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Abstract. A virtual link may be de�ned as an equivalence class of diagrams, or alternatively as a stable

equivalence class of links in thickened surfaces. We prove that a minimal crossing virtual link diagram has

minimal genus across representatives of the stable equivalence class. �is is achieved by constructing a new

parity theory for virtual links. As corollaries, we prove that the crossing, bridge, and ascending numbers

of a classical link do not decrease when it is regarded as a virtual link. �is extends corresponding results

in the case of virtual knots due to Manturov and Chernov.

1. Introduction

In this note we prove that a minimal crossing diagram of a virtual link minimises the genus of

surfaces Σ such that the link possesses a representative in Σ× I . �is extends the corresponding

result in the case of virtual knots due to Manturov [13, 14]. Our result a�rmatively answers a

basic question, open since the inception of virtual knot theory: is it possible to simultaneously

minimize the complexity of a diagram and the complexity of the surface supporting it? In fact,

we establish a stronger result: a minimal crossing diagram is automatically of minimal genus.

A virtual link is an equivalence class of virtual link diagrams, up to the generalised Re-

idemeister moves [11, Section 2]. �e classical crossing number of a virtual link is the minimal

number of classical crossings, taken over all diagrams of the link.

Equivalently to the diagrammatic formulation, a virtual link may be de�ned as an equival-

ence class of smooth embeddings

⊔
S1 ↪→ Σ × I , for Σ a closed orientable surface, up to self-

di�eomorphism and (de)stabilization of Σ× I [5,11, Section 3]. �is last operation is the addition

or removal of a 1-handle of Σ disjoint to the embedding. �e supporting genus of a virtual link
is the minimal genus of a surface Σ such that the link possess a representative in Σ × I .

Let D be a diagram of the virtual link L. As described in Section 3, to D there is a naturally

associated representative of L in Σ × I ; the particular surface Σ produced in this way is known

as the Carter surface of D. A diagram of a virtual link L is said to be minimal genus if its Carter
surface has genus equal to the supporting genus of L.

�eorem 1. Let D be a virtual link diagram. If D is of minimal classical crossing number then it
is a minimal genus diagram.

�at is, a diagram that realises the classical crossing number also realises the supporting

genus. �is veri�es [3, Conjecture 5.1] and yields the following result for classical links.

Corollary 2. �e crossing number of a classical link does not decrease when it is considered as a
virtual link.

�eorem 1 is proved by introducing a new parity theory for virtual links, before employing a

parity projection argument. Parity is a powerful concept in virtual knot theory, and extending

it to virtual links is an important task (see [17, Section 1]). �e parity theory for links that we

introduce is applicable to a restricted class of virtual link diagrams, and it is the natural extension

of the so-called homological parity for virtual knots due to Manturov [13, 14]. In addition to a

combinatorial de�nition, we present a topological de�nition of our parity theory in Section 2.2.
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�eorem 1 is a consequence of �eorem 10. �e la�er result guarantees that given a diagram

of a virtual link L, one may convert classical crossings to virtual crossings to produce a minimal

genus diagram of L. As examples of its utility, we apply �eorem 10 to show that the bridge

and ascending numbers of a virtual link are realised on minimal genus diagrams (see Proposi-

tions 11 and 12). �e corresponding result regarding the bridge number of a virtual knot is due

to Chernov [6] and Manturov [14].

�e parity constructed in this note appears to be well-suited to answering questions of the

form: given a quantity extracted from a virtual link diagram, can we minimise it on a minimal

genus representative? �eorem 1, Proposition 11, and Proposition 12 are instances of this ques-

tion in the case of crossing, bridge, and ascending number, and it is interesting to consider other

instances. In particular, we wish to advertise the following open question: can the unkno�ing

number of a virtual knot be realised on a minimal genus diagram?

We construct the requisite parity theory in Section 2, before proving �eorem 1 and related

results in Section 3.

Conventions. All surfaces are closed and orientable, and are denoted by Σ. We denote by RI ,
RII , and RII I the classical Reidemeister moves. For our purposes a link in a thickened surface is
a smooth embedding

⊔
S1 ↪→ Σ × I , considered up to isotopy, where I = [0, 1]. A diagram of a

link in a thickened surface is a link diagram drawn on a surface. Two diagrams of a given link

in a thickened surface are related by a �nite sequence of the moves RI , RII , RII I , and isotopy,

where the Reidemeister moves occur in disc neighbourhoods of Σ. We denote diagrams of links

in thickened surfaces by the \mathfrak character D, reserving Roman characters for virtual

links and their diagrams.

Acknowledgements. We thank Homayun Karimi, Andrew Nicas, and a referee for their help-

ful comments on an earlier version of this work. We are indebted to Adam Sikora for a number

of comments that signi�cantly improved this work. We also thank Zhiyun Cheng, Micah Chris-

man, Vassily Manturov, and Pu�ipong Pongtanapaisan for their valuable feedback.

2. A homological parity for links

In this section we introduce a new theory of parity on virtual links (well-de�ned for a certain

sequences of generalised Reidemeister moves). �is parity may be thought of an extension of the

homological parity for knots [13,14], the de�nition of which is non-local: the full knot diagram

is used to determine the parity of a crossing. As a consequence, the construction does not extend

to links. �e parity that we de�ne in this section is local in nature – it is computed directly at a

crossing – so that it may naturally be applied to links with arbitrarily many components.

We begin with the combinatorial de�nition of our parity theory in Section 2.1, before present-

ing an equivalent topological de�nition in Section 2.2.

2.1. Combinatorial de�nition
Our construction proceeds as follows. Working at the level of link diagrams on surfaces we

introduce a function, fC , on the crossings of such diagrams. We show that fC satis�es the

appropriate version of the parity axioms for link diagrams on surfaces, and thus descends to a

bona �de parity on virtual link diagrams, well-de�ned for sequences of generalised Reidemeister

moves de�ned by isotopies of links in thickened surfaces.

Given an isotopy of links in thickened surfaces there is no canonical way to de�ne a sequence

of generalised Reidemeister moves: there is a choice of how some isotopies are realised as detour

moves (as in Figure 1). However, this choice does not a�ect the resulting parity, nor our proof
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Figure 1. An example of the detour move on virtual link diagrams: a seg-

ment containing only virtual crossings may be removed and replaced arbit-

rarily (with any new crossings produced being virtual).

of �eorem 1 (and related results). If the reader wishes, they can remove this choice by working

mutatis mutandiswith sequences of Gauss diagrams (in place of virtual link diagrams), as detour

moves do not appear in such sequences [7].

First, we state the axioms of a parity for link diagrams on surfaces. �ese axioms correspond

directly to those given by Ilyutko, Manturov, and Nikonov for virtual knots and other kno�ed

objects [9, 15].

De�nition 3. Consider the category whose objects are link diagrams on surfaces, and morph-

isms are sequences of Reidemeister moves (where such moves take place on disc neighbour-

hoods). Given an assignment of a function f (D) to every object D, with domain the set of

crossings ofD and codomain Z2, we refer to the image of a crossing under f (D) as the parity of

the crossing; crossings that are mapped to 0 are even, and those mapped to 1 are odd. Such an

assignment of functions is a parity if it satis�es the following axioms:

(0) If diagramsD andD′ are related by a single Reidemeister move, then the parities of the

crossings that are not involved in this move do not change.

(1) If D and D′ are related by a Reidemeister I move that eliminates a crossing, then the

parity of that crossing is even.

(2) If D and D′ are related by a Reidemeister II move eliminating the crossings c1 and c2,
then c1 and c2 are both even or both odd.

(3) IfD andD′ are related by a Reidemeister III move then the parities of the three crossings

involved in the move are unchanged. Further, these three crossings are all even, all odd,

or exactly two are odd. ♦

An extremely useful application of a parity theory is parity projection. Consider a sequence
of virtual link diagrams

D1 → D2 → · · · → Dn

related by generalised Reidemeister moves. Given a parity, de�ne p(Di ) to be the diagram ob-

tained from Di by replacing every odd crossing with a virtual crossing (that is, → ).

Virtual links may be de�ned in terms of Gauss diagrams; on the Gauss diagram of Di parity

projection corresponds to simply deleting the chords associated to odd crossings. We obtain the

new sequence

p(D1) → p(D2) → · · · → p(Dn).

�at p(Di ) is related to p(Di+1) by a generalised Reidemeister move is a consequence of the

parity axioms. �is operation is known as parity projection; for full details see [14, Section 1.3].
We make use of a parity projection argument in the proof of �eorem 1.

We use simple closed curves to de�ne colourings of link diagrams on a surface, and use such

colourings to de�ne a parity theory.

De�nition 4 (γ -colouring). Let D be a link diagram on Σ, and γ ⊂ Σ a simple closed curve

that intersects D transversely and away from crossings, such that every component of D has
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even intersection number with γ . A γ -colouring of D is a colouring of the components of D

exactly one of two colours, such that the colour switches when passing through γ . �e colour

of a component does not change at a crossing. ♦

An example of a γ -colouring is given in Example 6; our convention is to depict the curves

γ in red, and use the colours blue and green for the components of link diagrams. Notice that

De�nition 4 is well-posed due to the intersection condition. For a �xed curve γ , a diagram

of a link of m components possesses either 0 or 2
m γ -colourings; the diagram possesses 0 γ -

colourings if and only if there is a component that intersects γ an odd number times.

De�nition 5. Suppose thatD and γ are as in De�nition 4. Let C be a γ -colouring ofD. De�ne
a function on the crossings of D, denoted fC , as follows,

(1) fC

( )
= fC

( )
= 0 and fC

( )
= 1.

♦

Example 6. A link diagram on a torus, and a γ -colouring of it. With respect to the given γ -
colouring two crossings are even, and two are odd.

γ γ

LetD,D′ be diagrams on Σ related by a single Reidemeister move, and γ ⊂ Σ a simple closed

curve. Suppose thatD possesses a γ -colouring C ; it is clear that C induces a γ -colouring ofD′.

Proposition 7. Let D, γ , and C be as in De�nition 5. �e function fC is a parity.

Proof. �at fC satis�es the axioms of De�nition 3 may be veri�ed by directly comparing the

Reidemeister moves to Equation (1), recalling that these moves are supported on disc neigh-

bourhoods of Σ. We su�ce ourselves with some example veri�cations. �e following hold for

any γ -colouring (a possible position of the curve γ is denoted by the red arc):

0 odd crossings 0 or 2 odd crossings 0 or 2 odd crossings

�

Given a sequence of diagrams Di on Σ such that Di is related to Di+1 by a Reidemeister

move, there is a naturally associated sequence of virtual link diagramsDi , related by generalised

Reidemeister moves. Note that the sequence of virtual link diagrams may be longer than that

of diagrams on Σ: the former sequence may include detour moves, that are not present in the

la�er. We use Proposition 7 to de�ne a parity for such (sequences of) virtual link diagrams.

Proposition 8. Let {Di }, 1 ≤ i ≤ n, be a sequence of diagrams on Σ such that Di is related to
Di+1 by a Reidemeister move, and {D j }, 1 ≤ j ≤ m ≥ n, the associated sequence of virtual link
diagrams. Suppose that Di possesses a γ -colouring, C , for some simple closed curve γ ; by abuse of
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notation also denote by C the induced γ -colouring on Dj , i , j. �en fC descends to a parity on
the virtual link diagrams D j .

Proof. Suppose that the move D j → D j+1 is a detour move. �en there is a one-to-one corres-

pondence between the classical crossings of D j and D j+1, and both diagrams are associated to

the same diagram on Σ. It follows that the parity of a crossing is unchanged across the move

D j → D j+1.

Now suppose that the move D j → D j+1 is a generalised Reidemeister move induced by a

Reidemeister move Di → Di+1 on Σ. Proposition 7 guarantees that fC satis�es the axioms of

De�nition 3 for the move Di → Di+1.

Consider the function induced by fC on the virtual link diagrams D j ; it follows immediately

from the observations above that this function satis�es the parity axioms for a move D j →

D j+1. �

Henceforth we shall use fC to denote both the parity for link diagrams on Σ, and the induced
parity for associated virtual link diagrams. We refer to both as the C -parity.

2.2. Topological de�nition

�e C -parity enjoys a topological de�nition in terms of covering spaces that we now describe

(for a similar construction in the case of the Gaussian parity for virtual knots, see [1, Section 5]).

Given a link diagramD on Σ, suppose that γ ⊂ Σ is a simple closed curve with even intersection

number with every component ofD. Let π : Σ̃ × I → Σ × I be a double cover of Σ × I formed by

cu�ing two copies of Σ × I along γ × I , and identifying the resulting boundaries (see Figure 2).

�e diagramD represents a link, L, in Σ×I , and π−1 (L) is a link with twice as many components

as L (this is a consequence of the intersection condition on D and γ ).

A γ -colouring of D is equivalent to a choice of li�ing of L to a link L̃ in Σ̃ × I : the colouring
may be used to indicate a choice of preferred component of π−1 (L) for each component of L

(an example is given in Figure 2). Speci�cally, segments of distinct colours are li�ed to distinct

sheets of the cover π : Σ̃× I → Σ× I . A subtlety is presented by the fact that π−1(γ × I ) consists
of two connected components. Given a γ -colouring of D, the speci�c intersection between the

components of L̃ and π−1(γ × I ) may be determined by choosing orientations for D and γ , and
comparing the sign of the intersection pointD ∩γ with the colours ofD as it crosses γ . �e li�

does not depend of the orientations for D and γ .

Further, it is clear that such a choice of L̃ de�nes a γ -colouring ofD, via the correspondence
between sheets of the cover and colours of the segments. It follows that the parity constructed

in Section 2.1 may alternatively be de�ned in terms of a topological choice of li�, as opposed to

a combinatorial choice of colouring.

Recall that given a parity theory, parity projection is the removal of odd crossings by con-

verting them to virtual crossings. In the topological se�ing described here the link L̃ is precisely

the link obtained from L by (the appropriate notion of) parity projection. Speci�cally, let D be

a virtual link diagram de�ned by D, and C the γ -colouring associated to the choice of li� L̃.

If p(D) is the diagram obtained from D by parity projection with respect to fC , then p(D) is a

diagram of the virtual link represented by L̃.

As such, it follows that parity projection is realised as the operation of li�ingL to a prescribed

double cover of Σ × I .
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π

Figure 2. �e γ -colouring of Example 6 is equivalent the depicted choice of li�.

3. Applications of homological parity for links

With the C -parity in place, we use it to obtain our main result in Section 3.1, before presenting

further applications in Section 3.2.

3.1. Proof of �eorem 1
We begin by recalling some necessary de�nitions.

De�nition 9 (Carter surface [4,10]). Let D be a virtual link diagram. Consider D as an abstract

4-valent graph (in which classical crossings are vertices, virtual crossings are not); there is an

orientable surfacewith boundary, F , that deformation retracts onto this graph. �eCarter surface
of D is the closed orientable surface obtained by gluing discs to the boundary of F . ♦

For a virtual link diagram, D, the construction of the Carter surface of D naturally produces

a link diagram D on the Carter surface, such that D corresponds to D. �is construction is

una�ected by detour moves; the Carter surface associated to a virtual link diagram depends

only on its underlying Gauss diagram.

A subdiagram of a virtual link diagram D is a diagram obtained by converting a (possibly

empty) subset of the classical crossings of D to virtual crossings. A proper subdiagram is formed

by converting a non-empty subset of classical crossings.

�eorem 1 is a consequence of the following result that enjoys wider utility: applications to

ascending number and bridge number are given in Section 3.2.

�eorem 10. A diagram of a virtual link L possesses a subdiagram that also represents L and has
minimal genus.

Proof. Let D be a diagram of the virtual link L, and Σ the Carter surface of D. Denote by D the

diagram on Σ de�ned by D. If Σ realises the supporting genus of L then D is the desired minimal

genus subdiagram.

Suppose that Σ does not realise the supporting genus of L. By Kuperberg’s �eorem D is

related by a �nite sequence of Reidemeister moves on Σ to a diagram D′, such that there exists

an essential simple closed curve, γ ⊂ Σ, disjoint to D′. Denote this sequence as

(2) D = D1 → D2 → · · · → Dn = D
′.

Without loss of generality, wemay assume thatγ is such that Equation (2) is the shortest possible

sequence of this kind. It follows that Di is cellularly embedded for 1 ≤ i < n (that is, the

complement of a neighbourhood of Di in Σ is a disjoint union of discs).

�e sequence of Equation (2) de�nes a sequence of virtual link diagrams related by general-

ised Reidemeister moves, denoted as

(3) D = D1 → D2 → · · · → Dm = D ′,



MINIMAL CROSSING NUMBER IMPLIES MINIMAL SUPPORTING GENUS 7

withm ≥ n. Our assumption on the length of the sequence of Equation (2) implies thatDn−1 →

Dn is an RII move of the form

Dn−1 Dn

.

We may further assume that γ (depicted by the red arc) is disjoint to Dn−1 outside of the disc

neighbourhood depicted above. Observe that Dn−1 has intersection number 0 with γ , and that

there exists a γ -colouring of Dn−1 such that all components possess the same colour, except in

the region supporting the RII move, where the colouring is:

.

Denote this distinguished γ -colouring by C . Every diagram Di in the sequence possesses a γ -
colouring induced by C ; by abuse of notation also denote these γ -colourings by C . Notice that

every crossing of Dn is even with respect to the parity fC . �e same is true for Dm .

�is analysis of the sequence of Equation (2), combined with Proposition 8, allows us to

project the sequence of Equation (3) to obtain a new sequence

(4) p(D) = p(D1) → p(D2) → · · · → p(Dm) = p(D
′),

wherep(Di ) denotes the virtual link diagram obtained fromDi via parity projection with respect

to fC . Every crossing of Dm is even with respect to fC , so that p(Dm) = Dm , and we may con-

catenate the sequence of Equation (3) with that of Equation (4) (in reverse) to obtain a sequence

of generalised Reidemeister moves from D to p(D). �us D and p(D) both represent the virtual

link L.
We claim that the sequence of Equation (4) preserves the Carter surface. �at is, that the dia-

grams p(Di ) and p(D j ) have homeomorphic Carter surfaces, for all 1 ≤ i, j ≤ m. To see this, �rst

recall that the only generalised Reidemeister move that may possibly alter the homeomorphism

type of the Carter surface is an RII move. Suppose that p(Di ) → p(Di+1) is an RII move; then

Di → Di+1 is an RII move involving even crossings (with respect to fC ).

To verify that p(Di ) → p(Di+1) preserves the Carter surface we employ the topological de�n-

ition of the C -parity. �e move Di → Di+1 is associated to a move Dj → Dj+1 of Equation (2).

By assumption this la�er move occurs on a disc neighbourhood of Σ, andDj ,Dj+1 are cellularly

embedded. It follows that there is a disc, ∆, as indicated in Figure 3. Suppose that π : Σ̃→ Σ is

the double cover associated to γ (as described in section 2.2); one component of π−1(∆)must be

as depicted in Figure 3.

Let D̃j , D̃j+1 denote the li�s ofDj ,Dj+1 prescribed by C (the diagrams D̃j , D̃j+1 are diagrams

on Σ̃). As described in Section 2.2, li�ing with respect to π is equivalent to parity projection with

respect to fC . In particular, D̃j and p(Di ) have the same Gauss diagram, as do D̃j+1 and p(Di+1).

It follows that we may obtain the Carter surface of p(Di ) by cu�ing out a neighbourhood of D̃j

in Σ̃, and capping its boundary with discs; the Carter surface of p(Di+1) is obtained in the same

manner from D̃j+1.

Depending on whether the RII move D̃j → D̃j+1 adds or removes crossings, one of the

diagrams involved is as the top-right diagram in Figure 3. Notice that the arcs of this diagram
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π π

∆

π−1(∆)

RII

RII

Figure 3. Li�ing an RII move involving even crossings, using the cover asso-

ciated to γ .

involved in theRII move are part of the boundary of a single disc component of π−1(∆). It follows
that p(Di ) and p(Di+1) have homeomorphic Carter surfaces, and the sequence of Equation (4)

preserves the Carter surface.

Next, we claim that D contains an odd crossing with respect to fC , so that p(D) is a proper
subdiagram of D that represents L.

Assume towards a contradiction that D does not contain an odd crossing with respect to fC .

�en p(D) = D, so that p(D) has Carter surface Σ also. As p(Dm) = Dm the diagram p(Dm) has

Carter surface Σ′, obtained from Σ by destabilizing along γ . �is destabilization must change

the homeomorphism type of Σ: if γ is non-separating then Σ and Σ′ have di�erent genera, and if
γ is separating then Σ and Σ′ have a di�erent number of connected components. It follows that

the Carter surfaces of p(D) and p(Dm) are not homeomorphic. But the sequence of Equation (4)

(starting at p(D) and ending at p(Dm)) preserves the homeomorphism type of the Carter surface,

hence the desired contradiction.

In conclusion, we have produced p(D) that represents L and is a proper subdiagram of D. If
p(D) is not a minimal genus diagram of L, then we may repeat the process described above (with

a di�erent curve in place of γ , guaranteed to exist by Kuperberg’s �eorem). �e proof is com-

pleted by iterating this process: a�er a �nite number of iterations a minimal genus subdiagram

of D is obtained, that must also represent L (the number of iterations required is bounded above

by the number of classical crossings of D). �

Proof of �eorem 1. Suppose that D realises the crossing number of L. Apply �eorem 10 to ob-

tain a new diagram of L, denotedD ′. It is guaranteed thatD ′ is minimal genus and a subdiagram

ofD. By hypothesisD is of minimal crossing number, henceD = D ′, so thatD is a minimal genus

diagram. �

3.2. Realising the bridge and ascending numbers on minimal genus diagrams

We present further examples of the utility of�eorem 10. First, we use it to prove that the bridge

number of a virtual link is realised on a minimal genus diagram. �is extends the corresponding

result in the case of virtual knots due to Chernov [6] and Manturov [14].

A bridge of a virtual link diagram is an arc that contains one or more overcrossings (and any

number of virtual crossings). �e bridge number of a link L is the minimum number of bridges

over all diagrams for L (for further details see [8]). It is a priori conceivable that a classical link
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may admit a virtual link diagram with fewer bridges than any of its classical diagrams: we use

�eorem 10 to show that this cannot occur.

Proposition 11. �e bridge number of a virtual link is realised on a minimal genus diagram. In
particular, the bridge number of a classical link does not decrease when it is considered as a virtual
link.

Proof. LetD be a diagram that realises the bridge number of a virtual link L. Apply�eorem 10 to

D to produce aminimal genus subdiagram ofD, that also represents L, and observe that changing
classical crossings to virtual crossings cannot increase the bridge number of a diagram. �

�emeridional rank conjecture [12, Problem 1.11] posits that the bridge number of a classical

link is equal to the meridional rank of the link group. An a�rmative answer to this conjecture

would provide an alternative proof of the fact that the bridge number of a classical link does not

decrease when it is considered as a virtual link (as established in Proposition 11). In fact, the

meridional rank conjecture implies the stronger statement that the bridge number of a classical

link does not decrease when it is considered as a welded link. (For further details see [2].)

Next, we consider the ascending number, a numerical invariant introduced by Ozawa [16]

(also known as the warping degree [18]). �e de�nition readily extends to virtual links, as fol-

lows. An oriented virtual knot diagram is said to be ascending if one encounters only undercross-
ings, or crossings that have previously been met, when traversing the diagram from an arbitrary

basepoint. �ere is a similar de�nition for oriented virtual link diagrams (given basepoints on

and an ordering of the link components). �e ascending number of an oriented virtual link dia-

gramD, denoted a(D), is the minimum number of crossing changes needed tomake it ascending.

�e ascending number of an oriented virtual link is the minimal ascending number of a diagram

representing the link.

�eorem 10 applies to show that the ascending number of a classical link is preserved when

passing to the virtual category.

Proposition 12. �e ascending number of a virtual link is realised on a minimal genus diagram.
�e ascending number of a classical link does not decrease when it is considered as a virtual link.

Proof. �e claim follows easily from �eorem 10: notice that if D is a virtual link diagram with

subdiagram D ′ then a(D ′) ≤ a(D). �

We conclude this note by advertising the following open question. �e unkno�ing number
of a classical or virtual knot K is the minimal number of crossing changes → needed

to convert a diagram of K to an unknot diagram. �e unlinking number of a virtual link L is

de�ned similarly. Not all virtual knots (links) can be unkno�ed (unlinked) by crossing change,

in which case the unkno�ing (unlinking) number is de�ned to be in�nite.

�estion. Is the unkno�ing number of a classical knot preserved when it is considered as a virtual
knot? Is the same true for the unlinking number of a classical link? For virtual knots and links, are
the unkno�ing and unlinking numbers a�ained on minimal genus diagrams?

�e unkno�ing number of a classical knot is bounded above by its ascending number [16],

so that Proposition 12 provides evidence in favour of a positive answer to the classical cases of

the question posed above.

Another interesting open question is obtained by replacing ‘unlinking’with ‘spli�ing’. (Again,

not all virtual links can be split by crossing change, in which case the spli�ing number is de�ned

to be in�nite.)

Finally, we note the operation of converting classical crossings to virtual crossings is an un-

kno�ing, unlinking, and spli�ing operation for virtual links. It is interesting to consider ques-

tions analogous to those above in the context of this operation.
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