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Abstract

After an introduction to knot invariants and Chern-Simons gauge theory (CSGT), where we follow the exposition of J. Baez & J.

Muniain[2], we note that vacuum expectation value (vev) of Wilson loops in CSGT gives a knot invariant for each representation

for each group. Assuming some facts from conformal field theory (CFT) and closely following Witten[1], we calculate vev in CSGT

using surgery methods for G = U(1), SU(2) (with the fundamental representation). The resulting knot invariants are the linking

number and the Jones polynomial, respectively.
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1 Background Materials

1.1 Some Knot theory

A knot is a manifold in R® diffeomorphic to S*
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Fig. 1: Examples of knots, labelled by their minimal crossing number and a subscript index. a) unknot b) trefoil knot (3;)
¢) figure-eight knot (41) d) 51 e) 52

A link is a manifold in R? diffeomorphic to copies of S*. Each piece diffecomorphic to St is called a link component.
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Fig. 2: Examples of links. a) unlink b) Hopf link ¢) Whitehead link d) Borromean Rings

If we make a trefoil knot with a piece of string, we find that it is impossible to deform it into an unknot without cutting
it open. This motivates a notion of equivalence, between knots and links which can be deformed into one another.

We say a link L is ambient equivalent to L’ if L is mapped to L’ under an orientation-preserving diffeomorphism of

R3. The orientation-preserving condition says we do not always identify a knot with its mirror image. One of the goals in

knot theory is to provide a complete classification of knots and links, up to ambient equivalence.
It is not surprising that, just as the examples above, all knots can be represented by a knot diagram drawn in 2D. They

are graphs for which each node has degree 4, representing a crossing between two segments of knots, with one segment
running over another. It also turns out that two links are ambient equivalent if and only if their diagrams differ from one

another through a sequence of Reidemeister moves:
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Fig. 3: The three Reidemeister moves

A knot invariant is a quantity Inv(D(L)) associated with each link diagram D(L) such that Inv(D(L)) is unchanged
under the Reidemeister moves (so we can simplify the notation and write Inv(L) instead). If Inv(K7) # Inv(Ks) then
the knots Kj, Ko are not ambient equivalent. We will see two examples of knot invariants: the linking number and the

Jones polynomial.
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1.1.1 Linking Number

For each given llink diagram, we may give an arrow running on each link component. Such link diagrams are said to be

ﬁ"‘\f% ﬁfﬂm‘x”/ﬂw\

oriented.
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Fig. 4: Oriented links
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Each crossing ¢ can be classified into two types, and we can associate a sign for each type:

Fig. 5: positive(+) crossing negative(—) crossing

Let {K; : i € I} be a link, where each K; is a knot. Let C;; be the set of crossings between K; and Kj;. Then the

following is a knot invariant for ¢ # j:

1 )
L(Ki i) = 5 > sign(c) (1.1)
ceCyj
to check, compute the change in L;; under all Reidemeister moves with all possible assignments of orientation and
membership to K;, K;, Kj for each line segment. e.g.
K ¥y

A '
K\’ “”é ) g gk
Ce, A
P

e

L(K1, K»)

(Notice we only sum on crossings between different links)

Inequivalent links can have the same linking number.

Framing & self-intersection number

We are tempted to compute the following number, which includes the contribution from Cj;:

w(Ki,...,Kp) = Z sign(c) = Z Z sign(c) + Z Z sign(c)

c€all crossings i ceCy; i<j ceClij
=> wi+2> LK K;) = wi+ Y L(Ki K;) , (1.2)
i i<j i i)

where we have defined w; := )~ ... sign(c), the writhe or the self-linking number of K;.



1 Background Materials

>

w; is not invariant under type I moves.
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To make (1.2) an invariant on each equivalence class of links, we refine our definition of equivalence class of links by

introducing a ‘“framing” for each link component. With this definition, two links can be inequivalent even if they have the
same diagram with different framings.

A framing on a link component K; is a smooth, non-vanishing vector field f; on K; such that at each point p of K;,
f; is orthogonal to the tangent vector of K; at p. The tips of ﬁ forms another link Ki, thought to be infinitesimally close
to K;. We may imagine a framing as a small, everywhere non-zero perturbation of K;, and imagine a framed link as a
2-dimensional, ribbon-like object diffeomorphic to S* x [0, 1], instead of a 1-dimensional object.

Fig. 6: Different framings for the unknot

A diffeomorphism h of R? induces a map from the set of framings of K; to the set of framings of h(K;). When we
picture the framing as K;, the framing induced on h(K;) is then h(K;).

Two framed links {(K;, K;) i =1...n}, {(K/,K!) :i=1...n} are said to be equivalent if 3 orientation preserving
diffeomorphism & : R® — R? such that

{(KI,K!) :i=1...n} = {(h(K:),h(K;)) :i=1...n}

Given a oriented link diagram, we can make a particular choice of framing called the blackboard framing, by choosing
fi to always point to the left to the direction on the link.

Fig. 7: Blackboard framing of the trefoil

Now one can check w; is just L(Ki,Ki) with the blackboard framing. Since L(Kj, K~'j) = L(K;, K;) for © # j, we see
that w(K1,. .., Kn) =3, ; L(K;, K;). Equivalence of framed links implies ambient equivalence of links K, K; :i=1...n,
which implies invariance of L(Ki,Kj) for any 4, j. So w(Kj,...,K,) is an invariant for equivalent framed links.

w(K1, ..., Ky) is not a link invariant because w; is not a link invariant, which is because the blackboard framing on
different diagrams may give different framings.
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1.1.2 Jones Polynomial

To construct the Jones Polynomial, we first construct the Kauffman bracket for an oriented link diagram.

Kauffman bracket

A state assignment s for a diagram K is an assignment for each crossing c; ( A ) , a state s; = <> \ ) ( y < )
s

. K(s) is the diagram in which each ¢; is replaced with s;. Notice that since K (s) has no crossing, it is just a collection

- \

of m(s) circles K(s) = H;n(f) O, where O denotes a circle. Let ¢ (> {\) =+1and ¢ <\\,/> = —1. The Kauffman
S /,«"”““‘ﬂ\w

bracket < K >€ Z[A] is defined by the following conditions:

1.
<K >=)[<K(s)>[[4°) (1.3)

2.
<K[[O>=-(A+A?) <K><0> (1.4)

3.
<0>=1 (1.5)

2. and 3. implies < K (s) >= [ (A% 4+ A~2)]™)~1. One can also check that the three conditions imply
<K [[K2>=—(A*+ A7) < K1 >< Ky > (1.6)

as a generalization of (2).

Claim. < K > is invariant under type II and type III moves. Under type I moves, < K > changes by a factor of — A3

Proof. (Drawing a part of a diagram means all the rest of the diagram is the same for every term in the equation),
(In:
N

()05
s Ke-af X)-(00)

(I10):
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so < K > is not a knot invariant. However, we know that w(K) is also invariant under type II and III moves and
changes by +1 under type I moves, so we can construct the quantity V(K) := (—A%)~%(K) < K > which is invariant
under all three moves. V(K), with the change of variable t3 = A2 is called the Jones polynomial.

One can check V(K) satisfies the following:

1. Normalization:

V(O)=1 (1.7
2. Skein relation:
—t7W(Ly) + (£ — t73)V (Lo) +tV(L_) =0 (1.8)
‘whereL_F:%%i , Lo = ?)é , L= ;\‘?{
Moreover, from (1.6),
V(K1 [ K2) = —(t% +t75)V(E)V (Kz) (1.9)

Knowing that V(K) is a knot invariant, (1.7) and (1.8) allow us to compute V(K. This can be seen by induction on
the number of crossings. If we were free to change any L4 to L, the knot will eventually untie and become an unknot.
The skein relation allows us to express V(L+) in terms of V(Ly) and V(Lo), the latter of which has one less crossing and
is computable by the induction hypothesis. If there are no crossings, K is a collection of m circles, V(K) can be computed

by induction on m and considering diagrams such as

v (30 )+t - (O )+ () =0

In particular, this means (1.9) is just a rather indirect consequence of (1.7) and (1.8).

Connected sum of knots

If K : , Ko :%:‘L:‘” E, where the boxes may be any diagram, then the connected sum K; + K> := T
Using (1.8),(1.9),

| |

da (B =0

—cv( o)+ ¢ - v (e

(=t OV (K + J) = (#2 = 3 (F + V(K V () = 0

V(K1 + Ka) = V(K1)V(Ka) (1.10)
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1.2 Chern-Simons Theory
1.2.1 Connection, curvature and Chern Form

Let G be a compact simple Lie group, let M* be a 4-manifold with G-bundle E, which is constructed as follows. Let
{U, a € I} be charts covering M*, each equipped with the trivial bundle E, = U, x V, where V is a vector space on
which G acts. Then we identify Eqo(p) ~ gap(p)Eg(p) for some gop : Uo NUg — G. Let A be a connection on E, so A
is an End(E)-valued 1-form. Locally (i.e. in one chart U,) Ay = Agida’. A,, Ag from different charts differ by a gauge
transformation® A, = Gap(p)A4p = gaBAgg;é - dga,gg;,;. Define curvature F := dA + A A A, where dA = 9; A;dz* A da?.
F is well defined because it does not depend on gauge. Let there be End(E)-valued p-form w = wrdz! and End(E)-valued
g-form v = vydz’, define [w,v] := w Av — (=1)P9v A w, where w A v = (wy o vy)dz! A dx’. Define daw = dw + [A, w)].
Then

dAFZdA(dA+A/\A)
=d?A+dANA—ANIA+ A dA+ AN A

=dANA—-ANdA+ANdA—dANA+[A ANA]
=0

if we perturb A — A + 0 A, then to first order in d4,

F+6F = d(A+6A) + (A+6A) A (A+6A)
SF = d(6A) + SAANA+ AAGA
= du0A (1.11)

Let tr(w) = tr(wr)dz!, which is an C-valued p-form, then tr([w, v]) = 0, so
tr(daw) = tr(dw) = dtr(w) (1.12)

define the k-th Chern form to be tr(F A ... A F) = tr(F*). It is closed since
k

dtr(F*) = tr(daF) =0 (1.13)

so it defines a cohomology class ci(F) called the k-th Chern class. We write ci(E) instead of cx(A) because under a
perturbation of A, tr(F*) changes by an exact form:

§tr(F*) = ktr(6F A F*1) = ktr(da(6A) A F*=1) = ktr(d4(5A A F*~1))
= dktr(SA A F*~1)] (1.14)

since every connection for a fixed vector bundle E can be deformed into one another via a continuous path?, they all give
the same cj. So cx only depends on the vector bundle E. Let Ly := tr(F¥), Sy := [,;.tr(F*). If M* has no boundary
then by generalized Stoke’s theorem

58k, :/ ktr(SANF*1) =0
OM4

! Recall for example we can write down a connection for each of the two charts around a magnetic monople, and they differ by a gauge
transformation.

2 For example, [A1 — Ag](t) := tA1 + (1 — t) Az, which is well-defined on Uq N Up because Gag[A1 — Az2] = [Gap A1 — Jap A2l
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0 Sy depends on E, not A. For the trivial bundle E = M* x V we can choose A = 0 everywhere, so S = 0.
It turns out that[4] for any vector bundle E,
1, i,
(ks €7 1.1
7(ar) Sk € (1.15)

1.2.2 Chern-Simons Action

Let k = 2. Consider a 4-manifold with boundary, with the trivial bundle (so we can have a globally defined connection).
Another way to see So = 0 is to note that Ly := tr(F?) = dLcs, where

Los = tT(AAA—I——g—A/\A/\A) (1.16)
for a globally defined A. Let M3 be a 3-manifold without boundary with the trivial bundle. Define
Scs 2=/ Lcs (1.17)
M3 .
It is called the Chern-Simons Action. By eq(1.14), under a perturbation of the connection,
0Scs = 2/ tr(F'AJA) (1.18)
M3

To see why Scy is interesting, consider a 4-manifold M* without boundary with the trivial bundle. We knew that Sy =0
for M*. However, if we cut M* along a 3-manifold into two pieces M{ and Mj with M?® as the common boundary, do
a gauge transformation g on the bundle of M? in Mj, then glue the two bundles back, the resulting bundle on M, may
not be trivial in general, and Sy for the new bundle is the difference between Scs[§(A)] and Scs[A]. We also know from
eq(1.15) that Sz = 872n. We elucidate the above discussion with the following claim.

Claim. Let g be a gauge transformation on the trivial bundle on M?, then

) 0 for g connected to the identity
55@5 = Scs[g[A” - Scs{A] =
872n for somen € Z for general-g

Proof. Suppose g(p) is connected to the identity. Let g(p,s) be the path from g(p) to identity, ie. g9(p,0) = Id and
g(p, 1) = g(p). Construct M?> x [0,1] with the trivial bundle and two 1-forms on M2 x [0, 1]:

Ai1(p, s) = §(p, s)A(p) (1.19)
Az(p, s) = A(p) (1.20)
Next we identify M3 x {0} with M3 x {1} to obtain M3 x S, and identify A;(p,0) with A;(p,1) for i = 1,2. For Ay, we
have ’
/ L = / Les[A4] —/ Les[A1] = 6Scs (1.21)
M3 xSt M3x{1} M3 x{0}
For AQ,
/ LY = / Les[As] — / Les[A2] =0 (1.22)
M3x St M3x{1} M3 x{0}

but since Lo is independent of gauge, and A;, A, differs by a gauge, Lgl) = Léz), s0 6S¢cs =0
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For general g(p) replace eq(1.19) with A1(p, s) := sg(A(p)) + (1 — s)A(p). Eq(1.21) still holds, so
— . 1) _ g2
6503 —/ L2 = 871“n (123)
M3xS1t
by eq(1.15) with M* = M?® x S*. O

2 Chern-Simons Theory and Knot Invariants

Consider a quantum field theory with the Chern-Simons Action

k k 2 '
S=—S8cs=— tr(ANA+-ANANA 2.1
4r”9% T 4 M3 r( + 3 ) (2.1)
where k € Z is the level of the theory. By (1.23), S = 27kn under gauge transformation. So ¢ is gauge invariant.
Suppose there are some non-intersecting knots C1, ..., C, in M2, For each C;, we assign an irreducible representation

(irr rep) R; of G, and construct a Wilson loop Wg,(C;) = T'rg, (Pefci A). Consider the vev for the product of all Wpg,’s,

r r

Z(M®,(Cy,Ry),...,(Cr, Ry)) =< [[Wr,(C:) >=/ (DA ] Wr,(Ci)eidseslAl (2.2)

i=1 A/G i=1

where the integral is carried over the space of all connections A modulo gauge transformations G. Since Scg does not
depend on the metric, (2.2) is invariant under diffeomorphism of M? (also known as “general covariance” in physics).
So (2.2) is a knot invariant for each group G and each assignment R; to the link components. In the case where no
Wilson loop is inserted, (2.2) gives an invariant® of the 3-manifold M. In the rest of this essay, we compute (2.2) and
see its implications. We will see G = U(1) corresponds to the linking number and G = SU(2) with the fundamental

representation corresponds to the Jones polynomial.

2.1 Large & limit, G = U(1)

Take M?® = S3 G = U(1). In the large k limit, the phase in (2.2) fluctuates rapidly. The integral in dominated by
stationary points of Scs[A4], i.e. the classical solution, which is F' = 0 from eq(1.18). Since U(1) is abelian, A A A = 0.
Let A =iA;dz?, and By, = €;;,0;A; where A;, B; € C, then

Scs= [ AANdA=—- | A Bdz (2.3)
S3 33

We assign a = U(1)-charge to all loops, so W(C;) = ¢/t 9o, 41957 Then we will see inserting W (C;) is the same as

imposing the condition that there is a unit flux of B in each wire C. Compute

[H W(Ci)}@%scs — e?i‘k;(zi ﬁci g'd5+scs)

so the stationary phase condition becomes

é -
ﬁ[z . A-dZ+ Scs] =0 (2.4)
7 3

3 the vev obtained depends on the “framing” of the 3-manifold.
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From (2.3), 55
cs _ = x
A B(z) (2.5)
wher
o S (b A di]=G(@) = [ P50 _ 5r)) (2.6)
A T @)= [ a5,

where X is a parametrization of C;, ;(i)(x) is seen to be a unit current running in the wire C;.
(2.4),(2.5),(2.6) yields

B = Z;(i) (z) (2.7)
i=1
Let eijkf(k) (z)dz® A dz? = dA; for some Ay = j(i) -dZ. This does not fix A(;), but we will see the choice of A is
arbitrary.
(2.3) becomes
Sos = — /S Ay D Ay dgy+ D Awy ) (2.8)
i#] i

The choice of A is arbitrary because suppose dA’(i) = dA(;), then since S? is simply connected, every closed 1-form is
exact. so Af;) —A() = dC for some 0-form C'. then Jss d%/f’(i) Aj—"(j)—fsg deE(i) -f(j) = ﬁcj (A’(i)—/_l'(i))-di" = fcj dC = 0.

Consider the term with i # j. [gs d®z A -;(j) = Sﬁcj A;y-dE. We show it is L(C;, C;) ineq(1.2)*. Let L; ; = fﬁcj Agiy-dZ.
Then

. Cr
L; ;( ) L%J( "*'%‘W ):LdA(z)_/J(z) dii=1
S 4w v

So L, ; transforms in the same way as L(C;, é’J) under flipping sign of crossings. Starting with a link diagram, change the
sign of crossings until C;, C; are unlinked from each other, in which case we can throw one link infinitely away from the
other, so L; ; = 0. So L; ; has the same initial value as L(C;,C;). So L; ; = L(C;, Cj).

Now consider the term with ¢ = j. We now show |, 58 /_f(i) -f(i) is w; in eq(1.2). The first thing to notice is that
f <3 A'(i) ~j—"(i) is ill-defined, as both fl’(i) and f(i) are singular on C;. We attempt to regularize it by replacing f(i), a flux in
a 1-demsional wire C; of zero thinkness, with Ji;), a flux in a tube of some finite radius, with C; as its core.

a) ;
Fig. 8: a) Thickening up C; into its tubular neighbourhood. b) Parametrizing D

Let S x D be a solid torus parametrized by 6, z, y, with 6 running in the S direction. D is a disc with radius r and
center O. Let J = (772)~0 be a uniform flux with total current 1in S* x D. Let k : S x D — S3 be an embedding such
that h(S' x {O}) = C;. Then h(&) is a framing of C;. h maps the flux .J to f(i) = h(J).

41 we treat A as the “magnetic field” generated by the current f, this term the line integral along C; of magnetic field around a wire C;
carrying unit current, which is easily seen to be the linking number between the two knots.
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h(s'wp)
To calculate fsa A'(i) . f(i) , where €z, j(k) (z)dzi Adzd = dAy , we subdivide D into N smaller discs {do ra=1...N},
so S* x D is subdivided into N small cables {S? x do : v =1...N}.

Fig. 9: Cabling of S x D

Let J, be the flux in the tube S xd. Let Jis) o = h(Ja), and € J(x) o (€)dziAdz? = dA() o. Let Cia = h(S'x{04}),
where O, is the core of dy. Then for a # o, L(C; o, Ci ') does not depend on which two points Ogq,0q are chosen in D,
since moving Oy, around in D is the same as moving the knot k(S x {O,}) around in S without crossing h(S* x {Oq}),
so their linking number is unchanged. So we can pick O, = 0,04 = O, as indicated in Figure 8, so L(C; s, Ci o) = w;,

where w; is the self-linking number of C; with framing k(). Next, write

/S Ay Ty = /S . [a;/ Ay o Jiy o0 +§a:ff<i),a ity o
and let N — oo. Ea#a, x N(N—-1) >, xN, E(i),a x 1/N, f(i),a/ x 1/N, by the previous case with ¢ # j, and the
discussion in the previous paragraph for a # o/, [q A'(i),a . J—&i),a/ ~ %L(CLQ,CLM) = ﬁwi. The first term goes as
NN -1) [s A'(i),a . f(i)@, ~ %wi — w;. The second term o % — 0. So sz A'(i) : f(i) = w;. Notice the answer
does not depend on 7.
To conclude, Scs = —[>2,.; L(Cs, Cj) + >, wi] = —w(Ch, ..., Cn), so the vev (2.2) yields exp(—Ew(Cy,...,Ch)).

2.2 Quantization

Our general strategy of computing (2.2) is to develop a mechanism to chop the 3-manifold M? along a Riemann surface
¥, solving the individual pieces, and gluing them back together. To do this, we first have to understand the theory near
the cut ¥, where M? looks like & x R.

>

Fig. 10: Cutting M? along %

We perform canonical quantization on ¥ x R, where R is treated as the time (z° = t) direction. Choosing the gauge
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Ao =0, the action(2.1) becomes

k
_— iJ i AQ
S 47r/dt/2tr( A; A /dt/ AZ p Af (2.9)

where A; = AT, with normalization Tr(T°T?) = —%5‘11’. 1,7 = 1,2 are the space-like indices.
The Poisson brackets are 4
T
{42, A5 )} = a0 (a —) (210)

When no Wilson loops are intersecting %, from (1.18), the constraint % = 0 implies
F5=0 (2.11)

In principle, we first apply the constraint (2.11) and fix the gauge, which changes the Poisson bracket structure (2.10).
Then we quantize (i.e. promote A} to operators and Poisson brackets to commutators.). But it is hard to see how the
Poisson bracket change due to the constraints.

Instead, we study the Hilbert space. Let M3 be separated into two pieces My, Mo, with common boundary ¥. The

vev is
Waltn) = [ (DA = [ [DAg)ei A, s 4] (212)
A/G As/G
where Ay, are connections on ¥ satisfying (2.11), and ¢;[As] == [ 4, /g [DApg,]eS=l4m] . In the above equation, we

Ay le=As
essentially factor the integral [ e [DA] over connections on the whole M? into an integral of connections on ¥ and an

integral of connections over M, Mo satisfying the boundary conditions on X. S§ and S”x can be written out more
explicitly in terms of S¢g and a metric on ¥, but it is messy and we do not do it here. The important point is that the
vev can be written as an inner product in some Hilbert space sy, in which a vector |t) is associated with each manifold
M with boundary 3. For example if M, is replaced by another manifold M} with the same boundary, then the vev will
become (15 |4p1) for some (14| corresponding to M.

2.2.1 Dimension of Hg-

As an example, we consider ¥ = S2. Since S® is simply connected, a holonomy on $2 for a flat connection A does not
depend on the path taken and only depends on the starting and ending point (since every path with the same starting
and ending points can be deformed continuously into one another in S3, and a holonomy with flat connection does not
change under continuous deformation of path) Therefore we can do a gauge transformation to reduce every holonomy to
the identity map. Since the holonomy determines the connection uniquely, the connection after the gauge transformation

1

is simply A = 0. Under a gauge transformation A — gAg~! — dgg™?, the original A can therefore be parametrized by a

map g: ¥ — G,
Ai = —(Gig)g_l = g@ig_l (213)

Moreover, this means Ag2/G subject to (2.11) is a single point. So Hg2 is 1-dimensional.

2.2.2 Inclusion of Wilson lines

We would like to study how Wilson lines with irr reps Ry at points py on ¥ affects the constraint (2.11). We expect the

RHS to change into a linear combination of 6%(x — pg)’s, as we have seen in (2.7). Since we are working in ¥ x R, the
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Wilson lines can be treated as straight lines running in the ¢ direction. for r =1, let Ao = A3T*. Consider (2.2)
< Wa(C) > = / [DAWR(C)eiSHA]
A/G
Lo [DA|Trg(Pef Aodt)eiSIA]
= / [DA|Trg(Pel A48T dt)iS1A4]
A/G

:/ [DA|Trg(Pel AT (w=p)dz?dty ;iS[A]
A/G

from (1.18), Sﬁ—) = —F%(z), so % = — L Fo(z). ﬂ% [ AgTe6%(x — p)dx?dt = T*6%(z — p), so we may expect
forr=1 :
- Fia(@) = (-9)0*(z - )Tk (2.14)
and for general r,
E . \
- Fla(@) = (=0) ) 8%(w — p) T (2.15)
k=1

However, this equation does not make sense because the LHS is a c-number while the RHS is an operator which does not
commute with other operators. There are ways to work around this, for example by making the LHS into a quantum

number. But we do not do it here.
We use (2.15) to argue that a Wilson loop intersecting X in the reversed direction gives the same constraint as a Wilson

loop carrying a conjugate representation. Since FYh is real, taking complex conjugation of (2.15) yields

EF{’Q (z) = —(—1) Z 52(93 —pe)Thr
k=1

_le(l’) = (—1) 252 (x —pi)TR (2.16)

k=1

Reversing the direction of the Wilson loop is the same is reversing the orientation on X, which is the same as interchanging
xl 22, Tpi are the generator for the conjugate representation. We can therefore treat all Wilson lines as going in the

same direction through ¥, taking conjugation of irr reps if necessary.

K

g
S
[
j

m? 3

i
Fig. 11:

2.3 Hilbert Spaces

To prepare for our calculations in the next few sections, we study the Hilbert spaces for the sphere and the torus, Hg2
(with Wilson loop crossing) and Hrp2 (without Wilson loop crossing).



s
W

2 Chern-Simons Theory and Knot lnvariants

2.3.1 X = 52, with Wilson loops crossing

For S5? with Wilson loops Cf, with representations Rk, k = 1,...,r going in the positive ¢ direction through X, Witten[1]
argued that

Fact 1. In the k — oo limit,
Hs2 = Inv(Qi—1 R;) (2.17)

which is the G-invariant subspace in the tensor product Q_,R;. In the case k is finite, Hs2 is a subspace of (2.17).

It turns out that there is a close relationship between CS theory and Wess-Zumino-Witten (WZW) model, a 2D CFT
on . Hyx is related to conformal blocks in WZW model and dim(Hs2) =number of conformal blocks in WZW.

As an application of Fact 1, we calculate dim(Hgz2) for the cases that we will need to use later:
(i) No Wilson line: dim (Hgz2) - 1, as derived in 2.2.1

. . . ) 1 if R = the trivial representation
(ii) One Wilson line (R): dim (Hg2) =
0 else

G . 1 for Ri=R;
(iii) Two Wilson lines (R;, R;): dim (Hgz) =

0 else

(iv) Four Wilson lines, with two incoming and two outgoing lines carrying the same irr rep (R,R,R,R): dim (Hgz) = s,
where R® R= Y, , E; for irr reps E;. »
In particular, for the fundamental representation of SU(N), s=2 (- O00=[J1 & g )

2.3.2 X =T?, no Wilson loops crossing

As stated in [1], Verlinde[3] showed that, if we chose the two cycles a and b as the basis for H (X, Z), there is a corresponding
choice of basis in Hgz, constructed as follows. First let 72 bounds a solid torus 7' = S* x D2, Let a Wilson loop carrying
representation R; € Ay (to be defined below) run inside the solid torus, going in the non-contractible direction once (and

equipped with a framing for which the self-linking number is 0):

The path integral inside this solid torus gives the vector |v;) in Hrz.

Ay is defined as follows. Consider the level k, integrable highest weight representations of the loop group LG of G.
There are finitely many such reps if £ is finite. In each such representation, the highest weight space gives an irr rep of
G. Ay is the collection of these irr reps. In particular it means Hr= is finite dimensional. For instance, when G = SU(2),

Ay is the collection of spin s representations, where s < % The trivial representation, Rq corresponds to the case when
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there are no Wilson loops in T. In general Ay always contains the trivial representation. For SU(N), the fundamental

representation is in Ay for & > 1.

Fact 2. Hp2 = span{|v;)}, where {|v;)} are constructed as above.

We will use Fact 1(in the next subsubsection) and Fact 2 (in 2.4.2) without proving them.

2.3.3 Applications of Fact 1

2331 <Ui|’ljj> = 61']'
To calculate (vs|v;), we glue together two solid tori with the identity map between the two torus on their surfaces.

52 x §1
Since a conjugation is performed on (v;], the orientation on its surface is reversed and the representation on the Wilson
loop is conjugated. At a cross-section of the solid tori, D? Urg D? = 82,50 T Urg T = §2% x S*.

(vilv) = Z(S® x 8%, (Cy, Ry), (Cy, By)) = tra, (e7%) = tryy, (1)

1 fO?“RiZRj .

0 else

Recall how Z was defined in (2.2). In the second step we treated S! as [0, t] with field configurations identified at S x {0}
and St x {t}. H is the hamiltionian of the system. In the third step we used H = 0 which can be calculated from (2.9).
This reflects the topological nature of the theory since the vev should not depend on t, the length of S'. The fifth step
used Fact 1.

2.33.2 Z(S?x S
Putting R; = R; = Ry (the trivial representation) in (2.18) yields

Z(8*x SH =1 (2.19)

2.3.3.3 Connected sum of manifolds

Given 3-manifolds M7, M, a connected sum M;# M is obtained by first removing a copy of D?(a solid ball) from each
of them to obtain two manifolds M;, My with boundary dM; = My = 8D® = S2. Then glue the two manifolds together
by identifying the two S?’s with reversed orientation from one of them, the result is M;#M,. It is useful to picture the
2D analog, where we cut out a disc D? from each 2-manifold and glue them together along the boundary S*.




2 Chern-Simons Theory and Knot Invariants 16

by (i) of Fact 1, if there are no Wilson loops passing through 52, dim (Hg2) = 1. So for any |a),|b),|c),|d) € Hge,
(a[b) (c|d) = {(ald) (clb),

Z(M#Mp)Z(5°) = (Mi|Ma) (D*|D*) = (M1 |D*) (D*|M2) = Z(M:) Z(Mp) (2:20)

‘where we used S8 = D? and S%#5% = S2. Denote (M) = g((é\@), then

(My#£Mz) = (My) (M2) (2.21)

2.3.3.4 Connected sum of knots
Suppose we have two Wilson loops C; and Cy inside My and My respectively, carrying the same irr rep R:

Z(My#My,Cy + Cy)Z(S3,0) = Z(My,C1)Z(Msy, Cy) (2.22)

where O represents the unknot. Denote (M, C) := %, then

(Ml#MQ,Cl + CQ) = <M1,Cl> (M2, CQ) (223)
if My = My = 53, then (53,01 4 Cs) = (52,C1) (S%,Cs). Compare to (1.10).

2.3.3.5 Skein relation, Part 1
Recall a skein relation relates knot invariants between knots that differ only at a crossing, where they take values L.,
Lo and L_. Consider the following three diagrams of manifolds with boundary:

PP s =3V

They give rise to three vectors in Hgz2, the Hilbert space of S? with 4 Wilson lines crossing through. It turns out the

vectors depend on the self-linking number. So we choose the framing in each diagram so that their contribution to the
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self-linking number is 0. We denote the self-intersection number with respect to that of the blackboard framing with a

- \z P
and suppose the Wilson loops carry the fundamental representation R of SU(N). By (iv) of Fact 1, the Hilbert space
where these states live is at most two-dimensional. So these three states must be linearly dependent. Jo, 8,7 € C such
that

a|Ls) +B|Lo) +7|L_) =0 (2.24)

We see that «, 5,y are the coefficients in the skein relation. Since «, 3, are all up to a constant factor, the ratios between

them are two unknowns. We multiply (

’

o j’ Qé,v{s;w
o 7% X (2.25)

DHD = S Tt
o (2.26)

v \4 VI

Now to derive the skein relation we compute these 6 diagrams and solve for the ratio between «,f,v. We note that
3 2
I=1III=V =Z2(5%0). II and IV are the connected sum of two S® with an unknot. By (2.20), [T = IV = %.

2.4 Framing dependence and surgery

In this subsection we answer the remaining questions: How to compute Z(S2), Z(S3,0) and VI? How does the vev

depend on the framing? We turn to the last question.

2.4.1 Framing dependence

Fact 3. If the self-intersecting number is increased by 1, then its vev is multiplied by e*™ "% where R is the representation

of the Wilson loop concerned, and hr = /\2.((21?)7) is the conformal weight of a primary field in WZW model. Here ) is

- the highest weight in the irr rep R, p is the Weyl vector for G and g is the cozeter number of G. (The normalization is
|62 = 2, where 0 is the longest root)

21

For SU(N), g = N, for its fundamental representation, - (A +2p) = % So hgr = ﬁm The derivation for the
conformal weight of a primary field in WZW model can be found in [5]. Although we will not prove this fact, we can try
to understand it by thinking of Wilson lines as the trajectory of a particle with fractional statistics in a 2--1 dimensional
theory, where hg is the “spin” of the particle. Cutting the trajectory, rotating one part by 27 and gluing them back
increases the self-linking number by 1, and its effect on the vev is same as rotating the particle in the 2D universe by 2.
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e?™hr is the phase factor acquired by this transformation. So

(2.27)

2.4.2 Surgery on 3-manifolds

Let C be a loop (not necessarily a Wilson loop) situated in a 3-manifold M. Cutting M along the boundary of a tubular
neighbourhood of C yields M (M without the tube) and T' (a solid torus). Both OM and 0T are diffeomorphic to T2.
Denote them T(Ql) and T(QZ) respectively.

If we construct an automorphism of T2, K : T? — T2, and glue together T(Ql) and T(22) by identifying p with K (p) for

every p € T(Ql), we obtain another manifold M’ without boundary. The above procedure is known as a surgery on M.

If K = Id, then we just glue them back the same way it was cut open, so M = M’. Tt is known that every closed,
orientable, connected 3-manifold can be reduced to S* via a sequence of surgeries (also known as the Lickorish-Wallace
theorem). Let’s illustrate this with S? x S'. Take C to be a loop running in the S direction

Since S? — D? = D2 if we cut out the tubular neighbourhood of C, then the remaining piece in S? x S! is D? x S = T.

Now we perform a “S-transformation” on T2. Let a and b be cycles of T2 as shown

~ An S-transformation maps a — b, b — —a. So if a is a contractible cycle in T? = 9T, then S(a) will be a non-
contractible cycle.
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If we let K = 5, then the contractible cycle in T(Zl) will be glued to the non-contractible cycle in T(22). The result is S°.

The S-transformation is a diffeomorphism on 7. It induces an isomorphism on Hp=. By Fact 2 we express this isomorphism
S by its matrix elements S;; in the basis {]v;)}.

Slvs) = Sij lv;)
J
Since we obtained S® by gluing two empty 7' ’s with the S-transformation,

Z(5%) = (vo|S|vo) = Soo (2.28)

If we glue together an empty T with a T that has a Wilson loop carrying the fundamental rep R; of SU(N) with the
S-transformation instead, we get (S3, 0), the three-sphere with an unknot.

(2.29)

SS

If both T ’s contain a Wilson loop carrying R;, then the result of gluing is S® containing a Hopf link, with linking number

-1, which is exactly VI’ in (2.27)
I~
)
Q> J ) = wlsh) =5 (2.30)

‘Ss

VI =

To find the values of S;;, we quote a fact from Witten[1]. It turns out that S;; is the matrix by which S is represented

on the characters of the irreducible level k representations of the loop group LG. Here is a formula from the study of
affine Lie algebra[5].
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Fact 4. S a= CG kY owew €W )emp(w) where \, ji are the representations with highest weight \, p respec-
tively. Cg 1s a constant depending on k, the group G, and mdependent of A , k. W is the Weyl group of G.

For SU(2),
2 7r(i+l)(j+1))

S5, =
=\ s

(2.31)

Reduction of vev for general 3-manifolds
Suppose M’ is obtained from M be doing a surgery along C using diffeomorphism K. Then the vev for M’ can be
expressed in terms of K;; and the vev for M with Wilson loops inserted in the tube where the surgery is performed.

Z(M') = ($|K]|vo) = ZKm (Wlvi) = > KoiZ(M, Cy, R;)

since every closed, orientable, connected 3-manifold can be reduced to S* via surgeries, the vev (2.2) for any manifold
with any Wilson loop can be reduced to the vev in S® with some Wilson loops and matrix elements of K.

The automorphism group of T2 has many connected components. In the component containing Id the matrix for
K is identity, since these diffeomorphisms can be induced from diffeomorphisms of the surrounding 3-manifold. The
automorphism group modulo the group connected to the identity is called the mapping class group of T?, and is generated
by two elements S and 7' (which maps a — a, b — b+ a, ie. cut the torus along a, twist it, and glue it back). So to
study the matrix elements of a general K we only need to study S;; and T5;. T is related to changing the framing of the
3-manifold. We will not continue this discussion any further in this essay and refer interested reader to [1].

2.5 Skein relation, Part 2

Consider G = SU(2), let Wilson loops carry the fundamental (spin 1/2) representation. We now assemble the pieces.
From (2.25), (2.26), (2.27), Fact 3, (2.28), (2.29), (2.30),

So1 So19 So1

Q20 S0 _ g 2.32
Soo 5(500) 7 S0 (2.32)
Sot 2 So1 2mi(3) | Su
4 (S0 9 —0 2.33
(S + BEL) + remp(a oy 31 (233
. sin( 2% _ -1 in( 47 2 _2 i
from (2.31), and let ¢ = exp( 53;‘2), g—g; = Siigg_;i = 1/q2_qq—1/2a§(1); = :mgi; 1‘}2 e ,exp(QE(kf_?;>)) = g3/2.

Setting 8 = ¢'/2 — ¢~/2 and solving, the result is @ = —¢, v = ¢~ 1. So (2.24) reads
—q|Ly) + (4% = ¢ /*) |Lo) + ¢V |L_) =0 (2.34)

replacing variable ¢/ = —t=1/2,
—t7V L) 4+ (Y2 =7 Y2) | Lo) + ¢ |L_) =0 (2.35)

Recall ($3,C) = 229 0 (5°,0) =1, and —t~" (83, Ly.) + (t1/2 — t=1/?) (5% Lo) + ¢ (5% L_) = 0. Comparing with
(1.7), (1.8) yields V(C) = (S3,C), since these two conditions, along with diffeomorphism invariance, uniquely determine
V(C).
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As a check, using (2.20) we compute

Z(S3,0)  Z(S3,0) Z(S3,0)  Z(S%)

(5.0 T - ZSGUC) _ 29,00 715,09 2150

=(S%,C1) (8%, C5) (qT/‘i__qq—:/Q) = — (¢ + 172 (83,01 (8%, C)
which is (1.9).
2.6 The HOMFLY polynomial and the Kauffman polynomial
It turns out[1] that, for SU(N) fundamental rep, the skein relation is
VL) + (@2 = a7 Lo+ 1) = 0

where ¢ = exp( kQL’V) This is the skein relation of a HOMFLY polynomial.

For SO(N) with the fundamental N-dimensional rep, one obtains the Kauffman polynomial, another kind of knot

invariant.

3 Chern-Simons theory and WZW model

In the above discussions, we quoted four Facts from [1] related to the study of WZW model and affine Lie algebra. To
make the story complete, we should provide justification for these four Facts. In this subsection we follow |7| and the
discussion at the end of [1] to present two links between CS theory and WZW model, as a starting place to understand
them.

We consider CS theory on D? x R. On a manifold with boundary, the variation of S reads

5S:£ tr(0ANdA+ ANdSA+26ANANA)
4 D2xR
- ﬁ[/ tr(éA/\A)+2/ tr(5A A F)]
47" )s1xr D2xR
In order for all elements in the gauge orbit to have the same equation of motion 5—514% = —ﬁFfz = 0, and also in order

that S changes by a multiple of 27 under gauge transformation, we restrict our gauge transformations to be identity on
the boundary S* x R. We also pick the gauge A, = 0. Since D? is simply connected by the same arguments leading to
(2.13) A; = —8;g9~* for some g : D> — G. But in the interior of D? we can choose the gauge to set A; = 0, and on the
boundary S! the parametrization A; = —8;99~" has some redundancy since we can replace g by gog for a constant go
without changing A;. Therefore if we fix a point b on S* we can always choose g(b) = Id. Therefore the phase space (flat
connections modulo gauge transformations) is the set of maps from S* to G with b mapped to Id. This is the space of
based loops LG /G. There is a natural action of the loop group LG on the phase space, so the Hilbert space should be a
representation of LG, described by the affine Lie algebra.

We now also show that the action (2.1) in D? x R is exactly the action for WZW model on the cylinder S* x R. From
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(2.9),

95)
Il

—Zk-/ / tr(e A, dA)
k

d
I z] 1 1y
o bigg™" o (9997))

Il

—-——/dt/ trle” 8;997" (800599~ — 8599 Dogg™ )]

dt/ tr[e?9;(g9;99 " Bog) + €997 01997 0,99 Dog]
47'(' D2

= / dt[ | daltr(eVg™'0;99 '00g) + / (€997 0;997 105997 Bog)]
47T St D2

= kSwzw (g)

The second term in the fifth step depends only on the value of g at the boundary, up to an integer multiple of 27, because
" as discussed above, the interior values of g can be gauged away, and S changes by of 27k under gauge transformation.

Although we have not justisfied the four Facts, we can still see that the 3D CS theory is closely tied to the 2D WZW
model. An understanding of either one provides insight into the other one.
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