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Abstract

This paper looks at four linear representations of braid groups, the Burau,
Gassner and Lawrence-Krammer representations, as well as another, which
will be termed the Lawrence-Gassner representation. The Burau and Law-
rence-Krammer representations are defined for the full braid group and the
other two for just the pure braid group. All four representations are de-
scribed in terms of topological objects in the n-punctured disc known as
forks, which represent elements of a homology group of an infinite covering
space associated with the representation.

Complex specialisations of the Burau and Gassner representations
are briefly covered as well as the possibility of other representations based
on forks.
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1 Introduction

1.1 Braids

Braids crop up in various ways in geometry and topology, as well as in areas
of group theory, algebra and theoretical physics. There is, of course, the
geometric definition of a braid as n disjoint strands in C x [0, 1], transverse
to each plane C x {t} with endpoints fixed at the top and the bottom. With
the operation of adjoining the bottom of one braid to the top of another,
this becomes a group, known as the braid group and denoted B,. From this
comes the view of B,, as the fundamental group of the space of n unordered,
distinct points in the plane. A path in this space then permutes the points,
giving a surjection of B, onto the symmetric group, S,. The kernel of this
map is a subgroup of B, known as the pure braid group and denoted P,.
The pure braid group is also the fundamental group of the complement of an
arrangement of hyperplanes in C", specifically the arrangement that forms
the solution set to [, ., ;.. (i —2;) = 0.

Also connected with this is the definition of braids as certain auto-
morphisms of the free group, F),, which is the fundamental group of the
complement of the space of n points in C. Braids also come into knot the-
ory, since they may be closed to form links by connecting the bottoms of
the strands to the tops. Two braids close to the same link if and only if
they are connected by a series of Markov moves, that is conjugation by an-
other braid, and crossed stabilisation, i.e. the addition or removal of the last
strand in a way that does not alter the closure knot. If a braid invariant is
unchanged under the Markov moves, then it defines a knot invariant. The
trace and characteristic polynomial of a linear representation are already in-
variant under conjugation, so may be good candidates for producing knot
invariants.

The approach used in this paper is to view braids as orientation-pres-
erving homeomorphisms of the n-punctured disc, up to an equivalence. In
this way, the braid group is a mapping class group, see [8].
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Figure 1: A fork.

1.2 Linear representations

An open problem for a while was the question of whether braid groups are
linear, that is isomorphic to a linear group. This comes down to whether or
not it is possible to find a faithful linear representation of the braid group.

Several linear representations of B, have been considered, the first
being the Burau representation, which turned out not to be faithful for large
enough n [15], [13], [4]. The Gassner representation is a variant on the Burau
representation, but which is only defined on pure braids. Its faithfulness is,
in general, as yet unknown. The first linear representation to be known to
be faithful was the Lawrence-Krammer representation, a deformation of the
symmetric square of the Burau [11], [6], [12]. The Gassner and Lawrence-
Krammer representations can both be mapped to the Burau, though in dif-
ferent ways, so there is another representation, also faithful, that sits over
both, completing a square commutative diagram. This will be termed the
Lawrence-Gassner representation. These are the four representations dis-
cussed in this paper.

The image of a braid under any of these linear representations may
be determined as the braid’s effect on a certain infinite branched covering
space connected to D,,. Elements of this module can be expressed in terms
of a basis of forks in D,,, and the action of a braid on these forks naturally
defines a matrix of Laurent polynomials (possibly in several variables).
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A Laurent polynomial may have one or more of its variables spe-
cialised to a complex number, hence the same is true of the representations.
This gives a simpler representation; one algebraic proof of the faithfulness of
the Burau representation of B3 uses a specialisation to give generators of a
group of known presentation. The kernel of this specialised representation is
contained in the centre of B,. In general, however, the faithfulness of spe-
cialised representations is not well understood. This paper looks at some of
them.

1.3 Outline

Section 2 covers some of the necessary background for understanding the
subject, such as braids, Laurent polynomials and forks.

The next four sections cover the four representations in turn, includ-
ing details of the modules in terms of forks and what is known of their faith-
fulness. Complex specialisations are considered for the Burau and Gassner
representations.

Finally, section 7 addresses the question of whether there may be
other fork-based representations.

2 Background

2.1 Braid groups

Definition 2.1. Let D = {z € C: ||z|| < 1} denote the 2-disc and D,, denote
the n-punctured 2-disc. The punctures are normally assumed to be on the
real line and labelled pq,...,p, in order from smallest to largest. Define
Homeo™*(D,) to be the space of orientation-preserving homeomorphisms of
D,, which preserve 0D. Consider the equivalence classes of Homeo™(D,,),
where two homeomorphisms are equivalent if they differ by an isotopy of
D,,. These equivalence classes are braids. Sometimes the punctures are
best thought of as distinguished points in the disc, but they will be called
punctures throughout.
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With composition, braids form a group, called the braid group on n
strands and denoted B,,.

There is a natural surjection from B,, the braid group, to S,, the
symmetric group, defined by sending a braid to the induced permutation
on puncture points. The kernel of this map is called the pure braid group,
denoted P,.

A braid may be viewed geometrically as n strands embedded disjointly
in D x [0,1]. Let py,...,p, be disjoint points in D. Then each strand begins
at (p;,0) and ends at (p;, 1) for some 7,5 € {1,...,n}. Further, each strand
intersects each plane D x {t} in just one point. Two geometric braids are
equivalent if they are related by an ambient isotopy, that is an isotopy of
D x [0, 1] preserving D x {0, 1} pointwise. To construct the geometric braid
corresponding to a class of homeomorphisms, use the fact that when extended
to the entire disc, an orientation-preserving homeomorphism must be isotopic
to the identity. The isotopy gives a map D x [0,1] — D, and the geometric
braid is then obtained as the preimage of the puncture points. In a pure
geometric braid the strands will begin and end at the same point p; in D.

In drawing a geometric braid, assume D x {0} to lie above and D x {1}
to lie below. This is in keeping with the original convention of how geometric
braids act on the free group that is the fundamental group of D,,. However,
in keeping with the standard notation for maps, braids act on the left and
so compose right-to-left, not left-to-right as they were originally held to do.
Because of the symmetry of the relations given below, this does not alter the
presentation of the group.

Definition 2.2. 1. For 1 <i <n —1, define o; to be a half Dehn twist
about a curve enclosing points p; and p;;; (see figure 2). The set
{o1,...,0n_1} is then a generating set for B, known as the standard
generating set. This becomes a presentation of B,, with the addition of
the relations:

o5, 05] =1, fori,j=1,...,nand |i —j| > 2,
0i0i110; = 0j110:011, fore=1,...,n—1.
2. For 1 <1 < j < n, define A;; to be a full Dehn twist about a curve
enclosing points p; and p; and passing above the other puncture points

4
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(see figure 3). The set {A;; | 1 < i < j < n} is a generating set for
P,, known as the standard generating set. Relations for the pure braid
group are as follows:

[AijaAkl]:la fori<j<k<landi<k<lI<j,
[AijaAjkAik] =1, for i < j < k‘,
[AikaAijAjk] =1, for i < j < k‘,
[Aik,A;klAlejk] =1, for i < < k<.
In terms of the o;s, the A;;s can be written:

f— _1 _1 2 . ... .
Aij = 051010, 0ig1 -~ 01

oot

\ 000, 0 0,00
/ \\pipi+/1/

Figure 2: The braid o;, represented geometrically on the left. As a homeo-

morphism, it is a half Dehn twist about the curve on the right.

One notable braid is the half Dehn twist about a curve parallel to the
boundary, which will be denoted A. Notice that A? is a pure braid as it is a
full Dehn twist about the same curve.

Although an n—1 element generating set is standard, for any n, B,
is generated by two elements. Let 0 = 0y and a = 0109 ---0,. Then o; =

i1 (i—1

a"'oa=0~1 and B, has the presentation

(o,a | a" = (ac)" ', [o,a 7 od’] = 1).

5
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i J
‘/’—— / -~ \\ '
K oro0r0 OO 'O
_ vopi! vpjo !
- v N
| \ N7 ~ 7/

Figure 3: The braid A;;,
morphism, it is a Dehn twist about the curve on the right.

represented geometrically on the left. As a homeo-

The group B4 has another, neater, 2-generator presentation. Putting
T = 010903 and y = 01020305 it has the presentation:

(z,y | 2t =y, [2%, yzy] = 1)

It is natural to ask whether P, can ever have a smaller generating set
than the standard. Unfortunately the answer turns out to be no.

Theorem 2.3. The standard set of (g) generators for P, is minimal.

Proof. The relations in P, are all of the form A = BAB ™!, that is an element
is equal to some conjugate of itself. These relations would hold in any abelian

group, hence the abelianisation of P, is a free abelian group on (g) generators.
O

2.2 Laurent polynomials

Definition 2.4. A Laurent polynomial in variables ¢, ...,q, is a polyno-
mial with integer coefficients and terms of the form ¢i'¢3®--- g%, where
a1, ...,0, € Z. The ring of Laurent polynomials in these variables is de-

noted Alqy, ..., q,] and may be thought of as Z[g1,q; ' . .., ¢, ¢ 1.
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Figure 4: A digon.

2.3 Digons

In some topological arguments, we will need to decide whether or not one
curve can be homotoped off another. There is a fairly simple criterion for
checking this.

Definition 2.5. A digon between two curves a and  on a surface is an
embedded disc whose boundary consists of one subarc of & and one subarc
of 3, see figure 4.

The following lemma and proof are taken from [10].

Lemma 2.6. Suppose a and 3 are simple closed curves on a surface which
intersect transversely at finitely many points. Then o and 3 can be freely
homotoped to simple closed curves which intersect at fewer points if and only
if there exists a digon between the two curves.

Proof. (<) If a digon exists, one of the curves can be homotoped across it
in order to reduce the number of intersection points.

(=) Let H : [0,1] x S — M be a homotopy from o = H({0} x S*)
to a curve, H ({1} x S'), meeting (3 transversely at fewer intersection points
than o does. Let hy : S* — M be defined for ¢t € I by hy(z) = H(t,z).
Assume h; is in general position with respect to § for all values of t. Then H
is transverse to  and hence H~'(3) is a 1-manifold, which has four possible
types of component, see figure 5.

There must be at least one component of type I, call it [';, with
endpoints ¢; and ¢,. Let I'y be the arc of a between ¢; and ¢ which is
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{1}xs?!
Typel dﬁ/pe @ypwnb}}-rypelV

{0}xsS?t

Figure 5: The four possible types of component of H~'(3).

homotopic to I'; in I x S'. Then H(TocI'7") is a closed curve homotopic to 0
formed from one subarc of a and one subarc of 3.

The part of the disc bounded by H(I',I';') will be a union of one or
more digons, since it lies in the image of H. O

2.4 Forks, whiskers and noodles

There are three geometric objects in D, that will be used in defining the
representations. Take the basepoint of D,, to lie in dD,, and denote it 1.

Definition 2.7. A fork in D, is an embedded tree consisting of an arc,
known as the tine and denoted T'(F'), from one puncture point to another,
together with a handle from gy, to a point in the interior of the tine. The
tine is oriented so that the handle joins it from the left.

Two forks are equivalent if they are homotopic via forks (in particular,
the endpoints of the tines will be the same).

A standard fork is one contained in the upper half of D,,. A standard
fork with tine beginning at p; and ending at p; with ¢ < j is denoted f;;.
Define a total ordering on the standard forks by fi; < fr if j <, orif j =1
and ¢ < k. That is, in order from smallest to largest,

f127f137f237f147f247f347"' 7f1n7f2n7"' afn—l,n-

This will be referred to as the standard ordering and has the advantage that
the forks on n points come first in the listing of forks on n + 1 points.

A simple fork is a specific standard fork, which begins and ends at
adjacent punctures. The simple fork from p; to p;; is denoted f;.
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Figure 6: A nonstandard fork in Dj and the simple fork fo = fo3 in Djy.

Definition 2.8. A whisker in D,, is an embedded arc from 7, to one of the
distinguished points. A standard whisker is one contained in the upper half
of D,

Definition 2.9. If D, is viewed as having two basepoints, yo,y, € 0D, as
will be necessary later, then a noodle is defined as an embedded arc from y
to yj-

In addition, given a fork, F', based at y,, a fork, F’, based at y; is
a parallel to F', if the two tines are disjoint, but homotopic, relative to the
endpoints, the handles are disjoint and the area enclosed by the forks and the
arc of OD,, between y, and y; contains no punctures. There are two choices
of arc of 0D, but if y, and y{, are viewed as being in the top half of D,, then
the shorter arc, which is also contained in the top half, is naturally chosen.

Figure 7: A fork and a parallel fork (dashed) in Dj.
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3 The Burau representation

Definition 3.1. Let x1, %o, ..., z, be the free generators of 71 (D,, yo), with
x; represented by a curve passing anti-clockwise around p;.

Consider the homomorphism 7 (D,,, y9) — Z taking a word in the x;s
to its exponent sum. Let D, be the cover of D, corresponding to this map
and choose 7y, a lift of yy as the basepoint of D,,.

Claim 3.2. The homology group H;(D,,) has rank n—1 as a module over A[g].

Proof. First note that the deformation retract of lN)n is an infinite sequence
of vertices with each connected to the next by n edges, see figure 8. The
covering translation ¢ acts on this by moving each vertex to the next to the
right and each edge to the corresponding edge with the relevant endpoints.

e

Figure 8: The deformation retract of D;.

Consider the section of this retract between two adjacent vertices.
The first homology group of this section is generated by n—1 elements. Any
element of H(D,) can be written in terms of these and Laurent polynomials

in ¢. Hence H,(D,,) has rank n—1. O

A homeomorphism of D,,, ¢, representing an element of B,, then nat-
urally lifts to 1, a homeomorphism of D,,, which induces (¢)., a homomor-
phism of H,(D,,). This is independent of the choice of representative of the
braid.

Definition 3.3. The Burau representation is the map

Bn: B, — GL(n —1,Alq]),
(Y] = ().

10
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3.1 The Burau module

Elements of Hy(D,,) can be represented by forks with relations between them.
Given a fork, F, in D,, lift it to 5n such that the handle connects with the
basepoint of lN)n Then take an embedded circle based at a point on the
lift of the tine as representative of an element of Hl(ﬁn). Figure 9 shows
the projection of this down to D,,, where this circle is immersed as a figure

8 curve. Note that an element of Hy(D,) may be represented by two non-
isotopic forks, the tines of these forks, however, will be isotopic.

Figure 9: A fork (dashed) with corresponding figure eight curve.

With this in mind, we can define the Burau module in terms of the
forks, as Krammer [11] did. As generators take the simple forks. Forks are
related by the following fork skein relations:

Remark 3.4. There are two things to note about this expression of the re-
lations. Firstly that there may be more punctures than those shown; any

11
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remaining punctures lie in the lower part of the disc. Secondly they still hold
under an orientation-preserving homeomorphism of D, in fact the first two
relations do not apply under the usual assumption that the punctures lie on
the real line, unless they are altered by a homeomorphism first.

In particular they still hold under any braid.

Ezample 3.5. For example, 07" changes the third relation to

DEORO

or, using the first relation

Proposition 3.6. Any fork may be written in terms of the simple forks using
the given relations.

In the proof of this we will use the following:

Definition 3.7. A shaft in D, is an arc directly downwards from a punc-
ture point. Thus the shafts are n disjoint arcs from puncture points to the
boundary.

The height of a fork is the total number of intersections its tine has
with the shafts, where the intersections at the ends of the tine count % each.
A fork with height one is then equivalent to a standard fork via applications
of the first two Burau relations.

Proof of 3.6. Assume a fork has height essentially > 2, so the tine cannot
be homotoped into the upper half-plane, thus its interior intersects at least
one shaft. In fact, it must intersect a shaft not connected to either of its
endpoints, see [16] for a proof of this. Taking the topmost intersection on
this shaft, apply the third Burau relation (first move the handle out of the
way using the first two if necessary) to replace the tine with one that passes

12
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the other side of the puncture point and two that end at the point. All three
of these have a lower height than the original. By repeating this process, the
fork can be written in terms of standard forks. Finally, by the third relation,
any standard fork is a sum of simple forks. O

With this presentation of H(D,,), the Burau representation can be
considered as matrices showing the effect of a braid on the simple forks.
Denote the k x k identity matrix by Ij.

Ezxample 3.8. 1. If i =2,...,n—2, then

I o 0 0
0
Buloi) = 0 |¢ —q¢ 1 0
0 0
0 0 [n—i—2

If ; =1 or n—1, the 3 x 3 block will lose its first or last row and column
respectively, e.g.
—q

Ba(or) =] 0
0

[ R S

0
0
1

2. Bn(Az) = qn n—1-

3. Ba(0f) = (—q)".

3.2 Faithfulness

The group B, is infinite cyclic and (3, can easily be shown to be faithful, since
its image is generated by a 1 x 1 matrix. Magnus and Peluso [14] showed [
to be faithful by considering the images of the two generators of B;z. It then
seemed likely that a similar method might decide faithfulness of ;.
Unfortunately the properties of matrix groups are not understood
sufficiently well for much more headway to have been made on this and it
was by a different, topological argument that (3, was shown to be unfaithful
for n > 5. This was the culmination of work done by several different people.

13
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In 1991, Moody [15] showed £, to be unfaithful for n > 9. The method was
refined by Long and Paton [13], who improved the bound to n > 6, and later
by Bigelow [4], who showed [5 to be unfaithful. In [6], Bigelow demonstrated
that the topological criterion from [4] can also be used to show faithfulness
of (.

A version of the criterion used in these results is given below. The
criterion will be adapted in this paper to apply to other representations,
starting with complex specialisations of the Burau representation in the next
section.

Definition 3.9. Given a whisker, W, in D,, let W be the lift of W to D,
that is based at gyy. Define the Burau pairing between a whisker and a fork
in the Burau module by

(W, F)s =Y q"(¢"W,F).
a€7Z
Note that if F' and F’ are forks with identical tines, but different
handles, then
<I/V7 F>ﬁ = qa<VV7 F,>ﬁ7

for some a € Z.
The following theorem gives the criterion used in [4].

Theorem 3.10. The following are equivalent:
1. The Burau representation of By, is faithful.

2. If W, F are any whisker and fork in D,, such that (W, F)z = 0, then
T(F) is homotopic, rel endpoints, to an arc which is disjoint from W.

Bigelow then proved that (5 is unfaithful by presenting an example
of a whisker and tine with pairing zero, but with no digons between them.
Hence it is not possible to homotope one so as to make the two disjoint.

There is one case remaining — it is still not known whether or not 3, is
faithful. Notably, a large computer search organised by Bigelow (mentioned
in [6]) based on a result equivalent to Theorem 3.10 did not find a fork and
whisker with pairing zero. The search covered most pairings with up to 2300

14
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intersections before it was called off [7]. It thus seems likely that either g,
is faithful or that a counterexample will not be found by such brute-force
techniques, at least not without quite a bit of refinement.

3.3 Complex specialisations

Specialising ¢ = z € C* (i.e. z is a nonzero complex number) turns the
Burau representation into a representation over GL(n—1,C). Clearly this
representation is unfaithful for n > 5, so the only interesting cases are when
n = 3 or 4. If the number z is an ith root of unity, then A% is in the
kernel of the Burau representation specialised at z, since 3,(A%) = ¢™1I,_;.
Bigelow [5] noted that a criterion for faithfulness of the specialised Burau
representation can be found similarly to that of the unspecialised version.

Theorem 3.11. If z is not a root of unity, then the following are equivalent:
1. The Burau representation of B, is faithful when specialised to z.

2. If W, F are any whisker and fork in D,, such that z and 1/z are both
roots of (W, F')g, then T(F) is isotopic to an arc which is disjoint from
w.

Proof. (2.)=-(1.) Let w; denote the standard whisker ending at point p;. For
i # j,j+1, (w;, fj)p = 0 for the simple reason that the whisker is disjoint
from the tine of the fork.

Now if 9 is in the kernel of f3,(2), then we have (w;, ¢¥(f;))gl¢=- =0
and (w;, ¥(f;))slg=1/- = 0, so, by hypothesis, T'(¢)(f;)) is isotopic to an arc
which is disjoint from w;. It is simple to show that this arc can be chosen
to be disjoint from all such w; ,where ¢ # j,j+1, by using Lemma 2.6.
Thus ¢ must fix all the T°(f;)s, and so may be considered as the identity
except on the annulus formed by removing a regular neighbourhood of these
from the original disc. Hence ¢ can only be some power of A2, However,
Bn(2)(A?) = 2"I,_1, so ¢ must be trivial unless z is a root of unity.

(1.)=(2.) Let 7x be a Dehn twist about a curve parallel to 0D U V.
Let 77 be a half Dehn twist about the boundary of a regular neighbourhood
of T(F).

15
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Now consider the effect of 77 on an arc, o that crosses it once. This
is shown in figure 10. Up to homology, this is equivalent to adding the curve
F' shown in figure 11 to a.

Similarly, if « crosses W once, then 7y has the effect shown in figure
10. Up to homology, this is equivalent to adding the curve W' shown in figure
11.

TR (@)

T(F)

Figure 10: The effects of 7 and 7 on a curve.

- @

Figure 11: The curves added by 77 and 7.

Now, both F" and W' lift to closed curves in 571, call some choices of
these F' and W’ respectively. Now the effects of (7). and (7)., being the
maps on Hl(ﬁn) induced by 77 and 7y respectively, on a closed curve, & in
D,, are to add copies of For W' respectively.

Now if (W, F)gls—. = 0 and (W, F')g|s=1/, = 0, then, working under

16
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Figure 12: The effect of 7y on .

the specialisation ¢ = z, (Fw )« (F') = F' and (7)., (W') = W', so

) = (%F)*(&—irgW’) — G+ [F 4 g

O

(77« ()« (

Therefore (7r). and (7). commute, meaning [y, 7r] € kerv,. It remains
only to show that this element in not trivial, that is that 7y and 7/ do not
commute.

To do this, consider the effect of both on a closed curve, 7, which is
defined to be the boundary of a regular neighbourhood, I" of T'(F’). Similarly,
let 0 be a closed curve that is the boundary of a regular neighbourhood of
W nob.

By assumption, W cannot be homotoped off T'(F') rel endpoints, hence
it cannot be homotoped off ¥ rel endpoints. It follows that v cannot be
freely homotoped off W and hence §. Now claim that 7y (y) cannot be freely
homotoped off T'(F).

For this we use Lemma 2.6: First assume that no digons exist between
v and 0. Now consider 7y () after a small homotopy to move the parts
unaffected by 7y to inside I'. Figure 12 shows the effect of 7y on v if T'(F)
intersects W only once.

Notice that outside I, every arc of Ty () is parallel to an arc of d,
any digons between v and 7y () must be inside I'. Now all arcs of 75(y) N T

17
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intersect T'(F) precisely once, and hence split ' into two parts, each contain-
ing one puncture point, (these two points are the endpoints of T'(F")). Thus
there can be no digons between v and 7y () within [' either. The same
will be true if T'(F') intersects W more times. Hence 7y () cannot be freely
homotoped off v and so nor can it be freely homotoped off T'(F).

Now claim that 77y () cannot be freely homotoped off (7). This
is a very similar argument to before: Let I" = 7y (T"). Outside I, 7p7mw (%)
is parallel to 7y(7y) and inside it each arc intersects [ once, so TeTy (7)
cannot be freely homotoped off 7y (y) (note that 77y () cannot be wholly
contained within I'" because otherwise 7y () could be homotoped off T'(F)).

The required result follows because 7(v) = v, so Twr(y) = Tw(7),
hence 1y 71 () cannot be freely homotoped off 747y (7), so in particular,

rTw () # TwTr(7),

which means 7, 7y # Id. O

4 The Gassner representation

The Gassner representation of the pure braid group, P, is formed in a similar
way to the Burau representation of B,,, but carries more information. Again
take yo € 0D, as the basepoint of D, and zy,...,x, as free generators of

m (Dm yU)'

Definition 4.1. Consider Z" to be the free abelian group generated mul-
tiplicatively by elements ¢;,...,q,. Then consider the abelianising map
71 (D, y0) — Z", taking x; — ¢; for i = 1,...,n. Let D,, be the cover-
ing space of D,, corresponding to this map. As a basepoint for lN)n, choose
some lift of yy and denote it gp.

Claim 4.2. Hi(D,) is a rank n—1 module over Alqi, ..., q,].

Proof. The deformation retract of 5n is rather more complex than for the
Burau representation. It is an n-dimensional grid (see figure 13), upon which
the covering translation ¢; acts by moving each vertex to the next vertex in
the 7th dimension.

18



McMaster — Mathematics MSc Thesis — R. Smeltzer

4

4

4

L
SSe

4

Figure 13: The deformation retract of l~)3.
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Let 7n;; denote the loop, based at 7, in this grid that passes anti-
clockwise around a square in the ¢j-plane. These loops are related, up to
homology, by the equations:

(1 —q)ne + (1 — qj)mk + (1 — qr)nij = 0,

which may be rewritten as

(1 —gj)mie = (1 — @)y + (1 — qi)nij-

Therefore 112,723, - - -, Mn—1,n 1S a basis of H(D,) over Algy, ..., qy)-
]

A homeomorphism of D,,, 1, representing an element of P, then nat-
urally lifts to 1, a homeomorphism of D,,, which induces (¢)., a homomor-
phism of H,(D,,). This is independent of the choice of representative of the
braid.

Definition 4.3. The Gassner representation is the map

Yo : Py — GL(n —1,Aq1, ..., q)),
W] = ().

4.1 The Gassner module

As with the Burau module, elements can be represented as sums of forks,
using the simple forks fi,..., f,_1 as a basis, where f; represents the element
of Hy(D,) which is (1 —q1) -+ (1 — gi_1)(1 — gis2) -+ (1 — ¢,,) times the lift
of an embedded circle in Hy(D,). The projection of this circle down to D,
is the curve shown in figure 14.

Then the following fork skein relations hold.
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Figure 14: A fork (dashed) with corresponding curve.

As in the Burau module, any orientation-preserving homeomorphism
of D may be applied to these relations and they still hold. In particular note
that any braid, not just any pure braid, may be applied.

Example 4.4. Recall the standard generators of P,, denoted A
1< j <mn.

ij» where 1 <

1. If i+ 1 < j, then

I, 5 0 0
MWm(Ay)=1 0 S5 0 a
0 0 I,
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where S;; is the (7 —i 4+ 2) x (j — 7 + 2) matrix

1 0 0 0 0 0
wl-¢) ¢ 0 -+ 0 qi(g;—1) 1-gq
Qj—l 1
Sij = : :
1 gl —1)
¢(l—¢q;) ¢g—1 0 - 0 qgj—qi+1 1—g
0 0 0O --- 0 0 1

Perhaps a simpler way to write this is as S;; = [;_;41 — F;;Qi;, where
P;; is the n x 1 matrix with 1s from the ith to (j — 1)st places and 0Os
elsewhere and (Q;; is the 1 X n matrix

0,...,0, qi(g; — 1), 1—¢;,0,...,0, ¢;(1—q), ¢ —1,0,...,0).
( qi(gj = 1), 1 =g (1 =), ¢ )
ith entry jth entry

If i =1 or j = n, then the first or last row and column of S;; will be
removed. For example

a0 g —1)
Ya(Ag) =g —1 1  qulqn —1)
¢—1 0 qgs —qu+1

2. If © = j+1, then

I; o 0 0
YolAiit1) =1 0 Siina 0 ;
0 0 In—i—2

where S; ;1 is the 3 x 3 matrix

1 0 0
Siiv1 = | (@1 —1) g 1—a
0 0 1

3. Bu(A?) = (q1g2 - @) 1.

The Gassner representation is unitary, as shown by Abdulrahim [1].
The characteristic polynomial of v,,(A;;) is (u — ¢ig;)(p — 1)" 2

22



McMaster — Mathematics MSc Thesis — R. Smeltzer

4.2 Faithfulness

The Gassner representation is faithful for n < 3 for the simple reason that the
Burau representation, which is faithful for these n, factors through it. For
larger n, faithfulness is unknown. Bachmuth [3] did claim to have proven
the Gassner representation to be faithful for all n, but his article was later
refuted by Abramenko and Miiller [2].

Definition 4.5. For a whisker, W, define W to be its lift to 5n based at .
Define the Gassner pairing between a fork and a whisker to be the
Laurent polynomial

(W.F)y= D ait g (g - g W, T(F)),

Vi,a;€Z

where (g} - W, T(F )) represents the algebraic intersection number of
the two curves. Consider ¢* - - - g% W to be the image of W under the deck
transformation ¢f" - - - g2".

The next theorem is the adaption of Theorem 3.10 to the Gassner
representation, and a main result of this paper.

Theorem 4.6. The following are equivalent:
1. The reduced Gassner representation of P, is faithful.

2. If W and F are a whisker and a fork in D,, such that (W, F)., = 0 then
T(F) is isotopic to an arc which is disjoint from W.

Proof. (2.)=-(1.) By a similar argument to that given for 3.11, given (2.),
a braid, ¢ € ker~, preserves the tines of the simple forks, so must be some
power of A?. However, 7,(A?) = (¢, - - - ¢u) 1, therefore 1 is trivial.

(1.)=(2.) Let 7 be the same as in the proof of Theorem 3.11. Let
7r be a Dehn twist about the boundary of a regular neighbourhood of T'(F').
In the proof of Theorem 3.11 it was a half twist.

The effects of 7y and 7 on arcs are shown in figure 15. Up to
homology these are equivalent to adding the curves W' and F' shown in
figure 16.
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Figure 15: The effects of 7 and 1y on curves.

@D

Figure 16: The two curves added by 77 and 7.
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Let F' and W' be lifts of I and W' to D,,. These are simple closed
curves. N N
Now if (W, F), =0, then (7p).(W') = W' and (7w ).(F"') = F’, so
(Fw ) (Fr)a(@) = (Fw)o (G + fF') = &+ gV + fF, (3)
) = (7p)u(@+ gW') = a+ fF' + gW'. (4)

O

(77« ()« (

Therefore (7r). and (7w ). commute, meaning [y, 7r] € ker~y,. A similar
argument to the proof of Theorem 3.11 shows that this element is non-triv-
ial. O

The pairing (W, F)., is calculated by considering the contribution each
point in W N T(F) makes towards it. To do this, form a closed path, going
from the basepoint to the intersection point, x, along the fork and back along
the whisker. If a; is the winding number of this path about the point p;, then
let m(z) = ¢i"* - - - ¢%~. This is called the associated monomial of x. Given two
points, x,y € WNT(F), the difference between the two associated monomials
can be similarly calculated using the path «(z,y) from z to y along T'(F)
and back along W. If sgn(x) denotes the sign of the intersection at x, then

W.F), = 3 sen@)m(x).

TEWNT(F)

For the pairing to vanish, the contribution from each intersection point
must cancel with another. Therefore, for each point x € W N T(F) there
must exist another point y € W N T(F) with the same associated monomial
but with the opposite sign.

Bigelow [6] showed that it is impossible for points in D3 to cancel,
even under the weaker pairing associated with the Burau representation. In
D, cancellation is possible, see figure 17, which shows the tine of a fork and
part of a whisker. The two intersection points labelled % have opposite signs,
but the same associated monomial, as can be checked using the path from one
point to the other along the tine and back along the whisker. The winding
number of this path about the point p; is the power of ¢; that appears in the
quotient of the two associated monomials. The winding number of a path
about a point is equal to its oriented intersection number of the path with

25



McMaster — Mathematics MSc Thesis — R. Smeltzer

the shaft connected to that point. In figure 17 then, the part of the whisker
shown has zero intersection number with each fork, which demonstrates that
the two points labelled * have the same associated monomials. It is a simple
matter to add a fork handle and the remainder of the whisker.

Figure 18 shows an example in Ds, with a simpler whisker. In fact
figure 17 was derived from this by changing the tine.

4.3 Relationship to the Burau representation

If the ¢;s are all specialised to the same variable, ¢, then the Gassner module
becomes the Burau module. So let g, be the map

gn : Ma, - - -, an] = Ald],
which acts by sending ¢; — ¢ for all . Then define
G, : GL(n —1,A[q,...,q.]) = GL(n — 1,Alq])
to be the map which acts as g, on each entry of the matrix. Then

Gnofyn = Bn

4.4 Complex specialisations

Definition 4.7. Define v, (21, ..., 2,) to be the reduced Gassner representa-
tion of P, under the specialisation ¢; = z; for all 7.
Let f(z1,...,2,) be the specialisation of f to ¢; = 21, ..., qn = 2n.

To shorten notation, we use f|,—., to indicate the polynomial f with

¢; specialised to z; € C for all 7 from 1 to n.

Lemma 4.8. A? is in the kernel of v, (21, ..., 2,) if and only if 2129+ - 2y, s
a root of unity.

Proof. Under the unspecialised, reduced Gassner representation,

Yo (A™) = (q1q2 -+ @) " I,

which is equal to I, if and only if (¢1¢2 - - - ¢,)™ = 1. O
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Figure 17: An example of a tine of a fork and part of a whisker in D, where
two points cancel out in the pairing.

Figure 18: An example in Ds.
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Remark 4.9. In P, there is just one generator, Ay, which equals A2, so
Y2(z1, 22) is faithful if and only if 2125 is not a root of unity.

Theorem 4.10. If z;---z, is not a root of unity, then the following are
equivalent:

1. The reduced Gassner representation of P, specialised at q; = z; for all
i 18 faithful.

2. If W and F are a whisker and a fork in D,, such that (W, F),|,—. and
(W, F),|,,=1 are both zero, then T(F') is isotopic to an arc which is

qi=+

disjoint fTOT;L wW.

Proof. (2.)=-(1.) This is similar to the proof of Theorem 3.11. Fori # j, j+1,
(w;, fj)y = 0 because the whisker is disjoint from the tine of the fork.

Now if ¢ € ker v, (21, ..., 2,), then we have both (w;, ¥(f;))y|g=z =0
and (w;, ¢(fj)>7|qi=$ = 0, so, by hypothesis, T'(F) is isotopic to an arc which
is disjoint from f;. Using Lemma 2.6, it is simple to show that this arc can
be chosen to be disjoint from all such w; (where i # j,j + 1). Thus ¢ must
fix all the T'(f;)s, which, as in the proof of Theorem 3.11, this means 1) is
some power of A2 but v, (21, ..., 2,)(A%) = 21+ -+ 2,1,_1, S0 1 must be trivial
unless z; - -+ z, is a root of unity.

(1.)=(2.) Again, this is similar to the proof of 3.11. Let 7y, 7 be
the same as in the proof of Theorem 4.6.

Let (77), and (7w)s, be the maps on H,(D,) induced by 77 and 7y
respectively.

Now if (W, F'),|g,=z; = 0 and (W, F'),|g,=1/., = 0, then, working under
this specialisation, (7#).(F') = F’ and (%F)*(W’) =W, so

Therefore (7r). and (7w ). commute, meaning |[rw, 7| € ker+y,. That this
element in not trivial follows in precisely the same way as in Theorem 3.11 [
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4.4.1 Faithfulness in some cases

If all the ¢; are specialised to the same value, then this reduces to the case
for the Burau representation. Alternatively, if they are specialised at alge-
braically independent z;s, (i.e. there is no polynomial in n variables which is
zero when specialised at z1, ..., 2,), then the specialised Gassner representa-
tion is faithful if and only if the unspecialised one is.

Consider a less extreme case, where one of the z;s, say z; is equal to
one.

1. (1, 29) is faithful, if and only if 2 is not a root of unity, see remark
4.9

2. (1, 29,. .., 2,) for n > 3 is unfaithful for any choice of the remaining
z;s. In the case n > 4, this is easy to see since figure 19 shows a tine
and a whisker in D, with unspecialised pairing equal to 1 — ¢y, up to a
sign or a deck transformation. The addition of extra punctures will not
change the pairing, provided they are added outside the digon in D that
lies between T'(F') and W. If the fork and whisker are labelled F' and W
respectively, then figure 20 shows the geometric braid [7g, 7w ], which
is in the kernel of this specialisation of the Gassner representation.

For n = 3, note that the images of the generators under 4, which is
defined to be v3(1, 23, 23), are

, 2z 0 , z 0
V3(Ar2) = <02 1) ;o 1s(A) = (1 _323 1) :

. 1 0
73(1412) - (ZQ(Zg . 1) 2223> )

and so

2z 0
V3(Ag3Ays) = <03 ) :

2923

Now, since two diagonal matrices always commute, A9, Ax3A13] is in
the kernel of 74. Figure 21 shows this braid geometrically, demonstrat-
ing that it is not trivial.
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>

Figure 20: The geometric braid formed from this tine and whisker.



McMaster — Mathematics MSc Thesis — R. Smeltzer

Figure 21: A geometric braid in the kernel of v3(1, 23, 23).

If a product of two or more z; is a root of unity, then ~,(z1,. .., z,)
is also unfaithful. For n = 2, this is already shown. For n > 3, consider
figure 22. This shows a whisker and tine with Gassner pairing 1 + ¢1q2 +
.. .+q’f_1q’2°_1, where k is the number of intersection points between the two.
If 2125 is a kth root of unity other than 1 itself, then under the specialisation
q1 = %1, @2 = 29, this pairing is zero.

5 The Lawrence-Krammer representation

Definition 5.1. In order to define the Lawrence-Krammer representation,
consider the space, denoted C, of all unordered pairs of distinct points in D,,.

That is
D,, x D,)\ A(D,,)

(z,y) ~ (y,2)
where A(D,,) is the diagonal of D,, x D,. A point in C may be represented
by {z,y}, where z,y € D,, and z # y. Choose a basepoint for C' to be

oo |

b
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Figure 22: A whisker and tine in Ds.

Yo = {vo, ¥4}, where yo, y, are distinct points in 0D,,.

A path, a : [0,1] — C may be represented by o = {1, s}, where
ai, a1 [0,1] = D, are two paths such that a;(t) # as(t), for all t € I.
Then «(t) = {ay(t), as(t)}. Notice that the paths may intersect, as long as
they are not in the same place for the same value of t. Now if oy and as both
have start and endpoints at y, or y then a € 71 (C). There are two ways for
this to happen,

1. «; is a closed path based at y, and «s is a closed path based at y;.
2. 1(0) = az(1) = yp and (1) = a2(0) = yg.

In both cases, the roles of oy and as may be interchanged.

Notice also that a homotopy, I' : I x I — C of 7 (i.e. T'(0,¢) = v(t))
is defined by any two homotopies, A; : I x I — C of ay and Ay : [ x [ — C
of g, such that Aj(s,t) # Ay(s,t) for all s,t € I, that is each pair of paths
corresponding to fixed s defines a valid path in C.

Definition 5.2. If a4, ay are paths in D, such that ay(t) # as(t) for all

t € [0, 1], we define
1 o d d
- ([ S [ 2 5
271 p ay Z—Dj as 2= Dj

1

=L [ L=

)

Q] —an <
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For closed paths, the value of a is the sum of the winding numbers of
the paths about the puncture points. For the other case, it is the sum of the
winding numbers of the closed path a;as about the puncture points.

On the other hand, b is twice the winding number of the two paths
about each other, a value which cannot be calculated from the images of ay
and aw, though it only needs a little extra information:

First assume the intersection points between «y and s are transverse
and that there are no triple points. Now index the preimage of the inter-
section points under o as t1,...,t, € [0,1] and the preimage under oy as

1ye e by, 80 that ay(t;) = ay(t)), for j = 1,...,n. Then, for each point,

rn?

define

{—l—l, if the crossing of a; over as is positive,
ci =

—1 if the crossing is negative,

L it <,
-, if <

Lemma 5.3. If oy and oo are closed paths, based in 0D, then the value of b

can be calculated as i

b= cid.
i=1
Proof. 1f the paths do not intersect, the sum is 0, which is also clearly the
value of b. Then proceed by induction: Consider the effect of homotoping
one path to produce more intersection points (the fact that any two paths in
a disc may be homotoped off each other together with lemma 2.6 show that
this is sufficient as the induction step).

In the left-hand part of figure 23, the two paths are oriented in the
same direction near the new crossing points, which will be labelled £+ 1 and
k + 2. Notice, ¢x11 = +1 and c¢,o = —1. The dashed lines join points «;(t)
and s (), so show the value of a;—as at the point ¢. From this it is easily
seen that dyy1 = +1 and di42 = —1 and that this move increases both the
value of b by 2, which is as required since Efif cid; = Zle cid; + 2. The
cases with other values of dy; and dj,5 may be similarly calculated.
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The right-hand part of figure 23 shows the situation where the paths
are oriented in opposite directions near the new crossings. Here cxy; =
—1, g2 = +1, dpy1 = —1 and dpy2 = +1, giving an increase of +2 in the
sum, which is also the increase in the value of b. O

Figure 23: The introduction of two new crossings and its effect on b.

Corollary 5.4. If 01(0) = a2(1) = yo and a1(1) = as(0) = vy, then the

same formula holds, except that the intersections at yy and yg contribute only
1

+3

Proof. To prove this, it is only necessary to consider other basis cases. Figure

24 shows one such, for which the equality holds. O

Definition 5.5. For any path, «, representing an element of m;(C,Y}), let
d(a) = qt°. Then let C be the covering space corresponding to ¢.

A braid, 1, can be lifted to @Z), a homeomorphism of C'. Tt then induces

a map on Hy(C'), which is denoted (1))..

Figure 24: A basis case in the calculation of b.
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Definition 5.6. The Lawrence-Krammer representation of the braid group
is the map

o+ Bu = GL((2), Alt, q)),
W] = ().

5.1 The Lawrence-Krammer module

Bigelow [5] showed that elements of Hy(C'), considered as a module over
Alt, q], can be represented in terms of the standard forks (i.e. those contained
in the upper half plane). Any fork may be reduced to a linear combination
(in ¢ and t) of standard forks by using the fork skein relations below.

e
S
e

We can now write elements of the image of k,, as matrices over the
basis of standard forks. Recall the standard ordering: fis, fi3, fo3, fi4, €tc.

tg* tq(q—=1) 0 tg(g—1) 0 0
0 1-¢ 1 0 00
Example 5.7. 1. k4(01) = 8 g 8 12‘] 2 8
0 0 0 q 0 0

2\ __ 42.2n
2. Iin(A)—tq [(g)

Claim 5.8. The characteristic polynomial of x,(0;) is (p —tq*) (u+q)"*(p —
1)%(n71)(n72) )

35



McMaster — Mathematics MSc Thesis — R. Smeltzer

Proof. Since the o; are conjugate to each other, it suffices to show the result
for o;.
First note det(,ul(n) — ko(01)) = p — tq*. Now
2

B ﬁn,l(al)‘ *
%“”_( 0 \%@0)’

where k; (01) is the (n—1) x (n—1) matrix

1—q

1
0
K);L(Alg) = q 0 ‘

0 [Iis

Then for n > 2, by induction

det(uI(g) — Kp(oy)) = det(uI(ngl) — Kp—1(01)) - det(ul,—1 — K, (01))

= (=t (n+q)" P —1)2" DD (g g)(u— 1) 2
= (n—tg*)(p+ q)" (. — 1)z D=2,

5.2 Faithfulness

The Lawrence-Krammer representation is faithful for all n, in fact it was the
first known example of an always faithful linear representation of B,. This
was shown by Krammer [11] for x4, using an algebraic argument, then in gen-
eral by Bigelow [5] using a topological argument, outlined below. Krammer
[12] then adapted his argument to the general case.

Just as for the Burau and Gassner representations, this depends upon
a pairing, defined in terms of the intersections between two surfaces, though
since this representation uses the second homology group, these surfaces are
not just lifts of the fork and noodle.

Definition 5.9. Given a fork, F', and a parallel fork, F’, in D, let X(F)
be the surface in C' consisting of all points that can be written {x,y} where

36



McMaster — Mathematics MSc Thesis — R. Smeltzer

x € T(F) and y € T(F"). This surface has a natural orientation as F' x F".
Y(F) is given a handle, defined by the handles of the fork and parallel fork.
A path along each of these define a path in C. Finally, let ENI(F) be the lift
of $(F) that has handle based at Y,

If N is a noodle in D,, define a surface, 3(N) in C to consist of all
unordered pairs of distinct points in N. This is isomorphic to the section of
N x N that lies above the diagonal, take this to give the orientation. Then
define $(IV) to be the lift of ©(V) to C that is based at Yj.

A fork may also stand for a representative of an element of Hy(C'),
which is identical to a multiple of X(F') away from the lifts of the punctures,
see [5].

Definition 5.10. The Lawrence-Krammer pairing is defined for any fork,
F', and noodle, N, in D, as

<N7 F>Fu = Z qatb(qatbi(N)ai(F))'

a,be?

This pairing, like the Burau pairing (see theorem 3.10), gives a crite-
rion for faithfulness of the representation.

Theorem 5.11. The following are equivalent:
1. The Lawrence-Krammer representation of By, is faithful.

2. If N, F are any noodle and fork in D, such that (W,F), = 0, then
T(F) is homotopic, rel endpoints, to an arc which is disjoint from N.

Unlike, the Burau representation, however, Bigelow argued that faith-
fulness followed from this.

Theorem 5.12 (Bigelow). If N is a noodle and F is a fork in D, with
(N,F), = 0 then T(F) can be homotoped rel endpoints to be disjoint from
N.

Corollary 5.13 (Bigelow). The Lawrence-Krammer representation of By,
15 faithful for all n.
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5.3 Relationship to the Burau representation

Under the specialisation ¢ = 1, the Lawrence-Krammer module becomes the
symmetric square of the Burau module. In terms of the modules, a fork in
the Lawrence-Krammer module may be viewed as the tensor square of the
equivalent fork in the Burau module. In particular, the standard bases are
related as so:

fig=(fi+-+fim)®(fit+- =+ fi-1)

With these in mind, the relations in the Lawrence-Krammer module
with ¢ specialised to 1 follow naturally from those in the Burau module. The
first two are immediate, since the Lawrence-Krammer module then has a
factor of ¢> where the Burau has +¢. The third can be seen as follows:

o oo B DB
() o (e

Since the Lawrence-Krammer representation is faithful, there is a well-
defined, surjective map K, : k,(B,) — B.(By,) taking the image of a braid,
Y under k, to its image under (,. Using the relations, this map can be
calculated more explicitly.

The entries in column (k, k+1) of x,, (1)) may be viewed as coefficients
of fi;s in a sum, in which case column & of /3,,(¢), viewed as listing coefficients
of f;s, can be calculated by mapping, term by term,

a a L]

1" fij = (1) (fi+ -+ fi ).
The map K, can be extended to a map of general linear groups, however the
codomain has to include some half powers of ¢ as well. So it maps

GL ((%),Alt,q]) = GL(n —1,A[g?])
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Note that K, is injective (indeed, bijective) precisely when [, is faith-
ful. So if B, is faithful, it must be possible to reconstruct the powers of ¢ in
each entry of k4(¢)), for any ¢ € By, from (4(). It seems likely that the
signs in the Burau module will be important here, as they are not reflected
in the symmetric product, which is the Lawrence-Krammer module with ¢
specialised to 1.

6 The Lawrence-Gassner representation

The Gassner and Lawrence-Krammer representations sit over the Burau rep-
resentation in different ways. Another representation may be produced that
completes the diagram:

M(Pn) —— Kn(By)

| [

Tu(Pa) —= Bu(By) -

To define this representation, we again consider C, the space of all unordered
pairs of distinct points in D,,, which was introduced for the definition of the
Lawrence-Krammer representation. Recall that a point in C' is represented
by {z,y}, where z,y € D, and = # y and that Yy = {yo,y(} denotes the
basepoint of C.

Recall the values a and b from the definition of the Lawrence-Kra-
mmer representation.

Definition 6.1. If oy, ay are paths in D, such that ay(t) # as(t) for all

t € 10, 1], define
1 </ dz / dz )
a; = = + ,
211 a 2 — Dj a 2 — Py

For closed paths, the value of a; is the sum of the winding numbers

of the paths about the puncture point p;. For the other case, it is the sum
of the winding numbers of the closed path a;as about the point. Note that

Z?:1 aj =a.
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Definition 6.2. For any path « representing an element of 7 (C, Yy), define
P(a) = ¢ - - ¢ t*. Then let C be the covering space corresponding to ¢.

A braid, 1, can be lifted to ¢, a homeomorphism of C'. Tt then induces
a map on Hy(C), which is denoted (1),

Definition 6.3. The Lawrence-Gassner representation of the braid group is
the map

A i B, — GL((;L),A[t, Q-5 qn)),
Y] = ().

6.1 The Lawrence-Gassner module

Now Hg(é) is a module over Aft,q,...,q,] and its elements may be repre-
sented by forks. The relations in equation 7 hold and can be used to write
any fork in terms of the standard forks.

(%)
“(2)
D)-0-0(@)ra-o( D)@

The effect of one of the standard generators of P, on the standard

forks is then as follows:

If1<i<j<n, then,
Aij(fig) = @i q; fij.
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If1<i<j<k<n, then,
Aii(fir) = tai(q; — 1)(taiq; — ¢ + L) fij + (65 — ¢ + 1) fiks
+ai(1 = q;) fir,
Aij(fir) = tai(q — 1) fis + (1 — @) fix + @i [,
Aw(fi5) = iy + ar(ge — 1) fir + 7 (1 = i) fm,
Ai(fir) = tae(1 — @) fij + tar(a; — 1) (tasqe — qr + 1) fir,
+ (Giax — ax + 1) fi,
Aj(fis) = (@qk — ¢ + 1) fij + ¢;(1 — @) firs
+qi(ak — 1) (tgiar — g5 + 1) fin,
Aji(fie) = (L= ;) fij + @5 fie + 45(05 — 1) Fi-
If1<i<j<k<l<n, then,
Aij(frr) = fras Ajr(fir) = fu,
Aa(fir) = fins Ap(fij) = fij»
Aie(fj) = t(1 — @) (qe — 1) fij + (@i — V(e — V) (tqsax — @ — qx + 1) fir,
+ (gi — V) (agr — 1) fix + (@ — Darfu,
+ fir 4+ (i — V(1 = qk) fr,
Aj(fir) = (g5 — V(@ — 1) fij,
+ fie + (g5 — D)(1 = a) fir
+(¢; — D = a) fa,
+ (g5 — V(@ — V(tga — ¢ — @+ 1) fi,
+17 g — D@ — 1) fu-

(8)

Claim 6.4. The characteristic polynomial of A, (A;;) is

(n—t¢22) (=) (= qigy)"” (9)

Proof. First suppose n = 2. Then the characteristic polynomial of A\(A;3) is
easily calculated as u — t?q2qa.
Now proceed by induction. Suppose that

n—2 _

da@d—AmﬂAunz(u—ﬁﬁﬁﬂu—U(QNu—m%V ,
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then observe that for n > 2

A(Arp) = ( )\n_léAm) } )\2(212) ) ; (10)

where X/ (Aj2) is the (n — 1) x (n — 1) matrix:

@—q¢a+1 1—-q¢ 0 ... 0
Q1(1 — q2) Q1 0 . 0

An(Arz) = 0 0 1 0 (11)
0 0 0 1

Now calculate
det (ul — Xy (A1z))

n3(H—qQ@e—qg+1 ¢-—1
det (ud — Ap_1(A12)) (1 — 1) < (g — 1) - q1>
(4222 NG n—2
=(p—1da)(n—1)" " (n—qe)"
as required.

Another A;;, with ¢ > 2 is conjugate to A in a larger subgroup of B,
which allows the first and ¢th, and second and jth strands to be interchanged.
In this group, A, and A;; are conjugate. If ¢; and ¢; are specialised to the
same variable, and the same for ¢, and ¢;, then \,, becomes a representation of
this group. So under this specialisation, A, (A4;;) has the same characteristic
polynomial as A, (A;2), but none of the entries in A,(A4;;) contains a ¢; or ¢,
and so the characteristic polynomial must be

n—1
2

(1= £262¢2) (n— 1)) (u— qugy)" 2

If 7 is 1 or 2, then there is a similar proof. O

6.2 Faithfulness

The Lawrence-Gassner representation is faithful simply because if all the
¢;s are specialised to the same variable, ¢, then it becomes the Lawrence-
Krammer representation.
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Alternatively, this could also be argued as in the Lawrence-Krammer
representation, using a pairing between a fork and a noodle defined below.

Definition 6.5. Given a fork, F', and a parallel fork, F’, in D, let ¥(F)
be the surface in C' consisting of all points that can be written {x,y} where
z € T(F)and y € T(F'). This surface is isomorphic to, and given the natural
orientation of F' x F'. X(F) is given a handle, defined by the handles of the
fork and parallel fork. A path along each of these define a path in C'. Finally,
let S(F) be the lift of ©(F) that has handle based at Y,

If N is a noodle in D,, define a surface, ¥(N) in C to consist of all
unordered pairs of distinct points in /N. This is isomorphic to the section of
N x N that lies above the diagonal, take this to give the orientation. Then
define $(IV) to be the lift of ©(N) to C' that is based at Y.

Definition 6.6. Given any fork, F', and noodle, N, in D,,, the Lawrence-
Gassner pairing is defined as

(N, F)x =" a(qS(N), S(F)),

q

where ¢ = ¢{* ... ¢*t" with ay,...,a,,b € Z.

6.3 Relationship to the other representations

By its very construction, this representation does indeed complete the dia-
gram:

AP~ k(B

e e
Ya(Pa) — Bu(Bu)

where G! is defined, like G,, by mapping all the ¢;s in the entries of the
matrix to ¢, and K] is similar to K,. That is, for a braid, 1, treating the
(4,7 + 1)st column of k, (1) as coefficients of a sum of standard forks,

b
Kl toql ol iy (1% 2 g P (fi b+ fim),
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allows column 7 of 3, to be calculated as coefficients of the f;.

Since both A, and k, are faithful, G! is injective. Similarly, the
Gassner representation is faithful iff K, is injective. So the question of faith-
fulness of 7, amounts to whether or not the exponents of ¢ in A,(¢) can be
calculated from 7,,(¢).

7 On generalised skein fork modules

7.1 The Burau module

The Burau representation may be unfaithful for large n, but it is natural to
ask “Why?” Is the basis chosen deficient, or could another set of relations
produce a faithful representation?

Start with the following generalised Burau relations, assuming a, b, ¢
and d are invertible elements of a commutative ring.

&)
©)-
D@D

Claim 7.1. The Burau module is the unique module with relations as given

a

(?)
()

(12)

in equation 12.

Proof. The relations must still hold when a braid is applied to them. Under
the braid o,05, the third relation becomes

@:c@+d@,
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a@ = bc@ + ad@.
Applying the original third relation gives

(a — acd)@ = (bc + adZ)@.

But, for fi,..., f,_1 to form a basis for the module, they must be indepen-
dent, and so ¢ = d~! and b = —ad?. This is not the whole story, however.

i.e.

Consider decomposing the following fork in two different ways:
and, similarly,

O

from which, ¢ = d = 1. Hence this is simply the Burau module. O

One might also imagine that the second Burau relation could be gen-
eralised further — it involves three punctures so could relate the left-hand
fork to two others. This is not possible.

Claim 7.2. The second generalised Burau relation is, in fact, a consequence
of the other two.
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Proof. The third relation gives

7.2 The Gassner module

Start with the following generalised Gassner relations, assuming that a;, b;,
¢i, d; and e; are invertible elements of a commutative ring forall: =1,...,n.

@ |
o
@:q@m@.

Claim 7.3. The Gassner module is the unique module with relations as given

a;

(13)

(%)
(2)

in equation 13.

Proof. This is similar to the case of the generalised Burau relations. Under
the braid 0,05, the third relation becomes

al@ = blcg@ +ald2@.

For ease of notation, we assume the punctures to be labelled 1, 2 and 3, but
in fact they may be any punctures, with the disc homotoped to place them
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as shown. Applying the original third relation gives

(Cll — a102d2) @ = (b102 + aldg) @

But, for fi,..., f,_1 to form a basis for the module, they must be indepen-
dent, and so ¢y = d;l and b; = —aldg. This is not the whole story, however.
Consider decomposing the following fork:

and, similarly,

from which, ¢co = dy = ¢3 =d3 = 1. Hence ¢; =d; =1 and b; = —a; for all ¢
and this is simply the Gassner module. U

Just as with the Burau module, the second relation cannot be gener-
alised.

Claim 7.4. The second generalised Gassner relation is a consequence of the

St
o) ()
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7.3 The Lawrence-Krammer module

The generalised Lawrence-Krammer relations, are as follows, where a, b, ¢, d
and e are invertible elements of a commutative ring.

CC§>+%j§pr§>

Claim 7.5. The Lawrence-Krammer module is the unique module with rela-
tions as given in 14.

Proof. The relations must still hold when a braid is applied to them. Under
the braid A, the third relation becomes

MQE>ZW<§>+sz>+wG§>

Apply the original third relation:

(ab — ae?) @ = (ad + ace) @ + (abc + ade) @

Again, the f;;s must be independent, so b = €* and d = —ce. Now, the
following fork may be decomposed in two different ways, by applying the
third relation to the second puncture and then the third, and by applying it
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@ @d
@
@

to the third, then the second.

e
S
i

Comparlng coefficients gives ¢ = ¢(c+e€) and d(d+e) = bd, so c =1 — e and
d = e?—e. Putting ¢ in place of e, this is the Lawrence-Krammer module. [J

Again, one might imagine that replacing the second relation will yield
a larger module, however this is not the case if it is replaced with the following

R

Claim 7.6. The second generalised Lawrence-Krammer relation follows from

relation:

the other two and equation 15.

Proof. First note this decomposition:

= —f g+ ch)@ - df‘lh@ + - eh,)@.
(16)
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Now, using the above, decompose the following fork in two ways:

c@ +ce@ +cd
+62@ +de® +d(d +e)

Comparison of coefficients gives g + ch = 0 and 1 + eh = 0, which

it

indicating that these relations yield the generalised Lawrence-Krammer re-

makes equation 16

lations as presented in equation 14. O
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7.4 The Lawrence-Gassner module

The generalised Lawrence-Gassner relations, are as follows, where a;, b;, ¢;, d;
and e; are invertible elements of a commutative ring for all i.

RO
e
NG

Claim 7.7. The Lawrence-Gassner module is the unique module with rela-
tions as given in 17.

Proof. The relations must still hold when a braid is applied to them. Under
the braid A, the third relation becomes

ale@ = agblcg@ + aldg@ + a162@.

Apply the original third relation:

(a1b2 — aleg) @ = (aldg + CL162€2) @ + (a2b102 + aldgeg) @

Again, the f;;s must be independent, so b; = e? and d; = —c;e; (remembering
that here the punctures are labelled in the standard way for convenience and
that the same calculation could be done with the punctures permuted). Now,
the following fork may be decomposed in two different ways, by applying the
third relation to the second puncture and then the third, and by applying it
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to the third, then the second.

e
+6263@ +d263@ + ds( d2+62)®
= co(c3 + €3 @ +0362@ +c3d2@
+€263@ +d263® +b2d3®.

Comparing coefficients g1ves co = co(c3 + e3) and d3(ds + e3) = bads, so
¢ =1—e;and d;, = ¢; — ei. Putting ¢; in place of e;, this is just the original
module. O

Again, if the second relation is removed and replaced with this,

Claim 7.8. The second generalised Lawrence-Gassner relation follows from
the other two and equation 18.

Proof. First note this decomposition:

G- &)
_ -1 -1 -1 -1
= —Q10G9 f (92 + CQhQ)@ — Q1G9 d2f2 hg@ (19)
+ a1a2_1f2_1(1 — €2h2) @
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Now, using the above, decompose the following fork in two ways:

+ 6263@ + dgGg@ + d3(d2 + 62)®
= 02(63+63)@ +0362@

+ (cady — agaz 'ds f5 ' (g3 + cahs))

+ 6263@ + (d263 + GQGgldgf?jl(l — 63h3)) @

—142 p—1

Comparison of coefficients gives g; + ¢;h; = 0 and 1 + ¢;h; = 0, which
makes all the coefficients zero except for the coefficient of fy3 in equation
19 indicating that these relations yield the generalised Lawrence-Gassner
relations. O

7.5 Further possibilities

In each module, the first relation involves two points and the second and third
involve three. In the Gassner and Lawrence-Gassner modules the relations
could use all these, taking coefficients a;j, b;;i, etc. Also, the third relation
could write a fork in terms of more than just the three forks. There could
potentially be n—1 or (g) terms on the right-hand side, but this seems to get
away from forks actually representing elements of a homology group.
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8 Concluding remarks

The two major outstanding problems are faithfulness of the Burau represen-
tation of B, and the Gassner representation of P, for n > 4. If the Gassner
representation is faithful, then v, is probably the easiest one to start with. If
not, then non-faithfulness of v, for large n is probably the easiest to prove,
just as it was with the Burau representation.

A characterisation of which specialisations of these representations
are faithful is another open problem, although if the faithfulness of the un-
specialised version is unknown then this cannot be determined in general.
The Lawrence-Krammer and Lawrence-Gassner representations may also be
specialised and, since both are known to be faithful, which specialisations
remain faithful is an interesting question.

The Burau, Gassner and Lawrence-Krammer relations are known to
be unitary with respect to some Hermitian form. For the Burau representa-
tion, this was shown by Squier [18], for the Gassner by Abdulrahim [1], and
for the Lawrence-Krammer recently by Song [17] and Budney [9]. With this
is mind, it is natural to ask whether the Lawrence-Gassner representation is
also unitary.
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