n$ is open, convex, and connected. Assume also that $f \in \mathcal{C}(\mathcal{D}) \cap Lip_x(\mathcal{D})$.

Consider the initial value problems,

$$x'(t) = f(t,x), \quad x(t_0) = u_1,$$
 (1)

$$x'(t) = f(t,x), \quad x(t_0) = u_2.$$
 (2)

where (t_0, u_1) and (t_0, u_2) are in \mathcal{D} . Let $\phi_1(t)$ and $\phi_2(t)$ be the solutions of (1) and (2), respectively, with common interval of existence \mathcal{J} . Then, prove that

$$||\phi_1(t) - \phi_2(t)|| \le ||u_1 - u_2||e^{L|t - t_0|}, \text{ for all } t \in \mathcal{J},$$

where L is the Lip constant for f with respect to x on \mathcal{D} .

Did you require all of the assumptions? Explain.

4. Assume that $f : \mathcal{D} \to \mathbb{R}^n$, $g : \mathcal{D} \to \mathbb{R}^n$, $f, g \in \mathcal{C}(\mathcal{D})$ where $\mathcal{D} \subseteq \mathbb{R} \times \mathbb{R}^n$ is open, convex, and connected and $(t_0, x_0) \in \mathcal{D}$. Assume also that g is uniformly $Lip_x(\mathcal{D})$ and $||f(t, x) - g(t, x)|| \leq \epsilon$ for some $\epsilon > 0$ for all $(t, x) \in \mathcal{D}$.

Consider the initial value problems,

$$x'(t) = f(t, x), \quad x(t_0) = x_0,$$
(3)

$$x'(t) = g(t,x), \quad x(t_0) = x_0.$$
 (4)

Let $\phi_1(t)$ and $\phi_2(t)$ be solutions of (3) and (4), respectively, with common interval of existence \mathcal{J} . Then, prove that

$$||\phi_1(t) - \phi_2(t)|| \le \frac{\epsilon}{L} \left(e^{L|t-t_0|} - 1 \right), \text{ for all } t \in \mathcal{J},$$

where L is the Lip constant for g with respect to x on \mathcal{D} .

Did you require all of the assumptions? Explain.

- 5. Consider the translation of a solution in time.
 - (a) Let $f \in C(\mathcal{D}), \mathcal{D} \subset \mathbb{R}^n$, and let f be smooth enough so that the solution of the I.V.P.

$$x' = f(x), \quad x(t_0) = \xi,$$

denoted $\phi(t, t_0, \xi)$ is unique for each $(t_0, \xi) \in (\mathbb{R} \times \mathcal{D})$. If $\phi(t, 0, \xi)$ denotes the solution of the I.V.P.

$$x' = f(x), \quad x(0) = \xi_{\xi}$$

prove that $\phi(t, t_0, \xi) = \phi(t - t_0, 0, \xi)$ for all $\xi \in \mathcal{D}$, all $t_0 \in \mathbb{R}$ and all t such that ϕ is defined.

(b) Consider the solution of the I.V.P.

x' = tx, x(0) = 1, denoted $\phi(t, 0, 1)$, i.e., $\phi(0, 0, 1) = 1$,

and the solution of the I.V.P.

x' = tx, x(2) = 1, denoted $\phi(t, 2, 1)$, i.e., $\phi(2, 2, 1) = 1$.

Solve the two I.V.P.s and check whether $\phi(t, 2, 1) = \phi(t - 2, 0, 1)$. Does this contradict what you proved in the first part of this question? Explain.

THE END