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CHAPTER 13

Linear and generalized linear
mixedmodels

BenjaminM. Bolker

13.1 Introduction to generalized linear mixed models

Generalized linear mixed models (GLMMs) are a powerful class of statistical models that
combine the characteristics of generalized linear models (GLMs: chapter 6) and mixed
models (models with both fixed and random predictor variables). They handle a wide range
of types of response variables, and a wide range of scenarios where observations have
been sampled in some kind of groups rather than completely independently. While they
can’t do everything—an expert might sometimes choose custom-built models for greater
flexibility (Bolker et al. 2013)—GLMMs are fast, powerful, can be extended to handle
additional complexities such as zero-inflated responses, and can often be fitted with off-
the-shelf software. The only real downsides of GLMMs are due to their generality: (1) some
standard recipes for model testing and inference do not apply, and (2) it’s easy to build
plausible models that are too complex for your data to support. GLMMs are still part of
the statistical frontier, and even experts don’t know all of the answers about how to use
them, but this chapter will try to provide practical solutions to allow you to use GLMMs
with your data.

GLMs (chapter 6), allow modeling of many kinds of response variables, particularly
those with binomial and Poisson distributions; you should definitely feel comfortable
with GLMs before attempting the methods described in this chapter. In contrast, you
may be unfamiliar with the mixed models, and with the central distinction between
fixed effects (the typical way to compare differences between treatments or the effects of
continuous predictor variables) and random effects (roughly speaking, experimental or
observational blocks within which you have several observations). Models with normally
distributed responses that incorporate some kind of random effects are called linear mixed
models (LMMs); they are a special, slightly easier case of GLMMs. This chapter will review
the basic idea of experimental blocks (for a reminder see Gotelli and Ellison (2004) or
Quinn and Keough (2002)). If you are already well-versed in classic ANOVA approaches to
blocked experimental designs, you may actually have to unlearn some things, as modern
approaches to random effects are quite different from the classical approaches taught in
most statistics courses.

As well as using different conceptual definitions of random effects (section 13.3.1),
modern mixed models are more flexible than classic ANOVAs, allowing, for example,
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non-Normal responses, unbalanced experimental designs, and more complex grouping
structures. Equally important is a new philosophy: modern approaches use a model-
building rather than a hypothesis-testing approach (chapter 3). You can still test hypothe-
ses, but instead of a list of F statistics and p-values the primary outputs of the analysis
are quantitative parameter estimates describing (1) how the response variable changes as
a function of the fixed predictor variables, and (2) the variability among the levels of the
random effects.
Random effects such as variation among experimental blocks are often neglected in

model-based analyses because they are relatively difficult to incorporate in custom-built
statistical models. While one can use software such asWinBUGS, ADModel Builder, or SAS
PROC NLMIXED to incorporate such components in a general model (Bolker et al. 2013),
generalized linear mixed models are general enough to encompass the most common
statistical problems in ecology, yet can be fitted with off-the-shelf software.
Section 13.2 (Running examples) introduces several case studies from the literature,

and from my own work, for which the data are freely accessible. Section 13.3 (Concepts)
gets philosophical, exploring different definitions of random effects; related concepts like
pooling, shrinkage, and nested vs. crossed experimental designs; the statistical issues of
overdispersion and variable correlation within groups; and the extended definitions of
likelihood required for mixed models (see chapter 3 for the basic definition). Section 13.4
(Setting up a GLMM) is practical but short; once you understand the ins and outs of
random effects, and the concepts of GLMs from chapter 6, writing the code to define a
GLMM is actually quite straightforward. Sections 13.5 (Estimation) and 13.6 (Inference) go
into nitty-gritty detail about the choices you have when fitting a GLMM and translating
the results back from statistical to scientific answers.

13.2 Running examples

• Tundra carbon dynamics: Belshe et al. (2013) did a meta-analysis of previous studies of
carbon uptake and release in tundra ecosystems. They asked how the CO2 flux, or net
ecosystem exchange at measured experimental sites, was changing over time. The re-
sidual variation of the primary response variable (GS.NEE, net carbon flux during the
growing season) was assumed to be Normal, so the model is a linear mixed model. Sites
were treated as random effects, meaning that site was a grouping variable (a categorical
predictor across which effects are assumed to vary randomly), with the baseline CO2

flux (i.e., the intercept term of the model) varying across sites. Time (Year) was the
primary fixed effect, although the paper also considered the effects of mean annual
temperature and precipitation, as well as the additional response variables of winter
and total annual carbon flux.

• Coral symbiont defense: McKeon et al. (2012) ran a field experiment with coral (Pocillopora
spp.) inhabited by invertebrate symbionts (crabs [Trapezia spp.] and shrimp [Alpheus
spp.]) and exposed to predation by sea stars (Culcita spp.). They asked whether com-
binations of symbionts from different species were more, less, or equally effective in
defending corals from predators, compared to expectations based on the symbionts’ in-
dependent protective effects. The design is a randomized complete block design with
a small amount of replication: 2 replications per treatment per block; 4 treatments (no
symbionts, crabs only, shrimp only, both symbionts), with each of these units of 8
repeated in 10 blocks. The response (predation) is binomial with a single trial per
unit (also called Bernoulli or binary, see book appendix); treatment (ttt), a categorical
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variable, is the only fixed-effect input variable; block is the only grouping variable, with
intercepts (i.e., baseline predation probability) varying among blocks.

• Gopher tortoise shells: Ozgul et al. (2009) analyzed the numbers of gopher tortoise
shells found at different sites to estimate whether shells were more common (imply-
ing a higher mortality rate) at sites with higher prevalence of a mycoplasmal pathogen
(prev). The response is the count of fresh shells (shells), for which we will consider
Poisson and negative binomial distributions (book appendix); seroprevalence of myco-
plasma (prev: i.e., the fraction of tortoises carrying antibodies against the disease) is
a continuous, fixed predictor variable. We initially considered year and site as crossed
grouping variables (section 13.3.1) with variation in baseline shell counts (intercepts)
among them; we also included the logarithm of the site area (Area) as an offset term
to account for variation in site area, effectively modeling shell density rather than shell
numbers.

• Red grouse ticks: Elston et al. (2001) used data on numbers of ticks sampled from the
heads of red grouse chicks in Scotland to explore patterns of aggregation. Ticks have
potentially large fitness and demographic consequences on red grouse individuals and
populations, but Elston et al.’s goal was just to decompose patterns of variation into dif-
ferent scales (within-brood, within-site, by altitude and year). The response is the tick
count (TICKS, again Poisson or negative binomial); altitude (HEIGHT, treated as contin-
uous) and year (YEAR, treated as categorical) are fixed predictor variables. Individual
within brood (INDEX) and brood within location are nested random-effect group-
ing variables, with the baseline expected number of ticks (intercept) varying among
groups.

All of these case studies include some kind of grouping (sites in the tundra carbon ex-
ample; experimental blocks for the sea star example; areas and years for the gopher
tortoise example; and individuals within broods within sites for the tick example), re-
quiring mixed models. The first has Normal responses, requiring a LMM, while the latter
three have non-Normal response variables, requiring GLMMs.

13.3 Concepts

13.3.1 Model definition

The complete specification of a GLMM includes the distribution of the response variable;
the link function; the definition of categorical and continuous fixed-effect predictors; and
the definition of the random effects, which specify how some model parameters vary ran-
domly across groups. Here we focus on random effects, the only one of these components
that is not already familiar from chapter 6.

Random effects

The traditional view of random effects is as a way to do correct statistical tests when some
observations are correlated. When samples are collected in groups (within sites in the tun-
dra example above, or within experimental blocks of any kind), we violate the assumption
of independent observations that is part of most statistical models. There will be some
variation within groups (σ 2

within) and some among groups (σ 2
among); the total variance is

σ 2
total = σ 2

within + σ 2
among; and therefore the correlation between any two observations

in the same group is ρ =
√

σ 2
among/σ

2
total (observations that come from different groups are

uncorrelated). Sometimes one can solve this problem easily by taking group averages.
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For example, if we are testing for differences between deciduous and evergreen trees,
where every member of a species has the same leaf habit, we could simply calculate
species’ average responses, throwing away the variation within species, and do a t-test
between the deciduous and evergreen species means. If the data are balanced (i.e., if we
sample the same number of trees for each species), this procedure is exactly equivalent to
testing the fixed effect in a classical mixed model ANOVA with a fixed effect of leaf habit
and a random effect of species. This approach correctly incorporates the facts that (1)
repeated sampling within species reduces the uncertainty associated with within-group
variance, but (2) we have fewer independent data points than observations—in this case,
as many as we have groups (species) in our study.
These basic ideas underlie all classical mixed-model ANOVA analyses, although the

formulas get more complex when treatments vary within grouping variables, or when
different fixed effects vary at the levels of different grouping variables (e.g., randomized-
block and split-plot designs). For simple nested designs, simpler approaches like the
averaging procedure described above are usually best (Murtaugh 2007). However, mixed-
model ANOVA is still extremely useful for a wide range of more complicated designs, and
as discussed below, traditional mixed-model ANOVA itself falls short for cases such as
unbalanced designs or non-Normal data.
We can also think of random effects as a way to combine information from different

levels within a grouping variable. Consider the tundra ecosystem example, where we want
to estimate linear trends (slopes) across time for many sites. If we had only a few years
sampled from a few sites, we might have to pool the data, ignoring the differences in
trend among sites. Pooling assumes that σ 2

among (the variance in slopes among sites) is
effectively zero, so that the individual observations are uncorrelated (ρ = 0).
On the other hand, if we had many years sampled from each site, and especially if we

had a small number of sites, we might want to estimate the slope for each site individually,
or in other words to estimate a fixed effect of time for each site. Treating the grouping fac-
tor (site) as a fixed effect assumes that information about one site gives us no information
about the slope at any other site; this is equivalent, for the purposes of parameter estima-
tion, to treating σ 2

among as infinite. Treating site as a random effect compromises between
the extremes of pooling and estimating separate (fixed) estimates; we acknowledge, and
try to quantify, the variability in slope among sites. Because the trends are assumed to
come from a population (of slopes) with a well-defined mean, the predicted slopes in CO2

flux for each site are a weighted average between the trend for that site and the overall
mean trend across all sites; the smaller and noisier the sample for a particular site, the
more its slope is compressed toward the population mean (figure 13.1).
For technical reasons, these values (the deviation of each site’s value from the popula-

tion average) are called conditional modes, rather than estimates. The conditional modes
are also sometimes called random effects, but this could also refer to the grouping variables
(the sites themselves, in the tundra example). Confusingly, both the conditional modes
and the estimates of the among-site variances can be considered parameters of the ran-
dom effects part of the model. For example, if we had independently estimated the trend
at one site (i.e., as a fixed effect) as –5 grams C/m2/year, with an estimated variance of 1,
while the mean rate of all the sites was –8 g C/m2/year with an among-site variance of 3,
then our predicted value for that site would be (μsite/σ 2

within+μoverall/σ 2
among)/(1/σ 2

within+
1/σ 2

among) = (–5/1+ –8/3)/(1/1 +1/3) = –5.75 g C/m2/year. Because σ 2
within < σ 2

among—the
trend estimate for the site is relatively precise compared to the variance among sites—
the random-effects prediction is closer to the site-specific value than to the overall mean.
(Stop and plug in a few different values of among-site variance to convince yourself that



OUP-FIRST UNCORRECTED PROOF, November 15, 2014

314 ECOLOGICAL STATISTICS: CONTEMPORARY THEORY AND APPLICATION

Pituffik Peninsula, GL

Barrow, AK

Ivotuk, AK

Zachenberg, GL

Lek Vorkuta, RU

Imnavait Creek, AK

Daring lake, CA

U-PAD, AK

Prudhoe Bay, AK

Healy, AK

APL-133, AK

Happy valley, AK

Toolik, AK

–60 –40 –20

Slope difference from population average

Method

Pooled
Random
(conditional nodes)
Fixed

Si
te

0 20

Fig. 13.1 Estimated differences in slope (annual change in growing season NEE) among
sites, with 95% confidence intervals. The conditional modes are (mostly) intermediate
between the fixed estimates and the pooled estimate of zero (the two exceptions, Pituffik
Peninsula and Imnaivit Creek, have compensating differences in their intercept estimates);
sites with only one year’s data, for which a fixed-effect slope cannot be estimated, are not
shown. The confidence intervals are generally much narrower for the conditional modes
than for the fixed-effect estimates (the four fixed-effect estimates with error bars not
shown have 95% CIs that extend beyond the limits of the plot).

this formula agrees with verbal description above of how variance-weighted averaging
works when σ 2

among is either very small or very large relative to σ 2
within.)

Random effects are especially useful when we have (1) lots of levels (e.g., many species
or blocks), (2) relatively little data on each level (although we need multiple samples from
most of the levels), and (3) uneven sampling across levels (box 13.1).

Frequentists and Bayesians define random effects somewhat differently, which affects
the way they use them. Frequentists define random effects as categorical variables whose
levels are chosen at random from a larger population, e.g., species chosen at random from a
list of endemic species. Bayesians define random effects as sets of variables whose parame-
ters are drawn from a distribution. The frequentist definition is philosophically coherent,
and you will encounter researchers (including reviewers and supervisors) who insist on it,
but it can be practically problematic. For example, it implies that you can’t use species as
random effect when you have observed all of the species at your field site—since the list
of species is not a sample from a larger population—or use year as a random effect, since
researchers rarely run an experiment in randomly sampled years—they usually use either
a series of consecutive years, or the haphazard set of years when they could get into the
field. This problem applies to both the gopher tortoise and tick examples, each of which
use data from consecutive years.
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Box 13.1 WHEN TO TREAT A PREDICTOR VARIABLE AS A RANDOM EFFECT

You may want to treat a predictor variable as a random effect if you:

• don’t want to test hypotheses about differences between responses at particular levels of
the grouping variable;

• do want to quantify the variability among levels of the grouping variable;
• do want to make predictions about unobserved levels of the grouping variable;
• do want to combine information across levels of the grouping variable;
• have variation in information per level (number of samples or noisiness);
• have levels that are randomly sampled from/representative of a larger population;
• have a categorical predictor that is a nuisance variable (i.e., it is not of direct interest, but
should be controlled for).

Cf. Crawley (2002); Gelman (2005)
If you have sampled fewer than five levels of the grouping variable, you should strongly

consider treating it as a fixed effect even if one or more of the criteria above apply.

Random effects can also be described as predictor variables where you are interested in
making inferences about the distribution of values (i.e., the variance among the values of
the response at different levels) rather than in testing the differences of values between
particular levels. Choosing a random effect trades the ability to test hypotheses about
differences among particular levels (low vs. high nitrogen, 2001 vs. 2002 vs. 2003) for the
ability to (1) quantify the variance among levels (variability among sites, among species,
etc.) and (2) generalize to levels that were not measured in your experiment. If you treat
species as a fixed effect, you can’t say anything about an unmeasured species; if you use it
as a random effect, then you can guess that an unmeasured species will have a value equal
to the population mean estimated from the species you did measure. Of course, as with
all statistical generalization, your levels (e.g., years) must be chosen in some way that, if
not random, is at least representative of the population you want to generalize to.
People sometimes say that random effects are “factors that you aren’t interested in.”

This is not always true. While it is often the case in ecological experiments (where varia-
tion among sites is usually just a nuisance), it is sometimes of great interest, for example in
evolutionary studies where the variation among genotypes is the raw material for natural
selection, or in demographic studies where among-year variation lowers long-term growth
rates. In some cases fixed effects are also used to control for uninteresting variation, e.g.,
using mass as a covariate to control for effects of body size.
You will also hear that “you can’t say anything about the (predicted) value of a condi-

tional mode.” This is not true either—you can’t formally test a null hypothesis that the
value is equal to zero, or that the values of two different levels are equal, but it is still
perfectly sensible to look at the predicted value, and even to compute a standard error of
the predicted value (e.g., see the error bars around the conditional modes in figure 13.1).
Particularly in management contexts, researchers may care very much about which sites
are particularly good or bad relative to the population average, and how much better or
worse they are than the average. Even though it’s difficult to compute formal inferen-
tial summaries such as p-values, you can still make common-sense statements about the
conditional modes and their uncertainties.
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The Bayesian framework has a simpler definition of random effects. Under a Bayes-
ian approach, a fixed effect is one where we estimate each parameter (e.g., the mean
for each species within a genus) independently (with independently specified priors),
while for a random effect the parameters for each level are modeled as being drawn
from a distribution (usually Normal); in standard statistical notation, species_mean ∼
Normal(genus_mean, σ 2

species).
I said above that random effects are most useful when the grouping variable has many

measured levels. Conversely, random effects are generally ineffective when the grouping
variable has too few levels. You usually can’t use random effects when the grouping var-
iable has fewer than five levels, and random effects variance estimates are unstable with
fewer than eight levels, because you are trying to estimate a variance from a very small
sample. In the classic ANOVA approach, where all of the variance estimates are derived
from simple sums-of-squares calculations, random-effects calculations work as long as you
have at least two samples (although their power will be very low, and sometimes you can
get negative variance estimates). In the modern mixed-modeling approach, you tend to
get warnings and errors from the software instead, or estimates of zero variance, but in
any case the results will be unreliable (section 13.5 offers a few tricks for handling this
case). Both the gopher tortoise and grouse tick examples have year as a categorical var-
iable that would ideally be treated as random, but we treat it as fixed because there are
only three years sampled: treating years as a random effect would most likely estimate the
among-year variance as zero.

Simple vs. complex random effects

The most common type of random effect quantifies the variability in the baseline values
of the response variable among levels of a categorical grouping variable (e.g., baseline
numbers of ticks in different locations). Although technically location is the grouping
variable in this case, and the thing that varies among levels is the intercept term of a
statistical model, we would often call this simply a random effect of location. This is a
random intercept model, which is also a scalar random effect (i.e., there is only one value
per level of the grouping variable). In R it would be specified within a modeling formula
as ∼group or ∼(1):group (MCMCglmm package), ∼1 |group (nlme or glmmADMB pack-
ages), or (1 |group) (lme4 or glmmADMB packages) (the 1 specifies an intercept effect; it is
implicit in the first example).

More generally, we might have observed the effects of a treatment or covariate within
each level, and want to know how these effects (described by either a categorical or a
continuous predictor) vary across levels; this is the case for slopes (i.e., the effect of time)
in the tundra example. Since the intercept as well as all of the parameters describing the
treatment would vary across levels, this would be called a non-scalar or a vector random
effect. This could be specified as ∼1+x|group in nlme or glmmADMB, (1+x|group) in
lme4 or glmmADMB), or ∼us(1+x):group in MCMCglmm. In many cases the 1 is optional—
(x |group) would also work—but I include it here for concreteness. The us in the
third specification refers to an unstructured variance–covariance matrix: MCMCglmm offers
several other options (see the Course Notes vignette that comes with the package).

For example, the coral symbiont data follow a randomized block design, with repli-
cates of all treatments within each block. So we could in principle use the random effects
model (1+ttt |block) (equivalent to (ttt |block) because the intercept is implicitly
included) to ask how the effects of symbionts varied among different blocks, with four
random parameters per block (intercept and three treatment parameters), where the in-
tercept parameter describes the variation among control treatments across blocks and the
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treatment parameters describe the variation in the effects of symbionts (crab vs. control,
shrimp vs. control, and crab + shrimp vs. control) among blocks. However, this is another
case where the ideal and the practical differ; in practice this approach is not feasible be-
cause we have too little information—there are only two binary samples per treatment per
block—so we would likely proceed with an intercept-only (scalar) random effect of blocks.
Non-scalar effects represent interactions between the random effect of block and the

fixed effect (symbionts), and are themselves random—we assume, for example, that the
difference in predation rate between corals with and without symbionts is drawn from a
distribution of (differences in) predation rates. The interaction between a random effect
and a continuous predictor is also random; the tundra carbon example includes a site ×
year interaction which describes the variation in temporal trends among sites. This type
of interaction is the only case in which it makes sense to consider a random effect of a
continuous variable; a continuous variable (year in this example) cannot itself be a group-
ing variable, but can vary across grouping variables (sites). One should in general consider
the random × fixed effect interactions whenever it is feasible, i.e., for all treatments that
are applied within levels of a random effect; doing otherwise assumes a priori that there is
no variation among groups in the treatment effect, which is rarely warranted biologically
(Schielzeth and Forstmeier 2009; Barr et al. 2013). It is often impossible or logistically in-
feasible to apply treatments within groups: in the gopher tortoise example the prevalence
of disease is fundamentally a site-level variable, and can’t vary within sites. Or, as in the
coral symbiont example, we may have so little statistical power to quantify the among-
group variation that our models don’t work, or that we estimate the variation as exactly
zero. In these cases we have to accept that there probably is a real interaction that we are
ignoring, and temper our conclusions accordingly.

Nesting and crossing

What about the interaction between two random effects? Here we have to specify
whether the two effects are nested or crossed. If at least one of the levels of each ef-
fect is represented in multiple levels of the other effect, then the random effects are
crossed; otherwise, one is nested in the other. In the gopher tortoise example, each
site is measured in multiple years, and multiple sites are measured in each year, so site
and year are crossed (although as pointed out above we don’t actually have data for
enough years to treat them as random); this would be specified as (1 |site)+ (1 |year).
On the other hand, in the tick example each chick occurs in only one brood,
and each brood occurs in only one site: the model specification is (1 |SITE/BROOD/
INDEX), read as “chick (INDEX) nested within brood nested within site,” or
equivalently (1 |SITE)+(1 |SITE:BROOD)+(1 |SITE:BROOD:INDEX). If the broods
and chicks are uniquely labeled, so that the software can detect the nesting,
(1 |SITE)+(1 |BROOD)+(1 |INDEX) will also work (do not use (1 |SITE)+(1 |SITE/
BROOD)+(1 |SITE/BROOD/INDEX); it will lead to redundant terms in the model). An-
other way of thinking about the problem is that, in the gopher tortoise example, there is
variation among sites that applies across years, variation among years that applies across
all sites, and variation among site-by-year combinations. In the tick example, there is var-
iation among broods and variation among chicks within broods, but there is no sensible
way to define variation among chicks across broods. In this sense a nested model is a
special case of crossed random effects that sets one of the variance terms to zero.
Crossed random effects are more challenging computationally than nested effects (they

are largely outside the scope of classical ANOVAs), and so this distinction is often ignored
in older textbooks. Most of the software that can handle both crossed and nested random
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effects can automatically detect when a nested model is appropriate, provided that the
levels of the nested factor are uniquely labeled. That is, the software can only tell individ-
uals are nested if they are labeled as A1, A2, . . . , A10, B1, B2, . . . B10, . . . If individuals
are instead identified only as 1, 2, . . . 10 in each of species A, B, and C, the software can’t
tell that individual #1 of species A is not related to individual #1 of species B. In this case
you can specify nesting explicitly, but it is safer to label the nested individuals uniquely.

You should usually treat interactions between two or more fixed effects as crossed, be-
cause the levels of fixed effects are generalizable across levels of other fixed effects (“high
nitrogen” means the same thing whether we are in a low- or high-phosphorus treatment).
Random effects can be nested in fixed effects, but fixed effects would only be nested in
random effects if we really wanted (for example) to estimate different effects of nitrogen
in each plot.

Overdispersion and observation-level random effects

Linear mixed models assume the observations to be normally distributed conditional on
the fixed-effect parameters and the conditional modes. Thus, they need to estimate the
residual variance at the level of observations. If there is only one observation for each
level of a grouping variable, the variance of the corresponding random effect will be con-
founded with the residual variance—we say that the variance of the observation-level
random effect is unidentifiable. For example, if we decided to treat year as categorical var-
iable in the tundra ecosystem analysis, and included a random effect of the site × year
interaction, we would have exactly one observation for each site-by-year combination,
and this random effect variance would be confounded with the residual variance. Many
packages (e.g., nlme) will fail to detect this problem, and will give arbitrary answers for the
residual variance and the confounded random-effect variance. The same situation applies
for any GLMM where the scale parameter determining the variance is estimated rather
than fixed, such as Gamma GLMMs or quasi-likelihood models.

Most GLMMs, in contrast, assume distributions such as the binomial or Poisson where
the scale parameter determining the residual variance is fixed to 1—that is, if we know
the mean then we assume we also know the variance (equal to the mean for Poisson
distributions, or to Np(1 – p) for binomial distributions, see book appendix). However, as
discussed in chapters 3, 6, and 12, we frequently observe overdispersion—residual variances
higher than would be predicted from the model, due to missing predictors or among-
individual heterogeneity. Overdispersion does not occur in LMMs or in GLMMs with an
estimated scale parameter, because the scale or residual variance parameter adjusts the
model to match the residual variance. Overdispersion occurs, but is not identifiable, with
binary/Bernoulli responses, unless the data are grouped so that there are multiple obser-
vations with the same sets of predictor variables (e.g., in the coral predation data there
are two replicates in each site/treatment combination). If so, the data can be collapsed to
a binomial response, in this case by computing the number of predation events (out of
a maximum of 2) for each site/treatment combination, and then overdispersion will be
identifiable.

You can allow for overdispersion in GLMMs in some of the same ways as in regu-
lar GLMs—use quasi-likelihood estimation to inflate the size of the confidence intervals
appropriately, or use an overdispersed distribution such as a negative binomial. These
options may not be available in your GLMM software: at present, none of the pack-
ages discussed here offers quasi-likelihood estimation, and only glmmADMB has a reliable
negative-binomial option.
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A GLMM-specific solution to overdispersion is to add observation-level random effects,
i.e., to add a new grouping variable with a separate level for every observation in the
data set. This seems like magic—how can we estimate a separate parameter for every
observation in the data set?—but it is just a way to add more variance to the data distribu-
tion. For Poisson distributions, the resulting lognormal-Poisson distribution is similar to a
negative-binomial distribution (sometimes called a Gamma-Poisson distribution because it
represents a Poisson-distributed variable with underlying Gamma-distributed heterogene-
ity). Most GLMM packages allow observation-level random effects: for technical reasons,
MCMCglmm always adds an observation-level random effect to the model, so you can only
fit overdispersed models. Another advantage of using observation-level random effects is
that this variability is directly comparable to the among-group variation in the model;
Elston et al. (2001), the source of the grouse tick data, exploit this principle (see also
Agresti 2002, section 13.5).

Correlation within groups (R-side effects)

As described above, grouping structure induces a correlation ρ =
√

σ 2
among/σ

2
total between

every pair of observations within a group. Observations can also be differentially cor-
related within groups; that is, an observation can be strongly correlated with some of
the observations in its group, but more weakly correlated with other observations in its
group. These effects are sometimes called R-side effects because they enter the model in
terms of correlations of residuals (in contrast with correlations due to group membership,
which are called G-side effects). The key feature of R-side effects is that the correlation be-
tween pairs of observations within a group typically decreases with increasing distance
between observations. As well as physical distance in space or time, pairs of observations
can be separated by their amount of genetic relatedness (distance along the branches of
a pedigree or phylogeny). To include R-side effects in a model, one typically needs to
specify both the distance between any two observations (or some sort of coordinates—
observation time, spatial location, or position in a phylogeny—from which distance can
be computed), as well as a model for the rate at which correlation decreases with distance.
While incorporating R-side effects in linear mixed models is relatively straightforward—
Belshe et al. (2013) included temporal autocorrelation in their model, and chapter 10
gives other examples—putting them into GLMMs is, alas, rather challenging at present.

Fixed effects and families

For a complete model, you need to specify the fixed effects part of your model, and
the family (distribution and link function) as well as the random effects. These are both
specified in the usual way as for standard (non-mixed, fixed-effect-only) GLMs (chapter 6).
Depending on the package you are using, the fixed effects may be specified separately

or in the same formula as the random effects; typically the fixed-effect formula is also
where you specify the response variable (the model has only one response variable, which
is shared by both the fixed and the random effects). In the tundra ecosystem example,
time (year) is the only fixed effect. In the coral symbiont example, the fixed effect is the
categorical treatment variable ttt (control/shrimp/crabs/both). In the gopher tortoise ex-
ample we have the effects of both disease prevalence and, because we didn’t have enough
levels to treat it as random, year (treated as a categorical variable); we also have an offset
term that specifies that the number of shells is proportional to the site area (i.e., we add a
log(area) term to the predicted log number of shells). Finally, the grouse tick example uses
fixed effects of YEAR and HEIGHT.
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13.3.2 Conditional, marginal, and restricted likelihood

Once you have defined your GLMM, specifying (1) the conditional distribution of the
response variable (family) and link function (chapter 6); (2) the categorical and contin-
uous predictors and their interactions (chapter 6); and (3) the random effects and their
pattern of crossing and nesting (table 13.1), you are ready to try to fit the model. Chap-
ter 3 describes the process of maximum likelihood estimation, which we extend here to
allow for random effects.

Conditional likelihood

If we somehow knew the values of the conditional modes of the random effects for each
level (e.g., the predation rates for each block), we could use standard numerical procedures
to find the maximum likelihood estimates for the fixed-effect parameters, and all of the
associated things we might like to know: confidence intervals, AIC values, and p-values for
hypothesis tests against null hypotheses that parameters or combinations of parameters
were equal to zero. The likelihood we obtain this way is called a conditional likelihood,
because it depends (is conditioned on) a particular set of values of the conditional modes.
If x is an observation, β is a vector of one or more fixed effects parameters, and u is a vector
of the conditional modes of a random effect, then the conditional likelihood for x would
be expressed as L(x|β,u). If u were a regular fixed effect parameter, then we could go ahead
and find the values of β and u that jointly gave the maximum likelihood, but that would
ignore the fact that the conditional modes are random variables that are drawn from a
distribution. In order to account for this extra variability, we need to define the marginal
likelihood.

Marginal likelihood

The marginal likelihood is the modified form of the likelihood that allows for the ran-
domness of the conditional modes. It compromises between the goodness of fit of the
conditional modes to their overall distribution and the goodness of fit of the data within
grouping variable levels. For example, a large number of attacks on a coral defended by
both crabs and shrimp, which would be typically expected to be well protected, could be
explained either by saying that the coral was an unlucky individual within its (perfectly
typical) block or by saying that the coral was not unlucky but that the block was unu-
sual, i.e., subject to higher-than-average attack rates. Because the block effect is treated as
a random variable, in order to get the likelihood we have to average the likelihood over
all possible values of the block effect, weighted by their probabilities of being drawn from
the Normal distribution of blocks. The result is called the marginal likelihood, and we can
generally treat it the same way as an ordinary likelihood. In mathematical terms, this aver-
age is expressed as an integral. If we take the definitions of x (observation), b (conditional
mode), and β (fixed effect parameter) given above, and abbreviate the among-group vari-
ance introduced above (σ 2

among) as σ 2, then the likelihood of a given value of b is L(b | σ 2)
(the b values are defined as having a mean of zero) and the marginal likelihood of x is the
integral of the conditional likelihood weighted by the likelihood of b:

L(x |β, σ 2) =
∫
L(x | b,β) · L(b | σ 2)db.

Figure 13.2 shows the conditional likelihood L(x | b,β) as a dashed line; the likelihood of
the conditional mode L(b | σ 2) as a dotted line; and the marginal likelihood as the gray
area under the product curve. The marginal likelihood is a function of β and σ 2, which
are the parameters we want to estimate. In a more complex model, σ 2 would be replaced
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Fig. 13.2 Conditional and marginal likelihoods. For block 5, “shrimp”
treatment, replicate 2. The Normal curve (dotted line) shows the likelihood of
the conditional mode b; the logistic curve (dashed line) shows the
conditional likelihood of the observation x given b; the solid line shows their
product, and the gray area under the curve represents the marginal
likelihood. (All likelihoods are scaled to a maximum of 1.0 for ease of
presentation.) If the focal observation were the only one in the block, the
conditional mode would be estimated at the peak of Lprod, b̄5 = 1.4. The
contribution of the other 7 observations in the block makes the overall
estimate of the conditional mode b̂5 = –0.43.

by a vector of parameters, representing the variances of all of the random effects and the
covariances among them.

Restricted likelihood

Many of the useful properties of maximum likelihood estimates, such as efficiency and
lack of bias, only hold asymptotically—that is, when the data set is large. In particular,
maximum likelihood estimates of variances are biased downward because they ignore un-
certainty in the sample means. You may remember that the usual formula for estimating
sample variance is

∑
(x – x̄)2/(n – 1), rather than

∑
(x – x̄)2/n (the latter is the maximum

likelihood estimate), for exactly this reason: dividing by a smaller number (n – 1 rather
than n) increases the estimate just enough to account for the uncertainty in x̄. Restricted
maximum likelihood (REML) generalizes this idea to allow for less biased estimates of the
variances in mixed models. Technically, it is based on finding some way to combine the
observations that factors out the fixed effects. For example, in a pairwise t-test the aver-
age difference between the two observations in a pair is equal to the difference between
treatments, which is the fixed effect. Since we are usually interested in the difference
between the treatments, we compute the difference between treatments in each pair. If
instead we took the average of each pair, we would cancel out the fixed effect, and could
then compute an unbiased estimate of the variance among the pairs. A broader way of
thinking about REML is that it applies to any statistical method where we integrate over
the fixed effects when estimating the variances. When using REML, you cannot compare
the restricted likelihoods of two models with different sets of fixed effects, because they
are likelihoods of completely different models for the variance. While REML in principle
applies to GLMMs as well as LMMs, they are more easily defined and more accessible in
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software for LMMs than for GLMMs (Bellio and Brazzale 2011; Millar 2011). It’s gener-
ally good to use REML, if it is available, when you are interested in the magnitude of the
random effects variances, but never when you are comparing models with different fixed
effects via hypothesis tests or information-theoretic criteria such as AIC.

13.4 Setting up a GLMM: practical considerations

13.4.1 Response distribution

The conditional distribution of the response variable, which we often abbreviate to “the
response distribution” or “the distribution of the data,” is the expected distribution of
each observed response around its predicted mean, given the values of all of the fixed and
random effects for that observation. That is, when we collect a data set of (for example)
counts, we don’t expect the overall (marginal) distribution of the data to be Poisson;
we expect each point to be drawn from a Poisson distribution with its own mean that
depends on the predictors for that point (chapter 6). In the gopher tortoise example, the
distribution of number of shells S in a given site s (with infection seroprevalence P(s)) and
year y is Ssy ∼ Poisson(β0 + βy + βPP(s) + bs), where β0 is the baseline (year-0, 0-prevalence,
average site) expectation; βy is the difference between year y and the baseline; βP is the
effect of an additional percentage of seroprevalence; and bs gives the difference between
site s and the overall average.
If the conditional distribution is Gaussian, or can sensibly be transformed to be Gauss-

ian (e.g., by log transformation), as in the tundra ecosystem example, then we have a
linear mixed model, and several aspects of the modeling process are simpler (we can more
easily define R-side effects and restricted maximum likelihood; statistical tests are also
easier: see section 13.6). As with GLMs (chapter 6), binomial (including binary or Ber-
noulli, i.e., 0/1 responses) and Poisson responses comprise the vast majority of GLMMs.
The Gamma distribution is the other common distribution handled by GL(M)Ms; it is
useful for continuous, skewed distributions, but treating such data as log-normal (i.e., log-
transforming and then using a linear mixed model) is easier and usually gives very similar
results.
In addition to these standard distributions, there are other useful distributions that do

not technically fall within the scope of GLMMs, but can sometimes be handled using sim-
ple extensions. These include the negative-binomial distribution for overdispersed count
data; zero-inflated distributions for count data with excess zeros (chapter 12); the beta
distribution for proportional data that are not proportions out of a known total count;
and the Tweedie distribution for continuous data with a spike at zero (glmmADMB handles
the first three cases). Ordinal responses (i.e., categorical responses that have more than
two ordered categories) and multinomial responses (categorical responses with more than
two categories, but without ordering) can be handled by extensions of binomial GLMMs,
implemented in the clmm function in the ordinal package. These extensions are often
useful, but using them will generally make it harder to analyze your model (you are more
likely to run into computational difficulties, which will manifest themselves as warnings
and errors from software), and restrict your choice of software more than if you stick to
the simpler (Normal, binomial, Poisson) distributions.
As is typical in ecological applications, the examples for this chapter all use either

Normal (tundra ecosystem), binary (coral symbiont), or Poisson (gopher tortoise, grouse
tick) conditional distributions (table 13.1). The family is specified almost exactly as in
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standard GLMs, with a few quirks. For linear mixed models, you should use the lme (in
the nlme package) or lmer (in the lme4 package), or family=“gaussian” in MCMCglmm
or glmmADMB. MCMCglmm and glmmADMB require the family argument to be given as a
quoted string (e.g., family=“poisson”), in contrast to lme4, which allows more flex-
ibility (e.g., family=“poisson” or poisson()). MCMCglmm has different names from
the standard R conventions for binary/logit (family=“categorical”) and binomial
(family=”multinomial2”) models.

13.4.2 Link function

As with GLMs, we also have to choose a link function to describe the shape of the re-
sponse curve as a function of continuous predictor variables. The rules for picking a link
function are the same as for GLMs: when in doubt, use the default (canonical) link for
the response distribution you have chosen. We will follow this rule in the examples, us-
ing the default logit link for the coral symbiont (binary) example and a log link for the
gopher tortoise and grouse tick (Poisson) examples (table 13.1), although we did also con-
sider a log link for the coral symbiont example. In lme4 links are specified along with
the family as for standard GLMs in R, e.g., family=binomial(link=”logit”) or bino-
mial(link=”log”); in glmmADMB they are specified as a separate string (link=”logit”);
and MCMCglmm uses alternative family names where alternate links are available (e.g.,
family=”ordinal” for a binary/probit link model).

13.4.3 Number and type of random effects

As discussed in section 13.3.1, it is not always easy to decide which variables to treat
as random effects. The more random effects a model includes, the more likely you are
to run into computational problems. It is also more likely that the fit will be singular:
some random effects variances will be estimated as exactly zero, or some pairs of random
effects will be estimated as perfectly correlated. While this does not necessarily invalidate
a particular model, it may break model-fitting software in either an obvious way (errors)
or a non-obvious way (the model is more likely to get stuck and give an incorrect result,
without warning you). Model complexities interact: for example, some of the software
available to fit models with non-standard distributions can only handle a single random
effect. In general you should avoid: (1) fitting random effects to categorical variables with
fewer than five levels, and, unless you have very large data sets and a fast computer, (2)
fitting more than two or three random effects in a single model or (3) fitting vector-
valued random effects (i.e., among-group variation of responses to categorical variables)
for categorical predictors with more than two or three levels.

13.5 Estimation

Once the model is set up, you need to estimate the parameters—the fixed-effect parame-
ters that describe overall changes in the response, the conditional modes of the random
effects that describe the predicted differences of each level of the grouping variable from
the population average, and the variances of, and covariances among, the random ef-
fects. This isn’t always easy; there are a variety of methods, with trade-offs in speed and
availability.
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13.5.1 Avoiding mixed models

Sometimes fitting a mixed model is difficult: for example, if you have too few levels of
your random effect, or repeated measurements within just a few blocks. In this case fitting
a mixed model doesn’t have many advantages, and you may be able to take a shortcut
instead.

• For data from a nested experimental design, taking the average of each block and doing
a one-way ANOVA on the results will give you exactly the same results for the fixed
effects as you would get from a mixed model (Murtaugh 2007); if your data are un-
balanced you can do a weighted ANOVA with weights of 1/ni (where ni is the number
of observations in the ith block). If you want to allow (for example) varying slopes
across blocks, you can fit a two-stage model, where you fit a linear regression for each
block separately and then do a one-way ANOVA on the slopes. This works best with
Normal data, but if you have many points per block the block averages will be approx-
imately Normal—although you may still need to deal with heteroscedasticity, e.g., by
transforming the data appropriately.

• You can try showing that random effects are ignorable by fitting a model that ignores
random effects, and then using a one-way ANOVA on the residuals of the model by
block to show that they do not vary significantly across blocks.

• If you need to compute the among-block variance when there are too few levels (< 5),
you can fit the blocks as a fixed effect, with “sum to zero” contrasts set, and compute
the mean of the squared coefficients

(∑
(βi – mean(β))2/(n – 1)

)
.

• If you have paired comparisons (i.e., you are testing the difference between two fixed
effect levels, such as treatment vs. control within each block) for normally distributed
responses, you can replace the test of the fixed effect with a paired t-test, and estimate
the among-block variance by computing the variance of ((control + treatment)/2) across
blocks.

For many situations (e.g., randomized block or crossed designs, or pairwise comparisons
of non-Normal data), you may not be able to use these shortcuts and will have to proceed
with a mixed model.

13.5.2 Method of moments

The traditional way to fit a mixed ANOVA model is to compute appropriate sums of
squares (e.g., the sum of squares of the deviations of the group means from the grand
mean, or the deviations of observations from their individual group means) and dividing
them by the appropriate degrees of freedom to obtain mean squares, which are estimates
of the variances. This approach is called the method of moments because it relies on the
correspondence between the sample moments (mean squares) and the theoretical param-
eters of the model (i.e., the random effects variances). This approach is simple, fast, always
gives an answer—and is extremely limited, applying only to Normal responses (i.e., linear
mixed models), in balanced or nearly balanced designs, with nested random effects only
(see Gotelli and Ellison 2004 or Quinn and Keough 2002).

13.5.3 Deterministic/frequentist algorithms

Instead of computing sums of squares, modern estimation approaches try to find ef-
ficient and accurate ways to compute the marginal likelihood (section 13.3.2), which
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can be challenging. The first class of approaches for estimating mixed models, which I
call deterministic approaches (note that this is not standard terminology), are typically
used in a frequentist statistical framework to find the maximum likelihood estimates and
confidence intervals.

• Penalized quasi-likelihood (PQL, Breslow 2004) is a quick but inaccurate method for ap-
proximating the marginal likelihood. While it is fast and flexible, it has two important
limitations. (1) It gives biased estimates of random-effects variances, especially with bi-
nary data or count data with low means (e.g., Poisson with mean < 5). More accurate
versions of PQL exist, but are not available in R. The bias in random-effect variances
may be unimportant if your questions focus on the fixed effects, but it’s hard to be
sure. (2) PQL computes a quantity called the “quasi-likelihood” rather than the like-
lihood, which means that inference with PQL is usually limited to less-accurate Wald
tests (section 13.6.2).

• Laplace approximation is a more accurate, but slower and less flexible, procedure for
approximating the marginal likelihood.

• Gauss–Hermite quadrature (GHQ) is a more accurate, but still slower and less flexible
approach. Where Laplace approximation uses one point to integrate the marginal like-
lihood, GHQ uses multiple points. You can specify how many points to use; using more
is slower but more accurate. The default is usually around eight; lme4 allows up to 25,
which is usually overkill. Many software packages restrict GHQ to models with a single
random effect.

You should use the most accurate algorithm available that is fast enough to be practical.
If possible, spot-check your results with more accurate algorithms. For example, if La-
place approximation takes a few minutes to fit your models and GHQ takes a few hours,
compare Laplace and GHQ for a few cases to see if Laplace is adequate (i.e., whether the
difference between the coefficient values between the two methods is small relative to
their standard errors).

13.5.4 Stochastic/Bayesian algorithms

Another approach to GLMM parameter estimation uses Markov chain Monte Carlo
(MCMC), a stochastic estimation algorithm. There’s not nearly enough room in this
chapter to give a proper explanation of MCMC; you can just think of it as a general
computational recipe for sampling values from the probability distribution of model pa-
rameters. Stochastic algorithms are usually much slower than deterministic algorithms,
although a single run of the algorithm provides both the coefficients and the confidence
intervals, in contrast to deterministic algorithms, where computing reliable confidence
intervals may take several times longer than just finding the coefficients.

Although there is at least one “black box” R package (MCMCglmm) that allows the user to
define the fixed and random effects via the sorts of formulas shown in table 13.1, many
researchers who opt for stochastic GLMM parameter estimation use the BUGS language
instead (i.e., the WinBUGS package or one of its variants such as OpenBUGS or JAGS) to
fit their models. BUGS is a flexible, powerful framework for fitting ecological models to
data in a Bayesian context (McCarthy 2007; Kéry 2010), not just GLMMs, but it comes
with its own steep learning curve.

For technical reasons, most stochastic algorithms use a Bayesian framework, usually
with weak priors (chapter 1); except when you have parameters that are very uncer-
tain, this distinction doesn’t make a huge practical difference. Bayesian inference, and
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stochastic algorithms in general, make it much easier to compute confidence intervals
that incorporate all the relevant sources of uncertainty (section 13.6.2). If you want to
use stochastic algorithms but avoid Bayesian methods, you can use a stochastic algorithm
that works within a frequentist framework, such as data cloning (Ponciano et al. 2009;
Sólymos 2010).

13.5.5 Model diagnostics and troubleshooting

Model checking for GLMMs overlaps a lot with the procedures for GLMs (chapter 6). You
should plot appropriately scaled residuals (i.e., deviance or Pearson residuals) against the
fitted values and against the input variables, looking for unexplained patterns in the mean
and variance; look for outliers and/or points with large influence (leverage); and check
that the distribution of the residuals is reasonably close to what you assumed. For Poisson
or binomial GLMMs with N > 1, you should compare the sum of the squared Pearson
residuals to the residual degrees of freedom (number of observations minus number of
fitted parameters) to check for overdispersion (unless your data are binary, or the model
already contains an observation-level random effect; appendix 13A).
The first GLMM-specific check is to see whether the model is singular: that is, whether

non-zero variances (and non-perfect correlations among random effects, i.e., |ρ|<1) could
be estimated for all the random effects in the model. If some of the variances are zero or
some correlations are ±1, it indicates that not only was the among-group variation not
significantly different from zero, the best estimate was zero. Your model is probably too
complex for the data: the best way to avoid this problem in general is to try to simplify
the model in advance to a level of complexity that you think the data can support, by
leaving out random-effects terms or by converting them to fixed effects. It does take some
practice to calibrate your sense of what models can be fitted. For example, in the coral
symbiont example I left out the block × treatment interaction, successfully fitting a non-
singular model, but in the gopher tortoise example the model with site and observation-
level random effects was singular even though I had tried to be conservative by treating
year as a fixed effect.
Although in principle the results from a singular model fit will be the same as if you had

just left the zero-estimate terms out of the model in the first place, you should probably
refit the model without them to make sure this is true (i.e., that the software hasn’t run
into computational problems because the model was too complicated). Another possible
solution to this problem is to impose a Bayesian prior on the variances to push them away
from zero, which you can do using the blme (Chung et al. 2013) or MCMCglmm packages.
Although some researchers advocate simply picking a reasonable model and sticking with
it (i.e., not looking for a more parsimonious reduced model: Barr et al. 2013), you can also
use information-theoretic approaches (AIC or BIC) to choose among possible candidate
random-effects models (see chapter 3 and section 13.6.2), especially if you are interested
in prediction rather than in testing hypotheses.
Another diagnostic specific to (G)LMMs is checking the estimates of the conditional

modes. In theory these should be normally distributed (you can check this using a
quantile–quantile (“q–q”) plot). You should only worry about extreme deviations: no-one
really knows how badly a non-Normal distribution of conditional modes will compromise
a (G)LMM, and fitting models with non-Normal modes is difficult. Look for extreme con-
ditional modes and treat them as you would typically handle outliers; for example, figure
out whether there is something wrong with the data for those groups, or try fitting the
model with these groups excluded and see whether the results change very much.
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For MCMC analyses (e.g., via MCMCglmm), you should use the usual diagnostics for con-
vergence and mixing (read more about these in McCarthy (2007) and Kéry (2010)), check
quantitative diagnostics such as the Gelman–Rubin statistic and effective sample size, and
examine graphical diagnostics (trace and density plots) for both the fixed and random
effects parameters. With small data sets, the variance–covariance parameters often mix
badly, sticking close to zero much of the time and occasionally spiking near zero; the cor-
responding density plots typically show a spike at zero with a long tail of larger values.
There are no really simple fixes for this problem, but some reasonable strategies include
(1) running much longer chains; (2) adding an informative prior to push the variance
away from zero; (3) taking the results with a grain of salt (appendix 13A).

As you try to troubleshoot the random-effects component of your analysis, you should
keep an eye on the fixed-effect estimates and confidence intervals associated with models
with different random effects structures; the fixed-effect estimates often stay pretty much
the same among models with different random effects. This can be comforting if your
main interest is in the fixed effects, although you should be careful since fitting multiple
models also allows some scope for cherry-picking the results you like.

13.5.6 Examples

Some technical issues that arose as I fitted and diagnosed models for the examples above
were (appendix 13A for more details):

• Tundra CO2 flux: Overall the fits were well-behaved, but one site (Toolik) differed from
the others; its observations were poorly fitted by the full model (they had large residuals
with high variance) and its conditional mode for the slope was an outlier. Including
the Toolik data made the model harder to fit, and generated autocorrelation in the
residuals that could not be completely accounted for. However, the primary estimate of
the population-level rate of increasing CO2 flux remained qualitatively similar whether
we included the Toolik data or not.

• Coral symbionts: One observation in the data set was poorly predicted—it was a coral
that escaped predation although it had a high expected predation risk (it was in the
no-symbiont treatment in a frequently attacked block). Refitting the model without
this observation led to nearly complete separation (chapter 6), making the estimates
even more extreme. In the end we retained this data point, since including it seemed to
give conservative estimates. Other aspects of the model looked OK—the distribution of
conditional modes was sensible, and using GHQ instead of the Laplace approximation
changed the estimates only slightly.

• Gopher tortoise shells: Poisson sampling accounted for nearly all the variation in the
data—the estimated variances both among observations and among sites were very
close to zero. Thus, the conditional modes were also all near zero. In other words,
we would have obtained similar results from a simple Poisson GLM. The residuals
looked reasonable, with similar variation in each site. The MCMCglmm fit, which in-
cluded both among-site and among-observation variation, showed unstable estimates
of the random-effects variance, as described in section 13.5.5. We couldn’t simplify the
model, but instead used a stronger prior on the among-site variance to stabilize it. This
didn’t change the estimated effect of disease prevalence, but did increase its uncertainty.
In Ozgul et al. (2009) we fitted the full model with WinBUGS; if I ran the analysis again
today I would either fit a simple Poisson model or use MCMCglmm or blme to fit the full
model with stabilizing priors.
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• Grouse ticks: The residuals and estimated conditional modes all looked reasonable. We
didn’t test for overdispersion since the model includes observation-level random effects.
Deterministic algorithms (lme4 and glmmADMB) gave positive estimates for all of the
variances, but MCMCglmm disagreed; unless we added a prior, it estimated the among-
location variance as nearly zero, suggesting that the separation of variation into among-
brood vs. among-location components is unstable.

13.6 Inference

13.6.1 Approximations for inference

Estimates of parameters are useless without confidence intervals, or hypothesis tests
(p-values), or information criteria such as AIC, that say how much we really know. Infer-
ence for GLMMs inherits several assumptions from GLMs and linear mixed models that
do not apply exactly for GLMMs, and which (as with the estimation methods for GLMMs)
require trade-offs between accuracy, computation time, and convenience or availability in
software. As with estimation (section 13.5), you should generally use the slowest but most
accurate method that is practical, double-checking your results with a slower and more
accurate method if possible. Inference for GLMMs involves three separate types of approx-
imation, which we will discuss in general before discussing specific methods for inference
in section 13.6.2.
Shape: the fastest but least accurate approaches to GLMM inference (Wald intervals

and tests) make strong assumptions about the shape of the likelihood curve, or surface
(figure 3.2) that are exactly true for linear models (ANOVA/regression), but only approxi-
mately true for GLMs, LMMs, and GLMMs. These approximations are more problematic
for smaller data sets, or for data with high sampling variance (binary data or Poisson or
binomial data with small observed counts or numbers of successes/failures).
Finite-size effects:When the data set is not very large (e.g., < 40 observations, or < 40 lev-

els for the smallest random-effect grouping variable) we have to make further assumptions
about the shapes of distributions of summaries such as the likelihood ratio or F statistic.
In the classical ANOVA or regression framework, these assumptions are taken care of by
specifying the “denominator degrees of freedom,” that is, specifying the effective number
of independent observations. For GLMs, for better or worse, people usually ignore these
issues completely.

• For LMMs that don’t fit into the classical ANOVA framework (i.e., with unbalanced
designs, crossed random effects, or R-side effects), the degrees of freedom for the t dis-
tribution (for testing individual parameters), or the denominator degrees of freedom for
the F distribution (for testing effects), are hard to compute and are at best approximate.
If your experimental/observational design is nested and balanced, you can use a soft-
ware package that computes the denominator degrees of freedom for you or you can
look the experimental design up in a standard textbook (e.g., Gotelli and Ellison 2004
or Quinn and Keough 2002). If not, then you will need to use the approximation meth-
ods implemented in the lmerTest and pbkrtest packages (Kenward and Roger 1997;
Halekoh and Højsgaard 2013), or use a resampling-based approach (section 13.6.2).

• GLMMs involve a different finite-size approximation (the distribution of the likeli-
hood ratio test statistic is approximate rather than exact). Stroup (2014) states that
the Kenward–Roger approximation procedure developed for LMMs works reasonably
well for GLMMs, but neither it nor Bartlett corrections (another approximation method
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described in McCullagh and Nelder 1989) are implemented for GLMMs in R; you will
need to use stochastic sampling methods (section 13.6.2) if you are concerned about
finite-size inference for GLMMs.

Boundary effects: statistical tests for linear models, including GLMMs, typically assume
that estimated parameters could be either above or below their null value (e.g., slopes
and intercepts can be either positive or negative). This is not true for the random effect
variances in a (G)LMM—they must be positive—which causes problems with standard
hypothesis tests and confidence interval calculations (Pinheiro and Bates 2000). In the
simplest case of testing whether a single random-effect variance is zero, the p-value de-
rived from standard theory is twice as large as it should be, leading to a conservative
test (you’re more likely to conclude that you can’t reject the null hypothesis). To test the
null hypothesis that the sole random-effect variance in a model is equal to zero you can
just divide the p-value by 2. If you want to test hypotheses about random effects in a
model with more than one random effect you will need to simulate the null hypothesis
(section 13.6.2).

13.6.2 Methods of inference

Wald tests

The standard errors and p-values that R prints out when you summarize a statistical model
(Wald standard errors and tests) are subject to artifacts in GLM or GLMM modeling.
They’re especially bad for binomial data where some categories in the data have responses
that are mostly (or all) successes or failures (complete separation: the related inference prob-
lems are called the Hauck–Donner effect: Venables and Ripley 2002). The typical symptom
of these problems is large parameter estimates (e.g., absolute value>10) in conjunction
with huge standard errors and very large (p ≈ 1) p-values: sometimes, but not always, you
will also get warnings from the software. More generally, Wald statistics are less accurate
than the other methods described below. However, they are quick to compute, can be use-
ful for a rapid assessment of parameter uncertainty, and are reasonably accurate for large
data sets. If you can guess the appropriate residual degrees of freedom, then you may try
to use appropriate t statistics rather than Z statistics for the p-values and confidence inter-
val widths in order to account for finite sample sizes, but this is a crude approximation in
the case of GLMMs.

Likelihood ratio tests

Likelihood ratio tests and profile confidence intervals are an improvement over Wald sta-
tistics, but come at a computational cost that may be significant for large data sets. You
can use the likelihood ratio test to compare nested models (via the anova command in
R, or by computing the p-value yourself based on the χ2 distribution); this provides a
significance test for the factors that differ between the two models. The corresponding
confidence intervals for a parameter are called profile confidence intervals. Profile confi-
dence intervals are computationally challenging—they may take dozens of times as long
to compute as the original model fit. Furthermore, because profile likelihood calculations
have to evaluate the likelihood for extreme parameter values, they are much more subject
to computational problems than the original model fit.

Finally, although likelihood-based comparisons are more reliable than Wald statistics,
they still assume infinite denominator degrees of freedom. If your effective sample size is
large enough (e.g., the smallest number of levels of any grouping variable in your model
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is > 40), you don’t need to worry. Otherwise you may need to use a stochastic resam-
pling method such as parametric bootstrapping or Markov chain Monte Carlo for accurate
inference.

Bootstrapping

Bootstrapping means resampling data with replacement to derive new pseudo-data sets,
from which you can estimate confidence intervals (chapter 1). Parametric bootstrapping
(PB) instead simulates pseudo-data from the fitted model (or from reduced models that
omit a parameter you are interested in making inferences about). You can then refit your
model to these pseudo-data sets to get reliable p-values or confidence intervals.
PB is very slow (taking hundreds or thousands of times as long as fitting the original

model), and it does make assumptions—that the model structure is appropriate, and that
the estimated parameters are close to the true parameters—but it is the most accurate way
we know to compute p-values and confidence intervals for GLMMs.
Specialized forms of PB are faster. For example, the RLRsim package in R (Scheipl

et al. 2008) does a kind of PB to compute p-values for random-effect terms in LMMs,
orders of magnitude faster than standard PB.
You can also use non-parametric bootstrapping—resampling the original data values—

but you must respect the grouping structure of the data. For example, for a model with
a single grouping variable you could do two-stage bootstrapping (Field and Welsh 2007),
first sampling with replacement from the levels of the grouping variable, then sampling
with replacement from the observations within each sampled group. For more complex
models (with crossed random effects, or R-side effects), appropriate resampling may be
difficult.

MCMC

The results of an MCMC fit (section 13.5.4) give estimates and confidence intervals on
parameters; you can also get p-values from MCMC, although it is unusual (since most
MCMC is based in a Bayesian framework). MCMC is very powerful—it automatically al-
lows for finite size effects, and incorporates the uncertainty in all the components of the
model, which is otherwise difficult. It’s so powerful, in fact, that some frequentist tools
(such as AD Model Builder) use a variant of MCMC to compute confidence intervals. This
pseudo-Bayesian approach is convenient, but may have problems when the information
in the data is weak. For small, noisy data sets the distribution of the variance parameters
is often composed of a spike at zero along with a second component with a mode away
from zero. In this case, many MCMC algorithms can get stuck sampling either the spike
or the non-zero component, and thus give poor results.

Information-theoretic approaches

Many ecological researchers use information-theoretic approaches to select models and
generate parameter importance weights or weighted multimodel averages of parameters
and predictions (chapter 3; Burnham and Anderson 2002). In principle, AIC (and other
indices like BIC) do apply to mixed models, but several of the theoretical difficulties
discussed in section 13.6.1 affect information criteria (Greven and Kneib 2010; Müller
et al. 2013).

• AIC comparisons amongmodels with different variance parameters have the same prob-
lem as null-hypothesis tests of variances (section 13.6.1)—they tend to understate the
importance of variance terms.
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• When comparing models with different random-effects terms, or when using a finite-
size corrected criterion such as AICc, the proper way to compute the model complexity
(number of parameters) associated with a random effect depends on whether you are
trying to predict at the population level (predicting the average value of a response
across all random-effects levels) or at the individual level (a conditional prediction,
i.e., making predictions for specific levels of the random effect). For population-
level prediction, you should count one parameter for each random-effects variance or
covariance/correlation. For conditional prediction, the correct number of parameters is
somewhere between 1 and n – 1, where n is the number of random-effects levels: meth-
ods for computing appropriate AIC values in this case (Vaida and Blanchard 2005) are
not widely implemented. Academic ecologists typically want to know about effects at
the level of the whole population, which allows them to use the easier one-parameter-
per-variance-parameter rule; applied ecologists might be more interested in predictions
for specific groups. Bayesian MCMC has an information-theoretic metric called the de-
viance information criterion (DIC: Spiegelhalter et al. 2002), for which the so-called level
of focus must be defined similarly (O’Hara 2007).

• Finite-size-corrected criteria such as AICc are poorly understood in the mixed model
context. For example, for n in the denominator of the AICc correction term (n – k–1:
chapter 3), should one count the total number of observations in a nested design, or
the number of groups? For better or worse, most ecologists use AICc for model selection
with GLMMs without worrying about these issues, but this may change as statisticians
come to understand AICc better (Shang and Cavanaugh 2008; Peng and Lu 2012).

In general you should pick a single approach to modeling and inference in advance, or after
brief exploration of the feasibility of different approaches, in order to avoid the ever-
present temptation to pick the results you like best.

13.6.3 Reporting the GLMM results

Graphical summaries of statistical analyses that display the model coefficients and their
uncertainty, or that overlay model predictions and their uncertainties on the original
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data, are important (Gelman et al. 2002). However, you also need to summarize the re-
sults in words. This summary should include the magnitudes and confidence intervals
of the fixed effects; the magnitude of the among-group variation for each random ef-
fect, whether it is of primary interest or not; and possibly the confidence intervals of the
among-group variation (if the random effects are included because they are part of the
design, you should not test the null hypothesis that they are zero). If you are interested in
the partitioning of variance across levels, report among-group variation as random-effect
variances, or proportions of variance (see the grouse tick example below). If you are more
interested in the fixed effects, report among-group variation as random-effect standard de-
viations, as these are directly comparable to the corresponding fixed effects. The following
are sample reports for the four worked examples; appendix 13A shows the technical de-
tails of deriving these results. The results from all the combinations of estimation and
inference methods in this chapter are summarized in Figure 13.3.

• Tundra carbon: The main effect of interest is the across-site average change in growing-
season carbon flux per year; the estimated slopes are negative because the rate of
carbon loss is increasing. Our conclusion from the fitted model with the year varia-
ble centered (i.e., setting Year=0 to the overall mean of the years in the data) would
be something like: “the overall rate of change of growing season NEE was –3.84 g
C/m2/season/year (t23 = –2.55, p = 0.018, 95% CI = {–6.86, –0.82}). We estimated a
first-order autocorrelation within sites of ρ = 0.39; among-site variation in the in-
tercept was negligible, while the among-site standard deviation in slope was 5.07
g C/m2/season/year, with a residual standard deviation of 58.9 g C/m2/season.”

• Coral symbionts: For the analysis done here (logit link, one-way comparison of crab/
shrimp/both to control) we could quote either the fixed-effect parameter estimates
(clarifying to the reader that these are differences between treatments and the base-
line control treatment, on the logit or log-odds scale), or the changes in predation
probability from one group to another. Taking the first approach: “Crab and shrimp
treatments had similar effects (–3.8 log-odds decrease in predation probability for crab,
–4.4 for shrimp); the dual-symbiont treatment had an even larger effect (–5.5 units), but
although the presence of any symbiont caused a significant drop in predation probabil-
ity relative to the control (Wald p-value 0.0013; parametric bootstrap p-value < 0.003),
none of the symbiont treatments differed significantly from each other (likelihood ratio
test p = 0.27, parametric bootstrap test (N = 220) p = 0.23); in particular, two symbionts
did not have significantly greater protective effects than one (Wald and PB p-values
both ≈0.15). The among-block standard deviation in log-odds of predation was 3.4,
nearly as large as the symbiont effect.” (McKeon et al. (2012) present slightly differ-
ent conclusions based on a model with a log rather than a logit link.) Alternately, one
could quote the predicted predation probabilities for each group, which might be more
understandable for an ecological audience.

• Gopher tortoise: The main point of interest here is the effect of prevalence on the (per-
area) density of fresh shells. This makes reporting easy, since we can focus on the
estimated effect of prevalence. Because the model is fitted on a log scale and the pa-
rameter estimate is small, it can be interpreted as a proportional effect. For example: “A
1% increase in seroprevalence was associated with an approximately 2.1% increase (log
effect estimate = 0.021) in the density of fresh shells (95% CI = {0.013, 0.031} by para-
metric bootstrap [PB]). Both of the years subsequent to 2004 had lower shell densities
(log-difference = –0.64 (2005), –0.43 (2006)), but the differences were not statistically
significant (95% PB CI: 2005 = { – 1.34, 0.05}, 2006 = { – 1.04, 0.18}). There was no
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detectable overdispersion (Pearson squared residuals/residual df = 0.85; estimated vari-
ance of an among-observation random effect was zero). The best estimate of among-site
standard deviation was zero, indicating no discernible variation among sites, with a
95% PB CI of {0, 0.38}.”

• Grouse ticks: In this case the random-effects variation is the primary focus, and we re-
port the among-group variance rather than standard deviation because we are interested
in variance partitioning. “Approximately equal amounts of variability occurred at the
among-chick, among-brood, and among-location levels (MCMCglmm, 95% credible
intervals: σ 2

chick = 0.31 [95% CI {0.2, 0.43}, σ 2
brood = 0.59 {0.36, 0.93}, σ 2

location = 0.57
{0.29, 1.0}]. The among-brood variance is estimated to be approximately twice the
among-chick and among-location variances, but there is considerable uncertainty in
the brood/chick variance ratio (σ 2

brood/σ
2
chick = 2.01 {1.007, 3.37}), and estimates of the

among-location variance are unstable. Year and altitude also have strong effects. In
1996, tick density increased by a factor of 3.3 relative to 1995 (1.18 {0.72, 1.6} log units);
in 1997 density decreased by 38% (–0.98 {–1.49, 0.46} log units) relative to 1995. Tick
density increased by approximately 2% per meter above sea level (–0.024 {–0.03, –0.017}
log-units), decreasing by half for every 30 (log(2)/0.024) m of altitude.”

13.7 Conclusions

I hope you are convinced by now that GLMMs are a widely useful tool for the statistical
exploration of ecological data. Once you get your head around the multi-faceted con-
cept of random effects, you can see how handy it is to have a modeling framework that
naturally combines flexibility in the response distribution (GLMs) with the ability to han-
dle data with a variety of sampling units with uneven and sometimes small sample sizes
(mixed models).

GLMMs cannot do everything; especially for very small data sets, they may be overkill
(Murtaugh 2007). Ecologists will nearly always have too little data to fit as sophisticated a
model as they would like, but one can often find a sensible middle ground.

In this chapter I have neglected the other end of the spectrum, very large data sets.
Ecologists dealing with Big Data from remote sensing, telemetry, citizen science, or geno-
mics may have tens or hundreds of thousands of observations rather than the dozens to
hundreds represented in the examples here. However, telemetry and genomic data often
contain huge amounts of detail about a small number of individuals; in this case a fixed-
effect or two-stage (Murtaugh 2007) model may work as well as a GLMM. The good news
is that some of the computational techniques described here scale well to very large data
sets, and some of the most computationally intensive analyses become unnecessary when
all the grouping variables have more than 40 levels.

I have also neglected a variety of useful GLM extensions such as non-standard link
functions (for fitting specific non-linear models such as the Beverton–Holt or Ricker func-
tions); methods for handling multinomial or ordinal data; and zero-inflation. The good
news is that most of these tricks are at least in principle extendable to GLMMs, but your
choice of software may be more limited (Bolker et al. 2013).

Unfortunately, GLMMs do come with considerable terminological, philosophical, and
technical baggage, which I have tried in this chapter to clarify as much as possible. As
GLMM software, and computational power, continue to improve, many of the technical
difficulties will fade, and GLMMs will continue their growth in popularity; a firm grasp of
the conceptual basis of GLMMs will be an increasingly important part of the quantitative
ecologist’s toolbox (Zuur et al. 2009, 2012, 2013; Millar 2011).




