Mathematics 741 Course Title: Methods of Applied Mathematics I

Some Background Material in Analysis

References:	Rudin,	Principles of Real Analysis
	Royden,	Real Analysis
	Goldberg,	Methods of Real Analysis

Let $\{f_k(x)\}_{k=1}^{\infty}$ be a sequence of real-valued functions defined on a set \mathcal{S} .

Definition: $\sum_{k=1}^{\infty} f_k(x)$ converges pointwise to f(x) in S if for each $x \in S$ given $\epsilon > 0, \exists$ (there exists) N_x such that $|\sum_{k=1}^{N} f_k(x) - f(x)| \le \epsilon$ whenever $N > N_x$.

Definition: $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly to f(x) in \mathcal{S} if given $\epsilon > 0 \exists K$ such that \forall (for all) $x \in \mathcal{S}$ and $\forall N \geq K$, $|\sum_{k=1}^{N} f_k(x) - f(x)| \leq \epsilon$.

Weierstrass Test

If there is a constant series $\sum_{k=1}^{\infty} p_k$ such that:

- 1. $|f_k(x)| \leq p_k \ \forall x \in \mathcal{S}$ and $k = 1, 2, \dots$
- 2. $\sum_{k=1}^{\infty} p_k$ converges

then $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly on \mathcal{S} to a function f(x).

Theorem: If $\sum_{k=1}^{\infty} f_k(x)$ is a uniformly convergent series of continuous functions $f_k(x)$ defined on a set $\mathcal{S} \in \mathbb{R}^n$, then the function $f(x) = \sum_{k=1}^{\infty} f_k(x)$ is continuous on \mathcal{S} .

Definition: A function $\rho: S \times S \to \mathbb{R}$ is called a *metric* (distance function) if for every $(x, y) \in S \times S$:

- 1. $\rho(x,y) \ge 0$ and $\rho(x,y) = 0$ iff (if and only if) x = y,
- 2. $\rho(x, y) = \rho(y, x)$ (transitivity),
- 3. $\rho(x, y) \le \rho(x, z) + \rho(x, y) \ \forall x \in \mathcal{S}$ (triangle inequality).

 (\mathcal{S}, ρ) is called a metric space.

Examples:

- 1. $\mathcal{S} = \mathbb{R}, \ \rho(x, y) = |x y|.$
- 2. $S = \mathbb{R}^2$, (x_1, y_1) , $(x_2, y_2) \in \mathbb{R}^2$, $\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ (Euclidean distance).
- 3. $S = \mathbb{R}^2$, (x_1, y_1) , $(x_2, y_2) \in \mathbb{R}^2$, $\rho((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|$.
- 4. S is the set of continuous real-valued functions on [a, b] an interval of \mathbb{R} , i.e., $S = C([a, b], \mathbb{R})$. $x(t), y(t) \in S$. $\rho(x, y) = \max_{a \le t \le b} |x(t) - y(t)|$ (Uniform metric).

Definition: A sequence of points $\{x_n\}_{n=1}^{\infty}$ in a metric space (\mathcal{S}, ρ) is said to be a Cauchy sequence if $\forall \epsilon > 0 \exists N$ such that $\rho(x_n, x_m) < \epsilon$ whenever $n \geq N$ and $m \geq N$.

Definition: An element $x \in \mathcal{S}$ is the limit of a sequence $\{x_n\}_{n=1}^{\infty}$ (i.e., $\lim_{n\to\infty} x_n = x$) if for every $\epsilon > 0$, $\exists N$ such that $\rho(x_n, x) < \epsilon \ \forall \ n \ge N$.

Definition: A metric space is complete if every Cauchy sequence has a limit is the space.

Examples: (1)-(4) are all complete metric spaces.

Let S be the set of all rational numbers in [0,1]. Let $\rho(x,y) = |x-y|$ for $x, y \in S$. Then the metric space (S, ρ) is **NOT** complete since a Cauchy sequence of rational numbers can converge to an irrational number.

Definition: Let \mathcal{F} be a family of real valued functions defined on a set $\mathcal{D} \subseteq \mathbb{R}^n$. Then

- (i) \mathcal{F} is called *uniformly bounded* on \mathcal{D} if \exists a nonnegative constant M such that $\forall x \in \mathcal{D}$ and $\forall f \in \mathcal{F} ||f(x)| \leq M$.
- (ii) \mathcal{F} is called *equicontinuous* on \mathcal{D} if $\forall \epsilon > 0$, $\exists a \delta > 0$ (independent of x, y, f) such that $\forall x, y \in \mathcal{D}$ and $\forall f \in \mathcal{F}$, $|f(x) f(y)| < \epsilon$ whenever $|x y| < \delta$.

Theorem: (Ascoli-Arzela Lemma)

Let \mathcal{D} be a closed, bounded subset of \mathbb{R}^n and let $\{f_m\}$ be a real valued sequence of functions in $C(\mathcal{D}, \mathbb{R})$. If $\{f_m\}$ is equicontinuous and uniformly bounded on \mathcal{D} , then there is a subsequence $\{m_k\}$ and a function $f \in C(\mathcal{D}, \mathbb{R})$ such that $\{f_{m_k}\}$ converges to f uniformly on \mathcal{D} .

Definition: A partially ordered set (\mathcal{A}, \leq) , consists of a set \mathcal{A} and a relation \leq on \mathcal{A} such that for any a, b, and c in \mathcal{A} ,

- (i) $a \leq a$,
- (ii) $a \leq b$ and $b \leq c$ implies that $a \leq c$,
- (iii) $a \le b$ and $b \le a$ implies that a = b.

A chain is a subset \mathcal{A}_0 of \mathcal{A} such that for all a and b in \mathcal{A}_0 , either $a \leq b$ or $b \leq a$.

An upper bound for a chain \mathcal{A}_0 is an $a_0 \in \mathcal{A}$ such that $b \leq a_0 \ \forall b \in \mathcal{A}_0$.

A maximal element for \mathcal{A} , if it exists, is an element a_1 of \mathcal{A} such that $\forall b \in \mathcal{A}, a_1 \leq b$ implies that $a_1 = b$.

Zorn's Lemma: If each chain in a partially order set (\mathcal{A}, \leq) has an upper bound, then \mathcal{A} has a maximal element.

Definition: If \mathcal{M} is a subset of a metric space (\mathcal{S}, ρ) and $T : \mathcal{M} \to \mathcal{M}$, then T is a contraction on \mathcal{M} , if there is a nonnegative number $0 \le \alpha < 1$ such that for all x and y in \mathcal{M} , $\rho(Tx, Ty) < \alpha \rho(x, y)$.

Theorem: (Contraction Mapping or Banach Fixed Point Theorem)

If \mathcal{M} is a closed subset of a complete metric space (\mathcal{S}, ρ) and $T : \mathcal{M} \to \mathcal{M}$ is a contraction, then T has a unique fixed point x^* (i.e., \exists ! (there exists a unique) $x^* \in \mathcal{M}$ such that $Tx^* = x^*$).

Furthermore, given any $x^0 \in \mathcal{M}$, x^* is the limit of the sequence of iterates $\{x^0, Tx^0, T^2x^0, T^3x^0, \dots\}$, and

$$\rho(T^k x^0, x^*) \le \frac{\alpha^k \rho(T x^0, x^0)}{1 - \alpha}, \text{ where } \alpha \text{ is a contraction constant.}$$

PROOF: (Method of Successive Approximations)

Select any $x^0 \in \mathcal{M}$. We show that the sequence $\{T^n x^0\}_{n=1}^{\infty}$ converges to a fixed point of T. Define $d = \rho(Tx^0, x^0)$ and let $0 \le \alpha < 1$ denote the contraction constant. We show that $\{T^n x^0\}_{n=1}^{\infty}$ is a Cauchy sequence.

$$\rho(T^{k+1}x^0, T^kx^0) \leq \alpha \rho(T^kx^0, T^{k-1}x^0)$$

$$\leq \alpha^2 \rho(T^{k-1}x^0, T^{k-2}x^0)$$

$$\vdots$$

$$\leq \alpha^k \rho(Tx^0, x^0)$$

$$= \alpha^k d.$$

Assume that m = n + k for integer k > 0.

$$\begin{aligned} \rho(T^{m}x^{0}, T^{n}x^{0}) &= \rho(T^{n+k}x^{0}, T^{n}x^{0}) \\ &\leq \rho(T^{n+k}x^{0}, T^{n+k-1}x^{0}) + \rho(T^{n+k-1}x^{0}, T^{n+k-2}x^{0}) + \dots + \rho(T^{n+1}x^{0}, T^{n}x^{0}) \\ &\leq \alpha^{n}d(\alpha^{k-1} + \alpha^{k-2} + \dots + 1) \\ &\leq \alpha^{n}d\frac{1}{1-\alpha} \to 0 \text{ as } n \to \infty, \end{aligned}$$

recalling that the geometric series: $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$ if $0 \le \alpha < 1$. Therefore, $\{T^n x^0\}$ is a Cauchy sequence. Since \mathcal{M} is a closed subset of a complete metric space, \mathcal{M} is complete. Therefore, $\lim_{n\to\infty} T^{n+1}x^0 = x^*$ exists where $x^* \in \mathcal{M}$.

Since T is a contraction, T is continuous. (Prove this for homework). Therefore, $Tx^* = T(\lim_{n\to\infty} T^n x^0) = \lim_{n\to\infty} T^{n+1}x^0 = x^*$, and so x^* is a fixed point. **Uniqueness:** Suppose \exists distinct fixed points x^* and y^* . $\rho(x^*, y^*) = \rho(Tx^*, Ty^*) \leq \alpha \rho(x^*, y^*) < \rho(x^*, y^*)$, since $0 \leq \alpha < 1$, a contradiction. **Error estimate:**

$$\begin{split} \rho(T^{k}x^{0}, x^{*}) &\leq & \rho(T^{k}x^{0}, T^{k+1}x^{0}) + \rho(T^{k+1}x^{0}, T^{k+2}x^{0}) + \dots + \rho(T^{k+p}x^{0}, x^{*}) \\ &\leq & \alpha^{k}d + \alpha^{k+1}d + \dots + \alpha^{k+p-1} + \rho(T^{k+p}x^{0}, x^{*}) \\ &\leq & d\left(\sum_{h=0}^{\infty} \alpha^{k+h}\right) (\text{letting } p \to \infty) \\ &= & d\alpha^{k}\frac{1}{1-\alpha}. \end{split}$$

HOMEWORK

- 1. Consider $T: [0,1] \to [0,1]$ where $Tx = x^2$. Take metric $\rho(x,y) = |x-y|$. Notice that T0 = 0 and T1 = 1. Explain why this does not contradict the theorem!
- 2. Consider $T: [-\frac{1}{4}, \frac{1}{4}] \to \mathbb{R}$ where $Tx = x^2$. Let $\rho(x, y) = |x y|$.
 - (a) Verify that all of the hypotheses of the Contraction Mapping Theorem are satisfied, and hence conclude that there is a unique fixed point. What is it?
 - (b) Starting with $x^0 = \frac{1}{4}$, at most how many iteration does the error estimate predict you would need to get within 0.001 of the fixed point. How many iterations do you actually need?
- 3. Prove that if T is a contraction, then T is continuous.