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Introduction

Cycling populations

• Many populations seem to cycle

• Population densities increase and decrease more or less regularly

• Over multiple generations/years

• Name an example of a population that cycles

• Interesting (but maybe overreported)

Population regulation

• Population regulation is a necessary condition for cycling
• Things must get worse/per capita growth rates must decrease as

population increases
• We will not count the special case of non-overlapping cohorts in

structured populations

What we have so far

• Unregulated, unstructured models: exponential growth or decline
• Unregulated, structured models: exponential growth or decline in

long-term (averaged across cohorts)
• Regulated, unstructured models in continuous time

– R < 1: stable equilibrium at zero
– R > 1, no Allee effects: stable positive equilibrium
– R > 1, Allee effects: unstable and stable positive equilibria
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Crossing

• If two populations are following the same deterministic rules
• e.g. dN/dt = Nr(N)

• And are in the same state
• Then they must go the same place next
• Trajectories can’t cross
• Cycles are impossible

Why not cycles?

• If two populations are following the same deterministic rules
• e.g. dN/dt = Nr(N)

• And are in the same state
• Then they must go the same place next
• Trajectories can’t cross
• Cycles are impossible

What can allow cycles?

• Discrete time
• Age structure
• Delayed effects (e.g. childhood crowding lowers adult fecundity)
• Seasonal variation
• Interactions with other populations (prey/depletable resources,

predators)
• (Regulation is always necessary)
• Give an example of one of these effects in a real population

Conceptual model

• Discrete-time, deterministic, unstructured, regulated
• λ(N) = p(N) + f(N)

• For simplicity we’ll assume p(N) = 0
• f(N) must decline as N gets large

Mathematical model

• $N_{T+1} = λ(N_T )N_TEquilibriumwhen :

•• We will assume λ(N) = f0 exp(−N/Nc) (Ricker model)
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• NT+1 = NT exp(−N/Nc)

• What is R(0) for this model?

Simple case

• f0 = 1.5, Nc = 1
• f0 > 1 so the population should grow initially

Figure 1: plot of chunk unnamed-
chunk-1

Dynamics

• f0 = 1.5, Nc = 1
• looks a lot like the continuous-time models we looked at previously

Figure 2: plot of chunk unnamed-
chunk-2

Cobweb diagram

• Another way of visualizing the dynamics

Figure 3: plot of chunk unnamed-
chunk-3

Unhappy populations

• f0 < 1

Figure 4: plot of chunk unnamed-
chunk-4

Unhappy populations: dynamics

• Population declines to zero (stable equilibrium)

Figure 5: plot of chunk unnamed-
chunk-5

Overshooting

• Interesting stuff starts to happen if we increase f0 (steeper curve)
• f0 = 5
• overshooting
• only possible in discrete time!

Figure 6: plot of chunk unnamed-
chunk-6
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Overshooting: cobweb

• Equilibrium is now to the right of the peak

• Map has a negative slope at the equilibrium

Cycles

• f0 = 10
• even stronger overshoot
• now we get a two-year cycle

Figure 7: plot of chunk unnamed-
chunk-8

Cycles: cobweb

• zoom into a cycle

Figure 8: plot of chunk unnamed-
chunk-9

Cycles: starting from within

• same f0, Nc but different start
• zoom out to a cycle

Figure 9: plot of chunk unnamed-
chunk-10

Cobweb

• start near equilibrium
• unstable!

Figure 10: plot of chunk unnamed-
chunk-11
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Even more extreme

• f0 = 15
• even more overshooting
• 4-point cycle (maybe 8-point?)

Figure 11: plot of chunk unnamed-
chunk-12

Cobweb

• f0 = 15
• even more overshooting
• 4-point cycle (maybe 8-point?)

Figure 12: plot of chunk unnamed-
chunk-13

Chaos!

• f0 = 25
• doesn’t seem to be settling down

Figure 13: plot of chunk unnamed-
chunk-14

Longer time scale

• run for 1000 steps
• never settles down

Figure 14: plot of chunk unnamed-
chunk-15

Cobweb

• fills in entire space (maybe with gaps?)

Figure 15: plot of chunk unnamed-
chunk-16

Stability of equilibria

• Slope of the curve at equilibrium is called J
• Determines population dynamics around equilibrium

Figure 16: plot of chunk unnamed-
chunk-17

Stability of equilibria

• More steeply negative = bigger overshoot

Figure 17: plot of chunk unnamed-
chunk-18
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Understanding J

• J says how the deviation from equilibrium grows in the next time
step

• 0 < J < 1: stable, direct approach
• −1 < J < 0: stable, damped oscillations
• J < −1: unstable (cycles/chaos)

Is there some biology here?

• The simple mechanism here produces a broad spectrum of dynam-
ics

• But very limited: crashes must happen in one year
• Basic idea is reasonable (overshoot/overcompensation causes

instability)
• Biologists are still arguing about what drives cycles in real popula-

tions
• Chaos or noise? (May 1976; Hastings et al. 1993)
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