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Let {fk(x)}∞k=1 be a sequence of real-valued functions defined on a set S.

Definition:
∑∞

k=1 fk(x) converges pointwise to f(x) in S if for each x ∈ S given ε > 0, ∃ (there

exists) Nx such that |
∑N

k=1 fk(x)− f(x)| ≤ ε whenever N > Nx.

Definition:
∑∞

k=1 fk(x) converges uniformly to f(x) in S if given ε > 0 ∃K such that ∀ (for all)

x ∈ S and ∀N ≥ K, |
∑N

k=1 fk(x)− f(x)| ≤ ε.

Weierstrass Test
If there is a constant series

∑∞
k=1 pk such that:

1. |fk(x)| ≤ pk ∀x ∈ S and k = 1, 2, . . .

2.
∑∞

k=1 pk converges

then
∑∞

k=1 fk(x) converges uniformly on S to a function f(x).

Theorem: If
∑∞

k=1 fk(x) is a uniformly convergent series of continuous functions fk(x) defined on a
set S ∈ Rn, then the function f(x) =

∑∞
k=1 fk(x) is continuous on S.

Definition: A function ρ : S × S → R is called a metric (distance function) if for every (x, y) ∈ S × S:

1. ρ(x, y) ≥ 0 and ρ(x, y) = 0 iff (if and only if) x = y,

2. ρ(x, y) = ρ(y, x) (transitivity),

3. ρ(x, y) ≤ ρ(x, z) + ρ(x, y) ∀x ∈ S (triangle inequality).

(S, ρ) is called a metric space.

Examples:

1. S = R, ρ(x, y) = |x− y|.

2. S = R2, (x1, y1), (x2, y2) ∈ R2, ρ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 (Euclidean dis-
tance).

3. S = R2, (x1, y1), (x2, y2) ∈ R2, ρ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

4. S is the set of continuous real-valued functions on [a, b] an interval of R,
i.e., S = C([a, b],R). x(t), y(t) ∈ S. ρ(x, y) = maxa≤t≤b |x(t)− y(t)| (Uniform metric).



Definition: A sequence of points {xn}∞n=1 in a metric space (S, ρ) is said to be a Cauchy sequence if
∀ ε > 0 ∃ N such that ρ(xn, xm) < ε whenever n ≥ N and m ≥ N .

Definition: An element x ∈ S is the limit of a sequence {xn}∞n=1 (i.e., limn→∞ xn = x) if for every
ε > 0, ∃N such that ρ(xn, x) < ε ∀ n ≥ N.

Definition: A metric space is complete if every Cauchy sequence has a limit is the space.

Examples: (1)-(4) are all complete metric spaces.
Let S be the set of all rational numbers in [0, 1]. Let ρ(x, y) = |x− y| for x, y ∈ S. Then the metric
space (S, ρ) is NOT complete since a Cauchy sequence of rational numbers can converge to an irrational
number.

Definition: Let F be a family of real valued functions defined on a set D ⊆ Rn. Then

(i) F is called uniformly bounded on D if ∃ a nonnegative constant M such that ∀x ∈ D and
∀f ∈ F |f(x)| ≤M .

(ii) F is called equicontinuous on D if ∀ ε > 0, ∃ a δ > 0 (independent of x, y, f) such that
∀x, y ∈ D and ∀f ∈ F , |f(x)− f(y)| < ε whenever |x− y| < δ.

Theorem: (Ascoli-Arzela Lemma)
Let D be a closed, bounded subset of Rn and let {fm} be a real valued sequence of functions in

C(D,R). If {fm} is equicontinuous and uniformly bounded on D, then there is a subsequence {mk}
and a function f ∈ C(D,R) such that {fmk

} converges to f uniformly on D.

Definition: A partially ordered set (A,≤), consists of a set A and a relation ≤ on A such that
for any a, b, and c in A,

(i) a ≤ a,

(ii) a ≤ b and b ≤ c implies that a ≤ c,

(iii) a ≤ b and b ≤ a implies that a = b.

A chain is a subset A0 of A such that for all a and b in A0, either a ≤ b or b ≤ a.
An upper bound for a chain A0 is an a0 ∈ A such that b ≤ a0 ∀b ∈ A0.
A maximal element for A, if it exists, is an element a1 of A such that ∀b ∈ A, a1 ≤ b implies that
a1 = b.

Zorn’s Lemma: If each chain in a partially order set (A,≤) has an upper bound, then A has a
maximal element.

Definition: If M is a subset of a metric space (S, ρ) and T :M→M, then T is a contraction on M,
if there is a nonnegative number 0 ≤ α < 1 such that for all x and y in M, ρ(Tx, Ty) < αρ(x, y).

Theorem: (Contraction Mapping or Banach Fixed Point Theorem)
If M is a closed subset of a complete metric space (S, ρ) and T :M→M is a contraction, then T
has a unique fixed point x∗ (i.e., ∃! (there exists a unique) x∗ ∈M such that Tx∗ = x∗).

Furthermore, given any x0 ∈M, x∗ is the limit of the sequence of iterates {x0, Tx0, T 2x0, T 3x0, . . . },
and

ρ(T kx0, x∗) ≤ αkρ(Tx0, x0)

1− α
, where α is a contraction constant.



PROOF: (Method of Successive Approximations)
Select any x0 ∈ M. We show that the sequence {T nx0}∞n=1 converges to a fixed point of T . Define

d = ρ(Tx0, x0) and let 0 ≤ α < 1 denote the contraction constant. We show that {T nx0}∞n=1 is a
Cauchy sequence.

ρ(T k+1x0, T kx0) ≤ αρ(T kx0, T k−1x0)

≤ α2ρ(T k−1x0, T k−2x0)
...

≤ αkρ(Tx0, x0)

= αkd.

Assume that m = n+ k for integer k > 0.

ρ(Tmx0, T nx0) = ρ(T n+kx0, T nx0)

≤ ρ(T n+kx0, T n+k−1x0) + ρ(T n+k−1x0, T n+k−2x0) + · · ·+ ρ(T n+1x0, T nx0)

≤ αnd(αk−1 + αk−2 + · · ·+ 1)

≤ αnd
1

1− α
→ 0 as n→∞,

recalling that the geometric series:
∑∞

n=0 αn = 1
1−α if 0 ≤ α < 1.

Therefore, {T nx0} is a Cauchy sequence. Since M is a closed subset of a complete metric space, M
is complete. Therefore, limn→∞ T

n+1x0 = x∗ exists where x∗ ∈M.
Since T is a contraction, T is continuous. (Prove this for homework).

Therefore, Tx∗ = T (limn→∞ T
nx0) = limn→∞ T n+1x0 = x∗, and so x∗ is a fixed point.

Uniqueness: Suppose ∃ distinct fixed points x∗ and y∗.
ρ(x∗, y∗) = ρ(Tx∗, T y∗) ≤ αρ(x∗, y∗) < ρ(x∗, y∗), since 0 ≤ α < 1, a contradiction.
Error estimate:

ρ(T kx0, x∗) ≤ ρ(T kx0, T k+1x0) + ρ(T k+1x0, T k+2x0) + · · ·+ ρ(T k+px0, x∗)

≤ αkd+ αk+1d+ · · ·+ αk+p−1 + ρ(T k+px0, x∗)

≤ d

(
∞∑
h=0

αk+h

)
(letting p→∞)

= dαk
1

1− α
.

HOMEWORK

1. Consider T : [0, 1]→ [0, 1] where Tx = x2. Take metric ρ(x, y) = |x− y|. Notice that T0 = 0
and T1 = 1. Explain why this does not contradict the theorem!

2. Consider T : [−1
4
, 1
4
]→ R where Tx = x2. Let ρ(x, y) = |x− y|.

(a) Verify that all of the hypotheses of the Contraction Mapping Theorem are satisfied, and hence
conclude that there is a unique fixed point. What is it?

(b) Starting with x0 = 1
4
, at most how many iteration does the error estimate predict you would

need to get within 0.001 of the fixed point. How many iterations do you actually need?

3. Prove that if T is a contraction, then T is continuous.


