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This article contains a survey on the conjectured rationality of the
moduli space of vector bundles over a smooth curve. The main result
is a new proof of stable rationality, which implies Conjecture 1 (stated
below) for a large number of cases. We describe the progress which
had been made on this problem by Tyurin and Newstead, and explain
why the proof does not work in general. Ballico rejuvenated interest in
the argument, he was the first to prove stable rationality and to rec-
ognize its importance. These past results provide the proper historical
framework for our contribution to the problem. Because one can read
about the details from the original sources [17, 14, 2, 5], the emphasis
here is on the central ideas.

After introducing the moduli spaces and stating the conjecture, we
digress briefly to discuss the various relevant notions of rationality be-
fore presenting the new results. To start, fix:

• X a smooth complex curve of genus g ≥ 1,
• L a line bundle of degree d, and
• E a holomorphic bundle over X of rank r with detE = L.

The slope of E is defined by µ(E) = d/r. E is called stable if, for all
proper, holomorphic subbundles E ′ of E, we have µ(E ′) < µ(E), and
semistable if µ(E ′) ≤ µ(E). Given a semistable bundle E, there exists
a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E

whose quotients Di = Ei/Ei−1 are stable with slopes µ(Di) = µ(E).
The graded object associated to E is grE = ⊕s

i=1Di. Setting E ∼S E
′

if grE ∼= grE ′ defines an equivalence relation on semistable bundles
and the moduli space of semistable bundles of rank r with determinant
L is by definition the quotient

Mr,L = {E is semistable, rankE = r, and detE = L}/ ∼S .

The results of [13] show that Mr,L is a normal, projective variety of
dimension (r2 − 1)(g − 1) and thatMr,L is smooth if (r, d) = 1.

Conjecture 1. If r and d are coprime, then Mr,L is rational.
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Suppose that L′ is a line bundle of degree d′ and consider the map
E 7→ E ⊗ L′. This obviously preserves semistability and defines an
isomorphism Mr,L

∼= Mr,L1 , where L1 = L ⊗ (L′)⊗r. Consequently,
the only relevant invariant is the residue class of d modulo r, so we
might as well assume 0 < d < r. Secondly, the map E 7→ E∨ defines
an isomorphism Mr,L

∼= Mr,L−1 . With regard to the first convention,
this interchanges d and r − d.

Now recall the two equivalent definitions of rationality, as well as the
kindred of notions unirationality and stable rationality.

An n-dimensional variety V over the field k is called rational if it is
birationally equivalent to projective space, i.e. if there exist rational
maps φ : V −− → Pn and ψ : Pn −− → V such that φ ◦ ψ and ψ ◦ φ
are the identity mappings wherever they are defined. Equivalently, V
is rational if and only if the field k(V ) of meromorphic functions on V
coincides with the purely transcendental field extension k(x1, . . . , xn)
of k, also known as the field of rational functions.

One way to show a variety is not rational is to exhibit a non-zero
birational invariant. It seems unlikely that this can establish the con-
verse, the vanishing of invariants typically only allows one to conclude
V is unirational. Recall that V is defined to be unirational if there
exists a dominant rational map ψ : Pn −− → V. This is equivalent to
embedding k(V ) in a purely transcendental extension k(x1, . . . , xm) of
k. The question whether unirational implies rational is an old and fa-
mous problem, which for dim = 1 is Lüroth’s theorem and for dim = 2
is due to Castelnuovo and Enriques. For dim > 2, it is known to be
false, even for k = C [6, 7].

Now we come to a useful intermediate property introduced by Kóllar
and Schreyer, that of stable rationality [8]. V is stably rational if V ×Pk

is rational. This is equivalent to the condition that the purely transcen-
dental extension k(V )(x1, . . . , xk) of k(V ) is a purely transcendental
extension of k. The level of stable rationality is the smallest k such that
V × Pk is rational.

Zariski’s conjecture asks whether stably rational implies rational.
This is also not true for dim > 2, there are examples of stably rational
but irrational varieties [4]. The level of stable rationality gives a mea-
sure for how far a stably rational variety is from being rational. As we
shall see, bounding the level of stable rationality in moduli problems
has strong consequences.

Conjecture 1 has an interesting history. In [17], Tyurin proved it in
the case r = 2 and d odd, and later claimed to prove it in full generality
[18]. However, numerous errors were found in [18]. The argument was
corrected to some extent by Newstead. His thesis (1966, unpublished)
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treated the case r > 2, d = 1 mod (r), and a later article [14] gave a
beautiful argument assuming only (r, d) = 1. Unfortunately, a small,
apparently trivial gap pointed out by Ramanan turned out to be insur-
mountable and Newstead later retracted his more general statement.
Nevertheless, his argument still proved rationality in a number of cases,
including:

(i) d = ±1 mod (r),
(ii) (r, d) = 1 and g = pk is a prime power,
(iii) (r, d) = 1, p1 and p2 are the two smallest distinct prime factors

of g and p1 + p2 > r.

The argument works in many other instances, but determining the set
of all triples (g, r, d) for which it holds is complicated and unenlighten-
ing.

The culprit in all of this is the universal bundle, or rather its non-
existence. Recall that a universal bundle Ur,L parametrized byMr,L is
a rank r bundle overMr,L×X whose restriction to any slice {e}×X is
isomorphic to E where [E] = e. Of course, such a bundle, if it exists, is
only unique up to tensoring by the pullback of a line bundle onMr,L. It
is known that such a bundle exists if and only if (r, d) = 1 [10, 19, 16].

We now sketch Newstead’s argument. Suppose that 0 < d < r and
(r, d) = 1. Set d1 = d+r(g−1) and suppose detE = L1, a line bundle of
degree d1. By Serre duality, we see that h1(E) = 0, hence h0(E) = d by
Riemann-Roch. A basis s1, . . . , sd for H0(E) is likely to be everywhere
linearly independent, at least for generic E. In this case, we get the
short exact sequence

0 −→ Id −→ E −→ E ′ −→ 0, (1)

where Id denotes the trivial bundle of rank d. One would expect further
that E ′ is stable whenever E is stable.

Turning this around, Newstead proved that one can describe “most”
stable bundles E as extensions of the form (1) above, where E ′ ranges
over the isomorphism classes of stable bundles of rank r′ = r − d and
with detE ′ = L1. For a fixed stable E ′, isomorphism classes of such
extensions are classified by the quotient of the nonzero elements of

H1(E ′∨ ⊗ Id) = H1(E ′∨)⊕d

by the natural action of the automorphism group Aut Id = GL(d).
(The automorphism group of E ′ is irrelevant because stable bundles
are simple.) This quotient space is a Grassmanian, hence rational, and
has dimension χ = d(g − 1)(2r − d).
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A dimension count shows

dimMr,L1 − χ = (r2 − 1)(g − 1)− d(g − 1)(2r − d)
= ((r − d)2 − 1)(g − 1) = dimMr−d,L1 ,

which is rather convincing that Newstead’s idea is indeed correct. In
order to make this rigorous, Newstead realized that one must induc-
tively construct a family of bundles using such extensions. In order
for the family to have the correct properties, one ultimately needs a
family parametrized byMr−d,L1 , or at least by a Zariski-open subset of
Mr−d,L1 . For non-coprime rank and degree, there is a non-zero obstruc-
tion [16], namely the universal bundle does not exist (even over any
Zariski-open subset!). Although there exists a projective bundle over
the stable points, it is not locally trivial in the Zariski topology. Given
a fibration with rational base and rational fiber, in order to conclude
the total space is rational, one needs local triviality of the fibration in
the Zariski topology. This explains why the condition (r − d, d1) pops
up in the following theorem, which was proved in [14] (though it is not
stated precisely this way, cf. [2]).

Theorem 2 (Newstead). Suppose that 0 < d < r and (r, d) = 1. Set
d1 = d+r(g−1) and χ = d(g−1)(2r−d), and choose L1 a line bundle
of degree d1. If (r − d, d1) = 1, then Mr,L1 is birationally equivalent to
Mr−d,L1 × Pχ.

Newstead’s proposal for proving Conjecture 1 is to use induction,
the idea being that once Mr′,L1 is known to be rational for r′ < r,
rationality ofMr,L1 follows immediately from Theorem 2. The problem
is with the inductive hypothesis, namely (r, d) = 1, and is illustrated
by the following example.

Example 3. If g = 6, r = 5, and d = 2, then d1 = 27, r′ = 3 and
although (r, d) = 1, (r′, d1) 6= 1 and Theorem 2 does not hold. It
remains an open question whether M5,L is rational in this case.

Ballico noticed that Newstead’s argument did prove stable rational-
ity of the moduli spaces Mr,L for coprime rank and degree [2]. He
also pointed out that stable rationality of Mr−d,L with an appropri-
ate bound on the level is enough to conclude rationality of Mr,L from
Theorem 2. His argument for stable rationality worked upstairs on
the Quot scheme, and for this reason he did not make any system-
atic progress toward proving Conjecture 1 because the dimension jump
was too large to successfully bound the level. (He had an alternative
approach, the “up and down” argument at the end of his paper, and
this proved rationality in some cases. But as in Newstead’s method,
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determining the triples (g, r, d) for which the argument works leads to
intractable numerological problems.)

Our contribution is the following theorem.

Theorem 4. If (r, d) = 1, then Mr,L is stably rational with level k ≤
r − 1.

Corollary 5. Suppose (r, d) = 1 and 0 < d < r. Set d1 = d+ r(g − 1)
and choose L1 a line bundle of degree d1. If either (r − d, g) = 1 or
(d, g) = 1, then Mr,L is rational.

Remark. This proves Conjecture 1 when (r, d) = 1 for all but a thin set
of genera g. For example, consider the case r = 110 and d = 43. Then
the corollary implies thatMr,L is rational unless g is a multiple of 2881.

Note that (r − d, g) = 1 implies (r − d, d1) = 1, which is what we
need in order to be able to apply Theorem 2. The other condition,
(d, g) = 1, results from an application of the symmetry E ←→ E∨.

Theorem 4 is proved with the help of parabolic bundles. General
definitions can be found in [5]. Choose p ∈ X, a complex line F2

in F1 = Ep, and weights α1, α2 with 0 ≤ α1 < α2 < 1. This de-
fines a parabolic structure on E making it into a parabolic bundle,
which we denote by E∗. The multiplicities of E∗ are the numbers
m1 = dimF1/F2 = r − 1 and m2 = dimF2 = 1, and the slope of
E∗ is defined by µ(E∗) = (d + m1α1 + m2α2)/r. The notion of para-
bolic stability gives rise to the moduli spaceMr,L,α of rank r parabolic
semistable bundles with multiplicities m1,m2, weights α = (α1, α2),
and determinant L. It follows from [9] thatMr,L,α is a normal, projec-
tive variety of dimension (r2 − 1)(g − 1) + r − 1 and that for generic
choice of α,Mr,L,α is smooth.

If (r, d) = 1, then for any bundle E of rank r and degree d, E
semistable implies E is stable. Indeed, for any proper subbundle E ′

of E, µ(E ′) 6= µ(E). Hence the set {µ(E ′) | E ′ ⊂ E} is a discrete
subset of R, and by choosing α1, α2 small enough, we see that the
parabolic bundle E∗ is stable if and only its underlying bundle E is
stable. This defines a fibration Mr,L,α → Mr,L whose fiber can be
identified with the projective space Pr−1. The crucial point is that
this fibration is locally trivial in the Zariski topology. To see this,
consider the restriction of the universal bundle Ur,L to Mr,L × {p}.
The associated projective bundle parametrizes a family of parabolic
bundles with (small) weights α1, α2. Universality of the moduli space
produces a morphism identifying this projective bundle with Mr,L,α.
Local triviality of the bundle impliesMr,L,α is birational toMr,L×Pr−1,
and Theorem 4 is a consequence of the following theorem.
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Theorem 6. Mr,L,α is rational for all α.

Remark. In [5], rationality of Mr,L,α is proved in many other cases as
well, including:

(i) a multiplicity mi equals one for some i,
(ii) the rank and degree are coprime,
(iii) the rank and degree of any parabolic bundle obtained from E∗

by shifting (Definition 5.1, [5]) are coprime.

The strategy for proving the above theorem is similar to Newstead’s.
The first step is to show that the weights play no role, i.e. that the
birational type ofMr,L,α is independent of α. The next step is to prove
existence of the universal bundle Ur,L,α parametrized by Mr,L,α. This
is necessary to avoid the difficulties encountered in the non-parabolic
situation. Proposition 3.2 in [5] establishes the existence of Ur,L,α when-
ever the quasi-parabolic structure admits generic weights, i.e. whenever
semistable ⇒ stable for some compatible choice of weights.

The assumption (r, d) = 1 is replaced by an assumption on the quasi-
parabolic structure, namely (i) above, that one of the multiplicities
equals one, and the proof boils down to the simpler case presented
here.

Assuming 0 ≤ d < r, the argument splits into two cases, d > 0 or
d = 0. In the first case, one can show just as before that “most” stable
parabolic bundles E∗ are described by extensions of the form

0 −→ Id
∗ −→ E∗ −→ E ′

∗ −→ 0, (2)

where Id
∗ is the trivial parabolic bundle of rank d with weight α1 and E ′

∗
is allowed to vary among isomorphism classes of parabolic stable bundle
of rank r− d with multiplicities m′

1 = r− d− 1 and m′
2 = 1. This case

then follows by induction once the following theorem is established.

Theorem 7. Suppose that 0 < d < r and α = (α1, α2) is generic.
Set d1 = d + r(g − 1) and χ = d(g − 1)(2r − d) + d and choose L1

a line bundle of degree d1. Then Mr,L1,α is birationally equivalent to
Mr−d,L1,α × Pχ.

For the remaining case, d = 0, we use the Hecke correspondence for
parabolic bundles. This correspondence was introduced as a method
to use parabolic bundles to pass between two moduli spaces of non-
parabolic bundles of different degree [12, 9]. As such, it includes going
up and down projective fibrations which are not necessarily locally
trivial in the Zariski topology (as usual, this problem arises in the case
of non-coprime rank and degree). Hence the Hecke correspondence
is not useful in establishing the rationality conjecture. For parabolic
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bundles, the Hecke correspondence does not involve any such fibrations,
so it is a much more valuable tool in proving rationality of Mr,L,α.
The quasi-parabolic structure allows for direct comparison of moduli
spaces of parabolic bundles of different degree, in some sense it allows
one to control the amount of energy bubbled off. In the example under
consideration, given E∗, the Hecke correspondence produces a parabolic
bundle E ′

∗ of rank r, weights α′ = (α′1, α
′
2), multiplicities m1 = 1 and

m2 = r−1, and determinant L′ of degree d′ = d−r+1. This determines
an isomorphismMr,L,α

∼=Mr,L′,α′ . We have already seen thatMr,L′,α′

is birational to Mr,L′ × Pr−1, but d = 0 ⇒ d′ ≡ −1 mod (r) so case
(i) of Newstead’s result showsMr,L′ , and henceMr,L′,α′ , is rational.

In conclusion, we mention a few open problems. If (r, d) 6= 1, the
problem of rationality of Mr,L is also interesting. Beyond the evident
unirationality, however, there is almost no support for Conjecture 1
in this case. For example, stable rationality of these moduli spaces
is at the time of writing an open problem. The difficulties are non-
smoothness of the moduli space and non-existence of the universal
bundle. The place to start is rank two and degree zero because for
low genus there are rather explicit descriptions of the moduli space. In
fact, for g = 2,Mr,L = P3 [12].

On the other hand, the overall evidence for the rationality conjecture
in the coprime case is now quite overwhelming. The remaining cases
will probably succumb to demonstration and Newstead’s beautiful ar-
gument will then be fully restored. In contemplating this, one is lead
to ponder whether a restricted version of the Zariski conjecture also
fails for dimension n > 2. This stems largely from the success achieved
by bounding the level of stable rationality. On the one hand, from the
examples of [4], it follows that there exist irrational varieties V with
V × P1 rational (cf. problem 6, [3]). But if one restricts attention to,
say, varieties of dimension n, or perhaps an even more exclusive class,
can one establish Zariski’s conjecture assuming an appropriate bound
on the level of stable rationality?
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