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Abstract. We use an extension of Gordon-Litherland pairing to thickened surfaces
to give a topological characterization of alternating links in thickened surfaces. If
Σ is a closed oriented surface and F is a compact unoriented surface in Σ × I,
then the Gordon-Litherland pairing defines a symmetric bilinear pairing on the first
homology of F . A compact surface in Σ×I is called definite if its Gordon-Litherland
pairing is a definite form. We prove that a link L in a thickened surface is non-split,
alternating, and of minimal genus if and only if it bounds two definite surfaces of
opposite sign.

§. Introduction. Alternating links in S3 can be characterized as precisely those
links which simultaneously bound both positive and negative definite spanning sur-
faces. This beautiful result was established recently by Greene in [Gre17], and Howie
obtained a similar characterization of alternating links in S3 in terms of spanning
surfaces in [How17].

These results have been extended to almost alternating knots by Ito in [Ito18], and
to toroidally alternating knots by Kim in [Kim19].

In [Gre17], Greene showed that, in general, Y = S3 is the only Z/2 homology
3-sphere containing a link that bounds both positive and negative definite surfaces
(and that any such link in S3 is alternating).

In this paper, we study links in thickened surfaces, and we present a generalization
of the results of Greene and Howie, giving a topological characterization of alternating
links in thickened surfaces.

Let Σ be a compact, connected, oriented surface and I = [0, 1], the unit interval. A
link in Σ× I is an embedding L :

⊔m
i=1 S

1 ↪→ Σ× I. In the following, we identify this
embedding with its image and consider links L ⊂ Σ× I up to orientation-preserving
homeomorphisms of the pair (Σ× I,Σ× {0}).

A link L in a thickened surface Σ× I can be represented by its link diagram, which
is the tetravalent graph D on Σ obtained under projection p : Σ × I → Σ. The arcs
of D are drawn to indicate over and under crossings near vertices in the usual way.
The link diagram D on Σ is said to be alternating if its crossings alternate from over
to under around each component of the link. A link L in Σ × I is alternating if it
admits an alternating link diagram on Σ (see Figure 1).

2020 Mathematics Subject Classification. Primary: 57K10, Secondary: 57K12.
Key words and phrases. Links in thickened surfaces, alternating link, virtual link, checkerboard

coloring, spanning surface, Gordon-Litherland pairing, definite surface.
The first author was partially funded by the Natural Sciences and Engineering Research Council

of Canada.

1



2 H. U. BODEN AND H. KARIMI

Figure 1. An alternating link on the torus and an alternating knot on a
genus two surface.

Given a compact unoriented surface F in S3, Gordon and Litherland defined a
symmetric bilinear pairing on H1(F ). In the case that F is a spanning surface for
a link L ⊂ S3, the signature of L can be computed in terms of the signature of the
pairing together with a correction term. The Gordon-Litherland pairing is extended
to Z/2 homology 3-spheres in [Gre17] and to thickened surfaces Σ × I in [BCK21].
Our characterization of alternating links in Σ× I is phrased in terms of the Gordon-
Litherland pairing on spanning surfaces for the link.

In this paper, we are mainly interested in links in Σ × I which are Z/2-null-
homologous, or equivalently links in Σ × I that admit spanning surfaces. A link
L in Σ × I is said to be split if it can be represented by a disconnected diagram D
on Σ. A link diagram D on Σ is said to be cellularly embedded if ΣrD is a union of
disks.

Let L be a link in Σ × I with alternating diagram D. We further assume that
D is cellularly embedded. This implies that D is connected, and therefore that L
is non-split (see Corollary 9). It follows that the complementary regions of Σ r D
admit a checkerboard coloring, and that the black and white regions form spanning
surfaces for L which we denote B and W . A straightforward argument will show
that B is negative definite and W is positive definite with respect to their associated
Gordon-Litherland pairings (see Theorem 8).

Our main result is a converse to this statement given by the following theorem.
The definition of minimal genus is given below.

Theorem 1. Let L be a link in Σ× I, and assume that L bounds a positive definite
spanning surface and a negative definite spanning surface. Then L ⊂ Σ × I is a
non-split, alternating link of minimal genus.

Theorem 1 applies to give a characterization of alternating virtual links.
Virtual links can be defined as virtual link diagrams up to the generalized Reide-

meister moves [Kau99]. One can also define them as stable equivalence classes of links
in thickened surfaces. Here, two links L0 ⊂ Σ0 × I and L1 ⊂ Σ1 × I are said to be
stably equivalent if one is obtained from the other by a finite sequence of isotopies,
homeomorphisms,1 stabilizations, and destabilizations. We take a moment to explain
stabilization.

1Here homeomorphism means orientation-preserving homeomorphisms of the pair (Σ×I,Σ×{0}).
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Given a link L ⊂ Σ× I, let h : S0×D2 → Σ be the attaching region for a 1-handle
which is disjoint from the image of L under projection p : Σ× I → Σ. Let

Σ′ = Σ r h(S0 ×D2) ∪S0×S1 D1 × S1,

and let L′ be the image of L in Σ′ × I under the inclusions

L ↪→ (Σ r h(S0 ×D2))× I ↪→ Σ′ × I.
Then we say that (Σ′× I, L′) is obtained from (Σ× I, L) by stabilization, and desta-
bilization is the opposite procedure.

In [CKS02], Carter, Kamada, and Saito give a one-to-one correspondence between
virtual links and stable equivalence classes of links in thickened surfaces.

The virtual genus of a virtual link is the minimum genus over all surfaces Σ such
that Σ × I contains a representative for the virtual link. In that case, we say that
the representative L ⊂ Σ × I has minimal genus. If L is non-split, and it has mini-
mal genus, then any diagram D ⊂ Σ for L is necessarily cellularly embedded, since
otherwise destabilization would produce a representative of the same virtual link on
a lower genus surface. Kuperberg’s theorem shows that every non-split virtual link
has an irreducible representative which is unique up to orientation-preserving home-
omorphism of the pair (Σ × I,Σ × {0}) [Kup03]. In particular, it implies that two
minimal genus representatives of the same non-split virtual link are equivalent under
orientation-preserving homeomorphism of the pair (Σ× I,Σ× {0}).

We combine the results to give the following useful characterization of alternating
virtual links.

Corollary 2. A virtual link is non-split and alternating if and only if it admits a
representative L in Σ × I which bounds a positive definite spanning surface and a
negative definite spanning surface.

Notations and Conventions. Homology groups are taken with Z coefficients unless
otherwise indicated. Links in thickened surfaces are assumed to lie in the interior,
and spanning surfaces are assumed to be connected but not necessarily oriented.

§. Gordon-Litherland pairing. In this section, we review the Gordon-Litherland
pairing [GL78] and its extension to links in thickened surfaces [BCK21]. The pairing
is defined for any link L ⊂ Σ× I that admits a spanning surface, which is a compact,
connected surface F embedded in Σ× I with boundary ∂F = L. The surface F may
or may not be orientable, and here we consider it as an unoriented surface. Not all
links L ⊂ Σ×I admit spanning surfaces, and in fact Proposition 1.7 of [BK19] implies
that L admits a spanning surface if and only if [L] is trivial in H1(Σ;Z/2).

The link diagram D is the decorated graph on Σ obtained as the image of L
under the projection p : Σ × I → Σ. Then D is called checkerboard colorable if the
complementary regions of ΣrD can be colored black and white so that, whenever two
regions share an edge, one is white and the other is black. A link L in Σ× I is said to
be checkerboard colorable if it admits a diagram which is checkerboard colorable. If
L is non-split and admits a checkerboard colored diagram, then the black and white
regions determine unoriented spanning surfaces which we call checkerboard surfaces.
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A straightforward argument shows that a link in Σ × I is checkerboard colorable if
and only if it bounds an unoriented spanning surface.

Next, we recall the definition of the asymmetric linking for simple closed curves in a
thickened surface. Let Σ be a compact, connected, oriented surface. The asymmetric
linking pairing in Σ × I is taken relative to Σ × {1} and defined as follows. Given
an oriented simple closed curve J in the interior of Σ × I, then by Proposition 7.1
of [BGH+17], H1(Σ × I r J,Σ × {1}) is infinite cyclic and generated by a meridian
µ of J . The meridian µ here is oriented as the boundary of a small oriented 2-disk
which intersects J transversely at one point with oriented intersection number equal
to one.

If K is an oriented simple closed curve in the interior of Σ× I and disjoint from J ,
then define `k(J,K) to be the unique integer m such that [K] = m[µ] in H1(Σ× I r
J,Σ×{1}). Alternatively, if B is a 2-chain in Σ×I such that ∂B = K−v, where v is
a 1-cycle in Σ×{1}, then `k(J,K) = J ·B, where · denotes the intersection number.

One can determine the asymmetric linking numbers easily using the following sim-
ple diagrammatic description. If J,K are two oriented disjoint simple closed curves
in Σ× I, and J ∪K is represented as a diagram on Σ, then `k(J,K) is equal to the
number of times J goes above K with sign given by comparing with orientation of Σ,
where “above” refers to the positive I direction in Σ× I.

For example, the linking numbers for the link in Figure 2 are given by `k(J,K) = 0,
`k(K, J) = −1, `k(J, L) = −1, `k(L, J) = 0, `k(K,L) = 0, and `k(L,K) = 1.

J

K

L

Figure 2. An alternating link in the torus.

Now suppose that F is a compact, connected, unoriented surface embedded in
Σ × I. Its normal bundle N(F ) has boundary a {±1}-bundle F̃ π−→ F , a double
cover with F̃ oriented. (If F is oriented, then F̃ is the trivial double cover.) Define
the transfer map τ : H1(F )→ H1(F̃ ) by setting τ([a]) = [π−1(a)].

The Gordon-Litherland pairing is extended to thickened surfaces Σ×I in [BCK21],
and we review its definition. Let F ⊂ Σ×I be a compact, unoriented surface without
closed components. For a, b ∈ H1(F ), let GF (a, b) = 1

2

(
`k(τa, b) + `k(τb, a)

)
. (This is

a slightly different formulation from that in [BCK21], but the two are equivalent.)
To see the pairing is well-defined, we make two elementary observations. First, if

two oriented curves K,K ′ are homologous in Σ × I r J , then `k(J,K) = `k(J,K ′).
Second, if a, a′, b ∈ H1(F ) and if a and a′ are homologous on F , then τa and τa′ are
homologous in Σ× I r b.
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Thus, the pairing is well-defined. It is clearly symmetric by definition, but it is
not entirely clear that it is integral. To see that, consider the local contributions to
GF (a, b) anywhere a and b cross or intersect. If a crosses over b, then `k(τa, b) = 2ε
and `k(τb, a) = 0, where ε = ±1 is determined by the orientations of a and b. If F is a
checkerboard surface and a, b are simple closed curves on F , then they can cross only
along a twisted band as they pass through a crossing of the diagram (see Figure 3
(left)). Thus the contribution of the crossing to GF (a, b) is ε = ±1. By symmetry, the
same is true if b crosses over a. Now suppose that a and b intersect at a point (see
Figure 3 (right)). One can check that locally, at that point, `k(τa, b) = − `k(τb, a).
Thus, the points where a and b intersect do not contribute to GF (a, b). Since GF (a, b)
is the sum of local contributions, this shows that GF (a, b) ∈ Z. Therefore,

GF : H1(F )×H1(F )→ Z,
gives a well-defined symmetric bilinear pairing.

a

b F

a

b F

a

b

F

Figure 3. On the left, two curves a, b cross a right-handed half-twist in
F with a crossing over b, and the local contribution to GF (a, b) is 1. In the
middle, a, b cross a left-handed half-twist in F with b crossing over a, and
the local contribution to GF (a, b) is −1. On the right, a, b intersect on F , and
the local contribution to GF (a, b) is 0.

For x ∈ H1(F ), let
xF = GF (x, x). Clearly

−xF =
xF . The number 1

2

xF is
called the framing of x in F .

type I type II type a type b

Figure 4. Type I and II crossings (left), and incidence numbers (right).

Assume now that L ⊂ Σ× I is a link with m components and write L = K1∪ · · · ∪
Km. Suppose further that F ⊂ Σ × I is a spanning surface for L. Each component
represents an element [Ki] ∈ H1(F ), well-defined up to sign, and 1

2

[Ki]
F is equal

to the framing that the surface F induces on Ki. Set e(F ) = −1
2

∑m
i=1

[Ki]
F , the

Euler number of F . It is equal to the self-intersection number of F , which is defined
as a sum of signs εp over points p ∈ F ∩ F ′, where F ′ is a transverse pushoff F ′ of F
in Σ × I × I. This is computed by choosing a local orientation of F at p and using
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it to induce a local orientation on F ′ at p. Then εp = ±1, and it is determined by
comparing the orientations of F and F ′ at p with the given orientation on Σ× I × I.
The sign εp is independent of the choice of local orientation of F .

Further, set e(F,L) = −1
2

[L]
F . If L′ = K ′1 ∪ · · · ∪K ′m denotes the push-off of L

that misses F , then it follows that

e(F ) = −
m∑
i=1

`k(Ki, K
′
i),

e(F,L) = − `k(L,L′) = −
m∑

i,j=1

`k(Ki, K
′
j).

Note that e(F ) is independent of the choice of orientation on L, whereas e(F,L)
is not. To see this, notice that in the formula for e(F ), each component Ki can be
oriented arbitrarily provided its push-off K ′i is oriented in a compatible manner. The
two quantities are related by the formula

(1) e(F,L) = e(F )− λ(L),

where λ(L) =
∑

i 6=j `k(Ki, Kj) denotes the total linking number of L.2

Two spanning surfaces for a given link are said to be S∗-equivalent if one can be
obtained from the other by ambient isotopy, attachment or removal of tubes, and
attachment or removal of a small half-twisted band, as depicted in Figure 5.

Figure 5. Attaching a small half-twisted band.

The signature of L, F is defined by setting σF (L) = sig(GF ) + 1
2
e(F,L). The

following lemma shows that σF (L) gives a well-defined invariant of the pair (F,L)
depending only on the S∗-equivalence class of F . For a proof, see [BCK21, Lemma
2.3].

Lemma 3. If F and F ′ are S∗-equivalent spanning surfaces for a link L, then σF (L) =
σF ′(L).

For classical links, every link admits a spanning surface, and any two are S∗-
equivalent (for a proof, see [GL78, Theorem 11] and [Yas14]). For links in thickened
surfaces, the situation is more complicated.

In general, a link L ⊂ Σ× I admits a spanning surface if and only if it is checker-
board colorable. If g(Σ) > 0, not all links in L ⊂ Σ × I are checkerboard colorable
(see Figure 6). Furthermore, not all spanning surfaces for a link L ⊂ Σ × I will
be S∗-equivalent. In fact, if L is non-split, then two spanning surfaces F and F ′

2In [Gre17], the total linking is defined as `k(L) =
∑

i<j `k(Ki,Kj). Our formula is different
since `k(Ki,Kj) 6= `k(Kj ,Ki) in general for links in Σ × I. If L is classical, then λ(L) = 2 `k(L).
(Note that there is a missing factor of 2 in the formula for the Euler numbers in [Gre17, p.2137].)
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for L are S∗-equivalent if and only if [F ] = [F ′] as elements in H2(Σ × I, L;Z/2)
(see [BCK21, Lemma 1.5 & Proposition 1.6]).

Thus, for a checkerboard colorable link L in any thickened surface, there are two
S∗-equivalence classes of spanning surfaces. Indeed, the black and white surfaces
represent the two S∗-equivalence classes, and any other spanning surface for L is
S∗-equivalent to either the black or the white surface.

Figure 6. A non-checkerboard colorable link.

More generally, given a spanning surface F for a link L ⊂ Σ × I in a connected
thickened surface, we can construct a new spanning surface by connecting F to a
parallel copy of Σ near Σ× {0} by a small thin tube τ . Let F ′ = F#τΣ denote the
new spanning surface. Then it is not difficult to see that F and F ′ represent the two
S∗-equivalence classes of spanning surfaces for L.

In the case that F is a checkerboard surface for L, the correction term 1
2
e(F,L) is

given by a sum of incidence numbers of crossings of type I or II (see Figure 4). The
incidence number of a crossing x is denoted ηx and is defined by setting

ηx =

{
1 if x is type a,
−1 if x is type b.

Specifically, if B and W denote the black and white surfaces of the checkerboard
coloring, set

µW (D) =
∑

x type I

−ηx and µB(D) =
∑

x type II

ηx.

By Lemma 2.4 [BCK21], we see that µW (D) = −1
2
e(W,L) and µB(D) = −1

2
e(B,L).

§. Definite surfaces. In this section, we show that a connected checkerboard col-
orable link diagram D on Σ is alternating if and only if its checkerboard surfaces are
definite and of opposite sign.

Definition 4. A compact, connected surface F in Σ × I is positive (or negative)
definite if its Gordon-Litherland pairing GF is.

Suppose D is a connected link diagram on Σ such that

(i) Σ rD is a union of disks,
(ii) D is checkerboard colorable.
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Choose a checkerboard coloring of D and let B,W be the black and white surfaces.
Then B,W have first Betti numbers

b1(W ) = 2g + β − 1,

b1(B) = 2g + α− 1,
(2)

where g = genus(Σ) is the genus of Σ, α is the number of white disks and β is the
number of black disks.

The Euler characteristic of Σ satisfies χ(Σ) = 2 − 2g = c(D) − 2c(D) + (α + β),
where c(D) denotes the number of crossings of D. Thus we have

(3) α + β = 2− 2g + c(D).

In particular, combining equations (2) and (3) gives that

(4) b1(W ) + b1(B) = 2g + c(D).

Remark 5. According to [Kam02, Lemma 7], any link diagram D on a surface which
is alternating and cellularly embedded is checkerboard colorable.

Lemma 6. If D is a link diagram on Σ which is cellularly embedded and alternating,
then the black and white surfaces are definite and of opposite sign.

Proof. Remark 5 implies that D ⊂ Σ is checkerboard colorable, and we choose the
coloring so that every crossing has type b. The black surface B is a union of disks and
half-twisted bands, and with this choice all the bands have a left-handed half-twist.
(The white surface W is likewise a union of disks and half-twisted bands, and each
band has a right-handed half-twist.)

Observe that, any arc a passing through one of the bands will have local self-linking
equal to η = −1. This is independent of the direction in which the arc crosses the
band. Thus, the local contribution of the band crossing to GB(a, a) is −1.

Similarly, if two parallel arcs a and b cross a band in the same direction, then the
local contribution to GB(a, b) is −1 (see Figure 3 (middle)). Note that this is again
independent of the direction in which the arcs a, b traverse the band, as long as they
both cross the band in the same direction.

Now consider a cycle γ in H1(B), represented as a sum γ1 + · · ·+γk of simple closed
curves. We assume that the curves intersect transversely, and that their intersection
points lie within the black regions. This implies that γi ∩ γj for i 6= j consists of
finitely many points, none of which contribute to GF (γi, γj) (see Figure 3 (right)).
We further assume that whenever two or more curves cross a band, they cross in the
same direction. (The justification for this last assumption will be provided below.)

Let ΓB be the Tait graph for the black surface; it is a graph in Σ with one vertex
for each black disk and one edge for each crossing. Choose arbitrarily an orientation
for the edges, and label the edge associated with a crossing x of D with its incidence
number ηx. (Since every crossing has type b, each edge of ΓB is labeled −1.) The
black surface B admits a deformation retraction onto ΓB, hence H1(B) ∼= H1(ΓB).

In this way, we can view γ = γ1 + · · ·+ γk as a sum of cycles in the graph ΓB, and
we can write each cycle γi as a sum of oriented edges of ΓB. Note that, if the same
edge occurs with opposite signs in two of the cycles, then they can be eliminated
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without altering the homology class. This is the justification for our assumption that
whenever two curves cross a band, they cross it in the same direction.

Notice that if the cycle γi is nontrivial, then it will have edge set with `i > 0 edges.
Therefore

γi= GB(γi, γi) = −`i < 0. This step follows by computing it as a sum of
local contributions, each of which comes from a band crossing and is negative. For
i 6= j, we see that GB(γi, γj) ≤ 0. This follows by again viewing it as a sum of local
contributions, each of which comes from a band crossing and is non-positive. (This
is the step that requires γi and γj to cross the band in the same direction.) Thus, for
γ = γ1 + · · ·+ γk, we see thatγB = GB(γ, γ) = GB(γ1 + · · ·+ γk, γ1 + · · ·+ γk),

=
k∑
i=1

GB(γi, γi) + 2
∑
i<j

GB(γi, γj) < 0.

Since this holds for all nontrivial homology classes in H1(B), it follows that B is
negative definite.

A similar argument shows that the white surface W is positive definite. �

Remark 7. Given a connected spanning surface F for L, if the Gordon-Litherland
pairing GF is non-singular, then it will be non-singular for any connected surface
S∗-equivalent to F , see [BCK21, Theorem 2.5].

The next result is a restatement of [BCK21, Theorem 3.1].

Theorem 8. Suppose L ⊂ Σ × I is a link with a connected, checkerboard colored
diagram D ⊂ Σ. Let B,W be the two spanning surfaces associated to the black and
white regions, respectively. If the Gordon-Litherland pairings GB and GW are both
non-singular, then L ⊂ Σ× I is non-split and has minimal genus. In particular, this
implies that D is cellularly embedded.

Proof. The proof is by contradiction, and here we sketch the main idea and refer to
the proof of [BCK21, Theorem 3.1] for further details.

The key step is to show that if D ⊂ Σ is not cellularly embedded, then one of GB
or GW is singular.

Assume then thatD is not cellularly embedded. Then we can find a non-contractible
simple closed curve γ disjoint from D. Since γ and D are disjoint, γ must be con-
tained entirely in either one of the black regions or one of the white regions. Without
loss of generality, we can assume that γ lies in a black region.

We claim there exists a simple closed curve α in Σ lying entirely in a black region
such that its homology class [α] ∈ H1(Σ) is nontrivial. Indeed, if γ is non-separating,
then we can take α = γ. Otherwise, if γ is separating, then since D is connected, it
must lie in one of the connected components of Σrγ. Both components have positive
genus (since γ is non-contractible), and the component disjoint from D is contained
entirely in a black region. There exists a simple closed curve α in that component
with [α] 6= 0 in H1(Σ).

Consider now the map H1(B) → H1(Σ) induced by B ↪→ Σ × I → Σ, the com-
position of inclusion and projection. Since [α] is nontrivial in H1(Σ), it must also



10 H. U. BODEN AND H. KARIMI

be nontrivial in H1(B). Further, since α is a simple closed curve, the set {[α]} can
be extended to a basis U for H1(B). Since α lies entirely within one of the black
regions, we have GB(α, α) =

αB = 0. Any other element of U can be represented
as a simple closed curve β on B. Since α lies entirely in a black region, the two
curves α and β have only intersection points; there are no points where α crosses
over or under β. However, as we have seen, an intersection point contributes 0 to the
pairing, and thus it follows that GB(α, β) = 0. This holds for all β ∈ U , therefore the
Gordon-Litherland pairing GB is singular.

We now prove that L is non-split. Suppose to the contrary that L is split, and let
D′ ⊂ Σ be a disconnected diagram for L. Notice that D′ is not cellularly embedded,
and that the checkerboard surfaces need not be connected. By adding small tubes,
we can connect them. However, one or both of the resulting spanning surfaces will
have singular Gordon-Litherland pairing. This is a contradiction (cf. Remark 7). �

Corollary 9. Any link L in Σ × I represented by a cellularly embedded alternating
diagram is non-split and has minimal genus.

Proof. Let D be a cellularly embedded alternating diagram for L. Then D is checker-
board colorable, and Lemma 6 implies the black and white surfaces are definite. In
particular, their Gordon-Litherland pairings are non-singular. The conclusion now
follows from Theorem 8. �

By convention, given an alternating diagram for a link L in Σ× I, we will choose
the coloring in which every crossing has type b. With this choice, the white surface
becomes positive definite and the black surface becomes negative definite.

Lemma 10. Suppose D is a connected alternating diagram for a link L in Σ× I with
checkerboard coloring such that every crossing has type b. Then

σW (L)− σB(L) = 2g(Σ).

Proof. In general we have

σW (L) = sig(GW )− µW (D),

σB(L) = sig(GB)− µB(D).

Since all crossings have type b and referring to Figure 7, we see that

µW (D) =
∑

x type I

−ηx =
∑

x type I

εx = c+(D),

µB(D) =
∑

x type II

ηx =
∑

x type II

εx = −c−(D),

where c+(D) is the number of positive crossings of D and c−(D) is the number of
negative crossings. Hence

(5) µW (D)− µB(D) = c+(D) + c−(D) = c(D).

Lemma 6 shows that W is positive definite and B is negative definite, hence
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type I
η = −ε = −1

type II
η = ε = −1

Figure 7. Two type b crossings.

σW (L)− σB(L) = sig(GW )− µW (D)− (sig(GB)− µB(D)),

= b1(W ) + b1(B)− (µW (D)− µB(D)) = 2g,

where the last step follows from equations (4) and (5). This completes the proof. �

Proposition 11. Let D ⊂ Σ be a cellularly embedded, checkerboard colorable link
diagram. Then D is alternating if and only if the black and white surfaces are definite
and of opposite sign.

Proof. If D is alternating, then Lemma 6 gives the desired conclusion.
Conversely, suppose B is negative definite and W is positive definite. Let a± be

the number of type a crossings of D with εx = ±1, and b± be the number of type b
crossings of D with εx = ±1. Then

µW (D) = a− − b+ and µB(D) = −a+ + b−.

It follows that

µW (D)− µB(D) = a− − b+ − (−a+ + b−),

= a(D)− b(D),

where a(D) = a+ + a− is the total number of type a crossings and b(D) = b+ + b− is
the total number of type b crossings.

Therefore,

(6) |µW (D)− µB(D)| ≤ c(D),

with equality if and only if a(D) = 0 or b(D) = 0. In the first case, all crossings
have type b, and in the second, they all have type a. In either case, we see that D is
alternating.

Given a spanning surface F for L, by the discussion after Lemma 3, we obtain a
new surface F#τΣ by connecting it to a parallel copy of Σ by a thin tube τ . Unless
Σ is the 2-sphere, the surfaces F and F#τΣ are not S∗-equivalent.

Since B and W are not S∗-equivalent, unless Σ is a 2-sphere, and since a non-split
link in Σ×I has exactly two S∗-equivalence classes of spanning surfaces, it follows that
B and W#τΣ must be S∗-equivalent. By Lemma 3, σB(L) = σW#τΣ(L). We have
|σW (L)−σW#τΣ(L)| ≤ 2g. Hence |σW (L)−σB(L)| ≤ 2g. Further, since B andW are
definite surfaces of opposite sign, we see that | sig(GW ) − sig(GB)| = b1(W ) + b1(B).
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These two observations, combined with equation (4) and inequality (6), show that:
2g ≥ |σW (L)− σB(L)|,

= | sig(GW )− µW (D)− (sig(GB)− µB(D))|,
≥ | sig(GW )− sig(GB)| − |µW (D)− µB(D)|,
= b1(W ) + b1(B)− |µW (D)− µB(D)|,
= 2g + c(D)− |µW (D)− µB(D)| ≥ 2g.

Therefore we must have equality throughout, and it follows that D is alternating. �

§. Characterization of alternating links in thickened surfaces. In this sec-
tion, we establish our main result, Theorem 19. It is a combination of Lemma 6 and
Proposition 11.

If L is a link in the thickened surface Σ × I, let ν(L) be a tubular neighborhood
of L and let XL = Σ × I r int(ν(L)) denote the exterior of L. The next result is
a restatement of part of Proposition 6.3 from [CSW14]. Recall that a link L in a
3-manifold M is said to be local if it is contained in an embedded 3-ball B in M.

Proposition 12 (Carter-Silver-Williams). If Σ is a surface of genus g ≥ 1 and L is
a non-split and non-local link in Σ× I, then the exterior XL is irreducible.

Proof. A detailed proof can be found in [CSW14], so we only sketch the argument.
Since Σ has genus g ≥ 1, the universal cover of Σ× I is R2 × I, which is irreducible,
then by [Hat07, Proposition 1.6] it follows that Σ × I is irreducible. Any embedded
2-sphere in XL ⊂ Σ× I must bound a 3-ball Y ⊂ Σ× I, and the hypotheses ensure
that Y ⊂ XL. This completes the argument. �

The next result is an analogue of Lemma 3.1 from [Gre17].

Lemma 13 (Greene). If F ⊂ Σ× I is a definite surface with ∂F = L, then b1(F ) is
minimal over all spanning surfaces for L which are S∗-equivalent to F and have the
same Euler number as F . If F ′ is another such surface with b1(F ′) = b1(F ), then F ′
is definite and of the same sign as F .

Proof. If F ′ is S∗-equivalent to F , then Lemma 3 implies that σF (L) = σF ′(L). If, in
addition, e(F ) = e(F ′), then it follows that sig(GF ) = sig(G ′F ).

Now suppose F is definite. Then we have
b1(F ) = | sig(GF )| = | sig(GF ′)| ≤ b1(F ′),

which shows the first claim.
If, in addition, b1(F ′) = b1(F ), then we have b1(F ′) = | sig(GF ′)|, hence F ′ must

also be definite. Since sig(GF ) = sig(GF ′), it follows that F and F ′ must have the
same sign. �

Corollary 14. If F ⊂ Σ× I is definite, then it is incompressible.

Proof. Suppose to the contrary that F is compressible. Let F ′ be the surface obtained
from F by a compression. Then F ′ is S∗-equivalent to F and b1(F ′) < b1(F ). Further,
e(F ′) = e(F ). However, this is impossible, for it would contradict Lemma 13 if F is
definite. �
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Lemma 15. Let S ⊂ Σ × I be a compact, closed, connected, oriented surface with
[S] 6= 0 in H2(Σ × I). Then g(S) ≥ g(Σ). If g(S) = g(Σ), then S is incompressible
in Σ× I.
Proof. Any surface S with genus g(S) < g(Σ) has [S] = 0 in H2(Σ× I). This proves
the first statement.

Assume now that g(S) = g(Σ). If S is not incompressible, there exists a non-
contractible simple closed curve γ in S which bounds a disk in Σ × I. Let S ′ be
the surface obtained by cutting S along γ and gluing in two disks along the newly
created boundary components. Then [S ′] = [S] in H2(Σ × I). If γ is non-separating
on S, then g(S ′) = g(S)− 1 < g(Σ) and [S ′] = 0, a contradiction. Otherwise, if γ is
separating on S, then S ′ is a disjoint union S ′1 t S ′2 of two surfaces of positive genus
satisfying g(S ′) = g(S ′1) + g(S ′2) = g(S). Hence 0 < g(S ′i) < g(S) for i = 1, 2. It
follows that [S ′1] = 0 and [S ′2] = 0 in H2(Σ× I). Thus [S ′] = [S ′1] + [S ′2] = 0, again a
contradiction. This proves the second statement. �

Remark 16. In the above lemma, if g(S) = g(Σ) ≥ 1, then Corollary 3.2 of [Wal68]
applies to show that S is isotopic to Σ× {t0} for 0 < t0 < 1.

The next result is Lemma 3.3 from [Gre17]. The proof is the same as in [Gre17] so
we will not repeat it here.

Lemma 17 (Greene). If S is definite and S ′ ⊂ S is a compact subsurface with
connected boundary, then S ′ is definite.

We can now prove the following analogue of Lemma 3.4 of [Gre17] for links in
thickened surfaces.

Lemma 18. Let L be a link in Σ× I, where Σ has genus g ≥ 1. Suppose further that
L has a positive definite spanning surfaces P and a negative definite spanning surface
N . If P and N intersect transversely in XL such that the number of components of
P ∩N ∩XL is minimized (up to isotopy), then P ∩N ∩XL does not contain a simple
closed curve.

Proof. Suppose P and N are positive and negative definite surfaces, respectively, and
γ is a simple closed curve contained in P ∩ N ∩ XL. Let ν(γ) be a small regular
neighborhood of γ in Σ×I, which contains no other intersection of P and N . Clearly
ν(γ) is a D2 bundle over γ, and since Σ × I is orientable, so is ν(γ) and it follows
that ν(γ) ≈ S1 ×D2 is a trivial bundle. The annuli P ∩ ν(γ) and N ∩ ν(γ) intersect
only in γ, so the framing

γP of γ in P is equal to the framing
γN of γ in N . Since

P and N are positive and negative definite, respectively, we haveγN ≤ 0 ≤γP .
Therefore,

γP =
γN = 0. It follows that γ is null-homologous in both P and N .

Thus, γ is separating on P and N . Let P ′ and N ′ be orientable subsurfaces of P and
N , respectively, with ∂P ′ = ∂N ′ = γ. By choosing γ an innermost curve on N , we
can arrange that N ′ is disjoint from P. By Lemma 17, P ′ is positive definite and N ′
is negative definite.
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Since P ′ and N ′ are both orientable, we see that 1
2
e(P ′, γ) = 0 = 1

2
e(N ′, γ). There-

fore, σP ′(γ) = sig(GP ′) and σN ′(γ) = sig(GN ′).
Suppose firstly that P ′ and N ′ are S∗-equivalent. Then

0 ≤ b1(P ′) = sig(GP ′) = σP ′(γ) = σN ′(γ) = sig(GN ′) = −b1(N ′) ≤ 0.

Therefore, P ′ and N ′ are disks in this case.
Suppose now that P ′ and N ′ are not S∗-equivalent. Then P ′ and N ′#τΣ are

S∗-equivalent, and so sig(GP ′) = sig(GN ′#τΣ). Therefore, if g = genus(Σ), we see that

2g ≥ sig(GN ′#τΣ)− sig(GN ′) = sig(GP ′)− sig(GN ′) = b1(P ′) + b1(N ′).

In particular, the closed, orientable surface V = P ′ ∪γ N ′ has genus(V ) ≤ g. In fact,
its genus must be exactly g, since otherwise we would have [V ] = 0 in H2(Σ;Z2),
which would imply that P ′ and N ′ are S∗-equivalent.

Lemma 15 applies and shows that V is incompressible in Σ × I. Therefore, by
[Wal68, Corollary 3.2], it follows that V is isotopic to Σ × {t0} for some 0 < t0 < 1
(see Remark 16). Since g(V ) ≥ 1, there is a non-separating simple closed curve α in
either P ′ or N ′. Assume α ⊂ P ′. Then [α] 6= 0 ∈ H1(P ′), so

αP ′ > 0. On the other
hand, since α ⊂ P ′ ⊂ V and V is isotopic to Σ× {t0}, the framing of α in P ′ is the
same as the framing of α in V , so

αP ′ = 0. This is a contradiction, therefore, P ′ and
N ′ are S∗-equivalent. It follows that P ′ and N ′ are both disks, and V is a 2-sphere.
By Proposition 12, XL is irreducible, thus, V bounds a 3-ball. Using this ball, we can
set-up an isotopy which separates P ′ and N ′, and makes the number of components
of P ∩N ∩XL smaller. This is a contradiction, and the result follows. �

Theorem 19. Suppose L ⊂ Σ× I is a non-split link with minimal genus. Then L is
alternating if and only if there exist positive and negative definite spanning surfaces
for L.

Proof. For g(Σ) = 0, the result follows from [Gre17], therefore we assume g(Σ) ≥ 1.
Suppose L is non-split and D is an alternating diagram for L. Since L has minimal

genus, D is cellularly embedded. Further, D is checkerboard colorable by Remark 5,
and Lemma 6 implies that the checkerboard surfaces W and B are positive and
negative definite, respectively. This proves one direction, and it remains to prove the
other.

Suppose then that P andN are two definite spanning surfaces for L, with P positive
definite and N negative definite.

Let XL = Σ×Irint(ν(L)) be the exterior of L. We write ∂XL = ∂1XL∪· · ·∪∂mXL

according to the components of the link L = K1 ∪ · · · ∪ Km. Clearly, each ∂iXL is
a torus. Assume further that, P and N intersect transversely in XL such that the
number of components of P ∩N ∩XL is minimized.

For i = 1, . . . ,m set λPi = P ∩∂iXL and λNi = N ∩∂iXL. Thus λPi and λNi intersect
transversely in ∂iXL. We further set λP =

⋃
i λ

P
i and λN =

⋃
i λ

N
i .

By Lemma 18, we can assume that P ∩ N ∩ XL does not contain any closed
components. Thus P ∩N∩XL is a union of arc components which we call double arcs.
Each double arc connects a pair of distinct points in λP ∩ λN . Thus λP ∩ λN consists
of an even number of points, equal to twice the number of double arcs. Since P is
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q s
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Figure 8. A standard crossing (left) placed on an octahedron (right).

positive definite and N is negative definite, the number of points in λPi ∩ λNi is equal
to the difference in framings 1

2

[Ki]
P − 1

2

[Ki]
N . Summing over the components,

we get that
m∑
i=1

(
1
2

[Ki]
P − 1

2

[Ki]
N) = e(N)− e(P ).

The number of arc components in P ∩N ∩XL is therefore equal to 1
2
(e(N)− e(P )).

An orientation on XL induces one on ∂XL, and an orientation on each Ki induces
ones on λPi and λNi . This defines a sign εx ∈ {±1} for each point x ∈ λPi ∩ λNi . The
sign εx is positive if the orientation of λPi followed by the orientation of λNi at x agree
with the orientation of ∂iXL, and it is negative otherwise. A key point is that every
point in λPi ∩ λNi has the same sign; this follows from the fact that

#(λPi ∩ λNi ) = 1
2

[Ki]
P − 1

2

[Ki]
N =

∣∣∣∑ εx

∣∣∣ ,
where the sum on the right is taken over all x ∈ λPi ∩ λNi .

As explained in §2 of [How17], there are two kinds of double arcs; one is called a
standard double arc and the other is called a parallel double arc. A double arc of
P ∩N with endpoints x and y is standard if εx = εy, and it is parallel if εx = −εy. By
the previous observations, we see that every double arc is standard. Each double arc
extends to give an arc a in P ∩N with ∂a = a∩L. Since the double arc is standard,
there is a neighborhood V of a modelled on the intersecting checkerboard surfaces in
a standard neighborhood of a crossing in a link diagram. See Figures 8 and 9.

q

r p

s

Figure 9. The two ruled surfaces near a crossing. The heavily dashed
vertical lines depict the standard arc of intersection of the two surfaces.
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We can choose local coordinates near the crossings so that the arcs of the link
lie in the xy plane except at the crossings. At each crossing we place an octahedron
which intersects the xy plane in the square with vertices p = (1,−1, 0), q = (−1, 1, 0),
r = (−1,−1, 0), and s = (1, 1, 0). We assume that the over-crossing arc connecting p
to q is given by

β(t) = (1− 2t,−1 + 2t,min(2t, 2− 2t)) for 0 ≤ t ≤ 1,

and the under-crossing arc connecting r to s is given by

γ(t) = (−1 + 2t,−1 + 2t,max(−2t,−2 + 2t)) for 0 ≤ t ≤ 1.

In the standard crossing, the black surface is parametrized by

B(s, t) = β(t)(1− s) + s · γ(t) for 0 ≤ s, t ≤ 1,

and the white surface is parametrized by

W (s, t) = β(t)(1− s) + s · γ(1− t) for 0 ≤ s, t ≤ 1.

Notice that, at the crossing, the black surface contains a left half-twist, whereas the
white surface contains a right half-twist. The black and white surfaces intersect in
the vertical arc (0, 0, 1− 2t), for 0 ≤ t ≤ 1, which connects (0, 0, 1) to (0, 0,−1).

Thus, any standard arc a has a neighborhood V ⊂ Σ × I such that a is vertical
and the projection p : Σ × I → Σ maps (P ∪ N r a) ∩ V homeomorphically onto a
once-punctured disk in Σ.

Let A denote the union of all the double arcs in P ∩N∩XL. Lemma 18 implies that
P ∩N ∩XL does not contain any simple closed curves. Thus it follows that P ∪NrA
is a two-dimensional manifold. Furthermore, collapsing the standard models of each
of the double arcs a in A down, we see that ν(P ∪ N) is homeomorphic to ν(S) for
some connected surface S embedded in Σ × I. We can identify ν(S) ≈ S × I in
such a way that the double arcs are all mapped to distinct points under projection
S × I → S.

Set c = 1
2
(e(N) − e(P )), which is equal to the number of arc components in P ∩

N ∩XL. Therefore, P ∩N = L ∪ A and has Euler characteristic −c.

Claim: χ(S) = χ(Σ).

Proof of the Claim. Since ν(S) = ν(P ∪N), we have that

χ(S) = χ(ν(S)) = χ(ν(P ∪N)) = χ(P ∪N),

= χ(P ) + χ(N)− χ(P ∩N),

= (1− b1(P )) + (1− b1(N)) + c,

= 2− (b1(P ) + b1(N)− c).

(7)

On the other hand, computing the signature of L using P and N , we see that

σP (L) = sig(GP ) + 1
2
e(P,L),

σN(L) = sig(GN) + 1
2
e(N,L).
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Thus, by equation (1), we have

σP (L)− σN(L) = sig(GP )− sig(GN) + 1
2
(e(P,L)− e(N,L)),

= sig(GP )− sig(GN) + 1
2
(e(P )− e(N)),

= b1(P ) + b1(N)− c.
(8)

Substituting equation (8) into equation (7), we see that

(9) χ(S) = 2− (σP (L)− σN(L)).

We will now show that P and N are not S∗-equivalent. Suppose to the contrary
that P and N are S∗-equivalent. Then σP (L) = σN(L), and the equations above
give that χ(S) = 2. But since Σ × I is irreducible, any 2-sphere bounds a 3-ball.
Therefore, the link L, which lies on S, must be contained in a 3-ball. This however
contradicts our assumption that L ⊂ Σ × I has minimal genus g(Σ) ≥ 1. Thus, P
and N cannot be S∗-equivalent.

Since N is not S∗-equivalent to P , it follows that N must be S∗-equivalent to
P#τΣ. Thus

|σP (L)− σN(L)| = |σP (L)− σP#τΣ(L)| ≤ 2g(Σ).

By equation (9), we see that

χ(S) ≥ 2− 2g(Σ) = χ(Σ).

If this inequality were strict, i.e., if χ(S) > χ(Σ), then g(S) < g(Σ) and it would
follow that [S] = 0 in H2(Σ × I;Z/2). However, that would imply that P and N
are S∗-equivalent. Since they are not, we must have that χ(S) = χ(Σ), and this
completes the proof of the claim.

Lemma 15 applies to show that S is incompressible. As explained in Remark 16,
by [Wal68], this implies that S is isotopic to Σ × {t0} for some 0 < t0 < 1. Under
the isotopy, L is isotopic to a link L′ that lies in Σ× I ′, where I ′ is a closed interval
containing t0 in its interior. There is a deformation retraction from Σ × I to Σ × I ′
which carries L to L′.

Projecting L′ along ν(S) ≈ S × I → S, gives a diagram D for L′ which by the
claim has genus g(S) = g(Σ). Furthermore, the checkerboard surfaces of D on S are
isotopic relative the boundary to P and N . Proposition 11 now implies that D is
alternating. This finishes the proof. �

§. Epilogue. We begin with a short proof of Theorem 1 (from the introduction).
We then state a corollary, and use it to deduce Corollary 2 (also from the introduc-
tion). We end with a few closing remarks.
Proof of Theorem 1. Suppose L ⊂ Σ× I is a non-split link with positive and negative
definite spanning surfaces P and N , respectively. If g(Σ) = 0, then it is obvious that
L ⊂ Σ× I has minimal genus. If g(Σ) ≥ 1, then arguing as above, we see that P and
N are not S∗-equivalent.

Since L admits spanning surfaces, it is checkerboard colorable. Choose the coloring
so that N is S∗-equivalent to B and P is S∗-equivalent to W , where B and W denote
the black and white surfaces, respectively. The Gordon-Litherland pairings GN and
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GP are evidently non-singular, and by Remark 7, so are GB and GW . Therefore,
Theorem 8 implies that L ⊂ Σ×I must have minimal genus, and Theorem 19 implies
that L is alternating. �

Corollary 20. A link L ⊂ Σ×I in a thickened surface is alternating and has minimal
genus if and only if L bounds definite spanning surfaces of opposite sign.

Corollary 2 is an immediate consequence of Corollary 20 and Corollary 9.
In Theorem 1.2 of [Gre17], Greene uses his characterization to deduce that any two

connected, reduced, alternating diagrams of the same classical link have the same
crossing number and writhe. A key result is Theorem 5.5 of [Gre17], which shows
that two connected bridgeless planar graphs with isometric flow lattices have the same
number of edges. In this way, Greene gave a new geometric approach to establishing
the first two Tait conjectures.

Building on this approach, Kindred recently gave a geometric proof of the Tait flype
conjecture [Kin20]. The first two Tait conjectures have been extended to alternating
links in thickened surfaces and alternating virtual links in [BK19,BKS20]. In [BK19],
the results are deduced using the homological Jones polynomial [Kru11]. In [BKS20],
stronger statements are obtained using adequacy of the Kauffman skein bracket.

It is an open problem whether Greene and/or Kindred’s methods can be extended
to links in thickened surfaces. It would be interesting to use their approach to give
alternative, geometric proofs of all three Tait conjectures in the generalized setting.
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