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Abstract

Virtual knot theory is an extension of classical knot theory based on a
combinatorial presentation of crossing information. The appropriate ex-
tensions of braid groups and string link monoids have also been studied.
While some previously known knot invariants can be evaluated for virtual
objects, entirely new techniques can also be used, for example, the con-
cept of index of a crossing, and its resulting (Gaussian) parity theory. In
general, a parity is a rule which assigns 0 or 1 to each crossing in a knot
or link diagram. Recently, they have also been defined for virtual braids.
Here, novel parities for knots, braids, and string links are defined, some
of their applications are explored, most notably, defining a new subgroup
of the virtual braid groups.
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Introduction

The theory of virtual knots is constructed on this combinatorial
basis in terms of the generalized Reidemeister moves.
- L. H. Kauffman, [29].

The classical definition of a knot is that of a smooth embedding of the
circle S! in the three dimensional sphere S%, up to orientation-preserving
ambient isotopies. Intuitively, this models a rubber band in space, which
may have been created entangled. The convenient thing to do to repre-
sent such an equivalence class is to construct a decorated 4-valent graph,
by projecting the knot orthogonally on a disk, such that the resulting im-
mersion of S' is also smooth, except for a finite number of transverse
double points, acting as vertices, and decorate said double points with over
and under crossing information. These graphs are called knot diagrams,
and the cyclic ordering of edges around is fixed.

This kind of presentation is very natural and quite familiar as it is heav-
ily featured in traditional art all over the world. The part of the knot going
under a crossing is broken near the part going over it, and the tangents
to the diagram at the undercrossing are colinear and perpendicular to the
overcrossing. The ambient isotopies of the embedding of the circle in
space translate to a variety of changes to the planar diagram. The allow-
able moves on planar diagrams were fully codified in the 1920s by multiple
authors, most notably Reidemeister [41], hence those operations are called
Reidemeister moves. They are illustrated by Figures [3} [4 and 5

However, the first prominent mathematician to develop the combinato-
rial approach to knot theory was C. F. Gauss. In [20], he introduced codes,
called intersection sequences which denote the way crossings of a knot
are encountered from the point of view of the knot itself. For example,
123123 is the code associated to a trefoil, which is the knot denoted 3.6 in
Green'’s table [22]. However, the virtual knot 3.7 has the same intersection
sequence, as illustrated in Figure [1}

The crossings are numbered consecutively, and met cyclically as one
travels once along the knot. In 3.7, there are also double points which
are circled. Those are virtual crossings, and they do not appear in the
intersection sequence. Crossings that do are called classical. Gauss was
already aware that there were some limitations on which sequences could
be produced as intersection sequences of knots. For example, it is essential
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o L
3
a) 3.6 b) 3.7

Figure 1: The inequivalent knots 3.6 and 3.7.

that the sequence be evenly intersticed, meaning that any two occurrences
of the same crossing be separated by an even number of other crossings
in the sequence. Sufficient criteria have since been found. A short history
of the solutions is featured in [11].

Ignoring the requirement that the knot diagram be planar makes the
intersection sequence too weak to uniquely define a given knot. Further
decorations are added, yielding objects call Gauss words. Classical cross-
ings have two different types, distinguished by the sign of the rotation
which brings the overcrossing arc to the undercrossing one in a way that
they both point the same way. These positive (+) and negative (—) cross-
ings are shown in Figure 2] After numbering the crossings of a diagram,
one determines their sign, and writes down the Gauss word as a sequence
of triples consisting of a letter, a number and a sign. The letter 0 is used
when going over a crossing, U when going under, and the sign is that of
the crossing. The knots in Figure [I] then have distinct Gauss codes 01+
U2+03+U1+02+U3+ and 01-U2+03-U1-02+U3-.

AKX

Figure 2: Positive, negative, and virtual crossings.

Virtual knot theory involves the study of all signed Gauss words, not
just the ones corresponding to planar graphs, modulo the analogues of
the three Reidemester moves. The present thesis uses the combinatorial

2
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ideas of parity, a theory spanned by Gauss’ observation about intersection
sequences, to investigate the different generalizations of virtual knot the-
ory, and their differences with classical objects.

The first section contains contains an introduction to virtual knot the-
ory, assuming some familiarity with graphs and groups. The second is
concerned with the topological interpretation of virtual knots and links.
Finally, the last two sections define parities for braids and string links, and
explore their applications.

Acknowledgments.  This thesis is the culmination of over three years
of collaborating with and studying under the helpful guidance of my su-
pervisor, Dr. H. Boden, and his colleague, Dr. A. Nicas. They nurtured
my interest in virtual knot theory and mathematical research by patiently
answering my repetitive questions, and encouraging me to participate in
international conferences, schools, and meetings. The 2016 Winter Braids
school and its organizers were important influence in shaping this written
work. Moreover I am immensely grateful to my friends, in particular R.
Nieuwenhuis, for believing in me even when I could not.
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1 Background material

Like the complex numbers arising from missing roots of
real polynomials, the new generalized knot types appear
as abstract solutions in knot equations that have

no solutions among the classical geometric knots.

- S. Nelson, [371].

1.1 Vocabulary

Knots are not the only objects that can be represented by 4-valent dec-
orated graphs. Let the two dimensional ball be I x I, and T C I x I be
a 4-valent graph with classical crossing decorations at the vertices, and
maybe end vertices, located on the boundary of the ball. Such a T is called
a tangle diagram. If the edges of the graphs can be drawn without inter-
section, T is classical. Otherwise, it is virtual. In both cases, edges are
assigned an orientation, where opposite edges at a vertex must have con-
sistent orientations, that is, an edge oriented towards the vertex must be
opposite to one oriented away from the vertex. Certain types of tangles
have special names, which depend on the number C of closed paths, and
the number E of paths with end vertices, and the way those endpoints are
situated. The main vocabulary used here is summarized in Table [1]

E C Name

1 0 long knot

0 1 round knot

1 >0 long link

0 | >1 round link
>0 | 0 | string link{ or braid¥
>01|>0 tangle

Table 1: Vocabulary

1.1.1 Gauss diagrams

A Gauss diagram, or GD is a visual presentation of the preimage of a knot-
ted diagram. For knots, one can start with the Gauss word corresponding

1If the ith component connects (1,i) to (0, ).
2If the components are oriented monotonically down.

4
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to the diagram, and write it around a circle, going counter-clockwise, to
preserve the orientation. Occurrences of the same number are connected
by arrows pointing from the over crossing to the under crossing. The sign
of the crossing is written near the arrow, usually outside the circle at the
head or foot. Throughout the text, this core circle is drawn with a thick
line while the arrows are thinner. Representations of the first and second
Reidemeister moves of GDs appear in Figures [3] and [4] respectively.

A Z Z
RM1 RM1 RM1 RM1
—> —> ! —> >
) \ I > —

Figure 3: The first Reidemeister move (RM1).

RM2 ! RM2

N SN N _

Figure 4: The second Reidemeister move (RM2).

In Figure |5 there are four examples (since € takes value — or +) of
Reidemeister 3 move on the Gauss diagram, when the illustration for the
move on a knot or link diagram allows for eight structurally different
choices of orientations of the parts of the diagram involved. The work
of Polyak in [40] shows that the four moves pictured here, along with
Reidemeister moves of types 1 and 2 are sufficient to generate the other
four relations.

For links, it is possible to write a Gauss paragraph, consisting or a
collection of the Gauss words of each component separated by //. Again,
from the paragraph one obtains a Gauss diagram by writing each word
around a distinct core circle and connecting the two occurrences of a
crossing with an arrow. Core circles need be disjoint but may be nested.
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Definition 1. Let D be a Gauss diagram. If D’ can be obtained from D
by erasing arrows, then D’ is called a subdiagram of D, and it is denoted
by D' c D.

Subdiagrams are the building blocks of GPV finite-type invariants in-
troduced in [21].
In Figure [0} T can be any tangle diagram.

1.2 Braid groups

Classically, braids are tangles consisting of n strands (open components),
such that each strand is oriented monotonically from (i/(n +1),1) to (j/(n +
1),0), for some i,j € {1,2,...,n}, and such that for each i and each j, there
is a unique strand starting or ending at that point, and the strands admit
crossings consisting of transverse double points decorated with over and
under crossing information. Braid are defined in terms of braid diagrams
up Reidemeister moves 2 and 3, which preserve the monotone orientations,
and they can be regarded as elements in the Artin braid group B,. A
standard reference about that theory is [1].

The braid group By, is finitely generated by the elements { Gi};”:“li, cor-
responding to the elementary braid diagrams shown in the first part of
Figure [7] A word in a braid group is represented by stacking the corre-
sponding pictures from top to bottom. The algebraic counterpart to the
Reidemeister moves are the natural Gi(fi_1 = oi‘idi = 1, and Equation
Moreover, ambient isotopies allow Equation

The inverse of a braid word is obtained by reading the word backwards
and taking the negative exponent for each classical generator. Geometri-
cally, this is a reflection with respect to a horizontal line.

The first published reference to virtual crossings is the 1997 paper
[18] of Fenn, Rimyéni, and Rourke where they introduce the welded braid
groups w By, which they proved to be isomorphic to a subgroup of Aut(F,)
consisting of the automorphisms of permutation-conjugacy type. Later, it
became more natural to see welded braids as a quotient of virtual braid
groups, vB,, however much of the original notation has been preserved.
Classical generators are {o; }'}!, and virtual ones are {t; }"}!, where i =
1,...,n — 1. In vB,, the following relations hold:

0;0i4+10; = 0i+10;0j+1, (1)
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£ RM3

\_/ \ —
NN\ & i
/\ \/\% e\ v e

Figure 5: The third Reidemeister move (RM3).

=y L

RN -
Q \

Figure 6: Virtual equivalent to RM3, and the general detour move.
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Figure 7: Classical and virtual braid group generators.

TiTi1Ti = Tist TiTisd, (2)
TiTi+10i = Oi+1TiTi+1, (3)
fori=1,..,n -2, and
0;0j = 0j0;, (4)
TiTj = TjTi, Oi‘l’j = Tj(fi, (5)

for |i —j| > 2, and 72 =1 forall 0 < i < n.

Another interesting subgroup of vB,, is the pure braid group vP,. It is
the kernel of ® : vB, — S, 0; — T, T; — T;. As asked in [J], it remains
an open problem to find a topological interpretation of the virtual braid
groups.

Classical braids can be represented by Gauss diagrams with one core
interval for each strand, and signed arrows for each crossing. For virtual
braids, more information is required. Virtual crossings that are found at
the end of the braid, are denoted by recording the final position of stands at
the bottom of their representative in the Gauss diagram. Virtual crossings
that are found before classical crossings influence the position of arrows
in the Gauss diagram. With such a system, pure braids are the ones for
which the resulting permutation is the identity.

The following sections define and discuss various braid-like groups.

1.2.1 Welded

The welded braid group wB,, is a quotient of vB,, by the relation:

Ti0;+10; = Oj+10; Ti+1, (6)

The relation is called the first forbidden move or the overcrossings-
commute (OC) relation. It appears in Figure [8| Applying that relation to
vP, yields wP,, the welded pure braid group.

n
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Welded braid groups appear under many other guises, including braid-
permutation groups and loop braid groups. The recent survey article [19]
provides a unified view of the work that has been done on those groups,

including some important topological perspective.
ocC < >
>
> >

>

N
e
E

|
™
™
™

|
™

Figure 8: The first forbidden move (OC).
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Figure 9: The second forbidden move (UC).

The classical braid group B, is isomorphic to the subgroup of wB,
generated by the classical generators, as proved in [18]. Hence, the use of
the same generator is acceptable. It then easily follows that the inclusion
of classical braids in virtual braids at the word level is also an injection.
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1.2.2 Unwelded

The second forbidden move, in Figure [J]is also called the undercrossings
commute (UC) move. It generates the unwelded braid group uwB,,.

0;0i+1Ti = Ti+10:i0i+1, (7)

It is shown in [5] that uwB,, is not isomorphic to the symmetric group
on n elements, which, for a braid group, makes it trivial.

The quotient of wP, by Relation [7] is the unwelded pure braid group
denoted uwbpb,,.

1.2.3 Flat
Flat braid groups, xB,, are defined as the quotient of vB, with the addi-
tional relation

o? = 1. (8)

1

Geometrically, it corresponds to the move CC in Figure [I0] When this
move is allowed, flat crossings, as on the second line, may be used. This is
an unknotting operation for classical links, and in particular, allowing this
move on By, the classical braid group, maps it homomorphically onto S,,
the symmetric group on n elements. This map is equivalent to the one
obtained by projecting every crossing in the braid to a virtual one.

\ s T LT

+ CcC — | CcC
1 —
+
——

Figure 10: The crossing change (CC).

The name xB,, and its pure analogue, xP,, are chosen since the letter
x evokes the representation of flattened classical crossings as undecorated
transverse double points in Figure [I0] Their Gauss diagrammatic counter-
parts bear two signs, + for the strand crossing towards the right, and —
on the other end.

10
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1.2.4 Free

The names oriented and unoriented of the virtualisation moves, as in Fig-
ures [11] and (12| are purposely similar to the ones used in [17], but use a
different logic. Here, oriented virtualisation means that the move preserves
the orientation of the chord in the GD.

\ i — —

S T =l

Figure 11: The oriented virtualization move.

They each generate relations on the virtual braid groups,
o'ty = 1o, (UV), and (9)

O'i_iTi = T;iO;, (OV) (10)

The quotient of vB, by the UV relation is called the free braid group
and it is denoted fB,. Again, the analogous pure braid group is fPj.

The UV equivalence is also called Z-equivalence in [6], particularly when
applying a similar move to knot diagrams. The term free braid may not
be particularly standard, but the adjective free has been extensively used
to talk about knots where this move is allowed, notably in [31].

Definition 2. Free braids on n strands are equivalence classes of Gauss
diagrams with n vertical core intervals where chords are horizontal,
have neither orientation nor signs, up to the Reidemeister-like moves
obtained by ignoring that information for the diagrams of the moves
foo.

+

uv 1 uv

~ | h

Figure 12: The unoriented virtualization move.

11
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1.3 Virtual knots and quotients

The term virtual knot was introduced in [29]. There currently exists a
unique survey of the work on the topic, [36].

As was done for the braid groups, once one defines virtual link dia-
grams, operations beyond the Reidemeister moves can be allowed. Some-
times this will lead to a trivial theory, meaning that one can use the new
moves to unknot all possible diagrams. Otherwise, it may lead to a non-
trivial theory. For instance, starting with a virtual link diagram or a Gauss
diagram with only closed components, the equivalence class of diagrams
up to Reidemeister moves and OC moves is called a welded link. Similarly,
the equivalence class of such a diagram up to RMs and CC is a flat link.

Not every quotient theory is interesting. For example, any knot can
be unknotted, that is, transformed to a knot with no crossings called the
unknot by a sequence of Reidemeister moves and forbidden moves (OC
and UC). This is proved in Section

1.3.1 Alexander numbering

Let D be an oriented virtual knot diagram. Arcs of D are subsets of the
diagram consisting of curves that go from one classical crossing to the
next.

An Alexander numbering of D is a assignment of Z-valued labels to
the arcs of the diagram up to a global shift in those indices by any integer.
The numbering is obtained by as illustrated by Figure [13]

Figure 13: Local values of the Alexander numbering of a diagram.

It follows by the Jordan curve theorem that any knot diagram without
virtual crossings admits an Alexander numbering with exactly two labels
meeting at each vertex.

Definition 3. A knot is called almost classical (AC) if and only if it admits
a diagram for which the Alexander numbering satisfies the addition
condition that for every classical crossing as in Figure[I3 a = b + 1.

12
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The question of extending Alexander numberings and almost classical-
ity to braids, links, and string links is one of the themes of the present
work. The reason the present definition cannot directly be applied is that
numberings of a diagram depends on the choice of a basepoint for each
of its components.

13
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2 Knots and links

[...] for some purposes it is easier just to ignore the problem
of whether a Gauss diagram represents a knot,

rather than trying to solve it.

- M. Goussarov, M. Polyak, and 0. Viro [21].

Under the name abstract links, virtual knots and links were first studied
in 1993 by N. Kamada, but that idea did not appear in print until the paper
[28], which establishes a correspondence between abstract link diagrams
and Kauffman’s theory of virtual knots. An alternative proof is found in [32],
and has the advantage of considering the genera of the surfaces involved,
showing that there is a unique minimal genus abstract representative of a
virtual knot.

However, the other virtually knotted objects discussed here have not
been so extensively studied as topological objects. For example, in [14],
braids are set to live on orientable surfaces with two boundary compo-
nents. Setting a consistent interpretation of virtual braids, string links, and
tangles as one-dimensional sub-manifolds of thickened surfaces allows one
to construct more invariants and parities for them.

Analogously to the quotients of the virtual braid group defined in the
introduction, one can construct coarser knot theories by allowing the ad-
ditional unoriented moves on link diagrams. A knot theory [25] is a collec-
tion of all finite four valent graphs with decorations at the vertices, such as
over/under information, and a choice of pairs of opposite edges for each
vertices, possibly orientation on the resulting paths, and a set of allowed
moves. In this formalism, the graphs need not be planar, and crossings of
the edges are virtual crossings from the previous point of view.

2.1 The planarity problem

A signed Gauss diagram is an object which represents a flat virtual knot
or link. Given an oriented flat link diagram, each crossing is numbered,
and the strand going to the right when a crossing is oriented up is marked
positive, while the other is negative. The sequence of numbers and signed
obtained by going once around each component by following the orienta-
tion and choosing arbitrary base points is called a signed Gauss paragraph
for the link.

As was mentioned in the introduction, the original planarity criteria was
for intersection sequences, which would correspond to unsigned Gauss
diagrams. While multiple proofs in that setting exists, for the purpose of

14
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virtual knot theory, the planarity of a virtual link diagram depends on its
signed Gauss diagram.

Carter’s algorithm produces a minimal genus surface on which a Gauss
paragraph can be realized as a collection of immersed curves. To a signed
Gauss paragraph, one associates a cell complex, where the O-cells are the
crossings, with 1-cells for each pair crossings which appear as subsequent
labels in the paragraph up to cyclic permutation of each word, and 2-cells
pasted to any path obtained by traveling around the graph either by always
turning left at crossings until each edge is adjacent to two distinct cycles.

The algorithm above can be interpreted at the level of Gauss diagrams.
In Figure the left part depicts cycles found around a classical crossing
while applying the algorithm to a flat link diagram. The bijection between
the link diagram and the Gauss diagram extends to the colouring of the
paths onto which the 2-cells are to be pasted around the chord of the Gauss
diagram on the right.

E d + C

! -

| a b

E c b

: —_—
E d - a

Figure 14: Bi-colouring of a Gauss diagram.

Moreover, to a Gauss diagram G, with cr(G) crossings, and a b(G)
number of colours for the bi-colouring, one can draw the corresponding
virtual link on a surface of genus g(G), called the Carter genus of G where

g(G) = (cr(G) — b(G) + 2)/2.

The minimal Carter genus over all diagrams of a link is called its Ku-
perberg genus, in reference to [32].

Definition 4. An abstract link is a pair (K,X) consisting of a surface X
made of disks containing classical crossings, linked by bands which are

15
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coherently oriented, such that every band contains a part of the knot
diagram K.

Given a virtual link diagram K, obtain a canonical abstract link dia-
gram, the pair (K, Ck) by gluing parts of surfaces around the diagram as
illustrated in Figure [I5 For virtual crossings, it does not matter which
part of the surface is drawn to cross over as one is not concerned with
the embedding of the surface Cg in space. The boundary of Ck is a dis-
joint collection of circles. As in Carter’s algorithm, glue disks along those
boundaries. By a result in [28], this yields a compact oriented surface of
minimal genus that supports K.

Definition 5. Given a virtual link diagram L, the band surface associ-
ated to the abstract link interpretation of L is denoted C;. The Carter
surface for L is Cy,.

K AKX

Figure 15: Construction of the canonical abstract link diagram.

In [9], a simple criteria was given to determine if a signed Gauss di-
agram with one core circle corresponds to a classical knot diagram. It
combines the index of the crossing, computed as the sum of signs in one
half of the smoothed diagram, with the sum of the signs in the intersec-
tion of halves of the diagrams obtained by smoothing two distinct chords.
The numbers are then arranged in a grid called the incidence matrix. A
diagram is planar if and only if that matrix vanishes. In the sequel, [10],
the criteria is refined and applied to unsigned Gauss paragraphs. That is,
to diagrams of free links.

Unfortunately, both of these planarity criteria are sensitive to Reider-
meister moves.

2.1.1 Index and virtual linking numbers

Let Dy, Dy C L be two components of a virtual link diagram D. The virtual
linking numbers of Dy and D, are vlk(Dy, D), the sum of the signs of

16
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the crossings where D; goes over Do, and vlk(Dy, D), the sum of the
signs of the crossings where D; goes under Dy. Generally, those numbers
are different. Then, the index of a crossing p in a knot is defined to be
I(p) := vIk(D;, D,) — vIk(D;, D;f) where D and D are as in Figure
and w(p) is the sign of the crossing.

The classical linking number of two components is defined to be half
the sum of their virtual linking numbers. These virtual linking numbers

are similar to the definition of the incidence matrix in [9].

2.2 Parities for virtual knots

In the introduction, the index of the crossing of a knot was used to compute
decorations taking value O or 1, called the parity of the crossing. Parities
are families of maps, one for each diagram of a knot, sometimes decorated
by the diagram they are computed on.

Definition 6 ( [38]). Let ¥ be a map assigning 0 or 1 to the classical
crossings of some diagrams D and D’ of a virtual knot. Then, ¥ is a
parity if the following hold.

(V1) If D and D’ are related by any Reidemeister move, and ¢ € D is a
crossing which is not involved in the move, then Yp(c) = Yp(c’), where
¢’ € D' is the crossing corresponding to c.

(¥2) If c1,co € D can be removed by a RM2, then ¥p(cy) = ¥plco).

(V3) If crossings c1,co,c3 € D can participate in a RM3 mapping them
to cj,cy,c5 € D' respectively, then ¥plci) = Yplc;) for i = 1,2,3, and

Yplcr) + Ppleo) + Pples) + 1.

Moreover, [38] takes the approach that knot diagrams are objects in a
category corresponding to the knot class, and that the Reidemeister moves
and detour moves are the morphisms between those objects. As such,
projections are functorial maps between the knot categories, and are in
bijective correspondence with the weak parities which generate them. In
that paper three main weak parities are defined:

1. the trivial parity for which any crossing in any diagram is odd;
2. the null parity, doing the opposite by calling every crossing even;

3. and finally, the homotopical parity.
Given a Gauss diagram G, a diagram obtained by erasing some or all
of the arrows of G is called a subdiagram of G. The process of creating

the subdiagram consisting of exactly the even crossings of G according
to some parity f is called projecting G with respect to f. That diagram

17
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is denoted P¢(G), and Py is a parity projection map. Stable projections is
denoted P*°(G) and is the result of iterating this map until the resulting
diagram has only even crossings.

The effect of removing an arrow from a Gauss diagram is seen at the
knot diagram level in Figure [7]

<

XXX T

Figure 16: Projecting classical crossings to virtual crossings.

The fundamental property of projections is presented in Lemmal[7} Sev-
eral special cases are proved in papers, but the general technique is shown
in Section 8 of [7].

Lemma 7. Let G and G’ be Gauss diagram that are related by a sequence
of Reidemeister moves, and f be a parity. Then Ps(G) is Reidemeister
equivalent to P¢(G’).

Multiple important results are proved using parities and projections.
Amongst them, the most notable are:
1. Any non-trivial parity is null on classical knot diagrams.

2. The minimal number of classical crossings for a virtual knot can be
realised on a minimal genus surface.

3. The minimal bridge number of a virtual knot can be realised on a
minimal genus surface.

The first statement comes from [35], while the latter two appear and are
proved in [34].
2.2.1 Gaussian parities

Gaussian parities are the basic examples of parity. Let n € N, and ¢ € K
for some knot diagram K. Then,

pnlc

) = 0 if I(c) = 0 mod n and,
|1 otherwise.

The absolute Gaussian parity of a crossing is 0 if and only if that
crossing has index 0. Its associated stable projection maps virtual knots
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to almost classical knots and acts trivially on AC knots. It can be used to
lift invariants defined on AC knots to all virtual knots [25]. In particular
this means that an alternative definition of an almost classical knot is one
which admits a diagram where all the crossings have index 0.

Gaussian parities are invariant under crossing changes, but not under
either forbidden moves. A particular case is po which is also invariant
under both virtualizations.

2.2.2 Homotopical and homological parities

This section assumes some familiarity with basic concepts in algebraic
topology, including the fundamental group and homology

The homotopical parity is a weak parity defined as follows. Given an
oriented knot diagram D of a virtual knot K on a surface X, such that the
genus of X is the minimal genus of surfaces on which K can be repre-
sented, crossing ¢ € D is called even if and only if there exists k € N such
that [D}] = [D]* € m (X, c), where D} denotes one of the two curves in X
obtained by smoothing K at ¢, chosen as in Figure [1§

Theorem 8 (Projection to classical knots, [38]). The stable projection with
respect to the homotopical parity of any virtual knot K is a classical
knot.

This parity can be defined for flat knots since [D}][D;] = [D], hence
[D7] = [D]'~%, and the choice of a component of the smoothed link was
inconsequential.

It is important that the surface be of minimal genus for the virtual knot
concerned. It is easy to see that by taking the example of a representative
of the trefoil given by the braid 613 € By, drawn in a square with opposite
sides identified to create a torus. Then, every crossing of this knot is odd
with respect to the homotopical parity.

However, one can weaken the homotopical parity by calling crossings
even if and only if there exists a rational number q such that [D}] = q[D] €
H; (X, Q), where Hy(X,Q) is the first homology group with rational coef-
ficients. In that case, the crossings of the trefoil are even when drawn
winding around a torus in the way described previously. Call this function
the homological parity. The next theorem shows that this satisfies the
weak parity axioms.

Theorem 9. Let D be a knot diagram on a closed compact orientable
surface X of of minimal genus for the virtual knot represented by D.

19



M.Sc Thesis - R. Gaudreau; McMaster University - Mathematics

Then, if hp denotes the homological parity, it respects the weak parity
axiom over the Reidemeister moves that keep the knot on .

Proof. Reidemeister moves do not change the homology class of the knot,
hence they do not affect the homological parity of crossings that do not
participate in them. This verifies (¥4) from Definition [6}

For an isolated crossing a, either [D}] = [D], or D/ is a contractible
loop on the surface, since for the genus of ¥ to be minimal, it need be
obtainable by Carter’s algorithm, which would paste a disk in the region
delimited by a loop created via RM1, hence hp(a) = 0. This is property
that holds for many parities.

For crossings b, c removable by a RM2, [D;] = [D{] if smoothing both
crossings with respect to orientation yields the diagram that would be ob-
tained by performing a RM2. Otherwise, smoothing both crossings cre-
ated a three component link, and [D;] = [D;], but the crossings still satisfy
hp(b) = hp(c), hence (¥s) holds.

For a RM3 move, involving crossings ci,co,c3 in D, bringing them to
cj,cy,cx € D', it suffices that the parity depends only on the flat knot,
and thus that the equivalent of the RM3 can be applied to the diagram
after a smoothing for any configuration of orientation. To check that it
is impossible that exactly two of the crossings ¢y, co, c3 involved in some
RM3 be even, assume that both ¢4 and co are even. Then, since there
exists signs €1, €z and €3 such that [D¢!] + [DE] + [D&E] = [D], it must be
that c3 is also even. This is easier to see looking at the preimages of the
halves in the Gauss diagram of the knot. This shows that the third part of
the definition of a parity, (V3) is satifies, and finishes the proof. QED

Question 1. How does the projection of a knot with respect to the homo-
logical parity depend on the Carter genus of the diagram?

Question 2. Can the homological parity be defined for virtual links?

2.2.3 Cohomological parity

In this, for two virtual knot diagrams, Ky =, Ko means that there exists a
finite sequence of extended Reidemeister moves bringing K4 to Ko. The
same symbol is used throughout to denote a knot diagram in the disk with
virtual crossings, and a knot diagram on a surface with the same GD. The
notation introduced in Definition [5] is used extensively.

In [34], V. O. Manturov defines a parity, called cohomological for knots
in a surface X of fixed genus g, with respect to some simple closed curve
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v € X. Let K be a knot diagram such that Cx = %, but such that there exists
K’ =, K with a Carter surface of lower genus. The parity is constructed
by first selecting a simple closed curve y C X which is non-separating, but
for which there is a diagram K which is obtained from K by Reidemeister
moves on the surface, and which does not intersect 7.

Full details for the claims made in [34] are provided here, upon the
request of M. Chrisman.

Proposition 10. If ¥ is a non-separating simple closed curve in Ck, then
it must intersect K.

Proof. First, since v is not separating, it must be that g(Cx) > 0. By
construction, Cx has the minimal genus such that K can be realized. So it
admits no destabilization away from K, and in particular, no simple closed
curve is disjoint from K. As a curve, one says K fills ¥ if and only ¥\ K
is a disjoint union of disks. By the above, it is equivalent to saying that any
non-separating simple closed curve on X intersects K. QED

Proposition 11. If g(Cx) is not the Kuperberg genus of the virtual knot
represented by K, then there exists a sequence of Reidemeister moves
in Cx to a representative K of lower genus.

Proof. Consider K as a knot diagram. It suffices to check how each Reide-
meister move influences the band surface associated to the knot diagram.
As previously, stabilizing and destabilizing RM2s are the only moves which
can affect the genus of the Carter surfaces of the respective diagrams.
Then, there must be a pair of crossings of K that can be cancelled by a se-
quence of Reidemeister moves which concludes with a destabilizing RM2,
but no stabilizing one.

It suffices to take any sequence of moves which cancels the mentioned
pair, and replace any stabilizing RM2 by a similar looking RM2. This
is a parity projection, hence it preserves the rest of the sequence, possi-
bly changing some RM3 moves to mixed moves or a RM3-like operation
where all crossings are virtual. These moves can be seen in Figure [g The
result is a sequence of diagrams with a fixed Carter genus, except for the
very last one that lowers the genus. QED

In particular, when choosing 7 to go around the handle created by a
sequence of essential virtual Reidemeister moves and RM2, the knot can
be changed to avoid it, and the cohomological parity with respect to 7
behaves as desired. A crossing c in K is called odd for the cohomological
parity if and only if there is a component of the link obtained by smoothing
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K at c with respect to the orientation which intersects v an odd number
of times. Let the projection associated to that parity be denoted by P,.

Proposition 12. Let 7, K and K be as above. Then, P,(K) =, K.

Proof. The general case is that 7 is located close to a single extraneous
clasp. Without loss of generality, ¥ N K consists of exactly two points. Then,
in the Gauss diagram, one can denote the intersection by two open circles,
and there are exactly three cases of smoothings. Either one smooths one
of the crossings of the clasp, or a crossing with a chord which intersects
them, or one which does not intersect the clasp.

A crossing is removed by P, if and only if it is forming the clasp. To
check this, consider the GD associated to K. The intersection of y with K
can be recorded as some distinguished points on the GD, close to one part
of the clasp. Smoothing any crossing which isn’t in the clasp either yields
some half of the diagram which contains none of the distinguished points,
or both of them. The latter happens exactly when the chord intersects the
clasp’s crossings. Hence, P, (K) =, K =, K.

Notice that there could be multiple extraneous clasps intersecting 7,
and in that case the projection removes them all at the same time. QED

2.3 Almost classical links

A knot which admits a diagram where every crossing has index zero is
called almost classical, or AC, in analogy to classical knots having this
property. The term initially was used for virtual knots admitting diagrams
which are evenly intersticed [29]. However, those have since been renamed
checkerboard colourable knots, freeing up the term for a smaller class of
knots.

For AC knot diagrams, the Alexander numbering can be extended to
regions of the Carter surface, such that adjacent regions separated by an
arc of the diagram oriented up are numbered A on the left and A + 1 on
the right, for some A € N, for all arcs in the diagram. This follows from
smoothing each crossing of a numberable diagram with respect to orien-
tation and noticing that each component inherits a unique label.

From this, one can define almost classical oriented links to be virtual
links which admit a diagram D on a closed orientable surface such that
¥\ D is numberable as above. This definition is derived from the definition
of a checkerboard colourable virtual link in [g].
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Unfortunately, the notion of index does not extend so well to virtual
links. Some crude parities have been defined for virtual links. For ex-
ample, calling all the mixed crossings odd, then computing the index of
the internal crossings of each component by treating them as stand-alone
knots. This is a weak parity since any situation where arcs from three dif-
ferent components interact in such a way that one could perform a RM3,
all three crossings are odd. If the three arcs come from exactly two differ-
ent components of the link, then there will be two mixed, hence two odd
crossings. The third crossing may be even or odd depending on the rest
of the link.
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3 Braids

Although they are conceptually simple,

the braid groups [...] will undoubtedly continue

to supply us with surprises and fascination...

- P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest, [16].

Braid groups were defined in Section [I.2] The goal of this section is to
recall known parities for braids, and introduce new ones, while discussing
their applications.

3.1 Braid diagrams
3.1.1 Carter surfaces

Most of the construction of Carter surfaces can be translated to work
on braids. However, since strands have endpoints, some of the boundary
components are not closed. In [14], this was solved by first drawing the
braids as connecting the boundaries of a cylinder, and then adding handles
as needed to support the virtual crossings. However, this creates some
loss of information as there are non-classical braids that can be drawn
on thecylinder, and formally nothing stopping the strands from cyclically
permuting at the boundary. A solution is to force the braid diagram to live
in a square. Then, the boundaries of the band surface are made to follow
the boundary of the disk when they encounter it. Gluing the vertical edges
of the square gives the construction in [14], while glueing the horizontal
edges together and filling the resulting boundaries with disks yields the
standard closure of the braid in a surface.

Y

Figure 17: A virtual braid on its band surface.
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3.1.2 Braid closure

Let S be the one point compactification of R®. Then, a knot with a regu-
lar projection to the xy-plane in R is said to be in braid form if it winds
monotonically around the z-axis. Such a diagram can be “cut” by any half-
line from the origin not intersecting a crossing to create a braid diagram
whose closure is the knot. The converse construction is to start with a
classical braid diagram S in a square, identify its top and bottom edges to
create an annulus. Embed that annulus in R3 such that it is linked with the
z-axis, and resolve the crossings. The resulting link is called the standard
closure of B and is denoted B. In that case, the z-axis is called the braid
closure axis, and once R’ is compactified, that axis becomes an unknot in
S3.

Abstractly, virtual braid diagrams can be closed to obtain virtual link
diagrams by connecting the top ith endpoint to the bottom ith endpoint,
in a manner which does not create extraneous crossings. A number of
operations can be applied to change a braid while preserving its closure.

—
N

1. Conjugation: given «a, B € vB,, aBa~! = B.
2. Stabilization: Eci\n = B/ci\n“1 = ﬁ/r; =B.

This list is not exhaustive.

3.1.3 Bound for the virtual crossing number

In [6], it is conjectured that there exists an upper bound on the virtual
crossing number depending on the classical crossing number.

Given a Gauss diagram G with ¢ crossings representing a virtual link
L, it is always possible to construct a link diagram which would yield that
exact diagram. In fact, that link diagrams can even be the closure of
a braid in vBy.. For each chord in G, draw an appropriate positive or
negative crossing in the braid, such that the nth crossing is between the
2n — 1st strand and the 2nth strand. Then, add virtual crossings such that
the closure of the braid would encounter the crossing in the order dictated
by G. This is quite similar to the approach to creating link diagrams from
Gauss words presented in [27].

This yields an upper bound on the number of virtual crossings needed
to represent a virtual link. Without loss of generality, ¢ is the minimal
number of classical crossing in any diagram of L.
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Assuming that virtual crossings are always used in the most economical
way possible, the maximal length of a sequence of virtual crossings created
using the technique above is 2c? — ¢, since the first strand from the right
needs to cross (with virtual crossings) at most 2¢c — 1 strands, then the
second one, at most 2¢ — 2, and so on.

This gives a positive answer to the conjecture mentioned above.

In [33], Manturov constructed a family of knots whose virtual crossing
number grows quadratically with respect to their classical crossing number.
By the bound above, it is the fastest possible growth rate.

3.2 Braid parities

Much like for links, it is not clear how to define the index of crossings
in a braid. This immediately rules out the possibility of defining Gaussian
parities for braids.

3.2.1 Knots in the solid torus

In [19], the notion of fype for a crossing is defined. Starting with an
oriented link K N F ¢ S® where K is a classical knot and F is an unknot,
a crossing ¢ of K is of type w(K}, F) mod 2 where K} is the half of the
knot obtained by smoothing K at ¢ with respect to orientation and selecting
the component where the understrand is smoothed to the overstrand, and
w(K1, Ko) is the sum of the signs of the crossings between the two knots.
The assignment of a type is a parity for the knot in the solid torus S°\ F.
One can consider the addition of a linked yet unknotted component to a
knot to be a parity, albeit a non-canonical one. As such, the projection it
generates fails to have the functorial behaviour that is expected, and it is
non-trivial on classical knots, which, in a way would contradict the ideas of
[25].

However, the choice of the addition of an unknotted linked component
to a knot is quite natural when that knot is in braid form, and the accessory
component to the parity is chosen to be the braid closure axis, as defined
in Section [3.1.2] Alternatively, that parity has been generalized to virtual
knots in certain cases under the name cohomological parity in [34], and as
discussed in Section

Combining these two ideas, one obtains a parity for virtual braids, called

toroidal. Let B € vB, be a braid which closes up to a knot. A classical
crossing ¢ € B is even with respect to the toroidal parity, denoted t(c) = 0
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‘%( D, \.ij

Figure 18: Oriented smoothings.

if and only if both halves of ., have an even linking number about the
braid axis. Otherwise, t(c) = 1. Notice that if n is odd, then this parity is
trivial and all the crossings are odd.

Proposition 13. The toroidal parity is invariant under conjugation, but
not stabilization.

Proof. By definition, the toroidal parity is an invariant of knots in the thick-
ened torus. QED

Question 3. What is the structure of the set of braids 8 € vB, such
tic) =0 for all c € B?

3.3 Braids and almost classicality

From the point of view that geometric braids are a special case of tangle,
the disk-band surface of a braid diagram B was constructed in Section 2.1]
to have the support of a boundary annulus, causing its closure by disk to
be an orientable surface with S! as its boundary. In the case of a classical
knot, such a surface admits an Alexander numbering. An obvious result
states that a braid in B, can always be numbered using all of 0,1, ..., n.
This is illustrated by Figure

3.3.1 Braid presentations of AC knots

As for knots and links, arcs of a braid diagram consist of subsets of the
strands that are delimited by classical crossings. Again, an Alexander num-
bering of a braid is a choice of integer label for each arc such that the value
of the label changes by +1 when traversing a crossing towards right (since
it is assumed crossings are oriented down), and by —1 otherwise.
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Figure 19: A fully numberable braid diagram if 8 is classical.

Definition 14. A braid 8 € vB, is called partially numberable if its arcs
admit a consistent Alexander numbering at each crossing. The initial
labels on each strand are possibly independent of each other.

The stronger requirement that those numbers extend to the region of
the surface supporting a geometric diagram of 8 corresponds to 3 being
totally numberable or almost classical.

The braid index of a link L is the minimal n such that there exists
B € vB, with 8 representing L. The crossing number of the link is the
minimal number of classical crossings in a diagram of it.

Proposition 15. Any almost classical (AC) knot K can be represented by
a partially numberable braid. Said braid can be made to obtain either
the braid index of K or its crossing number.

Proof. It suffices to construct the expected braids. In the first case, ap-
ply the absolute Gaussian parity projection to a diagram with the minimal
braid index in order to obtain a partially numberable diagram. The num-
bering comes from the fact that the closure is an Alexander numberable
knot, due to having only crossings with index 0.

For the second claim, use the construction in Section [3.1.3] QED

3.3.2 Failure of numberable n-braids to form a group

The main problem arises when trying to multiply two partially numberable
braids together. If a braid a € vB,, did not arise from an AC knot or link,
it is possible that even if « is partially numberable a? is not. For example,
let a = 0171 € VBy, as in Figure [17]
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This problem comes from the fact that the closure is not AC since the
arcs on the top and bottom of the braid have different numbers. One
should then choose an appropriate definition of a subgroup of vB, which
contains B, and depends on the colourability of its elements. A possible
choice is the set of totally numberable braids. It follows quickly by their
definition and the structure of the supporting surface for braids that the
numbering of the ith strand from the left at both the top and the bottom
of the braid needs to be i (up to a global translation of the indices). This
is illustrated on the left of Figure [19 since the numbering of the region
changes by +1 when crossing an arc positively, which would be, for a braid
diagram from left to right.

Theorem 16. Any almost classical abstract braid diagram has genus 0.

Proof. Assume that the ith strand at the top of the braid f € vB, has
Alexander number i for alli = 1,2,...,n. Then, since every crossing satis-
fies the numbering condition, it means that the first classical crossing of 8
is between the kth and (k + 1)st strands such that the kth strand goes left
to right. After that crossing, the ith strand is still numbered i. By a similar
argument, the following classical crossing can also be realized without vir-
tual crossings. In fact, if there was to be a virtual crossing which cannot
be pushed down nor cancelled with another crossing, the following classi-
cal crossings would fail to be numberable, or, if it was located after every
classical crossing, then the numbers along the bottom of the braid would
not be sequential, and the numbering would fail to extend to the regions
of the Carter surface bounded by the braid diagram. QED

This answers a question asked by B. Audoux.

3.3.3 Checkerboard colourable braids

Definition 17. A virtual braid is called checkerboard colourable if it
has a representative which admits a full Alexander numbering modulo
2. Denote this set by cBy,.

As a set, cB,, is generated by the sets {o; ?:"11, and {vi;}i<ji-j=,0 where

the o; are the same generators as above, and v;; is a virtual braid corre-
sponding the permutation of the ith and jth strands, fixing the rest of the
braid.

Similar to B, having the normal subgroup P, of pure classical braids,
the subset cB,NvP,, is denoted cP,,, and called the checkerboard colourable
pure braids.
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Figure 20: A checkerboard colourable braid which fails to be AC.

Theorem 18. Let n > 2. Then, cB, is a proper subgroup of vB, which
itself properly contains By, and cP, is a normal subgroup of cB,.

Proof. It suffices to find an element of ¢B,, which isn’t in B,,. Let n > 2.

Fix B := v 3 = TyTo1y, then B € cB,. However, since it contains no
classical crossings, and is not the identity braid, 8 ¢ B,,.

Similarly, 11, as a braid in vB, fails to have a checkerboard colouring,
hence cBy, is a proper subgroup of vB,,.

To show that cP, is normal subgroup, it suffices to recall that vP, is
normal in vB,. Then, for every a € vP,, and v € c¢B,, yay~ ! € cBy,
since « is, in particular in cB,, which is closed under multiplication and
inverses. But since « is also vP,, which is normal in vB,, 7057‘1 € vhb,.
Hence yay~! € cP,, making this a normal subgroup of cB,. QED

A more complex example is drawn, with its checkerboard colouring
in Figure 20l Taking that diagram and trying to number it as one would
an AC braid, the numbers at the top of the diagram are forced to be as
shown. Then, following each strand, number the arcs by adding +1 if the
strand is going right at the crossing and —1 if it is going left. This yields
the final numbering of 3,2, 3,2 at the bottom of the braid, hence this braid
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is not classical. Unlike for links where a diagram not being numberable
is not enough to conclude that no numberable diagram exists, for virtual
braids the numbers at the bottom are invariants under all allowed moves.

3.3.4 A checkerboard parity

One could hope that since cB, is a proper subgroup of vB,, there may
be a parity for virtual braids whose associated projection is onto cB,, and
which acts as the identity on that subgroup. Consider the following candi-
date for such a parity.

Let B is vB,. Mark the even numbered strands at the top of the braid.
Let ¢ € B be a classical crossing; k(c) = 1 if and only if exactly one of the
strands crossing at ¢ is marked. Otherwise, k(c) = O.

Theorem 19. The function k satisfies the parity axioms.

Proof. Since this is defined for braids, there are no isolated crossings.
The only cases of RM2 moves are 0;0; ! and o; '0;. In both cases, it is
immediate that the crossings are between the same two strands and hence
k takes the same value on both of them. There are eight cases of possible
markings for RM3 moves, but in all of them, it suffices to check that in fact
the value of k depends only on the strands that are crossed together, and
not on the order of the crossings. Moreover, if either all or none of the
strands taking part in the move are marked, all the crossings are even. If
one one or two strands are marked, only the crossing between the strands
that are both marked or unmarked is even, and the others are odd. In
particular, this means Kk is not a weak parity, since it is impossible that all
three crossings in a RM3 be odd. QED

Notice that this parity is non-trivial on classical braids, and is precisely
the opposite of the kind of functions that would generate a projection to
cB,. Ideas from linear algebra tell us that if there is some way to make
braid groups into vector spaces (see for example the representations fea-
tured in [3]]) then this projection admits an orthogonal complementary pro-
jection which is the identity in cB,.

Question 4. Does there exist a parity f on virtual braid diagrams such
that Ps(B) is checkerboard colourable for all B € vB,, and Psla) = «a
whenever a € cB,?

It is possible that the technique used in [35] can be modified to yield the
desired parity.
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4 String Links

Our results involve a mixture of topology, algebra, and
combinatorics.
- N. Habegger, and X.-S. Lin, [23].

String links are a special type of tangles which do not have closed
components, and which connect ordered points on an interval to the point
of the same order on another interval. They are the generalization of long
knots to links which were first introduced, at least in the classical context,
by Habegger and Lin, [23]. Virtual string links, like virtual links, have both
classical and virtual crossings. The set of classical string links on n strands
is represented by such tangle diagrams up to classical Reidemeister moves
of GDs which remain bounded by the lines supporting the endpoints of the
strands. It forms a monoid under concatenation denoted by SL,. String
link diagrams in I x I are oriented from the top boundary to the bottom
one. Concatenation is the unique binary operation on SL, mapping two
tangle diagrams to a single one by contracting them by a factor 1/2 in
the vertical direction an stacking them in the unit square, identifying the
bottom boundary of the top tangle to the top boundary of the bottom
tangle. This operation is not commutative, and not invertible. It does have
an identity element, the trivial string link consisting of n vertical strands.

As one might expect, string links are easily represented as Gauss dia-
grams on n core intervals with a finite number of signed arrows [2]. Like
the virtual pure braids, there is no need to indicate a permutation induced
by the link. Unlike braids, the chords of the Gauss diagram of a virtual
string link need not be horizontal, and may even go from one core interval
to itself. Such a chord corresponds to a self-crossing. Crossings between
different strands of a string link are called mixed. The set of those Gauss
diagrams up to Reidemeister moves is called vSL,. Analogously to other
virtual objects, virtual string links admit diagrams with classical and virtual
crossings.

Define quotients of vSL, by the relations introduced in Section [1.2]
Allowing the OC move on vSL, gives the welded string link monoid de-
noted wSL,. Another possible quotient of vSL, is fSL,, the flat virtual
string links. It is obtained by allowing the CC move. A classification of
flat virtual pure tangles, which includes fSL, has been done in [13]. Notice
that since crossing change is an unknotting operation for classical links,
classical string links are flat equivalent to the identity string link.

In [2], many other quotients of the virtual string link monoid are defined.
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For example, vSL}, virtual string links where crossings within any given
strand are allowed to be made virtual or classical at will. Such a move is
almost impossible to code from the point of view of elementary tangles,
hence it is preferable to see this from the point of view of GD where mixed
crossings are visually different from self crossings.

4.1 Almost classical string links

It suffices to construct a surface which adequately — that is, minimally —
supports a virtual string link to be able to define almost classicality for
elements of vSL,. Unlike the braid cases, there exist non-classical virtual
string links which admit an Alexander numbering. For example, take any
long AC knot in vSL4. For classical knots, the choice of a basepoint to pull
to infinity is immaterial. It it possible to move it by pulling the first strand
crossing the knot on the left over (or under) the whole diagram if the knot
encounters that strand by going under (respectively over) it. However for
virtual knots, the Kishino twists [24] shows that the choice of basepoint can
radically change the nature of the long knot obtained. The Kishino twist
T is a non-trivial long virtual knot whose closure is the unknot.

To construct a string link from a link, one needs to choose a basepoint
for each component and then an ordering for those points.There are such
choices on classical links which yield string links that do not admit an
Alexander numbering.

The construction of a Carter surface is entirely analogous to the braid
case, and the concatenation of elements in the monoid extends to glueing
part of their Carter surfaces together, and again, the existence long AC
knots allows for the definition of a non-classical AC subset of vSL,, denoted
acSL,. To show those are not equivalent to SL, for all n, it suffices to
take a long, non-classical AC knot as an element of acSL4, and iterate the
use of the standard embedding map from vSL, to vSLg,1 which adds a
vertical strand to the right of a string link diagram. This is an obvious
generalization of the embedding of By in By.1.

4.1.1 Checkerboard colourable string links, cSL,

Using the construction of a band surface for virtual string links, which
includes, as it did for braids, an annulus “frame’, one can define the sub-
monoid ¢SL,, C SL, C vSL,, consisting of those string links which admit
a checkerboard colouring. Because of the requirement that string links be
pure tangles, meaning that the i-th string of the diagram D C I x I connect
(i/(n+1),1) to (i/(n + 1),0).
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Question 5. Is there a parity projection whose image is acSL,? cSL,?

The results in this section so far, when combined with some observa-
tions from [2] can be summarized in a single statement:

Proposition 20. Let each of the following maps be the inclusion induced
by the identity map at the level of Gauss diagrams. Then, P, — SL, —
cSL, — acSL, — vSL, are injective but not surjective maps.

4.2 Other string link parities

Since string links are a generalisation of pure braids, defining parities for
them has all the same problems that were discussed in the previous section
about the absence of an index. The toroidal parity easily extend to string
links, but since they never induce a permutation of the strands, it is the
trivial parity, which calls every crossing even. As for the checkerboard
parity, it extends by setting self-crossings to be even.

4.2.1 A non-unique definition of index for string links

As vSL, contains braids, a natural notion of closure of string links to or-
dered links arises. However, like all tangles, there are other ways to close
them. Let A € vSL,, ignoring the orientation of strands, define the stifched
closure A to be the knot obtained by first adding an unknotted strand to
the right of A if n is odd, then glueing the top of the 2i — 1th strand to the
top of the 2ith strand, and the bottom of the the 2ith strand to the bottom
of the 2i + 1st strand. Finally, connect the bottoms of the first and last
strand.

One can then compute the index of crossings in A and define the index
of a crossing in A to be the index of the corresponding crossing in the
closure. Of course, any other choice of closure gives an equally valid
index. However, this technique does not commute with multiplication in
vSL,. It remains to show that this index generates the expected parities.

Theorem 21. Let A € vSL,. Then, any parity f arising from the index
of chords in A lifts to a function f* which assigns 0 or 1 to crossings of
A and respects the parity axioms.

Proof. Let co be an isolated crossing in A. Then, & is the corresponding

crossing in A and it is also isolated since the stitching is not adding cross-
ings, nor cutting the strands. Actually, this exact same argument works
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for every other Reidemeister move, since they are local. In fact, the only
subtle point is that when closing a string link, there are more moves that
can be done. QED

Notice that a string link with no crossing with non-zero index need not
be AC as according to the definition coming from numbering the surface.
For example, the braid in Figure [I7] closes to the unknot, but it is not AC
as a string link.

Previously, there were only two non-trivial parities for string links, both
of which defined from lifting parities from the standard closure of the
string link to a link. In [25], they define a link parity by calling any crossing
which is between two different components odd (and in general, it is called
mixed), and any self-crossing even. The induced projection maps vSL, to
vSL{, where vSL is equivalent to the theory of long knots, and the power
denoted the disjoint union of such knots. The other parity for virtual links
is from [26], and is constructed in many steps.

4.2.2 A dynamical parity

In [2], the authors ask a number of questions. The first of them,
Does SL, embed in vSL, or wSL,?

is partially answered by the following theorem.

Theorem 22. If L and L’ are two classical string links which are equiv-
alent as elements of vSL,. Then, they are equivalent as elements of
SL,

Proof. Let L = Ly — Ly — ... —» L = L’ be a sequence of string link
diagrams where L;,4 is obtained from L; by a single Reidemeister move.
Using cohomological parity with respect to every handle, project back to
a classical string link at each step. The cohomological parity does not
change the string link type since handles can be avoided by the string link,
due to the assumption that it is classical. QED

The implied oddness of the crossings which would change the Carter
genus of the diagram is a kind of parity, which is deemed dynamical since
it depends on the sequence of diagrams.
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4.3 An application of virtual linking numbers

So far, the “stringy-ness" of the elements of the various monoids has proved
to be a contrasting characteristic from the closure of these elements. Let
uwSL, be the set of virtual string links on n strands where, atop the
standard Reidemeister moves, both forbidden moves are allowed.

4.3.1 Cobordism

Combinatorially, virtual link cobordism is an equivalence relation gener-
ated by births (creation of unknotted components disjoint from the link),
deaths (erasing an unknot disjoint from the rest of link), and saddle moves
(see figure such that a sequence of these moves and Reidemeister
moves maps components to themselves set-wise, and the initial and final
number of components are equal.

———
\_/ '
'

s . s

..... H . H
‘
'
/\ H

——

Figure 21: Saddle move (S).

This apparently complex theory has a simple classification theorem.
Moreover the idea of cobordism is very topological, and the name itself
refers to the equivalence relation being realized as the disjoint union of
two links forming the boundary of an orientable surface. For virtual string
links, the appropriate topological interpretation is a bit more abstract.

Theorem 23 ([12]). Equivalences classes of links up to virtual link cobor-
disms are completely classified by pairwise virtual linking numbers.

As defined in Section to any pair of components, there is a pair of
virtual linking numbers. The definition of virtual linking number extends
naturally to the strands of virtual string links.

4.3.2 Structure of the the unwelded link monoid

Compare the classification of virtual links up to cobordism to this theorem
about unwelded links.
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Theorem 24 ([5]). Any unwelded link is isotopic to the closure of an
element of uwbpb,,.

Both of these results can be strengthened to apply to virtual or un-
welded string links.

Theorem 25. Let Ly and Ly be virtual string link diagrams. Then, the
following are equivalent

1. Ly is cobordant to Lo,
2. Ly is unwelded equivalent to Lo,

3. The pairwise virtual linking numbers the components of Ly equal
those of Lo.

Proof. All three statements are proved by putting the Gauss diagrams of
the string links in a standard form. Using either cobordisms, in Figure 22]
or forbidden moves, in Figure @ any chord can commute with any other
chord.

> D @ -} _
- k) - E)) . Y, —
r T

Figure 22: Commuting crossings with a cobordims

For cobordisms, the signs of the arrows in Figure 2] is suppressed
since it is irrelevant.

In the unwelded link case, two arrow feet and two arrow heads already
commute. Only one mixed commutation is illustrated, but all other cases
follow similarly by using an appropriate sequence of moves.

7 .

— RM2 _l< OcC, UC —K RM3 RM2
— — — —
+

¥ —+ ¥ + — —+ = =

Figure 23: Commuting crossings using both forbidden moves.
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The first step towards the standard form is to delete any self crossing by
isolating it and performing a RM1. The second step is to collect the arrows
where the first component goes over the second at the top of the string
link, then those where the first component goes over the third, and so on.
The ith such layer consists of arrows with feet on the ith component.

At that point, arrows can be further commuted such that each group
of crossing i over j consists of arrows all having the same sign. That
sign, times the number of such crossings is vIk(C;, C;), where C; is the ith
component of the string link.

In particular, that standard form is a pure braid. QED

This theorem implies both of the classification results for link cobor-
dism and unwelded links that are cited above, simply by choosing a base-
point for each component of those links, and making the link into a string
link in such a way that the basepoints correspond to the points which
would be identified together to form the standard closure. Moreover, the
permutability of the arrows on the Gauss diagram makes the choice of
basepoints immaterial.

Applying a theorem from [39], Corollary 26| follows.

Corollary 26. Any unwelded string link admits a monotone representa-

tive, hence uvSL, is isomorphic to z?nn-1),
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Conclusion

New parities can be used practically in all problems, where
parities were previously applied.
- V. 0. Manturov, [35]

By now, it should be clear that the applications of parities are as varied
as their constructions can be. From a local, combinatorial assignment
of a binary value, the global structure of classes of knotted objects was
revealed. For convenience, the open problems featured in the main body
of the text are repeated here.

Question 1. How does the projection of a virtual knot with respect to the
homological parity depend on the Carter genus of the diagram?

Question 2. Can the homological parity be defined for virtual links?

Question 3. What is the structure of the set of braids 8 € vB, such
tlc) = 0 for all c € B? Here, t is the toroidal parity defined in Section

.21

Question 4. Does there exist a parity f on virtual braid diagrams such
that P¢(B) or P{°(B) is checkerboard colourable for all B € vB,, and
Ps(a) = a whenever a € cB,?

Question 5. Is there a parity g defined for virtual string links such that
its projection Py has stable image equal to acSL,? cSL,?

Aside from those precise lines of research, parities that were defined in
this thesis can be used in other way. Some research has already been done
towards creating parity sensitive invariants. Invariants of knotted objects
are functions which are, as expected, invariant under the Reidemeister
moves, and sometimes, under some of the other moves that have been
mentioned. As such, is there are two ways to use parity to modify an
invariant. The first way is to consider the sequence of values taken by the
diagrams obtained by applying a parity projection repetitively. The second
depends greatly on the way the invariant is computed, but in some cases,
it is possible to treat odd and even crossings in two different ways. In [30],
Gaussian parities are used to refine some virtual knot invariants.

As by the approach of Habberger and Lin, classical string links are
the building blocks of classical knots. The same relation exists for virtual
objects. Hence, defining and refining invariants for virtual string links is a
fundamental, yet barely studied approach to virtual knot theory.
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