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AbstractVirtual knot theory is an extension of classical knot theory based on acombinatorial presentation of crossing information. The appropriate ex-tensions of braid groups and string link monoids have also been studied.While some previously known knot invariants can be evaluated for virtualobjects, entirely new techniques can also be used, for example, the con-cept of index of a crossing, and its resulting (Gaussian) parity theory. Ingeneral, a parity is a rule which assigns 0 or 1 to each crossing in a knotor link diagram. Recently, they have also been defined for virtual braids.Here, novel parities for knots, braids, and string links are defined, someof their applications are explored, most notably, defining a new subgroupof the virtual braid groups.
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Introduction
The theory of virtual knots is constructed on this combinatorial

basis in terms of the generalized Reidemeister moves.

- L. H. Kauffman, [29].

The classical definition of a knot is that of a smooth embedding of thecircle S1 in the three dimensional sphere S3, up to orientation-preservingambient isotopies. Intuitively, this models a rubber band in space, whichmay have been created entangled. The convenient thing to do to repre-sent such an equivalence class is to construct a decorated 4-valent graph,by projecting the knot orthogonally on a disk, such that the resulting im-mersion of S1 is also smooth, except for a finite number of transversedouble points, acting as vertices, and decorate said double points with overand under crossing information. These graphs are called knot diagrams,and the cyclic ordering of edges around is fixed.
This kind of presentation is very natural and quite familiar as it is heav-ily featured in traditional art all over the world. The part of the knot goingunder a crossing is broken near the part going over it, and the tangentsto the diagram at the undercrossing are colinear and perpendicular to theovercrossing. The ambient isotopies of the embedding of the circle inspace translate to a variety of changes to the planar diagram. The allow-able moves on planar diagrams were fully codified in the 1920s by multipleauthors, most notably Reidemeister [41], hence those operations are calledReidemeister moves. They are illustrated by Figures 3, 4, and 5.
However, the first prominent mathematician to develop the combinato-rial approach to knot theory was C. F. Gauss. In [20], he introduced codes,called intersection sequences which denote the way crossings of a knotare encountered from the point of view of the knot itself. For example,123123 is the code associated to a trefoil, which is the knot denoted 3.6 inGreen’s table [22]. However, the virtual knot 3.7 has the same intersectionsequence, as illustrated in Figure 1.
The crossings are numbered consecutively, and met cyclically as onetravels once along the knot. In 3.7, there are also double points whichare circled. Those are virtual crossings, and they do not appear in theintersection sequence. Crossings that do are called classical. Gauss wasalready aware that there were some limitations on which sequences couldbe produced as intersection sequences of knots. For example, it is essential
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b) 3.7a) 3.6
Figure 1: The inequivalent knots 3.6 and 3.7.

that the sequence be evenly intersticed, meaning that any two occurrencesof the same crossing be separated by an even number of other crossingsin the sequence. Sufficient criteria have since been found. A short historyof the solutions is featured in [11].
Ignoring the requirement that the knot diagram be planar makes theintersection sequence too weak to uniquely define a given knot. Furtherdecorations are added, yielding objects call Gauss words. Classical cross-ings have two different types, distinguished by the sign of the rotationwhich brings the overcrossing arc to the undercrossing one in a way thatthey both point the same way. These positive (+) and negative (−) cross-ings are shown in Figure 2. After numbering the crossings of a diagram,one determines their sign, and writes down the Gauss word as a sequenceof triples consisting of a letter, a number and a sign. The letter O is usedwhen going over a crossing, U when going under, and the sign is that ofthe crossing. The knots in Figure 1 then have distinct Gauss codes O1+

U2+O3+U1+O2+U3+ and O1-U2+O3-U1-O2+U3-.

+ −

Figure 2: Positive, negative, and virtual crossings.
Virtual knot theory involves the study of all signed Gauss words, notjust the ones corresponding to planar graphs, modulo the analogues ofthe three Reidemester moves. The present thesis uses the combinatorial
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ideas of parity, a theory spanned by Gauss’ observation about intersectionsequences, to investigate the different generalizations of virtual knot the-ory, and their differences with classical objects.

The first section contains contains an introduction to virtual knot the-ory, assuming some familiarity with graphs and groups. The second isconcerned with the topological interpretation of virtual knots and links.Finally, the last two sections define parities for braids and string links, andexplore their applications.

Acknowledgments. This thesis is the culmination of over three yearsof collaborating with and studying under the helpful guidance of my su-pervisor, Dr. H. Boden, and his colleague, Dr. A. Nicas. They nurturedmy interest in virtual knot theory and mathematical research by patientlyanswering my repetitive questions, and encouraging me to participate ininternational conferences, schools, and meetings. The 2016 Winter Braidsschool and its organizers were important influence in shaping this writtenwork. Moreover I am immensely grateful to my friends, in particular R.Nieuwenhuis, for believing in me even when I could not.
3



M.Sc Thesis - R. Gaudreau; McMaster University - Mathematics
1 Background material

Like the complex numbers arising from missing roots of

real polynomials, the new generalized knot types appear

as abstract solutions in knot equations that have

no solutions among the classical geometric knots.

- S. Nelson, [37].

1.1 VocabularyKnots are not the only objects that can be represented by 4-valent dec-orated graphs. Let the two dimensional ball be I × I , and T ⊂ I × I bea 4-valent graph with classical crossing decorations at the vertices, andmaybe end vertices, located on the boundary of the ball. Such a T is calleda tangle diagram. If the edges of the graphs can be drawn without inter-section, T is classical. Otherwise, it is virtual. In both cases, edges areassigned an orientation, where opposite edges at a vertex must have con-sistent orientations, that is, an edge oriented towards the vertex must beopposite to one oriented away from the vertex. Certain types of tangleshave special names, which depend on the number C of closed paths, andthe number E of paths with end vertices, and the way those endpoints aresituated. The main vocabulary used here is summarized in Table 1.E C Name1 0 long knot0 1 round knot1 > 0 long link0 > 1 round link
> 0 0 string link1 or braid2
≥ 0 ≥ 0 tangle

Table 1: Vocabulary

1.1.1 Gauss diagramsA Gauss diagram, or GD is a visual presentation of the preimage of a knot-ted diagram. For knots, one can start with the Gauss word corresponding
1If the ith component connects (1, i) to (0, i).2If the components are oriented monotonically down.
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to the diagram, and write it around a circle, going counter-clockwise, topreserve the orientation. Occurrences of the same number are connectedby arrows pointing from the over crossing to the under crossing. The signof the crossing is written near the arrow, usually outside the circle at thehead or foot. Throughout the text, this core circle is drawn with a thickline while the arrows are thinner. Representations of the first and secondReidemeister moves of GDs appear in Figures 3 and 4 respectively.

+ −

RM1ÎÏRM1ÎÏRM1ÎÏ RM1ÎÏ

Figure 3: The first Reidemeister move (RM1).

RM2ÎÏRM2ÎÏ + −

Figure 4: The second Reidemeister move (RM2).

In Figure 5, there are four examples (since ε takes value − or +) ofReidemeister 3 move on the Gauss diagram, when the illustration for themove on a knot or link diagram allows for eight structurally differentchoices of orientations of the parts of the diagram involved. The workof Polyak in [40] shows that the four moves pictured here, along withReidemeister moves of types 1 and 2 are sufficient to generate the otherfour relations.For links, it is possible to write a Gauss paragraph, consisting or acollection of the Gauss words of each component separated by //. Again,from the paragraph one obtains a Gauss diagram by writing each wordaround a distinct core circle and connecting the two occurrences of acrossing with an arrow. Core circles need be disjoint but may be nested.
5
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Definition 1. Let D be a Gauss diagram. If D′ can be obtained from D
by erasing arrows, then D′ is called a subdiagram of D, and it is denoted
by D′ ⊂ D.

Subdiagrams are the building blocks of GPV finite-type invariants in-troduced in [21].In Figure 6, T can be any tangle diagram.
1.2 Braid groupsClassically, braids are tangles consisting of n strands (open components),such that each strand is oriented monotonically from (i/(n+1), 1) to (j/(n+1), 0), for some i, j ∈ {1, 2, ..., n}, and such that for each i and each j , thereis a unique strand starting or ending at that point, and the strands admitcrossings consisting of transverse double points decorated with over andunder crossing information. Braid are defined in terms of braid diagramsup Reidemeister moves 2 and 3, which preserve the monotone orientations,and they can be regarded as elements in the Artin braid group Bn. Astandard reference about that theory is [1].The braid group Bn is finitely generated by the elements {σi}n−1

i=1 , cor-responding to the elementary braid diagrams shown in the first part ofFigure 7. A word in a braid group is represented by stacking the corre-sponding pictures from top to bottom. The algebraic counterpart to theReidemeister moves are the natural σiσ−1
i = σ−1

i σi = 1, and Equation 1.Moreover, ambient isotopies allow Equation 4.The inverse of a braid word is obtained by reading the word backwardsand taking the negative exponent for each classical generator. Geometri-cally, this is a reflection with respect to a horizontal line.The first published reference to virtual crossings is the 1997 paper[18] of Fenn, Rimyáni, and Rourke where they introduce the welded braidgroups wBn, which they proved to be isomorphic to a subgroup of Aut(Fn)consisting of the automorphisms of permutation-conjugacy type. Later, itbecame more natural to see welded braids as a quotient of virtual braidgroups, vBn, however much of the original notation has been preserved.Classical generators are {σi}n−1
i=1 , and virtual ones are {τi}n−1

i=1 , where i =1, ..., n − 1. In vBn, the following relations hold:
σiσi+1σi = σi+1σiσi+1, (1)

6
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RM3ÎÏ

RM3ÎÏ

RM3ÎÏ

ε

ε ε
ε

ε ε

ε

−ε −ε εε

ε

Figure 5: The third Reidemeister move (RM3).

TT
ÎÏ ÎÏ

Figure 6: Virtual equivalent to RM3, and the general detour move.
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σi

. . . . . .

τi

. . . . . .

σ−1
i

. . . . . .

1 i ni + 1 1 i ni + 1 1 i ni + 1

Figure 7: Classical and virtual braid group generators.
τiτi+1τi = τi+1τiτi+1, (2)
τiτi+1σi = σi+1τiτi+1, (3)for i = 1, ..., n − 2, and

σiσj = σjσi, (4)
τiτj = τjτi, σiτj = τjσi, (5)for |i − j| ≥ 2, and τ2

i = 1 for all 0 < i < n.Another interesting subgroup of vBn is the pure braid group vPn. It isthe kernel of Φ : vBn → Sn, σi 7Ï τi, τi 7Ï τi. As asked in [3], it remainsan open problem to find a topological interpretation of the virtual braidgroups.Classical braids can be represented by Gauss diagrams with one coreinterval for each strand, and signed arrows for each crossing. For virtualbraids, more information is required. Virtual crossings that are found atthe end of the braid, are denoted by recording the final position of stands atthe bottom of their representative in the Gauss diagram. Virtual crossingsthat are found before classical crossings influence the position of arrowsin the Gauss diagram. With such a system, pure braids are the ones forwhich the resulting permutation is the identity.The following sections define and discuss various braid-like groups.
1.2.1 WeldedThe welded braid group wBn is a quotient of vBn by the relation:

τiσi+1σi = σi+1σiτi+1, (6)The relation is called the first forbidden move or the overcrossings-commute (OC) relation. It appears in Figure 8. Applying that relation to
vPn yields wPn, the welded pure braid group.

8
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Welded braid groups appear under many other guises, including braid-permutation groups and loop braid groups. The recent survey article [15]provides a unified view of the work that has been done on those groups,including some important topological perspective.

OCÎÏ

OCÎÏ

OCÎÏ

ε ε εε

ε ε −ε−ε

Figure 8: The first forbidden move (OC).

UCÎÏ

UCÎÏ

UCÎÏ

ε ε εε

ε ε −ε−ε

Figure 9: The second forbidden move (UC).
The classical braid group Bn is isomorphic to the subgroup of wBngenerated by the classical generators, as proved in [18]. Hence, the use ofthe same generator is acceptable. It then easily follows that the inclusionof classical braids in virtual braids at the word level is also an injection.

9
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1.2.2 UnweldedThe second forbidden move, in Figure 9 is also called the undercrossingscommute (UC) move. It generates the unwelded braid group uwBn.

σiσi+1τi = τi+1σiσi+1, (7)It is shown in [5] that uwBn is not isomorphic to the symmetric groupon n elements, which, for a braid group, makes it trivial.The quotient of wPn by Relation 7 is the unwelded pure braid groupdenoted uwPn.
1.2.3 FlatFlat braid groups, xBn, are defined as the quotient of vBn with the addi-tional relation

σ2
i = 1. (8)Geometrically, it corresponds to the move CC in Figure 10. When thismove is allowed, flat crossings, as on the second line, may be used. This isan unknotting operation for classical links, and in particular, allowing thismove on Bn, the classical braid group, maps it homomorphically onto Sn,the symmetric group on n elements. This map is equivalent to the oneobtained by projecting every crossing in the braid to a virtual one.

+

−

−

+
CCÎÏ−+ CCÎÏ

Figure 10: The crossing change (CC).
The name xBn, and its pure analogue, xPn are chosen since the letter

x evokes the representation of flattened classical crossings as undecoratedtransverse double points in Figure 10. Their Gauss diagrammatic counter-parts bear two signs, + for the strand crossing towards the right, and −on the other end.
10
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1.2.4 FreeThe names oriented and unoriented of the virtualisation moves, as in Fig-ures 11 and 12 are purposely similar to the ones used in [17], but use adifferent logic. Here, oriented virtualisation means that the move preservesthe orientation of the chord in the GD.

OVÎÏ
−+

OVÎÏ

Figure 11: The oriented virtualization move.
They each generate relations on the virtual braid groups,

σ−1
i τi = τiσ−1

i , (UV), and (9)
σ−1
i τi = τiσi, (OV). (10)The quotient of vBn by the UV relation is called the free braid groupand it is denoted fBn. Again, the analogous pure braid group is fPn.The UV equivalence is also called Z-equivalence in [6], particularly whenapplying a similar move to knot diagrams. The term free braid may notbe particularly standard, but the adjective free has been extensively usedto talk about knots where this move is allowed, notably in [31].

Definition 2. Free braids on n strands are equivalence classes of Gauss
diagrams with n vertical core intervals where chords are horizontal,
have neither orientation nor signs, up to the Reidemeister-like moves
obtained by ignoring that information for the diagrams of the moves
too.

UVÎÏ
+

UVÎÏ+
Figure 12: The unoriented virtualization move.

11
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1.3 Virtual knots and quotientsThe term virtual knot was introduced in [29]. There currently exists aunique survey of the work on the topic, [36].

As was done for the braid groups, once one defines virtual link dia-grams, operations beyond the Reidemeister moves can be allowed. Some-times this will lead to a trivial theory, meaning that one can use the newmoves to unknot all possible diagrams. Otherwise, it may lead to a non-trivial theory. For instance, starting with a virtual link diagram or a Gaussdiagram with only closed components, the equivalence class of diagramsup to Reidemeister moves and OC moves is called a welded link. Similarly,the equivalence class of such a diagram up to RMs and CC is a flat link.Not every quotient theory is interesting. For example, any knot canbe unknotted, that is, transformed to a knot with no crossings called the
unknot by a sequence of Reidemeister moves and forbidden moves (OCand UC). This is proved in Section 4.3.
1.3.1 Alexander numberingLet D be an oriented virtual knot diagram. Arcs of D are subsets of thediagram consisting of curves that go from one classical crossing to thenext.An Alexander numbering of D is a assignment of Z-valued labels tothe arcs of the diagram up to a global shift in those indices by any integer.The numbering is obtained by as illustrated by Figure 13.

a b c da b

b + 1 db + 1 ca − 1 a − 1

Figure 13: Local values of the Alexander numbering of a diagram.
It follows by the Jordan curve theorem that any knot diagram withoutvirtual crossings admits an Alexander numbering with exactly two labelsmeeting at each vertex.

Definition 3. A knot is called almost classical (AC) if and only if it admits
a diagram for which the Alexander numbering satisfies the addition
condition that for every classical crossing as in Figure 13, a = b + 1.

12
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The question of extending Alexander numberings and almost classical-ity to braids, links, and string links is one of the themes of the presentwork. The reason the present definition cannot directly be applied is thatnumberings of a diagram depends on the choice of a basepoint for eachof its components.

13
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2 Knots and links
[...] for some purposes it is easier just to ignore the problem

of whether a Gauss diagram represents a knot,

rather than trying to solve it.

- M. Goussarov, M. Polyak, and O. Viro [21].

Under the name abstract links, virtual knots and links were first studiedin 1993 by N. Kamada, but that idea did not appear in print until the paper[28], which establishes a correspondence between abstract link diagramsand Kauffman’s theory of virtual knots. An alternative proof is found in [32],and has the advantage of considering the genera of the surfaces involved,showing that there is a unique minimal genus abstract representative of avirtual knot.However, the other virtually knotted objects discussed here have notbeen so extensively studied as topological objects. For example, in [14],braids are set to live on orientable surfaces with two boundary compo-nents. Setting a consistent interpretation of virtual braids, string links, andtangles as one-dimensional sub-manifolds of thickened surfaces allows oneto construct more invariants and parities for them.Analogously to the quotients of the virtual braid group defined in theintroduction, one can construct coarser knot theories by allowing the ad-ditional unoriented moves on link diagrams. A knot theory [25] is a collec-tion of all finite four valent graphs with decorations at the vertices, such asover/under information, and a choice of pairs of opposite edges for eachvertices, possibly orientation on the resulting paths, and a set of allowedmoves. In this formalism, the graphs need not be planar, and crossings ofthe edges are virtual crossings from the previous point of view.
2.1 The planarity problemA signed Gauss diagram is an object which represents a flat virtual knotor link. Given an oriented flat link diagram, each crossing is numbered,and the strand going to the right when a crossing is oriented up is markedpositive, while the other is negative. The sequence of numbers and signedobtained by going once around each component by following the orienta-tion and choosing arbitrary base points is called a signed Gauss paragraphfor the link.As was mentioned in the introduction, the original planarity criteria wasfor intersection sequences, which would correspond to unsigned Gaussdiagrams. While multiple proofs in that setting exists, for the purpose of

14
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virtual knot theory, the planarity of a virtual link diagram depends on itssigned Gauss diagram.Carter’s algorithm produces a minimal genus surface on which a Gaussparagraph can be realized as a collection of immersed curves. To a signedGauss paragraph, one associates a cell complex, where the 0-cells are thecrossings, with 1-cells for each pair crossings which appear as subsequentlabels in the paragraph up to cyclic permutation of each word, and 2-cellspasted to any path obtained by traveling around the graph either by alwaysturning left at crossings until each edge is adjacent to two distinct cycles.

The algorithm above can be interpreted at the level of Gauss diagrams.In Figure 14, the left part depicts cycles found around a classical crossingwhile applying the algorithm to a flat link diagram. The bijection betweenthe link diagram and the Gauss diagram extends to the colouring of thepaths onto which the 2-cells are to be pasted around the chord of the Gaussdiagram on the right.
+−

a

b d

c

+

−d

d

a

a

c

c

b

b

Figure 14: Bi-colouring of a Gauss diagram.
Moreover, to a Gauss diagram G, with cr(G) crossings, and a b(G)number of colours for the bi-colouring, one can draw the correspondingvirtual link on a surface of genus g(G), called the Carter genus of G where

g(G) = (cr(G)− b(G) + 2)/2.
The minimal Carter genus over all diagrams of a link is called its Ku-

perberg genus, in reference to [32].
Definition 4. An abstract link is a pair (K,Σ) consisting of a surface Σ
made of disks containing classical crossings, linked by bands which are

15
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coherently oriented, such that every band contains a part of the knot
diagram K.Given a virtual link diagram K, obtain a canonical abstract link dia-gram, the pair (K,CK) by gluing parts of surfaces around the diagram asillustrated in Figure 15. For virtual crossings, it does not matter whichpart of the surface is drawn to cross over as one is not concerned withthe embedding of the surface CK in space. The boundary of CK is a dis-joint collection of circles. As in Carter’s algorithm, glue disks along thoseboundaries. By a result in [28], this yields a compact oriented surface ofminimal genus that supports K.
Definition 5. Given a virtual link diagram L, the band surface associ-
ated to the abstract link interpretation of L is denoted CL. The Carter
surface for L is ĈL.

Figure 15: Construction of the canonical abstract link diagram.
In [9], a simple criteria was given to determine if a signed Gauss di-agram with one core circle corresponds to a classical knot diagram. Itcombines the index of the crossing, computed as the sum of signs in onehalf of the smoothed diagram, with the sum of the signs in the intersec-tion of halves of the diagrams obtained by smoothing two distinct chords.The numbers are then arranged in a grid called the incidence matrix. Adiagram is planar if and only if that matrix vanishes. In the sequel, [10],the criteria is refined and applied to unsigned Gauss paragraphs. That is,to diagrams of free links.
Unfortunately, both of these planarity criteria are sensitive to Reider-meister moves.

2.1.1 Index and virtual linking numbersLet D1, D2 ⊂ L be two components of a virtual link diagram D. The virtual
linking numbers of D1 and D2 are vlk(D1, D2), the sum of the signs of

16
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the crossings where D1 goes over D2, and vlk(D2, D1), the sum of thesigns of the crossings where D1 goes under D2. Generally, those numbersare different. Then, the index of a crossing p in a knot is defined to be
I(p) := vlk(D+

p , D−p ) − vlk(D−p , D+
p ) where D+

p and D−p are as in Figure 18,and w(p) is the sign of the crossing.The classical linking number of two components is defined to be halfthe sum of their virtual linking numbers. These virtual linking numbersare similar to the definition of the incidence matrix in [9].
2.2 Parities for virtual knotsIn the introduction, the index of the crossing of a knot was used to computedecorations taking value 0 or 1, called the parity of the crossing. Paritiesare families of maps, one for each diagram of a knot, sometimes decoratedby the diagram they are computed on.
Definition 6 ( [38]). Let ψ be a map assigning 0 or 1 to the classical
crossings of some diagrams D and D′ of a virtual knot. Then, ψ is a
parity if the following hold.
(Ψ1) If D and D′ are related by any Reidemeister move, and c ∈ D is a
crossing which is not involved in the move, then ψD(c) = ψD′(c′), where
c′ ∈ D′ is the crossing corresponding to c.
(Ψ2) If c1, c2 ∈ D can be removed by a RM2, then ψD(c1) = ψD(c2).
(Ψ3) If crossings c1, c2, c3 ∈ D can participate in a RM3 mapping them
to c′1, c′2, c′3 ∈ D′ respectively, then ψD(ci) = ψD′(c′i) for i = 1, 2, 3, and
ψD(c1) + ψD(c2) + ψD(c3) 6= 1.Moreover, [38] takes the approach that knot diagrams are objects in acategory corresponding to the knot class, and that the Reidemeister movesand detour moves are the morphisms between those objects. As such,projections are functorial maps between the knot categories, and are inbijective correspondence with the weak parities which generate them. Inthat paper three main weak parities are defined:1. the trivial parity for which any crossing in any diagram is odd;2. the null parity, doing the opposite by calling every crossing even;3. and finally, the homotopical parity.Given a Gauss diagram G, a diagram obtained by erasing some or allof the arrows of G is called a subdiagram of G. The process of creatingthe subdiagram consisting of exactly the even crossings of G accordingto some parity f is called projecting G with respect to f . That diagram
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is denoted Pf (G), and Pf is a parity projection map. Stable projections isdenoted P∞(G) and is the result of iterating this map until the resultingdiagram has only even crossings.The effect of removing an arrow from a Gauss diagram is seen at theknot diagram level in Figure 7
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Figure 16: Projecting classical crossings to virtual crossings.
The fundamental property of projections is presented in Lemma 7. Sev-eral special cases are proved in papers, but the general technique is shownin Section 8 of [7].

Lemma 7. LetG andG′ be Gauss diagram that are related by a sequence
of Reidemeister moves, and f be a parity. Then Pf (G) is Reidemeister
equivalent to Pf (G′).Multiple important results are proved using parities and projections.Amongst them, the most notable are:1. Any non-trivial parity is null on classical knot diagrams.2. The minimal number of classical crossings for a virtual knot can berealised on a minimal genus surface.3. The minimal bridge number of a virtual knot can be realised on aminimal genus surface.The first statement comes from [38], while the latter two appear and areproved in [34].
2.2.1 Gaussian paritiesGaussian parities are the basic examples of parity. Let n ∈ N, and c ∈ Kfor some knot diagram K. Then,

pn(c) = {0 if I(c) = 0 mod n and,1 otherwise.The absolute Gaussian parity of a crossing is 0 if and only if thatcrossing has index 0. Its associated stable projection maps virtual knots
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to almost classical knots and acts trivially on AC knots. It can be used tolift invariants defined on AC knots to all virtual knots [25]. In particularthis means that an alternative definition of an almost classical knot is onewhich admits a diagram where all the crossings have index 0.Gaussian parities are invariant under crossing changes, but not undereither forbidden moves. A particular case is p2 which is also invariantunder both virtualizations.
2.2.2 Homotopical and homological paritiesThis section assumes some familiarity with basic concepts in algebraictopology, including the fundamental group and homology

The homotopical parity is a weak parity defined as follows. Given anoriented knot diagram D of a virtual knot K on a surface Σ, such that thegenus of Σ is the minimal genus of surfaces on which K can be repre-sented, crossing c ∈ D is called even if and only if there exists k ∈ N suchthat [D+
c ] = [D]k ∈ π1(Σ, c), where D+

c denotes one of the two curves in Σobtained by smoothing K at c, chosen as in Figure 18.
Theorem 8 (Projection to classical knots, [38]). The stable projection with
respect to the homotopical parity of any virtual knot K is a classical
knot.This parity can be defined for flat knots since [D+

c ][D−c ] = [D], hence[D−c ] = [D]1−k, and the choice of a component of the smoothed link wasinconsequential.
It is important that the surface be of minimal genus for the virtual knotconcerned. It is easy to see that by taking the example of a representativeof the trefoil given by the braid σ31 ∈ B2, drawn in a square with oppositesides identified to create a torus. Then, every crossing of this knot is oddwith respect to the homotopical parity.However, one can weaken the homotopical parity by calling crossingseven if and only if there exists a rational number q such that [D+

c ] = q[D] ∈
H1(Σ,Q), where H1(Σ,Q) is the first homology group with rational coef-ficients. In that case, the crossings of the trefoil are even when drawnwinding around a torus in the way described previously. Call this functionthe homological parity. The next theorem shows that this satisfies theweak parity axioms.
Theorem 9. Let D be a knot diagram on a closed compact orientable
surface Σ of of minimal genus for the virtual knot represented by D.
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Then, if hD denotes the homological parity, it respects the weak parity
axiom over the Reidemeister moves that keep the knot on Σ.

Proof. Reidemeister moves do not change the homology class of the knot,hence they do not affect the homological parity of crossings that do notparticipate in them. This verifies (Ψ1) from Definition 6.For an isolated crossing a, either [D+
a ] = [D], or D+

a is a contractibleloop on the surface, since for the genus of Σ to be minimal, it need beobtainable by Carter’s algorithm, which would paste a disk in the regiondelimited by a loop created via RM1, hence hD(a) = 0. This is propertythat holds for many parities.For crossings b, c removable by a RM2, [D+
b ] = [D+

c ] if smoothing bothcrossings with respect to orientation yields the diagram that would be ob-tained by performing a RM2. Otherwise, smoothing both crossings cre-ated a three component link, and [D+
b ] = [D−c ], but the crossings still satisfy

hD(b) = hD(c), hence (Ψ2) holds.For a RM3 move, involving crossings c1, c2, c3 in D, bringing them to
c′1, c′2, c′3 ∈ D′, it suffices that the parity depends only on the flat knot,and thus that the equivalent of the RM3 can be applied to the diagramafter a smoothing for any configuration of orientation. To check that itis impossible that exactly two of the crossings c1, c2, c3 involved in someRM3 be even, assume that both c1 and c2 are even. Then, since thereexists signs ε1, ε2 and ε3 such that [Dε1c1 ] + [Dε2c2 ] + [Dε3c3 ] = [D], it must bethat c3 is also even. This is easier to see looking at the preimages of thehalves in the Gauss diagram of the knot. This shows that the third part ofthe definition of a parity, (Ψ3) is satifies, and finishes the proof. QED
Question 1. How does the projection of a knot with respect to the homo-
logical parity depend on the Carter genus of the diagram?

Question 2. Can the homological parity be defined for virtual links?

2.2.3 Cohomological parityIn this, for two virtual knot diagrams, K1 =v K2 means that there exists afinite sequence of extended Reidemeister moves bringing K1 to K2. Thesame symbol is used throughout to denote a knot diagram in the disk withvirtual crossings, and a knot diagram on a surface with the same GD. Thenotation introduced in Definition 5 is used extensively.
In [34], V. O. Manturov defines a parity, called cohomological for knotsin a surface Σ of fixed genus g , with respect to some simple closed curve
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γ ∈ Σ. Let K be a knot diagram such that ĈK = Σ, but such that there exists
K′ =v K with a Carter surface of lower genus. The parity is constructedby first selecting a simple closed curve γ ⊂ Σ which is non-separating, butfor which there is a diagram K̃ which is obtained from K by Reidemeistermoves on the surface, and which does not intersect γ.Full details for the claims made in [34] are provided here, upon therequest of M. Chrisman.
Proposition 10. If γ is a non-separating simple closed curve in ĈK , then
it must intersect K.

Proof. First, since γ is not separating, it must be that g(ĈK) > 0. Byconstruction, ĈK has the minimal genus such that K can be realized. So itadmits no destabilization away from K, and in particular, no simple closedcurve is disjoint from K. As a curve, one says K fills Σ if and only Σ \ Kis a disjoint union of disks. By the above, it is equivalent to saying that anynon-separating simple closed curve on Σ intersects K. QED
Proposition 11. If g(ĈK) is not the Kuperberg genus of the virtual knot
represented by K, then there exists a sequence of Reidemeister moves
in ĈK to a representative K̃ of lower genus.

Proof. Consider K as a knot diagram. It suffices to check how each Reide-meister move influences the band surface associated to the knot diagram.As previously, stabilizing and destabilizing RM2s are the only moves whichcan affect the genus of the Carter surfaces of the respective diagrams.Then, there must be a pair of crossings of K that can be cancelled by a se-quence of Reidemeister moves which concludes with a destabilizing RM2,but no stabilizing one.It suffices to take any sequence of moves which cancels the mentionedpair, and replace any stabilizing RM2 by a similar looking RM2. Thisis a parity projection, hence it preserves the rest of the sequence, possi-bly changing some RM3 moves to mixed moves or a RM3-like operationwhere all crossings are virtual. These moves can be seen in Figure 6. Theresult is a sequence of diagrams with a fixed Carter genus, except for thevery last one that lowers the genus. QED
In particular, when choosing γ to go around the handle created by asequence of essential virtual Reidemeister moves and RM2, the knot canbe changed to avoid it, and the cohomological parity with respect to γbehaves as desired. A crossing c in K is called odd for the cohomologicalparity if and only if there is a component of the link obtained by smoothing
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K at c with respect to the orientation which intersects γ an odd numberof times. Let the projection associated to that parity be denoted by Pγ .
Proposition 12. Let γ, K and K̃ be as above. Then, Pγ(K) =v K̃.

Proof. The general case is that γ is located close to a single extraneousclasp. Without loss of generality, γ∩K consists of exactly two points. Then,in the Gauss diagram, one can denote the intersection by two open circles,and there are exactly three cases of smoothings. Either one smooths oneof the crossings of the clasp, or a crossing with a chord which intersectsthem, or one which does not intersect the clasp.A crossing is removed by Pγ if and only if it is forming the clasp. Tocheck this, consider the GD associated to K. The intersection of γ with Kcan be recorded as some distinguished points on the GD, close to one partof the clasp. Smoothing any crossing which isn’t in the clasp either yieldssome half of the diagram which contains none of the distinguished points,or both of them. The latter happens exactly when the chord intersects theclasp’s crossings. Hence, Pγ(K) =v K =v K̃.Notice that there could be multiple extraneous clasps intersecting γ,and in that case the projection removes them all at the same time. QED
2.3 Almost classical linksA knot which admits a diagram where every crossing has index zero iscalled almost classical, or AC, in analogy to classical knots having thisproperty. The term initially was used for virtual knots admitting diagramswhich are evenly intersticed [29]. However, those have since been renamedcheckerboard colourable knots, freeing up the term for a smaller class ofknots.For AC knot diagrams, the Alexander numbering can be extended toregions of the Carter surface, such that adjacent regions separated by anarc of the diagram oriented up are numbered λ on the left and λ + 1 onthe right, for some λ ∈ N, for all arcs in the diagram. This follows fromsmoothing each crossing of a numberable diagram with respect to orien-tation and noticing that each component inherits a unique label.

From this, one can define almost classical oriented links to be virtuallinks which admit a diagram D on a closed orientable surface such thatΣ\D is numberable as above. This definition is derived from the definitionof a checkerboard colourable virtual link in [8].
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Unfortunately, the notion of index does not extend so well to virtuallinks. Some crude parities have been defined for virtual links. For ex-ample, calling all the mixed crossings odd, then computing the index ofthe internal crossings of each component by treating them as stand-aloneknots. This is a weak parity since any situation where arcs from three dif-ferent components interact in such a way that one could perform a RM3,all three crossings are odd. If the three arcs come from exactly two differ-ent components of the link, then there will be two mixed, hence two oddcrossings. The third crossing may be even or odd depending on the restof the link.
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3 Braids

Although they are conceptually simple,

the braid groups [...] will undoubtedly continue

to supply us with surprises and fascination...

- P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest, [16].

Braid groups were defined in Section 1.2. The goal of this section is torecall known parities for braids, and introduce new ones, while discussingtheir applications.
3.1 Braid diagrams
3.1.1 Carter surfacesMost of the construction of Carter surfaces can be translated to workon braids. However, since strands have endpoints, some of the boundarycomponents are not closed. In [14], this was solved by first drawing thebraids as connecting the boundaries of a cylinder, and then adding handlesas needed to support the virtual crossings. However, this creates someloss of information as there are non-classical braids that can be drawnon thecylinder, and formally nothing stopping the strands from cyclicallypermuting at the boundary. A solution is to force the braid diagram to livein a square. Then, the boundaries of the band surface are made to followthe boundary of the disk when they encounter it. Gluing the vertical edgesof the square gives the construction in [14], while glueing the horizontaledges together and filling the resulting boundaries with disks yields thestandard closure of the braid in a surface.

Figure 17: A virtual braid on its band surface.
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3.1.2 Braid closureLet S3 be the one point compactification of R3. Then, a knot with a regu-lar projection to the xy-plane in R3 is said to be in braid form if it windsmonotonically around the z-axis. Such a diagram can be “cut" by any half-line from the origin not intersecting a crossing to create a braid diagramwhose closure is the knot. The converse construction is to start with aclassical braid diagram β in a square, identify its top and bottom edges tocreate an annulus. Embed that annulus in R3 such that it is linked with the
z-axis, and resolve the crossings. The resulting link is called the standardclosure of β and is denoted β̂. In that case, the z-axis is called the braid
closure axis, and once R3 is compactified, that axis becomes an unknot in
S3.

Abstractly, virtual braid diagrams can be closed to obtain virtual linkdiagrams by connecting the top ith endpoint to the bottom ith endpoint,in a manner which does not create extraneous crossings. A number ofoperations can be applied to change a braid while preserving its closure.1. Conjugation: given α, β ∈ vBn, α̂βα−1 = β̂.2. Stabilization: β̂σn = β̂σ−1
n = β̂τn = β̂.This list is not exhaustive.

3.1.3 Bound for the virtual crossing numberIn [6], it is conjectured that there exists an upper bound on the virtualcrossing number depending on the classical crossing number.
Given a Gauss diagram G with c crossings representing a virtual link

L, it is always possible to construct a link diagram which would yield thatexact diagram. In fact, that link diagrams can even be the closure ofa braid in vB2c. For each chord in G, draw an appropriate positive ornegative crossing in the braid, such that the nth crossing is between the2n − 1st strand and the 2nth strand. Then, add virtual crossings such thatthe closure of the braid would encounter the crossing in the order dictatedby G. This is quite similar to the approach to creating link diagrams fromGauss words presented in [27].This yields an upper bound on the number of virtual crossings neededto represent a virtual link. Without loss of generality, c is the minimalnumber of classical crossing in any diagram of L.
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Assuming that virtual crossings are always used in the most economicalway possible, the maximal length of a sequence of virtual crossings createdusing the technique above is 2c2 − c, since the first strand from the rightneeds to cross (with virtual crossings) at most 2c − 1 strands, then thesecond one, at most 2c − 2, and so on.This gives a positive answer to the conjecture mentioned above.
In [33], Manturov constructed a family of knots whose virtual crossingnumber grows quadratically with respect to their classical crossing number.By the bound above, it is the fastest possible growth rate.

3.2 Braid paritiesMuch like for links, it is not clear how to define the index of crossingsin a braid. This immediately rules out the possibility of defining Gaussianparities for braids.
3.2.1 Knots in the solid torusIn [19], the notion of type for a crossing is defined. Starting with anoriented link K ∩ F ⊂ S3 where K is a classical knot and F is an unknot,a crossing c of K is of type w(K+

c , F ) mod 2 where K+
c is the half of theknot obtained by smoothing K at c with respect to orientation and selectingthe component where the understrand is smoothed to the overstrand, and

w(K1, K2) is the sum of the signs of the crossings between the two knots.The assignment of a type is a parity for the knot in the solid torus S3 \ F .One can consider the addition of a linked yet unknotted component to aknot to be a parity, albeit a non-canonical one. As such, the projection itgenerates fails to have the functorial behaviour that is expected, and it isnon-trivial on classical knots, which, in a way would contradict the ideas of[25].However, the choice of the addition of an unknotted linked componentto a knot is quite natural when that knot is in braid form, and the accessorycomponent to the parity is chosen to be the braid closure axis, as definedin Section 3.1.2. Alternatively, that parity has been generalized to virtualknots in certain cases under the name cohomological parity in [34], and asdiscussed in Section 2.2.3.
Combining these two ideas, one obtains a parity for virtual braids, calledtoroidal. Let β ∈ vBn be a braid which closes up to a knot. A classicalcrossing c ∈ β is even with respect to the toroidal parity, denoted t(c) = 0
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Figure 18: Oriented smoothings.
if and only if both halves of β̂c, have an even linking number about thebraid axis. Otherwise, t(c) = 1. Notice that if n is odd, then this parity istrivial and all the crossings are odd.
Proposition 13. The toroidal parity is invariant under conjugation, but
not stabilization.

Proof. By definition, the toroidal parity is an invariant of knots in the thick-ened torus. QED
Question 3. What is the structure of the set of braids β ∈ vBn such
t(c) = 0 for all c ∈ β?

3.3 Braids and almost classicalityFrom the point of view that geometric braids are a special case of tangle,the disk-band surface of a braid diagram B was constructed in Section 2.1to have the support of a boundary annulus, causing its closure by disk tobe an orientable surface with S1 as its boundary. In the case of a classicalknot, such a surface admits an Alexander numbering. An obvious resultstates that a braid in Bn can always be numbered using all of 0, 1, ..., n.This is illustrated by Figure 19
3.3.1 Braid presentations of AC knotsAs for knots and links, arcs of a braid diagram consist of subsets of thestrands that are delimited by classical crossings. Again, an Alexander num-bering of a braid is a choice of integer label for each arc such that the valueof the label changes by +1 when traversing a crossing towards right (sinceit is assumed crossings are oriented down), and by −1 otherwise.
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Figure 19: A fully numberable braid diagram if β is classical.
Definition 14. A braid β ∈ vBn is called partially numberable if its arcs
admit a consistent Alexander numbering at each crossing. The initial
labels on each strand are possibly independent of each other.The stronger requirement that those numbers extend to the region ofthe surface supporting a geometric diagram of β corresponds to β being
totally numberable or almost classical.The braid index of a link L is the minimal n such that there exists
β ∈ vBn with β̂ representing L. The crossing number of the link is theminimal number of classical crossings in a diagram of it.
Proposition 15. Any almost classical (AC) knot K can be represented by
a partially numberable braid. Said braid can be made to obtain either
the braid index of K or its crossing number.

Proof. It suffices to construct the expected braids. In the first case, ap-ply the absolute Gaussian parity projection to a diagram with the minimalbraid index in order to obtain a partially numberable diagram. The num-bering comes from the fact that the closure is an Alexander numberableknot, due to having only crossings with index 0.
For the second claim, use the construction in Section 3.1.3. QED

3.3.2 Failure of numberable n-braids to form a groupThe main problem arises when trying to multiply two partially numberablebraids together. If a braid α ∈ vBn did not arise from an AC knot or link,it is possible that even if α is partially numberable α2 is not. For example,let α = σ1τ1 ∈ vB2, as in Figure 17.
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This problem comes from the fact that the closure is not AC since thearcs on the top and bottom of the braid have different numbers. Oneshould then choose an appropriate definition of a subgroup of vBn whichcontains Bn and depends on the colourability of its elements. A possiblechoice is the set of totally numberable braids. It follows quickly by theirdefinition and the structure of the supporting surface for braids that thenumbering of the ith strand from the left at both the top and the bottomof the braid needs to be i (up to a global translation of the indices). Thisis illustrated on the left of Figure 19, since the numbering of the regionchanges by +1 when crossing an arc positively, which would be, for a braiddiagram from left to right.

Theorem 16. Any almost classical abstract braid diagram has genus 0.

Proof. Assume that the ith strand at the top of the braid β ∈ vBn hasAlexander number i for all i = 1, 2, ..., n. Then, since every crossing satis-fies the numbering condition, it means that the first classical crossing of βis between the kth and (k + 1)st strands such that the kth strand goes leftto right. After that crossing, the ith strand is still numbered i. By a similarargument, the following classical crossing can also be realized without vir-tual crossings. In fact, if there was to be a virtual crossing which cannotbe pushed down nor cancelled with another crossing, the following classi-cal crossings would fail to be numberable, or, if it was located after everyclassical crossing, then the numbers along the bottom of the braid wouldnot be sequential, and the numbering would fail to extend to the regionsof the Carter surface bounded by the braid diagram. QEDThis answers a question asked by B. Audoux.
3.3.3 Checkerboard colourable braids

Definition 17. A virtual braid is called checkerboard colourable if it
has a representative which admits a full Alexander numbering modulo
2. Denote this set by cBn.As a set, cBn is generated by the sets {σi}n−1

i=1 , and {νi,j}i<j,i−j≡20 wherethe σi are the same generators as above, and νi,j is a virtual braid corre-sponding the permutation of the ith and jth strands, fixing the rest of thebraid.Similar to Bn having the normal subgroup Pn of pure classical braids,the subset cBn∩vPn is denoted cPn, and called the checkerboard colourablepure braids.
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1 2 3 4

233 2Figure 20: A checkerboard colourable braid which fails to be AC.
Theorem 18. Let n > 2. Then, cBn is a proper subgroup of vBn which
itself properly contains Bn, and cPn is a normal subgroup of cBn.

Proof. It suffices to find an element of cBn which isn’t in Bn. Let n > 2.Fix β := ν1,3 = τ1τ2τ1, then β ∈ cBn. However, since it contains noclassical crossings, and is not the identity braid, β 6∈ Bn.Similarly, τ1, as a braid in vBn fails to have a checkerboard colouring,hence cBn is a proper subgroup of vBn.To show that cPn is normal subgroup, it suffices to recall that vPn isnormal in vBn. Then, for every α ∈ vPn, and γ ∈ cBn, γαγ−1 ∈ cBn,since α is, in particular in cBn, which is closed under multiplication andinverses. But since α is also vPn, which is normal in vBn, γαγ−1 ∈ vPn.Hence γαγ−1 ∈ cPn, making this a normal subgroup of cBn. QED
A more complex example is drawn, with its checkerboard colouringin Figure 20. Taking that diagram and trying to number it as one wouldan AC braid, the numbers at the top of the diagram are forced to be asshown. Then, following each strand, number the arcs by adding +1 if thestrand is going right at the crossing and −1 if it is going left. This yieldsthe final numbering of 3, 2, 3, 2 at the bottom of the braid, hence this braid

30



M.Sc Thesis - R. Gaudreau; McMaster University - Mathematics
is not classical. Unlike for links where a diagram not being numberableis not enough to conclude that no numberable diagram exists, for virtualbraids the numbers at the bottom are invariants under all allowed moves.
3.3.4 A checkerboard parityOne could hope that since cBn is a proper subgroup of vBn, there maybe a parity for virtual braids whose associated projection is onto cBn, andwhich acts as the identity on that subgroup. Consider the following candi-date for such a parity.

Let β is vBn. Mark the even numbered strands at the top of the braid.Let c ∈ β be a classical crossing; κ(c) = 1 if and only if exactly one of thestrands crossing at c is marked. Otherwise, κ(c) = 0.
Theorem 19. The function κ satisfies the parity axioms.

Proof. Since this is defined for braids, there are no isolated crossings.The only cases of RM2 moves are σiσ−1
i and σ−1

i σi. In both cases, it isimmediate that the crossings are between the same two strands and hence
κ takes the same value on both of them. There are eight cases of possiblemarkings for RM3 moves, but in all of them, it suffices to check that in factthe value of κ depends only on the strands that are crossed together, andnot on the order of the crossings. Moreover, if either all or none of thestrands taking part in the move are marked, all the crossings are even. Ifone one or two strands are marked, only the crossing between the strandsthat are both marked or unmarked is even, and the others are odd. Inparticular, this means κ is not a weak parity, since it is impossible that allthree crossings in a RM3 be odd. QED

Notice that this parity is non-trivial on classical braids, and is preciselythe opposite of the kind of functions that would generate a projection to
cBn. Ideas from linear algebra tell us that if there is some way to makebraid groups into vector spaces (see for example the representations fea-tured in [3]) then this projection admits an orthogonal complementary pro-jection which is the identity in cBn.
Question 4. Does there exist a parity f on virtual braid diagrams such
that Pf (β) is checkerboard colourable for all β ∈ vBn, and Pf (α) = α
whenever α ∈ cBn?It is possible that the technique used in [35] can be modified to yield thedesired parity.
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4 String Links

Our results involve a mixture of topology, algebra, and

combinatorics.

- N. Habegger, and X.-S. Lin, [23].

String links are a special type of tangles which do not have closedcomponents, and which connect ordered points on an interval to the pointof the same order on another interval. They are the generalization of longknots to links which were first introduced, at least in the classical context,by Habegger and Lin, [23]. Virtual string links, like virtual links, have bothclassical and virtual crossings. The set of classical string links on n strandsis represented by such tangle diagrams up to classical Reidemeister movesof GDs which remain bounded by the lines supporting the endpoints of thestrands. It forms a monoid under concatenation denoted by SLn. Stringlink diagrams in I × I are oriented from the top boundary to the bottomone. Concatenation is the unique binary operation on SLn mapping twotangle diagrams to a single one by contracting them by a factor 1/2 inthe vertical direction an stacking them in the unit square, identifying thebottom boundary of the top tangle to the top boundary of the bottomtangle. This operation is not commutative, and not invertible. It does havean identity element, the trivial string link consisting of n vertical strands.As one might expect, string links are easily represented as Gauss dia-grams on n core intervals with a finite number of signed arrows [2]. Likethe virtual pure braids, there is no need to indicate a permutation inducedby the link. Unlike braids, the chords of the Gauss diagram of a virtualstring link need not be horizontal, and may even go from one core intervalto itself. Such a chord corresponds to a self-crossing. Crossings betweendifferent strands of a string link are called mixed. The set of those Gaussdiagrams up to Reidemeister moves is called vSLn. Analogously to othervirtual objects, virtual string links admit diagrams with classical and virtualcrossings.
Define quotients of vSLn by the relations introduced in Section 1.2.Allowing the OC move on vSLn gives the welded string link monoid de-noted wSLn. Another possible quotient of vSLn is fSLn, the flat virtualstring links. It is obtained by allowing the CC move. A classification offlat virtual pure tangles, which includes fSLn has been done in [13]. Noticethat since crossing change is an unknotting operation for classical links,classical string links are flat equivalent to the identity string link.In [2], many other quotients of the virtual string link monoid are defined.
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For example, vSLvn, virtual string links where crossings within any givenstrand are allowed to be made virtual or classical at will. Such a move isalmost impossible to code from the point of view of elementary tangles,hence it is preferable to see this from the point of view of GD where mixedcrossings are visually different from self crossings.
4.1 Almost classical string linksIt suffices to construct a surface which adequately – that is, minimally –supports a virtual string link to be able to define almost classicality forelements of vSLn. Unlike the braid cases, there exist non-classical virtualstring links which admit an Alexander numbering. For example, take anylong AC knot in vSL1. For classical knots, the choice of a basepoint to pullto infinity is immaterial. It it possible to move it by pulling the first strandcrossing the knot on the left over (or under) the whole diagram if the knotencounters that strand by going under (respectively over) it. However forvirtual knots, the Kishino twists [24] shows that the choice of basepoint canradically change the nature of the long knot obtained. The Kishino twist
T is a non-trivial long virtual knot whose closure is the unknot.To construct a string link from a link, one needs to choose a basepointfor each component and then an ordering for those points.There are suchchoices on classical links which yield string links that do not admit anAlexander numbering.The construction of a Carter surface is entirely analogous to the braidcase, and the concatenation of elements in the monoid extends to glueingpart of their Carter surfaces together, and again, the existence long ACknots allows for the definition of a non-classical AC subset of vSLn, denoted
acSLn. To show those are not equivalent to SLn for all n, it suffices totake a long, non-classical AC knot as an element of acSL1, and iterate theuse of the standard embedding map from vSLk to vSLk+1 which adds avertical strand to the right of a string link diagram. This is an obviousgeneralization of the embedding of Bk in Bk+1.
4.1.1 Checkerboard colourable string links, cSLnUsing the construction of a band surface for virtual string links, whichincludes, as it did for braids, an annulus “frame", one can define the sub-monoid cSLn ⊂ SLn ⊂ vSLn, consisting of those string links which admita checkerboard colouring. Because of the requirement that string links bepure tangles, meaning that the i-th string of the diagram D ⊂ I× I connect(i/(n + 1), 1) to (i/(n + 1), 0).
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Question 5. Is there a parity projection whose image is acSLn? cSLn?

The results in this section so far, when combined with some observa-tions from [2] can be summarized in a single statement:
Proposition 20. Let each of the following maps be the inclusion induced
by the identity map at the level of Gauss diagrams. Then, Pn Ï SLn Ï
cSLn Ï acSLn Ï vSLn are injective but not surjective maps.

4.2 Other string link paritiesSince string links are a generalisation of pure braids, defining parities forthem has all the same problems that were discussed in the previous sectionabout the absence of an index. The toroidal parity easily extend to stringlinks, but since they never induce a permutation of the strands, it is thetrivial parity, which calls every crossing even. As for the checkerboardparity, it extends by setting self-crossings to be even.
4.2.1 A non-unique definition of index for string linksAs vSLn contains braids, a natural notion of closure of string links to or-dered links arises. However, like all tangles, there are other ways to closethem. Let λ ∈ vSLn, ignoring the orientation of strands, define the stitched
closure λ̃ to be the knot obtained by first adding an unknotted strand tothe right of λ if n is odd, then glueing the top of the 2i− 1th strand to thetop of the 2ith strand, and the bottom of the the 2ith strand to the bottomof the 2i + 1st strand. Finally, connect the bottoms of the first and laststrand.

One can then compute the index of crossings in λ̃ and define the indexof a crossing in λ to be the index of the corresponding crossing in theclosure. Of course, any other choice of closure gives an equally validindex. However, this technique does not commute with multiplication in
vSLn. It remains to show that this index generates the expected parities.
Theorem 21. Let λ ∈ vSLn. Then, any parity f arising from the index
of chords in λ̃ lifts to a function f∗ which assigns 0 or 1 to crossings of
λ and respects the parity axioms.

Proof. Let c0 be an isolated crossing in λ. Then, c̃0 is the correspondingcrossing in λ̃ and it is also isolated since the stitching is not adding cross-ings, nor cutting the strands. Actually, this exact same argument works
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for every other Reidemeister move, since they are local. In fact, the onlysubtle point is that when closing a string link, there are more moves thatcan be done. QED

Notice that a string link with no crossing with non-zero index need notbe AC as according to the definition coming from numbering the surface.For example, the braid in Figure 17 closes to the unknot, but it is not ACas a string link.Previously, there were only two non-trivial parities for string links, bothof which defined from lifting parities from the standard closure of thestring link to a link. In [25], they define a link parity by calling any crossingwhich is between two different components odd (and in general, it is called
mixed), and any self-crossing even. The induced projection maps vSLn to
vSLn1 , where vSL1 is equivalent to the theory of long knots, and the powerdenoted the disjoint union of such knots. The other parity for virtual linksis from [26], and is constructed in many steps.
4.2.2 A dynamical parityIn [2], the authors ask a number of questions. The first of them,Does SLn embed in vSLn or wSLn?is partially answered by the following theorem.
Theorem 22. If L and L′ are two classical string links which are equiv-
alent as elements of vSLn. Then, they are equivalent as elements of
SLn

Proof. Let L = L1 → L2 → ... → Lk = L′ be a sequence of string linkdiagrams where Li+1 is obtained from Li by a single Reidemeister move.Using cohomological parity with respect to every handle, project back toa classical string link at each step. The cohomological parity does notchange the string link type since handles can be avoided by the string link,due to the assumption that it is classical. QED
The implied oddness of the crossings which would change the Cartergenus of the diagram is a kind of parity, which is deemed dynamical sinceit depends on the sequence of diagrams.
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4.3 An application of virtual linking numbersSo far, the “stringy-ness" of the elements of the various monoids has provedto be a contrasting characteristic from the closure of these elements. Let
uwSLn be the set of virtual string links on n strands where, atop thestandard Reidemeister moves, both forbidden moves are allowed.
4.3.1 CobordismCombinatorially, virtual link cobordism is an equivalence relation gener-ated by births (creation of unknotted components disjoint from the link),deaths (erasing an unknot disjoint from the rest of link), and saddle moves(see figure 21) such that a sequence of these moves and Reidemeistermoves maps components to themselves set-wise, and the initial and finalnumber of components are equal.

S7Ï S7Ï

Figure 21: Saddle move (S).
This apparently complex theory has a simple classification theorem.Moreover the idea of cobordism is very topological, and the name itselfrefers to the equivalence relation being realized as the disjoint union oftwo links forming the boundary of an orientable surface. For virtual stringlinks, the appropriate topological interpretation is a bit more abstract.

Theorem 23 ([12]). Equivalences classes of links up to virtual link cobor-
disms are completely classified by pairwise virtual linking numbers.

As defined in Section 2.1.1, to any pair of components, there is a pair ofvirtual linking numbers. The definition of virtual linking number extendsnaturally to the strands of virtual string links.
4.3.2 Structure of the the unwelded link monoidCompare the classification of virtual links up to cobordism to this theoremabout unwelded links.
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Theorem 24 ([5]). Any unwelded link is isotopic to the closure of an
element of uwPn.

Both of these results can be strengthened to apply to virtual or un-welded string links.
Theorem 25. Let L1 and L2 be virtual string link diagrams. Then, the
following are equivalent

1. L1 is cobordant to L2,
2. L1 is unwelded equivalent to L2,
3. The pairwise virtual linking numbers the components of L1 equal

those of L2.

Proof. All three statements are proved by putting the Gauss diagrams ofthe string links in a standard form. Using either cobordisms, in Figure 22or forbidden moves, in Figure 23, any chord can commute with any otherchord.

7Ï 7Ï 7Ï 7Ï

Figure 22: Commuting crossings with a cobordims
For cobordisms, the signs of the arrows in Figure 22 is suppressedsince it is irrelevant.In the unwelded link case, two arrow feet and two arrow heads alreadycommute. Only one mixed commutation is illustrated, but all other casesfollow similarly by using an appropriate sequence of moves.

−

+
−
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+ −+
−

−

−

− −+
RM27Ï RM37Ï RM27ÏOC, UC7Ï

Figure 23: Commuting crossings using both forbidden moves.
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The first step towards the standard form is to delete any self crossing byisolating it and performing a RM1. The second step is to collect the arrowswhere the first component goes over the second at the top of the stringlink, then those where the first component goes over the third, and so on.The ith such layer consists of arrows with feet on the ith component.At that point, arrows can be further commuted such that each groupof crossing i over j consists of arrows all having the same sign. Thatsign, times the number of such crossings is vlk(Ci, Cj ), where Ci is the ithcomponent of the string link.In particular, that standard form is a pure braid. QED
This theorem implies both of the classification results for link cobor-dism and unwelded links that are cited above, simply by choosing a base-point for each component of those links, and making the link into a stringlink in such a way that the basepoints correspond to the points whichwould be identified together to form the standard closure. Moreover, thepermutability of the arrows on the Gauss diagram makes the choice ofbasepoints immaterial.Applying a theorem from [39], Corollary 26 follows.

Corollary 26. Any unwelded string link admits a monotone representa-
tive, hence uvSLn is isomorphic to Z2n(n−1).
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Conclusion

New parities can be used practically in all problems, where

parities were previously applied.

- V. O. Manturov, [35]

By now, it should be clear that the applications of parities are as variedas their constructions can be. From a local, combinatorial assignmentof a binary value, the global structure of classes of knotted objects wasrevealed. For convenience, the open problems featured in the main bodyof the text are repeated here.
Question 1. How does the projection of a virtual knot with respect to the
homological parity depend on the Carter genus of the diagram?

Question 2. Can the homological parity be defined for virtual links?

Question 3. What is the structure of the set of braids β ∈ vBn such
t(c) = 0 for all c ∈ β? Here, t is the toroidal parity defined in Section
3.2.1.

Question 4. Does there exist a parity f on virtual braid diagrams such
that Pf (β) or P∞f (β) is checkerboard colourable for all β ∈ vBn, and
Pf (α) = α whenever α ∈ cBn?

Question 5. Is there a parity g defined for virtual string links such that
its projection Pg has stable image equal to acSLn? cSLn?

Aside from those precise lines of research, parities that were defined inthis thesis can be used in other way. Some research has already been donetowards creating parity sensitive invariants. Invariants of knotted objectsare functions which are, as expected, invariant under the Reidemeistermoves, and sometimes, under some of the other moves that have beenmentioned. As such, is there are two ways to use parity to modify aninvariant. The first way is to consider the sequence of values taken by thediagrams obtained by applying a parity projection repetitively. The seconddepends greatly on the way the invariant is computed, but in some cases,it is possible to treat odd and even crossings in two different ways. In [30],Gaussian parities are used to refine some virtual knot invariants.As by the approach of Habberger and Lin, classical string links arethe building blocks of classical knots. The same relation exists for virtualobjects. Hence, defining and refining invariants for virtual string links is afundamental, yet barely studied approach to virtual knot theory.
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