

Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

Use R!

Paradis: Analysis of Phylogenetics and Evolution with R

Pfaff: Analysis of Integrated and Cointegrated Time Series with R

Emmanuel Paradis

Analysis of Phylogenetics
and Evolution with R

Emmanuel Paradis
Institut de Recherche pour le Développement
UR 175 Caviar
GAMET-BP 5095
361 rue Jean François Breton
F-34196 Montpellier cédex 5
France
Emmanuel.Paradis@mpl.ird.fr

Library of Congress Control Number: 2006923823

ISBN-0-387-32914-5
ISBN-978-0387-32914-7

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America. (MVY)

9 8 7 6 5 4 3 2 1

springer.com

Series Editors:
Robert Gentleman Kurt Hornik
Program in Computational Biology Department für Statistik und Mathematik
Division of Public Health Sciences Wirtschaftsuniversität Wien Augasse 2-6
Fred Hutchinson Cancer Research Center A-1090 Wien
1100 Fairview Ave. N, M2-B876 Austria
Seattle, Washington, 981029-1024
USA

Giovanni Parmigiani
The Sidney Kimmel Comprehensive

Cancer Center at Johns Hopkins University
550 North Broadway
Baltimore, MD, 21205-2011
USA

to Laure

Preface

As a result, the inference of phylogenies often seems divorced from any
connection to other methods of analysis of scientific data.

Felsenstein

Once calculation became easy, the statistician’s energies could be de-
voted to understanding his or her dataset.

Venables & Ripley

The study of the evolution of life on Earth stands as one of the most
complex fields in science. It involves observations from very different sources,
and has implications far beyond the domain of basic science. It is concerned
with processes occurring on very long time spans, and we now know that it
is also important for our daily lives as shown by the rapid evolution of many
pathogens.

As a field ecologist, for a long time I was remotely interested in phyloge-
netics and other approaches to evolution. Most of the work I accomplished
during my doctoral studies involved field studies of small mammals and esti-
mation of demographic parameters. Things changed in 1996 when my interest
was attracted by the question of the effect of demographic parameters on
bird diversification. This was a new issue for me, so I searched for relevant
data analysis methods, but I failed to find exactly what I needed. I started to
conduct my own research on this problem to propose some, at least partial,
solutions. This work made me realize that this kind of research critically de-
pends on the available software, and it was clear to me that what was offered
to phylogeneticists at this time was inappropriate.

I first read about R in 1998 while I was working in England: I first tried
it on my computer in early 1999 after I got a position in France. I quickly
thought that R seemed to be the computing system that is needed for devel-
oping phylogenetic methods: versatile, flexible, powerful, with great graphical
possibilities, and free.

viii Preface

When I first presented the idea to develop programs written in R for phy-
logenetic analyses in 2001, the reactions from my colleagues were mixed with
enthusiasm and scepticism. The perspective of creating a single environment
for phylogenetic analysis was clearly exciting, but some concerns were ex-
pressed about the computing performance of R which, it was argued, could
not match those of traditional phylogenetic programs. Another criticism was
that biologists would be discouraged from using a program with a command-
line interface. The first version of the R package ape was eventually released
in August 2002. The reactions from some colleagues showed me that related
projects were undertaken elsewhere.

The progress accomplished has been much more than I expected, and
the perspectives are far reaching. Writing a book on phylogenetics with R is
an opportunity to bring together pieces of information from various sources,
programs, and packages, as well as discussing a few ideas.

I realize that the scope of the book is large, and the treatment may seem
superficial in some places, but it was important to treat the present topics
in a concise manner. It was not possible to explore all the potentialities now
offered by R and its packages written for phylogenetic analysis. Similarly, I
tried to explain the underlying concepts of the methods, sometimes illustrated
with R codes, but I meant to keep it short as well.

I must first thank the “R community” of developers and users from whom
I learned much about R through numerous exchanges on the Internet: this def-
initely helped me to find my way and envision the development of ape. Julien
Claude has shared the venture of developing programs in R and contribut-
ing to ape since he was a doctoral student. A great thank you to those who
contributed some codes to ape: Korbinian Strimmer, Gangolf Jobb, Rainer
Opgen-Rhein, Julien Dutheil, Yvonnick Noël, and Ben Bolker. I must empha-
size that all these authors should have full credit for their contributions. I am
grateful to Olivier François and Michael Blum for showing me the possibilities
of their package apTreeshape.

Several colleagues kindly read some parts of the manuscript: Lounès
Chikki, Julien Claude, Jean Lobry, Jean-François Renno, Christophe Thébaud,
Fabienne Thomarat, and several colleagues who chose to remain anonymous.
Thanks to all of them! Special thanks to Susan Holmes for encouragement and
some critical comments. Thank you to Elizabeth Purdom and Julien Dutheil
for discussions about ape and R programming. I am sincerely thankful to John
Kimmel at Springer for the opportunity to write this book, and for managing
all practical aspects of this project. Finally, many thanks to Diane Sahadeo
for handling my manuscript to make it an actual book.

Jakarta Emmanuel Paradis
April 2006

Contents

1 Introduction . 1
1.1 Strategic Considerations . 1
1.2 Notations . 4
1.3 Preparing the Computer . 5

1.3.1 Installations . 5
1.3.2 Configurations . 7

2 First Steps in R for Phylogeneticists . 9
2.1 The Command Line Interface . 9
2.2 The Data Structures . 11

2.2.1 Vector . 11
2.2.2 Factor . 14
2.2.3 Matrix . 15
2.2.4 Data Frame . 16
2.2.5 List . 17

2.3 The Help System . 18
2.4 Creating Graphics . 19
2.5 Saving and Restoring R Data . 20
2.6 Using R Functions . 20
2.7 Repeating Commands . 21

2.7.1 Loops . 21
2.7.2 Apply-Like Functions . 22

2.8 Exercises . 23

3 Phylogenetic Data in R . 25
3.1 Phylogenetic Data as R Objects . 25

3.1.1 The Class "phylo" (ape) . 26
3.1.2 The Class "phylog" (ade4) . 27
3.1.3 The Class "matching" (ape) . 27
3.1.4 The Class "treeshape" (apTreeshape) 28

3.2 Reading Phylogenetic Data . 28

x Contents

3.2.1 Phylogenies . 28
3.2.2 Reading Internet Tree Databases . 30
3.2.3 Molecular Sequences . 30

3.3 Writing Data . 33
3.4 Manipulating Data . 35

3.4.1 Basic Tree Manipulation . 35
3.4.2 Rooted Versus Unrooted Trees . 36
3.4.3 Dichotomous Versus Multichotomous Trees 37
3.4.4 Summarizing and Comparing Trees 38
3.4.5 Converting Objects . 39
3.4.6 Manipulating DNA Data . 40

3.5 Generating Random Trees . 44
3.6 Case Studies . 46

3.6.1 Sylvia Warblers . 46
3.6.2 Phylogeny of the Felidae . 50
3.6.3 Snake Venom Proteome . 52
3.6.4 Mammalian Mitochondrial Genomes 55
3.6.5 Butterfly DNA Barcodes . 62

3.7 Exercises . 64

4 Plotting Phylogenies . 65
4.1 Simple Tree Drawing . 65

4.1.1 Annotating Trees . 71
4.1.2 Showing Clades . 80

4.2 Combining Plots . 83
4.3 Large Phylogenies . 89
4.4 Perspectives . 92
4.5 Exercises . 94

5 Phylogeny Estimation . 95
5.1 Distance Methods . 96

5.1.1 Calculating Distances . 96
5.1.2 Simple Clustering and UPGMA . 99
5.1.3 Neighbor-Joining . 100

5.2 Maximum Likelihood Methods . 100
5.2.1 Substitution Models: A Primer . 101
5.2.2 Estimation with Molecular Sequences 106
5.2.3 Finding the Maximum Likelihood Tree 110
5.2.4 DNA Mining with PHYML . 111

5.3 Bootstrap Methods and Distances Between Trees 112
5.3.1 Resampling Phylogenetic Data . 113
5.3.2 Bipartitions and Computing Bootstrap Values 115
5.3.3 Distances Between Trees . 118
5.3.4 Consensus Trees . 118

5.4 Molecular Dating . 119

Contents xi

5.5 Case Studies . 121
5.5.1 Sylvia Warblers . 121
5.5.2 Phylogeny of the Felidae . 125
5.5.3 Butterfly DNA Barcodes . 129

5.6 Perspectives . 131
5.7 Exercises . 131

6 Analysis of Macroevolution with Phylogenies 133
6.1 Phylogenetic Comparative Methods . 133

6.1.1 Phylogenetically Independent Contrasts 135
6.1.2 Phylogenetic Autoregression . 138
6.1.3 Autocorrelative Models . 139
6.1.4 Multivariate Decomposition . 142
6.1.5 Generalized Least Squares . 144
6.1.6 Generalized Estimating Equations 147
6.1.7 Mixed Models and Variance Partitioning 149
6.1.8 The Ornstein–Uhlenbeck Model . 151
6.1.9 Perspectives . 153

6.2 Estimating Ancestral Characters . 154
6.2.1 Continuous Characters . 155
6.2.2 Discrete Characters . 156

6.3 Analysis of Diversification . 160
6.3.1 Graphical Methods . 161
6.3.2 Birth–Death Models . 163
6.3.3 Survival Models . 167
6.3.4 Goodness-of-Fit Tests . 169
6.3.5 Tree Shape and Indices of Diversification 170

6.4 Perspectives . 172
6.5 Case Studies . 173

6.5.1 Sylvia Warblers . 173
6.5.2 Phylogeny of the Felidae . 176

6.6 Exercises . 180

7 Developing and Implementing Phylogenetic Methods in R . 183
7.1 Features of R . 183

7.1.1 Object-Orientation . 183
7.1.2 Variable Definition and Scope . 185
7.1.3 How R Works . 186

7.2 Writing Functions in R . 187
7.3 Interfacing R with Other Languages . 189

7.3.1 Simple Interfaces . 189
7.3.2 Complex Interfaces . 190

7.4 Writing R Packages . 192
7.4.1 A Minimalist Package . 192
7.4.2 The Documentation System . 193

xii Contents

7.5 Performance Issues and Strategies . 193

References . 199

Index . 209

1

Introduction

Phylogenetics is the science of the evolutionary relationships among species.
Recently, the term has come to include broader issues such as estimating rates
of evolution, dating divergence among species, reconstructing ancestral char-
acters, or quantifying adaptation, all these using phylogenies as frameworks.

Computers seem to have been used by phylogeneticists as soon they were
available in research departments [28]. Since then, progress has been obvious
in two parallel directions: biological databases, particularly for molecular se-
quences, have increased in quantity at an exponential rate and, at the same
time, computing power has grown at an expanding pace. These concurrent
escalations have resulted in the challenge of analyzing larger and larger data
sets using more and more complex methods.

The current complexity of phylogenetic analyses implies some strategic
choices. This chapter explains the advantages of R as a system for phylogenetic
analyses.

1.1 Strategic Considerations

How data are stored, handled, and analyzed with computers is a critical issue.
This is a strategic choice as this conditions what can subsequently be done
with more or less efficiency.

R is a language and environment for statistical and graphical analyses
[74]. It is flexible, powerful, and can be interfaced with several systems and
languages. R has many attractive features: we concentrate on four of them
that are critical for phylogenetic analyses.

Integration

Phylogenetics covers a wide area of related issues. Analyzing phylogenetic
data often implies doing different analyses such as tree estimation, dating di-
vergence times, and estimating speciation rates. The implementation of these

2 1 Introduction

methods in R enhances their integration under a single user interface. It should
be pointed out that although the development of phylogenetic methods in R
is relatively recent, a remarkable range of methods is already available.

Integration is not new among phylogenetic analysis programs and the most
widely used ones cover a wide range of methods. However, this feature com-
bined with those detailed below, has a particular importance not observed in
these programs.

A less obvious aspect of integration is the possibility of using different lan-
guages and systems from the same user interface. This is called intersystems
interfaces and has been particularly developed in R [49]. The most commonly
used interfaces in R are with programs written in C, C++, or Fortran, but
there exist interfaces with Perl, Python, and Java.1 The gain from these
interfaces is enormous: developers can use the languages or systems they pre-
fer to implement their new methods, and users do not have to learn a new
interface to access the last methodological developments.

Interactivity

Interactivity is critical in the analysis of large data sets with a great variety
of methods. Exploratory analyses are crucial for assessing data heterogeneity.
Selection of an appropriate model for estimation often needs to interactively
fit several models. Examination of model output is also often very useful (e.g.,
plot of regression diagnostics).

In phylogenetic analyses, the usual computer program strategy follows a
“black box” model where some data, stored in files, are read by a specific
program, some computations are made, and the results are written into a file
on the disk. What happens in the program cannot be accessed by the user.
Several program executions can be combined using a scripting language, but
such programming tasks are generally limited.

R does not follow this model. In R, the data are read from files and stored
in active memory: they can be manipulated, plotted, analyzed, or written into
files. The results of analyses are treated exactly in the same way as data. In
R’s jargon, the data in memory are called objects. Considering data as objects
makes good sense in phylogenetics because this allows us to manipulate differ-
ent kinds of data (trees, phenotypical data, geographical data) simultaneously
and interactively.

Programmability

Data analyses are almost always made of a series of more or less simple tasks.
These analyses need to be repeated for many reasons. The most usual situ-
ation is that new data have been collected and previous analyses need to be
updated. It is thus very useful to automate such analyses, particularly if they
are composed of a long series of smaller analyses.
1 http://www.omegahat.org/.

1.1 Strategic Considerations 3

R is a flexible and powerful language that can be used for simple tasks
as well as combining a series of analyses. The programmability of R can be
used at a more complex level to develop new methods (Chapter 7). R is an
interpreted language meaning that there is no need to develop a full program
to perform an analysis. A simple command may need a single line.

Programmability is important in the context of scientific repeatability.
Writing programs that perform data analyses (often called scripts) ensures
better readability, and improves repeatability by others [49]. In this context,
there exist some sophisticated solutions, such as Sweave (in the package utils)
which mixes data analysis commands with R and text processing with LATEX
[91] (see also ?Sweave in R).

Evolvability

Phylogenetic methods have considerably evolved for several decades, and this
is likely to go on in the future. An efficient data analysis system needs to evolve
with respect to the new methodological developments. Programs written in
R are easy to maintain because programming in this language is very simple.
Bugs are much easier to be found and fixed than in a compiled language
inasmuch as there is no need to manage memory allocation (one of the main
time-consuming tasks of progammers).

R’s syntax and function definitions ensure compatibility through time in
most cases. For instance, consider a function called foo which has a single
argument x. Thus the user will call this function with something such as:

foo(x = mydata)

If, for any reason, foo changes to include other options that have default
values, say y = TRUE and z = FALSE, then the above command will still work
with the new version of foo.

In addition, the internal structure and functionalities of R evolve with
respect to technological developments. Thus using R as a computing environ-
ment eases tracking novelties in this area.

R has other strengths as a computing environment. It is scalable: it can
run on a variety of computers with a range of hardware, and can be adapted
for the analysis of large data sets. On the lower bound, R can run with as
few as 16 Mb of RAM,2 whereas on the upper bound R can be compiled and
run on 64-bit computers and thus use more than 4 Gb of RAM. Furthermore,
there are packages to run R on multiprocessor computers.

R has very good computing performance: most of its operations are vec-
torized, meaning that as little time as possible is spent on the evaluation of
commands. The graphical environment of R is flexible and powerful giving
many possibilities for graphical analyses (Chapter 4).

R is an environment suitable both for basic users (e.g., biologists) and for
developers. This considerably enhances the transfer of new methodological
2 For instance, R can be run under Linux with 32 Mb of RAM.

4 1 Introduction

developments. R can run on most current operating systems: all commands
are fully compatible across systems (they are portable in computers jargon).

Finally, R is distributed under the terms of the GNU General Public Li-
cense, meaning that its distribution is free, it can be freely modified, and it
can be redistributed under certain conditions.3 There have been numerous
discussions, particularly on the Internet, about the advantages and inconve-
niences of free software. The crucial points are not that R is free to download
and install (this is true for much industrial software), but that it can be mod-
ified by the user, and its development is open to contributions.4 Although
it is hard to assess, it is reasonable to assume that such an open model of
software development is more efficient—but not always more attractive to all
users—than a proprietary model (see [49] for some views on this issue). All
computer programs presented in this book are freely distributed.

1.2 Notations

Commands typed in R are printed with a fixed-spaced font, usually on
separate lines. The same font is used for the names of objects in R (functions,
data, options). Names of packages are printed with a sans-serif font.

When necessary, a command is preceded by the symbol >, which is the
usual prompt in R, to distinguish what is typed by the user from what is
printed (or returned) by R. For instance:

> x <- 1
> x
[1] 1

In the R language, # specifies a comment: everything after this character is
ignored until the next line. This is sometimes used in the printed commands:

mean(x) # get the mean of x

When an output from R is too long, it is cut after “....”. For instance, if we
look at the content of the function plot:

> plot
function (x, y, ...)
{

if (is.null(attr(x, "class")) && is.function(x)) {
....

Names of files are within ‘single quotes’. Their contents are indicated within
a frame:
3 See the file “R HOME/COPYING” for details.
4 For obvious practical reasons, a limited number of persons, namely, the members

of the R Core Team, can modify the original sources.

1.3 Preparing the Computer 5

x y
1 3.5
2 6.9

1.3 Preparing the Computer

R is a modular system: a base installation is composed of a few dozen packages
for reading/writing data, classical data analyses methods, and computational
statistical utilities. Several hundred contributed packages add many special-
ized methods.5 Note that in R’s terminology, a package is a set of files that
perform some specific tasks within R, and that include the related documen-
tation and any needed files. An R package requires R to run.

R can be installed on a wide range of operating systems: sources and pre-
compiled versions, as well as the installation instructions, can be found at the
Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/

1.3.1 Installations

Phylogenetic analyses in R use, of course, the default R packages, but also a
few specialized ones that need to be installed by the user. Table 1.1 lists the
packages that are discussed in this book.

Table 1.1. R packages used for phylogenetic analyses. The packages marked with
(d) are installed by default with R. The “Requires” column indicates the nondefault
R packages that are needed

Name Title Requires

base (d) R base package —
stats (d) R stats package —
graphics (d) R graphics package —
nlme (d) Mixed-effects models —
lattice (d) Lattice graphics —
ape Analyses of phylogenetics and evolution gee
apTreeshape Analyses of phylogenetic tree shape ape
ade4 Analysis of environmental data —
seqinr Exploratory analyses of molecular sequences —

5 A complete list of R’s packages with descriptions can be found at http://cran.r-
project.org/src/contrib/PACKAGES.html.

6 1 Introduction

The installation of R packages depend on the way R was installed, but usu-
ally the following command in R will work provided the computer is connected
to the Internet:

install.packages("ape")

and the same for all needed packages. Once the packages are installed, they
are available for use after being loaded in memory which is usually done by
the user:

> library(ape)
Loading required package: gee
Loading required package: nlme
Loading required package: lattice
> library(ade4)
> library(seqinr)

ape is dedicated to phylogenetic and evolutionary analyses, thus we con-
centrate a large part of our attention on this package. apTreeshape deals with
the analysis of tree shape and has several functions to query tree databases
through the Internet. ade4 is dedicated to the analysis of environmental data,
but it has several functionalities that complement ape. seqinr (sequences in
R) is a package for reading and handling molecular sequences (protein and
DNA). It has some functions for graphical and exploratory analyses of this
kind of data.

Most R packages include a few data sets to illustrate how the functions
can be used. These data are loaded in memory with the function data. We of
course use them in our examples.

Additionally to these add-on packages, it is useful to have the computer
connected to the Internet because some functions connect to remote databases
(e.g., ape and seqinr can read DNA sequences in GenBank).

Other programs may be required in some applications. PHYML is called
by ape with its function phymltest; it is available at

http://atgc.lirmm.fr/phyml/

A multiple sequence alignment program is also very useful because this
operation is not really feasible in R. Clustal X [153] is widely used and available
for most operating systems. There are also several interfaces to the Clustal
computing engine, such as the Web-interface ClustalWWW [17]. Clustal X is
available at

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/

Note the existence of the R package dna by Jim Lindsey which includes a
version of Clustal W (the computing engine of Clustal X). It is available at

http://popgen.unimaas.nl/˜jlindsey/rcode.html

1.3 Preparing the Computer 7

We use Clustal X because sequence alignments can be graphically visualized.
Additionally to these required programs, a few others are useful when using

R. Emacs is a flexible text editor that runs under most operating systems. It
can be used to edit R programs. Installing the ESS (Emacs Speaks Statistics)
package allows syntax highlighting, and other facilities such as running R
within Emacs. Emacs and ESS can be downloaded at, respectively

http://www.gnu.org/software/emacs/emacs.html
http://ess.r-project.org/

Ghostscript and GSview are two programs to view and convert files in
PostScript and PDF formats: they can be used to view the figures made with
R (Chapter 4). They can be downloaded at

http://www.cs.wisc.edu/˜ghost/

Finally, a Web browser is useful to view the R help pages in HTML format.

1.3.2 Configurations

Once all packages and software are installed, the computer is ready. There is
no special need for the location of data files: they are accessed in the usual way
by R. When R is started, a working directory is set. Under UNIX-like systems,
this is usually the directory where R has been launched. Under Windows, this
is the directory where the executable is located, or if R is started from a short-
cut, the directory specified in the “Start-in” field of this short-cut.6 On all
systems, the working directory is displayed in R with the function getwd()
(get working directory); it can be modified with setwd:

> setwd("/home/paradis/phylo/data") # Linux
> setwd("D:/data/phylo/data") # Windows

Note the use of the forward slashes (/), even under Windows, because the
backslashes (\) have a specific meaning in character strings.

If a file is not in the working directory, it can be accessed by adding the full
path in the file argument, for instance, when reading a tree (see Section 3.2):

> tr <- read.tree("/home/paradis/phylo/data/treeb1.txt")

The same comment applies when writing into a file: the file is written in the
current working directory unless a path is given in the file argument exactly
in the same way as above.

Emacs and ESS need slightly more configuration if the user wants to run
R within Emacs. This is essentially system dependent; the critical step is to
6 This can be modified by the user by editing the properties of the short-cut,

usually by right-clicking on its icon. A standard installation under Windows puts
a short-cut of R on the Desktop.

8 1 Introduction

tell Emacs where to find R’s executable. ESS is distributed with several doc-
umentation files detailing the installation and configuration for the different
operating systems.

2

First Steps in R for Phylogeneticists

It is clear that some experience with R greatly helps in handling the materials
presented in this book. The goal of this chapter is to give the first steps for
new users of R. It is focused on the topics required for the present book, and
does not cover all introductory concepts and notions about R.

A generally deterring fact for new users of R is that it is almost impossible
to figure out what to do if the user has no notion of languages, commands,
or R itself. A learning step must be taken and this obviously has a cost.
Progressing in the use of R involves successive learning steps. Of course, there
are benefits to taking these steps.

R has spread through the field of computational statistics, and there is
now a wide range of packages for many numerical, analytical, and graphical
methods. The fields of application of R include analysis of DNA microarray
data,1 genetics (quantitative trait loci, population analyses, etc.), morpho-
metrics, ecological analyses, drawing maps including the use of geographic
information systems (GIS) data, and interacting with a variety of other pro-
grams such as SQL databases. Thus learning R for a specific task is very likely
to be rewarding very rapidly.

If you do not know R, do not have knowledge of computer languages, and
do not want to read introductory documents on R2 (or cannot), then you
should read, certainly carefully, this chapter. If you already have an idea of
computer programming but not R, reading this chapter should be easy and
will point to the particularities of R.

2.1 The Command Line Interface

The user can interact with R in several ways. The most interactive way is
to use the command line interface (CLI). R can also be run in batch mode
1 http://www.bioconductor.org/.
2 See http://cran.r-project.org/manuals.html and http://cran.r-project.org/other-

docs.html.

10 2 First Steps in R for Phylogeneticists

(i.e., noninteractive) from a system shell. There are several graphical user
interfaces (GUIs), but they are restricted to traditional statistical methods
(see the Rcmdr package), and so do not cover the wide range of methods
available in R. Finally, there exist several Web servers to run R through the
Internet. In this book, we concentrate on the CLI because it is interactive,
versatile, and portable (i.e., the commands will run on all operating systems).

All actions are done on data stored in the active memory of the computer.
These data are stored as objects. To characterize some data, and thus ana-
lyze them relevantly, it is often necessary to have additional information. For
instance, consider a numeric variable taking the values 0 or 1: is it a count
(i.e., a quantitative variable) or a code for a qualitative variable? In R the
required information is provided by the attributes of the objects. We show
some examples in the next section.

Commands in R are made of functions and / or operators (+, -, *, etc).
A command returns an object that is either displayed on the screen (and not
stored in memory), or stored in memory using the operator “assign” <-. The
latter requires giving a name to the object. An object may be displayed by
typing its name as a command:

> 2 + 7
[1] 9
> x <- 2 + 7
> x
[1] 9

R has a wide range of functions and operators to create regular and random
sequences. There are also several functions to read data from files on the disk:
the most useful for us are illustrated in Section 3.6.

The user does not see her data as in a spreadsheet editor because many
objects with different structure can be stored and manipulated at the same
time, and this cannot be represented as a spreadsheet. There are, of course,
several functions to manage the objects in memory. ls displays a simple list
of the objects currently in memory.

> ls()
character(0)
> n <- 5
> ls()
[1] "n"
> x <- "acgt"
> ls()
[1] "n" "x"

As we have seen above, typing the name of an object as a command dis-
plays its content. In order to display some attributes of the object, one can
use the function str (structure):

2.2 The Data Structures 11

> str(n)
num 5
> str(x)
chr "acgt"

This shows that n is a numeric object, and x is a character one. Both ls and
str can be combined by using the function ls.str:

> ls.str()
n : num 5
x : chr "acgt"

To delete an object in memory, the function rm must be used:

> ls()
[1] "n" "x"
> rm(n)
> ls()
[1] "x"

There are one function and one operator that are good to learn very early
because they are used very often in R: c concatenates several elements to
produce a single one, and : returns a regular series where two successive
elements differ by one. Here are some examples:

> x <- c(2, 6.6, 9.6)
> x
[1] 2.0 6.6 9.6
> y <- 2.2:5.2
> y
[1] 2.2 3.2 4.2 5.2
> c(x, y)
[1] 2.0 6.6 9.6 2.2 3.2 4.2 5.2
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

2.2 The Data Structures

We show here how data are stored in R, and how to manipulate them.

2.2.1 Vector

Vectors are the basic data structures in R. A vector is a series of elements
that are all of the same type. A vector has two attributes: the mode, which
characterizes the type of data, and the length, which is the number of ele-
ments. There are four modes: numeric, logical (TRUE or FALSE), character,
and complex. The last mode is seldom used and is not discussed here.

12 2 First Steps in R for Phylogeneticists

When a vector is created or modified, there is no need to specify its mode
and length: this is dealt with by R. It is possible to check these attributes
with the functions of the same names:

> x <- 1:5
> mode(x)
[1] "numeric"
> length(x)
[1] 5

Logical vectors are created by typing “FALSE” or “TRUE”:

> y <- c(FALSE, TRUE)
> y
[1] FALSE TRUE
> mode(y)
[1] "logical"
> length(y)
[1] 2

In most cases, a logical vector results from a logical operation, such as the
comparison of two values or two objects:

> 1 > 0
[1] TRUE

A vector of mode character is a series of character strings (and not of single
characters):

> z <- c("order", "family", "genus", "species")
> mode(z)
[1] "character"
> length(z)
[1] 4
> z
[1] "order" "family" "genus" "species"

We have just seen how to create vectors by typing them on the CLI, but
it is clear that in the vast majority of cases they will be created by reading
data from files.

As already mentioned, a function returns an object that is itself charac-
terized by its mode. From the examples just above, it can be seen that mode
returns a vector of mode character, whereas length returns one of mode nu-
meric. The same applies to the functions introduced above, and in particular
ls which returns a vector of mode character.

R has a powerful and flexible mechanism to manipulate vectors (and other
objects as well): the indexing system. There are three kinds of indexing: nu-
meric, logical, and with names.

2.2 The Data Structures 13

The numeric indexing works by giving the indices of the elements that
must be selected. Of course, this can be given as a numeric vector:

> z[1:2]
[1] "order" "family"
> i <- c(1, 3)
> z[i]
[1] "order" "genus"

This can be used to repeat a given element:

> z[c(1, 1, 1)]
[1] "order" "order" "order"
> z[c(1, 1, 1, 4)]
[1] "order" "order" "order" "species"

If the indices are negative, then the corresponding values are removed:

> z[-1]
[1] "family" "genus" "species"
> j <- -c(1, 4)
> z[j]
[1] "family" "genus"

Positive and negative indices cannot be mixed. If a positive index is out of
range, then a missing value (NA, for not available) is returned, but if the index
is negative, an error occurs:

> z[5]
[1] NA
> z[-5]
Error: subscript out of bounds

The indices may be used to extract some data, but also to change them:

> x[c(1, 4)] <- 10
> x
[1] 10 2 3 10 5

The logical indexing works differently than the numeric one. Logical values
are given as indices: the elements with an index TRUE are selected, and those
with FALSE are removed. If the number of logical indices is shorter than the
vector, then the indices are repeated as many times as necessary; for instance,
the two commands below are strictly equivalent:

> z[c(TRUE, FALSE)]
[1] "order" "genus"
> z[c(TRUE, FALSE, TRUE, FALSE)]
[1] "order" "genus"

14 2 First Steps in R for Phylogeneticists

As with numeric indexing, the logical indices can be given as a logical vector.
The logical indexing is a powerful and simple way to select some data from a
vector: for instance, if we want to select the values greater than or equal to
five in x:

> x[x >= 5]
[1] 10 10 5

The indexing system with names brings us to introduce a new concept: a
vector may have an attribute called names that is a vector of mode character
of the same length, and serves as labels. It is created or extracted with the
function names. An example could be:

> x <- 4:1
> names(x) <- z
> x
order family genus species

4 3 2 1
> names(x)
[1] "order" "family" "genus" "species"

These names can then be used to select some elements of a vector:

> x[c("order", "genus")]
order genus

4 2

In some situations it is useful to delete the names of a vector; this is done
by giving them the value NULL:

> names(x) <- NULL
> x
[1] 4 3 2 1

2.2.2 Factor

A factor is a data structure derived from a vector, but it is not the same
strictly speaking. It can be of mode numeric or character, and has an attribute
"levels" which is a vector of mode character and specifies the possible values
the factor can take. If a factor is created with the function factor, then the
levels are defined with all values present in the data:

> f <- c("Male", "Male", "Male")
> f
[1] "Male" "Male" "Male"
> f <- factor(f)
> f
[1] Male Male Male
Levels: Male

2.2 The Data Structures 15

To specify that other levels exist although they are not observed in the present
data, the option levels can be used:

> ff <- factor(f, levels = c("Male", "Female"))
> ff
[1] Male Male Male
Levels: Male Female

This is a crucial point when analyzing this kind of data, for instance, if we
compute the frequencies in each category with the function table:

> table(f)
f
Male

3
> table(ff)
ff
Male Female

3 0

Factors can be indexed and have names exactly in the same way as vectors.
When data are read from a file on the disk with the function read.table,

the default is to treat all character strings as factors (see Chapter 3.6 for
examples). This can be avoided by using the option as.is = TRUE.

2.2.3 Matrix

A matrix can be seen as a vector arranged in a tabular way. It is actually a
vector with an additional attribute called dim (dimensions) which is itself a
numeric vector with length 2, and defines the numbers of rows and columns
of the matrix.

There are two basic ways to create a matrix: either by using the func-
tion matrix with the appropriate options nrow and ncol, or by setting the
attribute dim of a vector:

> matrix(1:9, 3, 3)
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> x <- 1:9
> dim(x) <- c(3, 3)
> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

16 2 First Steps in R for Phylogeneticists

The numeric and logical indexing systems work in exactly the same way
as for vectors. Because a matrix has two dimensions, it can be indexed with
two integers separated by a comma:

> x[3, 2]
[1] 6

If one wants to extract only a row or a column, then the appropriate index
must be omitted (without forgetting the comma):

> x[3,] # extract the 3rd row
[1] 3 6 9
> x[, 2] # extract the 2nd column
[1] 4 5 6

In contrast to vectors, a subscript out of range results in an error.
Matrices do not have names in the same way as vectors, but have row-

names, colnames, or both:

> rownames(x) <- c("A", "B", "C")
> colnames(x) <- c("v1", "v2", "v3")
> x
v1 v2 v3

A 1 4 7
B 2 5 8
C 3 6 9

Selection of rows and / or columns follows in nearly the same ways as seen
before:

> x[, "v1"]
A B C
1 2 3
> x["A",]
v1 v2 v3
1 4 7
> x[c("A", "C"),]
v1 v2 v3

A 1 4 7
C 3 6 9

2.2.4 Data Frame

A data frame is superficially similar to a matrix in the sense that it is a tabular
representation of data. The distinction is that a data frame is a set of distinct
vectors and / or factors all of the same length, but possibly of different modes.

Data frames are the main way to represent data sets in R because this
corresponds roughly to a spreadsheet data structure. This is the type of objects

2.2 The Data Structures 17

returned by the function read.table (see Section 3.6 for examples). The other
way to create data frames is with the function data.frame:

> DF <- data.frame(z, y = 0:3, 4:1)
> DF

z y X4.1
1 order 0 4
2 family 1 3
3 genus 2 2
4 species 3 1
> rownames(DF)
[1] "1" "2" "3" "4"
> colnames(DF)
[1] "z" "y" "X4.1"

This example shows how colnames are created in different cases. By default,
the rownames "1", "2", . . . are given, but this can be changed with the
option row.names of data.frame, or modified subsequently as seen above for
matrices.

If one of the vectors is shorter, then it is recycled along the data frame
but this must be an integer number of times:

> data.frame(1:4, 9:10)
X1.4 X9.10

1 1 9
2 2 10
3 3 9
4 4 10
> data.frame(1:4, 9:11)
Error in data.frame(1:4, 9:11) :
arguments imply differing number of rows: 4, 3

All we have seen about indexing, colnames, and rownames for matrices
apply in exactly the same way to data frames with the difference that colnames
and rownames are mandatory for data frames. An additional feature of data
frames is the possibility of extracting a column selectively with the operator
$:

> DF$y
[1] 0 1 2 3

2.2.5 List

Lists are the most general data structure in R: they can contain any kind of
objects, even lists. They can be seen as vectors where the elements can be any
kind of object. They are built with the function list:

18 2 First Steps in R for Phylogeneticists

> L <- list(z = z, 1:2, DF)
> L
$z
[1] "order" "family" "genus" "species"

[[2]]
[1] 1 2

[[3]]
z y X4.1

1 order 0 4
2 family 1 3
3 genus 2 2
4 species 3 1

> length(L)
[1] 3
> names(L)
[1] "z" "" ""

Most of the concepts we have seen on indexing vectors apply also to lists.
Additionally, an element of a list may be extracted either with its index within
double square brackets, or with the operator $:

> L[[1]]
[1] "order" "family" "genus" "species"
> L$z
[1] "order" "family" "genus" "species"

2.3 The Help System

Every function in R is documented through a system of help pages available
in different formats:

• Simple text that can be displayed from the CLI;
• HTML that can be browsed with a Web browser (with hyperlinks between

pages where available);
• PDF that constitutes the manual of the package.

The contents of these different documents are the same.
Through the CLI a help page may be displayed with the function help or

the operator ? (the latter does not work with special characters such as the
operators):

help("ls")
?ls

2.4 Creating Graphics 19

By default, help only searches in the packages already loaded in memory. The
option try.all.packages = TRUE allows us to search in all packages installed
on the computer.

If one does not know the name of the function that is needed, a search
with keywords is possible with the function help.search. This looks for a
specified topic, given as a character string, in the help pages of all installed
packages. For instance:

help.search("tree")

will display a list of the functions where help pages mention “tree”. If some
packages have been recently installed, it may be necessary to refresh the
database used by help.search using the option rebuild = TRUE.

Another way to look for a function is to browse the help pages in HTML
format. This can be launched from R with the command:

help.start()

This loads in the local Web browser a page with links to all the documentation
installed on the computer, including general documents on R, an FAQ, links
to Internet resources, and the list of the installed packages. This list has itself
links to the list of all functions with their help pages.

2.4 Creating Graphics

The graphical functions in R need a special mention because they work some-
what differently from the others. A graphical function does not return an
object (though there are a few exceptions), but sends its results to a graphical
device which is either a graphical window (by default) or a graphical file. The
graphical formats depend on the operating systems, but mostly the following
are available: encapsulated PostScript (EPS), PDF, JPEG, PNG, and bitmap
(BMP). Additionally, xfig is possible under Linux, and EMF under Windows.

There are two ways to write graphics into a file. The most general and
flexible way is to open the appropriate device explicitly, for instance, if we
write into an EPS file:

postscript("plot.eps")

then all subsequent graphical commands will be written in the file ‘plot.eps’.
The operation is terminated (i.e., the file is closed and written on the disk)
with the command:

dev.off()

The function postscript has many options to set the EPS files. All the figures
of this book have been produced with this function.

20 2 First Steps in R for Phylogeneticists

The second way is to copy the content of the window device into a file
using the function dev.copy where the user must specify the target device.
Two variants of this function are dev.print which prints into an EPS file, and
dev.copy2eps which does the same by setting the page in portrait format.

2.5 Saving and Restoring R Data

R uses two basic formats to save data: ASCII (simple text) and XDR (external
data representation3). They are both cross-platform. The ASCII format is
used to save a single object (vector, matrix, or data frame) into a file. Two
functions can be used: write (for vectors and matrices) and write.table
(for data frames). The XDR format can be used to save any kind and any
number of objects. It is used with the function save, for instance, to save
three objects:

save(x, y, z, file = "xyz.RData")

These data can then be restored with:

load("xyz.RData")

2.6 Using R Functions

Now that we have seen a few instances of R function uses, we can draw some
general conclusions on this point.

To execute a function, the parentheses are always needed, even if there is
no argument inside (typing the name of a function without parentheses prints
its contents). The arguments are separated with commas. There are two ways
to specify arguments to a function: by their positions or by their names (also
called tagged arguments). For example, let us consider a hypothetical function
with three arguments:

fcn(arg1, arg2, arg3)

fcn can be executed without using the names arg1, . . . , if the corresponding
objects are placed in the correct position, for instance, fcn(x, y, z). How-
ever, the position has no importance if the names of the arguments are used,
for example, fcn(arg3 = z, arg2 = y, arg1 = x). Another feature of R’s
functions is the possibility of using default values (also called options), for
instance, a function defined as:

fcn(arg1, arg2 = 5, arg3 = FALSE)

3 http://www.faqs.org/rfcs/rfc1832.html.

2.7 Repeating Commands 21

Both commands fcn(x) and fcn(x, 5, FALSE) will have exactly the
same result. Of course, tagged arguments can be used to change only some
options (e.g., fcn(x, arg3 = TRUE)).

Many functions in R act differently with respect to the type of object
given as arguments: these are called generic functions. They act with respect
to an optional object attribute: the class. The main generic functions in R
are print, summary, and plot. In R’s terminology, summary is a generic func-
tion, whereas the functions that are effectively used (e.g., summary.phylo,
summary.default, summary.lm, etc.) are called methods.

In practice, the use of classes and generics is implicit, but we show in the
next chapter that different ways to code a tree in R correspond to different
classes. The advantage of the generic functions here is that the same command
is used for the different classes (e.g., plot(tr) to draw a tree).

2.7 Repeating Commands

When it comes to repeating some analyses, several strategies can be used. The
simplest way is to write the required commands in a file, and read them in
R with the function source. It is usual to name such files with the extension
‘.R’. For instance, the file ‘mytreeplot.R’ could be:

tree1 <- read.tree("tree1.tre")
postscript("tree1.eps")
plot(tree1)
dev.off()

These commands will be executed by typing source("mytreeplot.R") in R.

2.7.1 Loops

As with any language, R has control and programming structures to execute
a series of commands. The most often-used one is the for4 statement, whose
general syntax is:

for (x in y) <command>

where y is an object, and x successively takes the different values of y.
It is not required to use these values in <command> (e.g., for (i in 1:5)
print("done")). A for loop may encompass more than one command in
which case it is necessary to group them within braces:
4 The following words are reserved to the R language and cannot be used to name

objects: for, in, if, else, while, next, break, repeat, function, NULL, NA, NaN,
Inf, TRUE, and FALSE.

22 2 First Steps in R for Phylogeneticists

for (x in y) {
.....
.....

}

y may be a vector of any mode, a factor (in which case the numerical coding
will be used), a matrix (treated as a vector), a data frame (x will be substituted
by the different columns of y), or a list (x will be substituted by the different
elements of y).

Two commands may be useful here: next stops the current iteration and
moves to the next value of x, and break aborts the loop. They are usually
combined with an if statement which takes a single logical value as argument,
for example:

for (i in 1:10) {
if (x[i] < 0) break
.....

}

2.7.2 Apply-Like Functions

In many situations, there is an easier and more efficient alternative to the
use of loops and control statements: the apply-like functions. apply applies a
function to all columns and / or rows of a matrix or a data frame. Its syntax
is:

apply(X, MARGIN, FUN, ...)

where X is a matrix or a data frame; the second argument indicates whether
to apply the function on the rows (1), the columns (2), or both (c(1, 2));
FUN is the function to be used; and ... any argument that may be needed for
FUN.

lapply does the same as apply but on different elements of a list. Its
syntax is:

lapply(x, FUN, ...)

This function returns a list. sapply has nearly the same action as lapply
but it returns its results as a more friendly way as a vector or a matrix with
rownames and colnames.

tapply acts on a vector and applies a function on subsets defined by an
additional argument INDEX:

tapply(X, INDEX, FUN = NULL, ...)

Typically, INDEX defines groups, and the function FUN is applied to each group.
By default, the indices of the groups defined by INDEX are returned.

Finally, replicate replicates a command a given number of times, return-
ing the results as a vector, a matrix, or a list; for example,

2.8 Exercises 23

> replicate(5, rnorm(1))
[1] -1.424699824 0.695066367 0.958153028 0.002594864
[5] -0.879007194
> replicate(4, rnorm(3))

[,1] [,2] [,3] [,4]
[1,] 0.7743082 -0.7689951 -0.4332675 1.58177859
[2,] -0.7495421 -0.5846179 -1.0581448 0.03818309
[3,] 0.1632760 0.8818927 0.6218508 -1.37648467

2.8 Exercises

1. Start R and print the current working directory. Suppose you want to read
some data in three different files located in three different directories on
your computer: find two ways to do this.

2. Create a matrix with three columns and 1000 rows where each column
contains a random variable that follows a Poisson distribution with rates 1,
5, and 10, respectively (see ?Poisson for how to generate random Poisson
values). Find two ways to compute the means of each column of this
matrix.

3. Create a vector of 10 random normal values using the three following
methods.
(a) Create and concatenate successively the 10 random values with c.
(b) Create a numeric vector of length 10 and change its values successively.
(c) Use the most direct method.
Compare the timings of these three methods (see ?system.time) and
explain the differences.
Repeat this exercise with 10,000 values.

4. Create the following file:

Mus_musculus 10
Homo_sapiens 70000
Balaenoptera_musculus 120000000

(a) Read this file with read.table using the default options. Look at the
structure of the data frame and explain what happened. What option
should have been used?

(b) From this file, create a data structure with the numeric values that
you could then index with the species names, for example,

> x["Mus_musculus"]
[1] 10

Find two ways to do this, and explain the differences in the final result.

24 2 First Steps in R for Phylogeneticists

5. Create these two vectors (source: [5]):

Archaea <- c("Crenarchaea", "Euryarchaea")
Bacteria <- c("Cyanobacteria", "Spirochaetes",

"Acidobacteria")

(a) Create a list named TreeOfLife so that we can do TreeOfLife$Archaea
to print the corresponding group.

(b) Update TreeOfLife by adding the following vector:
Eukaryotes <- c("Alveolates", "Cercozoa", "Plants",

"Opisthokonts")

It should appear at the same level as Archaea and Bacteria.
(c) Update Archaea by adding "Actinobacteria".
(d) Print all the lowest-level taxa.

3

Phylogenetic Data in R

This chapter details how phylogenetic data are handled in R. The issues dis-
cussed here will interest all users. Issues relative to implementation and pro-
gramming are discussed in Chapter 7.

3.1 Phylogenetic Data as R Objects

One strength of R is the flexibility of its data structures. In most phylogenetic
programs, the data structures are completely opaque to the user. This is
because complex data structures in low-level languages (such as C or C++)
need a lot of programming work. This is not the case in R where the list
data structure provides an efficient and flexible way to build complex data
structures using any kind of element. For a tree coded with a list, the critical
advantage is that the user can easily access its components, and manipulate
or analyze them with R’s functions and operators.

As a simple example, consider a tree read in R with ape: this will be
stored in R as an object of class "phylo". If this object is named tr, then its
branch lengths will be accessed simply with tr$edge.length. Any subsequent
analysis can be conducted with the usual R functions; as illustrations, the
following commands will compute the mean, some summary statistics, plot
a frequency histogram, and finally copy these branch lengths into an object
named x.

mean(tr$edge.length)
summary(tr$edge.length)
hist(tr$edge.length)
x <- tr$edge.length

Trees can be coded in different ways in R which reflects the choices of
the authors who designed these different classes. The class of an object is the
attribute that signs its particularities. Some functions treat objects differently
with respect to their class (Section 2.6).

26 3 Phylogenetic Data in R

ape uses a class called "phylo" to describe phylogenetic trees. The princi-
ple of its design is to store in different elements a description of its hierarchical
structure, the names of the taxa, the branch lengths, and other information
that may be necessary. The structure of an object of class "phylo" is detailed
below. ape has another class called "matching", but its use is restricted to a
few situations; it is described below.

ade4 uses another class called "phylog". It has the same goal as "phylo"
but its design is radically different. An object of class "phylog" stores more
information than the object of class "phylo" representing the same phylogeny,
and thus it requires more memory. The class "phylog" is outlined below.
apTreeshape uses a class called "treeshape" that codes dichotomous trees
with no branch lengths.

We may recall that in R, all actions are done on objects stored in the
active memory of the computer. Consequently, the classes described above
are not designed to be new tree file formats, but rather to handle and analyze
phylogenetic data efficiently.

The package stats has two classes worth mentioning here: "hclust" and
"dendrogram". These classes are designed to code hierarchical clusters, and
thus contain less information than the two classes described above (they may
be appropriate to code ultrametric trees). However, because objects of class
"hclust" and "dendrogram" are produced by clustering analyses in R, it may
be useful to convert them in objects of class "phylo" which is what can be
done by some functions as shown in Section 3.4.

3.1.1 The Class "phylo" (ape)

An object of class "phylo" is a list with the following components.

edge a two-column matrix where each row represents a branch (or edge) of
the tree; the nodes and the tips are symbolized with numbers; the nodes
are represented with negative numbers (the root being "-1"), and the
tips are represented with positive numbers. For each row, the first column
gives the ancestor. This representation allows an easy manipulation of the
tree.

edge.length (optional) a numeric vector giving the lengths of the branches
given by edge.

tip.label a vector of mode character giving the names of the tips; the order
of the names in this vector corresponds to the (positive) numbers in edge.

node.label (optional) a vector of mode character giving the names of the
nodes.

root.edge (optional) a numeric value giving the length of the branch at the
root if it exists.

A class in R can be easily extended to include other elements, providing the
names already defined are not reused. For instance, a "phylo" object could

3.1 Phylogenetic Data as R Objects 27

include a numeric vector tip.date giving the dates of the tips if they are not
all contemporary (e.g., for viruses); this will not change the way other elements
are accessed or modified. Another potential extension is to code networks or
reticulograms because this would require simply adding the appropriate rows
in the matrix edge.

The class "phylo" is a somehow minimalist representation of a phylo-
genetic tree. Other information that may be needed in some analyses (e.g.,
branching times, number of descendants for each node, etc.) must be com-
puted by the functions that need them.

3.1.2 The Class "phylog" (ade4)

The class "phylog" takes a different approach than the "phylo" one: in ad-
dition to the basic structure of the tree, other information is stored. This has
the advantage that some computations are faster, but the overhead is that
more memory is needed to store a "phylog" object than a "phylo" one.

A "phylog" object is a list with 20 elements. The structure of the tree
is stored in three of them: tre is a character string representing the tree in
Newick format without the branch lengths, leaves is a named numeric vector
where the values are the terminal branch lengths and the names are the tip
labels, and nodes is similar to leaves but for the internal branches. The 17
other elements store various information which is needed by some functions
in ade4 (the details may be found on the help pages of this package, e.g.,
?phylog).

3.1.3 The Class "matching" (ape)

Matchings have been introduced by Diaconis and Holmes [25] as a represen-
tation of binary phylogenetic trees. The idea is to assign to each tip and node
a positive number, and then to represent the topology as a series of pairs of
these numbers that are siblings (the matchings). Interestingly, if some conven-
tions are given, this results in a unique representation between a given tree
and a given matching [25]. An object of class "matching" is a list with the
following components.

matching a three-column numeric matrix where the first two columns repre-
sent the sibling pairs (the matching), and the third one the corresponding
ancestor.

edge.length (optional) a numeric vector representing the branch lengths
where the ith element is the length of the branch below the element num-
bered i in matching.

tip.label (optional) a character vector giving the tip labels where the ith
element is the label of the tip numbered i in matching.

node.label (optional) a character vector giving the node labels in the same
order as in matching (i.e., the ith element is the label of the node num-
bered i + n in matching, with n the number of tips).

28 3 Phylogenetic Data in R

An object of class "matching" is not a matching in Diaconis and Holmes’s
[25] sense because it includes extra information. The latter can be printed
from the former, say x, with x$matching[, 1:2].

The class "matching" is used essentially in the estimation of phylogenies
because this is an efficient representation for binary trees (Chapter 5).

3.1.4 The Class "treeshape" (apTreeshape)

The class "treeshape" is derived from the "hclust" one. An object of this
class is a list with two elements:

merge a two-column numeric matrix where each row represents a pairing:
a negative number represents a tip, and a positive number represents a
group of tips as identified by the line number of this matrix. For instance,
a row with (-8, 1) means that the eighth tip is paired with the group of
tips defined by the first row of this matrix.

names (optional) a vector of mode character giving the names of the tips.

An object of class "treeshape" can be built with the function treeshape
which takes as arguments these two elements.

3.2 Reading Phylogenetic Data

3.2.1 Phylogenies

Treelike data structures are very common in computer science, and there are
many ways to store them in files. Fortunately, biologists, systematists, and
phylogeneticists seem to agree on the use of a single data format for trees: the
nested parentheses format, known as the Newick or New Hampshire format.1

This format has many advantages: it is flexible, can be interpreted directly
by humans (if not too long), has a close link with the hierarchical nature of
evolutionary relationships, and can store large trees using little resources on
a computer disk.

A common extension of the Newick format is the NEXUS format which can
also include other data (usually matrices of species characters), and system
commands such as calls to other programs [95].

ape has two functions to read trees in Newick and NEXUS formats:
read.tree and read.nexus. Both functions have a file name (given as a
character string or a variable of mode character) as main argument:

tr <- read.tree("treefile.tre")
trx <- read.nexus("treefile.nex")

1 http://evolution.genetics.washington.edu/phylip/newicktree.html.

3.2 Reading Phylogenetic Data 29

These functions ignore all white spaces and new lines in the tree file. The
latter may contain several trees that are all read: the returned object is of
class c("multi.tree", "phylo"), and is a list of objects of class "phylo".

If no file name is given, read.tree reads the tree in Newick format from
the standard input, so that the user can type the parenthetic tree directly on
the keyboard (the input is terminated by a blank line). For instance, if we just
type tr <- read.tree(), R then prompts the user to enter the tree (this can
be copied/pasted from a text file). Each line of text is numbered 1:, 2:, and
so on.

> tr <- read.tree()
1: (a:1,b:1);
2:
> ls()
[1] "tr"

Alternatively, it is possible to store the Newick tree in a variable of mode
character and then use the option text:

> a <- "(a:1,b:1);"
> tr <- read.tree(text = a)

Both read.tree and read.nexus create an object of class "phylo". Ad-
ditionally, read.nexus keeps track of the original file in an attribute named
origin.

ade4 has the function newick2phylog that creates an object of class
"phylog" from a Newick tree stored in a character variable.

> b <- "((a:1,b:1):1,c:2);"
> trg <- newick2phylog(b)

The Newick tree can be read in a file using the function scan with the appro-
priate option.

> trh <- newick2phylog(scan("treefile.tre", what = ""))

Note that newick2phylog cannot read starlike trees, whereas read.tree
cannot read trees only specified as a “skeleton” made of parentheses and
commas.

> trg <- newick2phylog("((((,,),,(,)),),(,));")

However, in that case arbitrary values of one are given to the branch lengths,
as well as “Ext1”, “Ext2”, . . . as tip labels.2 Both functions can read a tree
with no branch lengths such as "((a,b),c);".
2 newick2phylog also gives arbitrary labels to the nodes if they are not in the

Newick tree: “I1”, “I2”, and so on.

30 3 Phylogenetic Data in R

3.2.2 Reading Internet Tree Databases

apTreeshape can read trees from the PANDIT3 and TreeBASE4 Internet
databases with the functions pandit and treebase, respectively. These
functions require knowledge of the numbers of the tree in their respective
databases: the trees are then returned in R as objects of class "phylo" (the
default) or "treeshape" if the option class = "treeshape" is used. These
two functions are thus useful for reading trees for further analyses in R. As
a simple example, we can read the second tree in Pandit, and plot it directly
(Fig. 3.1):

plot(pandit(2), font = 1)

Q9YHC6 RANRI/126−382
VIPR1 RAT/140−397
VIPR CARAU/100−359
VIPR2 HUMAN/123−382
PACR MOUSE/150−435
SCTR RABIT/135−391
O73768 CARAU/133−390
GHRHR MOUSE/126−383
PTHR2 HUMAN/141−420
PTHR1 HUMAN/184−466
GLP2R RAT/175−443
GLR HUMAN/138−407
GIPR HUMAN/134−399
GLP1R RAT/141−409
DIHR ACHDO/130−393
DIHR MANSE/83−351
CRFR2 XENLA/115−368
CRFR1 RAT/116−370
CALRL HUMAN/138−391
CALCR RAT/145−435
SEB1 CAEEL/164−436
CELR1 MOUSE/2480−2723
CELR3 RAT/2534−2777
CD97 MOUSE/526−777
CD97 HUMAN/544−793
EMR1 HUMAN/599−851
Q17505 CAEEL/548−799
O97802 BOVIN/769−1016
LPHN3 BOVIN/942−1198
BAI2 HUMAN/917−1197
BAI1 HUMAN/944−1191
GPR64 HUMAN/625−886
MTH DROME/211−480

Fig. 3.1. The tree #2 in the Pandit database

3.2.3 Molecular Sequences

DNA sequences can be read with the ape function read.dna which reads files
in FASTA, interleaved, or sequential format (these formats are described in
the help page of read.dna). The function read.GenBank can read sequences

3 http://www.ebi.ac.uk/goldman-srv/pandit/.
4 http://www.treebase.org/.

3.2 Reading Phylogenetic Data 31

in the GenBank databases via the Internet: its main argument is a vector
of mode character giving the accession numbers of the nucleotide sequences.
These accession numbers are used, by default, as names for the individual
sequences. If the option species.names = TRUE is used, which is the default,
then the species names (as read in the “ORGANISM” field in the GenBank
data) are returned in an attribute called "species".

These two functions return a list of vectors of single characters giving the
nucleotide at each position of the sequence, thus, for instance, the twentieth
nucleotide of the second sequence will be accessed with x[[2]][20]. All tricks
of R’s indexing systems (p. 12) can be used here.

seqinr has more flexibility than ape for reading molecular sequences (pro-
teins and DNA). Two functions can read sequences stored in local files.
read.fasta reads sequences in FASTA format. It has two arguments: File
to specify the name of the data file, and seqtype to specify the type of the
sequence which is either "DNA" (the default) or "AA" (for proteins). As with
read.dna, read.fasta returns a list of sequences but there are a few addi-
tional attributes including a class "SeqFastadna" or "SeqFastaAA" depending
on the type of the sequence.

read.alignment reads aligned sequences. There are two arguments: File
and format which can be "mase", "clustal", "phylip", "fasta", or "msf". If
format = "phylip", the function detects whether the format is sequential or
interleaved. The sequences are stored in a different way than read.fasta and
read.dna do: each sequence is stored as a single character string, whereas for
the latter each sequence is a vector of strings made of single characters (each
being a position in the sequence). The data returned by read.alignment are
of class "alignment".

seqinr has an elaborate mechanism for retrieving sequences from molecu-
lar databanks. This works through the ACNUC repository.5 The databanks
available are listed in R with the function choosebank used without argument
(this works only if the computer is connected to the Internet):

> choosebank()
[1] "genbank" "embl" "emblwgs" "swissprot"
[5] "ensembl" "emglib" "nrsub" "nbrf"
[9] "hobacnucl" "hobacprot" "hovernucl" "hoverprot"
[13] "hogennucl" "hogenprot" "hoverclnu" "hoverclpr"
[17] "HAMAPnucl" "HAMAPprot" "hoppsigen" "nurebnucl"
[21] "nurebprot" "taxobacgen" "greview"

These databanks are mirrored on the PBIL server in Lyon. The user selects
one of these banks with the same function:

> s <- choosebank("genbank")

5 http://pbil.univ-lyon1.fr.

32 3 Phylogenetic Data in R

It is then possible to query the bank for the available sequences. For instance,
to get the list of the sequences of the bird genus Ramphocelus [59]:

> query(s$socket, "rampho", "sp=Ramphocelus@")

$socket: description class
"->pbil.univ-lyon1.fr:5558" "socket"

mode text
"a+" "text"

opened can read
"opened" "yes"
can write

"yes"

$banque: genbank
$call: query(socket = s$socket, listname = "rampho",

query = "sp=Ramphocelus@")
$name: [1] "rampho"

list length mode content
1 $req 20 character sequences

This command returns an object named "rampho" which lists the sequences
meeting the selection criteria.6 The special character "@" meets any set of
characters (see ?query for the details of the syntax of this function). The
result displayed by query shows that 20 sequences were found. "rampho" is a
list with the accession numbers and the connection details (server name, port
number, etc.) to retrieve the sequences effectively:

> rampho$req[[1]]
[1] "AF310048"
attr(,"class")
[1] "SeqAcnucWeb"
attr(,"socket")

description class
"->pbil.univ-lyon1.fr:5558" "socket"

mode text
"a+" "text"

opened can read
"opened" "yes"
can write

"yes"

6 The syntax is unusual in R where objects are often created with the assign oper-
ator <-.

3.3 Writing Data 33

The sequences are then extracted from ACNUC with the generic function
getSequence:

> x <- getSequence(rampho$req[[1]])
> length(x)
[1] 921
> x[1:20]
[1] "g" "g" "a" "t" "c" "c" "t" "t" "a" "c" "t" "a" "g"
[14] "g" "c" "c" "t" "a" "t" "g"

As a comparison, the same sequence can be extracted with the ape function
read.GenBank:

> y <- read.GenBank("AF310048")
> length(y[[1]])
[1] 921
> attr(y, "species")
[1] "Ramphocelus_carbo"
> identical(x, y[[1]])
[1] TRUE

3.3 Writing Data

We have seen that R works on data stored in the active memory of the com-
puter. It is obviously necessary to be able to write data, at least for two
reasons. The user may want at any time to save all the objects present in
memory to prevent data loss from a computer crash, or because he wants to
quit R and continue his analyses later. The other reason is that the user wants
to analyze some data stored in R with other programs which in most cases
need to read the data from files (unless there is a link between the software
and R; see Chapter 7).

Any kind of data type in R can be saved in a binary file using the save
function; the objects to be saved are simply listed as arguments separated by
commas.

save(x, y, tr, file = "mydata.RData")

The “.RData” suffix is a convention and is associated with R on some oper-
ating systems (e.g., Windows). The binary files created this way are portable
across platforms. The command save.image() (used without options) is a
short-cut to save all objects in memory (the workspace is R’s jargon) in a file
called ‘.RData’. It is eventually called by R when the user quits the system
and chooses to save an image of the workspace.

ape has several functions that write trees and DNA sequences in formats
suitable for other systems. write.tree writes a tree in Newick format. It takes
as main argument a "phylo" object. By default the Newick tree is returned
as a character string, and thus can be used as a variable itself:

34 3 Phylogenetic Data in R

> tr <- read.tree(text = "(a:1,b:1);")
> write.tree(tr)
[1] "(a:1,b:1);"
> x <- write.tree(tr)
> x
[1] "(a:1,b:1);"

To save the tree in a file, one needs to use the option file:

> write.tree(tr, file = "treefile.tre")

The option append (FALSE by default) controls whether to delete any pre-
vious data in the file. For larger trees, the character string is split with line
breaks. This behavior can be avoided with the option multi.line = FALSE.

One or several "phylo" objects can also be written in a NEXUS file using
write.nexus. This function behaves similarly to write.tree in that it prints
by default the tree on the console (but this cannot be reused as a variable).

> write.nexus(tr)
#NEXUS
[R-package APE, Mon Dec 20 11:18:23 2004]

BEGIN TAXA;
DIMENSIONS NTAX = 2;
TAXLABELS

a
b

;
END;
BEGIN TREES;

TRANSLATE
1 a,
2 b

;
TREE * UNTITLED = [&R] (1:1,2:1);

END;

The options of write.nexus are translate (default TRUE) which re-
places the tip labels in the parenthetic representation with numbers, and
original.data (default TRUE) to write the original data in the NEXUS file
(in agreement with the NEXUS standard [95]). If several trees are written,
they must have the same tip labels, and must be given either as a series, or
as a list:

> write.nexus(tr1, tr2, tr3, file = "treefile.nex")
> L <- list(tr1, tr2, tr3)
> write.nexus(L, file = "treefile.nex")

3.4 Manipulating Data 35

DNA sequences are written into files with write.dna. Its option format
can take the values "interleaved" (the default), "sequential", or "fasta".
There are several options to customize the formatting of the output sequences
(see ?write.dna for details).

3.4 Manipulating Data

Manipulating phylogenetic trees is difficult because of the complexity of such
data structures. This may be one of the reasons why so few programs offer this
possibility. Another reason may be that once a phylogeny has been obtained,
sometimes after a long process of various analyses, the user is not willing to
change it.

There are good reasons for making such manipulations possible, though,
for instance if some comparative analyses are to be done (see Section 6.1).
It is also sometimes needed to “arrange” a tree before plotting it, such as
rotating a branch or dropping a tip. Other less trivial manipulations include
extracting branch lengths, computing branching times or coalescent intervals,
(un)rooting a tree, testing whether two trees are identical, and so on.

3.4.1 Basic Tree Manipulation

ape has several functions to manipulate "phylo" objects. They are listed
below. In the examples, the trees are written as Newick strings for convenience;
the results could also be visualized with plot instead of write.tree.

drop.tip removes one or several tips from a tree. The former are specified
either by their labels or their positions (indices) in the vector tip.label.
By default, the terminal branches and the corresponding internal ones are
removed. This has the effect of keeping the tree ultrametric in the case
it was beforehand. This behavior can be altered by setting the option
trim.internal = FALSE.

> tr <- read.tree(text = "((a:1,b:1):1,(c:1,d:1):1);")
> write.tree(drop.tip(tr, c("a", "b")))
[1] "(c:1,d:1);"
> write.tree(drop.tip(tr, 1:2)) # same as above
[1] "(c:1,d:1);"
> write.tree(drop.tip(tr, 1:2, trim.internal = FALSE))
[1] "(NA:1,(c:1,d:1):1);"

bind.tree is used to build a tree from two trees. The arguments are two
"phylo" objects. By default, the second tree is bound on the root of the
first one; a different node may be specified using the option node. If the
second tree has a root.edge this will be used. Thus the binding of two
binary (dichotomous) trees will result in a trichotomy or a tetrachotomy

36 3 Phylogenetic Data in R

(if there is no root edge) in the returned tree. This may be avoided by
using the option branch instead of node. The syntax is nearly the same:
the distinction being that the second tree is bound below the node given
in branch. The further argument position specifies where on the branch
the tree is to be bound.

> t1 <- read.tree(text = "(a:1,b:1):1;")
> t2 <- read.tree(text = "(c:1,d:1):1;")
> write.tree(bind.tree(t1, t2))
[1] "(a:1,b:1,(c:1,d:1):1):1;"
> write.tree(bind.tree(t1, t2, branch = -1, position = 1))
[1] "((a:1,b:1):1,(c:1,d:1):1):0;

rotate rotates the internal branch below the most recent common ancestor
of a monophyletic group given by the argument group. The resulting tree
is exactly equivalent to the original one. This function is convenient when
plotting a tree if it is needed to change the order of the tips on the plot.
On the other hand, the modification is not apparent when writing the tree
in Newick format because the tips are written according to the numbers
in the "phylo" object.

compute.brlen modifies or creates the branch lengths of a tree with respect
to the second argument, method, which may be one of the following.
• A character string specifying the method to be used (e.g., "Grafen").
• An R function used to generate random branch lengths (e.g., runif).
• One or several numeric values (recycled if necessary).
For instance, if we want to set all branch lengths equal to one [48, 54]:
tr <- compute.brlen(tr, 1). This is likely to be useful in comparative
analyses when a phylogeny with no branch lengths is available.

3.4.2 Rooted Versus Unrooted Trees

The Newick parenthetic format can represent both rooted and unrooted trees.
In the latter, all nodes have at least three connecting branches. Thus, in
the Newick representation of an unrooted tree, it is necessary that the basal
grouping has (at least) three sibling groups:

((...),(...),(...));

Such a tree read in R with read.tree would result in an object of class
"phylo" whose root has three descendants. In this case, the root has no bio-
logical interpretation: it does not represent a common ancestor of all tips.

The function is.rooted tests whether an object of class "phylo" repre-
sents a rooted tree. It returns TRUE if either only two branches connect to the
root, or if there is a root.edge element.

> ta <- read.tree(text = "(a,b,c);")
> tb <- read.tree(text = "(a,b,c):1;")

3.4 Manipulating Data 37

> tc <- read.tree(text = "((a,b),c);")
> is.rooted(ta)
[1] FALSE
> is.rooted(tb)
[1] TRUE
> is.rooted(tc)
[1] TRUE

The presence of a zero root.edge allows us to have a rooted tree with a
basal trichotomy:

> td <- read.tree(text = "(a,b,c):0;")
> is.rooted(td)
[1] TRUE

Both objects ta and td are graphically similar; the difference between them
is that the root of td can be interpreted biologically as a common ancestor of
a, b, and c.

The function root reroots a tree given an outgroup, made of one or several
tips; as the argument outgroup. If the tree is rooted, it is unrooted before
being rerooted, so that if outgroup is already an outgroup, then the returned
tree is not the same as the original one. The specified outgroup must be
monophyletic, otherwise the operation fails and an error message is printed.

The function unroot transforms a rooted tree into its unrooted counter-
part. If the tree is already unrooted, it is returned unchanged.

3.4.3 Dichotomous Versus Multichotomous Trees

The Newick format represents multichotomies by having more than two sibling
groups:

(A,B,C);

This is represented explicitly in the class "phylo" by letting a node have
several descendants in the element edge, for instance:

...
-2 1
-2 2
-2 3
...

where 1, 2, 3 would be the numbers of the tips A, B, C.
As shown in the next chapters, some methods deal only with dichotomous

(i.e., binary) trees, thus it may be useful to resolve multichotomies into di-
chotomies with internal branches of length zero. On the other hand, when a
dichotomous tree has internal branches of length zero it may be needed to

38 3 Phylogenetic Data in R

collapse them in a multichotomy. These two operations may be performed
with the functions multi2di and di2multi, respectively. They both take an
object of class "phylo" as main argument; di2multi has a second argument
tol that specifies the tolerance to consider branch lengths significantly greater
than zero (10−8 by default).

There are several ways to solve a multichotomy resulting in different
topologies. The number of possibilities grows very fast with the number of
branches, n, involved in the multichotomy: it is given by n!/2 (factorial(n)/2
in R). For only three possibilities with n = 3, there are 60 with n = 5, and
1,814,400 with n = 10. multi2di has a second argument, random, which spec-
ifies whether to solve the multichotomies in a random order (the default), or
in an arbitrary order if random = FALSE. Repeating the use of multi2di on
a tree with the default option will likely yield different topologies. Specify-
ing random = FALSE may be preferred if the operation is repeated and it is
necessary always to have the same topology.

apTreeshape has a different mechanism to solve multichotomies randomly.
It is used when reading trees from databases (Section 3.2.2), or when convert-
ing trees of class "phylo" with multichotomies (Section 3.4.5). The functions
pandit, treebase, and as.treeshape have the option model that can take the
following values: "biased", "pda", or "yule". This specifies the model used
to resolve the multichotomies. These models are explained in Section 3.5.

In a rooted dichotomous tree the number of tips is equal to the number of
nodes minus one, whereas this is minus two for an unrooted tree (because the
root node has been removed). The function is.binary.tree tests whether a
tree, either rooted or unrooted, is dichotomous, and returns a logical value.

3.4.4 Summarizing and Comparing Trees

There is a summary method for "phylo" objects. This function prints a brief
summary of the tree including the numbers of nodes and tips.

is.ultrametric tests if a tree is ultrametric (all tips equally distant from
the root), and returns a logical value. This is done taking the numerical pre-
cision of the computer into account.

balance returns, for a fully binary tree, the number of descendants of both
sister-lineages from each node (see Section 6.3.5 for analyses of tree shape).

Once the branch lengths of a "phylo" object have been extracted as shown
above, any computation can be done on them. There are special functions to
perform some particular operations. branching.times returns, for an ultra-
metric tree, the distances from the nodes to the tips using its branch lengths.
coalescent.intervals computes the coalescence times for an ultrametric
tree and returns, in the form of a list, a summary of these computations with
the number of lineages present at each interval, the lengths of the intervals,
the total number of intervals, and the depth of the tree.

It is often necessary to compare two phylogenetic trees because there could
be, for a given format, several representations of the same tree. This is the case

3.4 Manipulating Data 39

with the Newick format, and also for the "phylo" class of objects. The generic
function all.equal tests whether two objects are “approximately equal”.
For instance, for simple numeric data the comparison is done considering the
numerical precision of the computer. For "phylo" objects, only the labeled
topologies are compared: if both representions are the same, TRUE is returned,
otherwise a summary of the comparison is printed. Here is an example with
a simple case of two representations for the same rooted tree:

> t1 <- read.tree(text = "((a:1,b:1):1,c:2);")
> t2 <- read.tree(text = "(c:2,(a:1,b:1):1);")
> all.equal(t1, t2)
[1] TRUE

If both trees have similar labeled topologies, their branch lengths can be com-
pared with the same generic function:

> all.equal(t1$edge.length, t2$edge.length)
[1] "Mean relative difference: 0.6666667"
> all.equal(sort(t1$edge.length), sort(t2$edge.length))
[1] TRUE

Two objects of class "treeshape" can also be compared with all.equal.
Because all.equal does not always return a logical value, it should not be
used in programming a conditional execution. The following should be used
instead:

identical(all.equal(t1, t2), TRUE)

3.4.5 Converting Objects

We have seen that a tree may be coded in different ways in R that correspond
to different classes of objects. It is obviously useful to be able to convert among
these different classes because some operations can be done on some classes
but not others. Table 3.1 gives details on how to convert among the six classes
discussed here.

The entries marked nd in this table indicate that the conversion cannot
be done directly, and it must be done in two (or more) steps. For instance, to
convert a "phylo" object in a "dendrogram" one, we will do:

as.dendrogram(as.hclust(x))

There is currently no way to convert a "dendrogram" object to another
class. This class has been recently introduced in R and is still under develop-
ment.

40 3 Phylogenetic Data in R

Table 3.1. Conversion among the different classes of tree objects in R (x is the
object of the original class). nd means there is no direct way to do the conversion,
and it must be done via another class

From To Command

phylo phylog newick2phylog(write.tree(x))a

matching as.matching(x)
treeshape as.treeshape(x)

cindas.treeshape hclust as.hclust(x)
dendrogram nd

phylog phylo as.phylo(x)
matching nd
treeshape nd
hclust nd
dendrogram nd

matching phylo as.phylo(x)
phylog nd
treeshape nd
hclust nd
dendrogram nd

treeshape phylo as.phylo(x)
phylog nd
matching nd
hclust nd
dendrogram nd

hclust phylo as.phylo(x)
phylog hclust2phylog(x)
matching nd
treeshape nd
dendrogram as.dendrogram(x)

aIt may be necessary to use the option multi.line=FALSE

3.4.6 Manipulating DNA Data

A DNA sequence read with read.dna is stored in R as a vector where each
element is a single (lowercase) letter representing a nucleotide site. This allows
an easy manipulation of DNA data with little programming overhead. Here
are a few examples.

• Reads a sequence in FASTA format, stores it in x, and reverts it:

x <- read.dna("dnafile.fas", format = "fasta")
rev(x)

• Extracts the third position (assuming that the reading frame of the se-
quence is correct):

x[seq(3, length(x), by = 3)]

3.4 Manipulating Data 41

• Creates a vector z of the same sequence but with nucleotides grouped by
codon (assuming that the reading frame of the sequence is correct):

z <- character(length(x) %/% 3)
for (i in 1:length(z))
z[i] <- paste(x[(3 * i - 2):(3 * i)], collapse = "")

A set of sequences can be stored as a list, a matrix, or a data frame. The last
two kinds of structures are appropriate only for aligned sequences because all
rows must have the same number of elements. To apply the above operations
on such sets of sequences, one can use the functions apply or lapply. For
instance, in the case of a matrix X, the following will revert all rows:

apply(X, 1, rev)

and for a list:

lapply(X, rev)

For more complex operations, one may first create a function that encloses
all the needed commands, and then use the appropriate apply-like function:

foo <- function(x)
{

z <- character(length(x) %/% 3)
for (i in 1:length(z))
z[i] <- paste(x[(3 * i - 2):(3 * i)], collapse = "")

z # needed to return the vector
}
lapply(X, foo)

seqinr has more sophisticated functions for manipulating molecular se-
quences. invers reverts a sequence in the same way as rev above. comp re-
turns the complement of a DNA sequence:

> x <- scan(what = "")
1: a c g t g g t c a t
11:
Read 10 items
> x
[1] "a" "c" "g" "t" "g" "g" "t" "c" "a" "t"
> comp(x)
[1] "t" "g" "c" "a" "c" "c" "a" "g" "t" "a"

The functions c2s and s2c transform a vector of single characters into a
string, and vice versa:

42 3 Phylogenetic Data in R

> c2s(x)
[1] "acgtggtcat"
> s2c(c2s(x))
[1] "a" "c" "g" "t" "g" "g" "t" "c" "a" "t"

splitseq splits a sequence into portions with respect to two options: frame
specifying how many sites to skip before starting to read the sequence (default
is 0), and word giving the length of the portions (default is 3, i.e., a codon for
a DNA sequence):

> splitseq(x)
[1] "acg" "tgg" "tca"
> splitseq(x, frame = 1)
[1] "cgt" "ggt" "cat"
> splitseq(x, word = 5)
[1] "acgtg" "gtcat"

translate translates a DNA sequence into an amino acid (AA) one. The
option frame may be used as above. Two other options are sens, which can
be "F" (forward, the default) or "R" (reverse) specifying the direction of the
translation, and numcode which takes a numeric value specifying the genetic
code to be used (by default the universal code is used):

> translate(x)
[1] "T" "W" "S"
> translate(x, frame = 1)
[1] "R" "G" "H"
> translate(x, frame = 2)
[1] "V" "V"
> translate(x, frame = 3)
[1] "W" "S"
> translate(x, frame = 4)
[1] "G" "H"

The functions aaa and a convert AA sequences from the one-letter coding
to the three-letter one, and vice versa:

> aaa(translate(x))
[1] "Thr" "Trp" "Ser"
> a(aaa(translate(x)))
[1] "T" "W" "S"

ape has a few functions for summarizing information from a set of DNA
sequences.

• base.freq computes the proportions of each of the four bases; the results
are returned as a table (i.e., a table with names "A", "C", "G", and "T").

3.4 Manipulating Data 43

• GC.content is based on the previous function, and computes the propor-
tion of guanine and cytosine; a single numeric value is returned.

• seg.sites returns the indices of the segregating sites, that is, the sites
that are polymorphic.

seqinr has several functions for summarizing molecular sequences. count
computes the frequencies of all possible combinations of n nucleotides, where
n is specified with the argument word (there is also an option frame used in
the same way as above):

> count(x, word = 1)

a c g t
2 2 3 3
> count(x, word = 2)

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 1 0 1 1 0 1 0 0 0 1 2 0 1 1 0
> count(x, word = 3)

aaa aac aag aat aca acc acg act aga agc agg agt ata atc atg
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

att caa cac cag cat cca ccc ccg cct cga cgc cgg cgt cta ctc
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

ctg ctt gaa gac gag gat gca gcc gcg gct gga ggc ggg ggt gta
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

gtc gtg gtt taa tac tag tat tca tcc tcg tct tga tgc tgg tgt
1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

tta ttc ttg ttt
0 0 0 0

The three functions GC, GC2, and GC3 compute the proportion of guanine
and cytosine over the whole sequence, over the second positions, and over the
third ones, respectively:

> GC(x)
[1] 0.5
> GC2(x)
[1] 0.9999
> GC3(x)
[1] 0.6666

There are two summary methods for the classes "SeqFastaAA" and
"SeqFastadna": they print a summary of the frequencies of the different amino
acids or bases, and other information such as the lengths of the sequences.

AAstat has the same effect as summary.SeqFastaAA, but additionally a
graph is plotted of the position of the different categories of AAs. For instance,
taking a protein sequence distributed with seqinr (Fig. 3.2):

44 3 Phylogenetic Data in R

Position of the residues along the sequence

Tiny

Small

Aliphatic

Aromatic

Non.polar

Polar

Charged

Basic

Acidic

0 15 30 45 60 75 90 105 135 165

Fig. 3.2. Plot of the distribution of amino acid categories along the sequence of a
protein

> ss <- read.fasta(system.file("sequences/seqAA.fasta",
+ package = "seqinr"),
+ seqtype = "AA")
> AAstat(ss[[1]])
$Compo

* A C D E F G H I K L M N P Q R S T V W
1 8 6 6 18 6 8 1 9 14 29 5 7 10 9 13 16 7 6 3
Y
1
....

3.5 Generating Random Trees

ape has two functions to generate random trees under assumptions. rtree
generates a tree by random splitting; its interface is:

rtree(n, rooted = TRUE, tip.label = NULL, br = runif, ...)

where n specifies the number of tips. The tree is rooted by default. If
tip.label is left NULL, the labels "t1", "t2", . . . , are given to the tips. br
specifies the function to generate random branch lengths: further arguments
for this function are given in place of the “dot-dot-dot” (...). By default, a
uniform distribution between 0 and 1 is used. Use br = NULL for a tree with
no branch length.

3.5 Generating Random Trees 45

rcoal generates a “coalescent” tree by random clustering of tips; its in-
terface is:

rcoal(n, tip.label = NULL, br = rexp, ...)

where the options are similar to rtree. Note that the default for br is the
exponential distribution: this is used to generate node heights (branch lengths
are computed from these heights).

Both rtree and rcoal generate a single tree: they must be called repeat-
edly to generate a sample of random trees.

apTreeshape has the function rtreeshape that generates tree topologies
under various models. Its interface is:

rtreeshape(n, tip.number, p = 0.3, model = "", FUN = "")

where n is the number of generated trees (unlike the above two functions),
tip.number is the number of tips, p is a parameter used if model = "biased"
(see below), model specifies the model to be used, and FUN gives a function
to generate trees according to Aldous’s Markov branching model [2]. Either
model or FUN must be specified, but not both. Note that the arguments are not
recycled in R’s usual way: for instance, rtreeshape(2, c(5, 10), model =
"yule") will generate four trees (two with five tips, and two with ten).

The three models that can be specified with the argument model are:

• The Yule model (model = "yule") where each species has the same prob-
ability of splitting in two species;

• The PDA (proportional to distinguishable arrangements) model (model =
"pda") where each topology is equiprobable;

• The biased model (model = "biased") where a species with splitting
probability r gives, if it splits, two daughter-species with splitting prob-
ability pr and 1 − pr, respectively [83]. The value of p is given by the
argument p.

In Aldous’s [2] model, the splitting probabilities are specified through a
function denoted Qn(i) which gives the probability that a clade with n tips
is made of two sibling groups with i and n − i tips, respectively. We specify
these probabilities with the argument Q which is an R function of the form
Q(n, i). For instance, for a completely unbalanced tree we use the following:

Q <- function(n, i) if (i == 1) 1 else 0
rtreeshape(1, 10, FUN = Q)

which says that a clade of size n is certain to be made of two subclades with
one and n− 1 tips, respectively. The probabilities given in FUN do not need to
sum to one, so that it is easy to specify a given model. An interesting model
may be to have splitting probabilities proportional to the size of the clade:

Q <- function(n, i) if (i > 0 && i < n) n else 0
rtreeshape(1, 30, FUN = Q)

An example is shown in Fig. 3.3.

46 3 Phylogenetic Data in R

1
2
3
5
6
4
7
8
9
10
11
14
15
13
16
17
12
18
20
21
19
22
23
25
26
24
28
29
30
27

Fig. 3.3. Plot of a random tree generated with rtreeshape

3.6 Case Studies

The case studies show examples of workflow when using R for phylogenetic
analyses. All operations are detailed and explained so readers can repeat them,
and eventually adapt them to their needs. In this chapter, we consider prepar-
ing several data sets from the literature. Some of these data are analyzed
further in the next chapters.

3.6.1 Sylvia Warblers

Böhning-Gaese et al. [10] studied the evolution of ecological niches in 26
species of warblers of the genus Sylvia. They also sequenced the gene of the
cytochrome b for these species; the sequences were deposited in GenBank and
have accession numbers AJ534526–AJ534549 and Z73494. We consider these
molecular data as well the ecological data in their Table 1. The goal of this
application is to get the sequence data from GenBank, prepare (align) them,
and read the ecological data from a file.

Because the DNA data are accessible through GenBank, we get them with
read.GenBank. We first create a vector of mode character with the accession
numbers: the operation is straightforward with the function paste:

> x <- paste("AJ5345", 26:49, sep = "")
> x <- c("Z73494", x)

3.6 Case Studies 47

> x
[1] "Z73494" "AJ534526" "AJ534527" "AJ534528" "AJ534529"
[6] "AJ534530" "AJ534531" "AJ534532" "AJ534533" "AJ534534"
[11] "AJ534535" "AJ534536" "AJ534537" "AJ534538" "AJ534539"
[16] "AJ534540" "AJ534541" "AJ534542" "AJ534543" "AJ534544"
[21] "AJ534545" "AJ534546" "AJ534547" "AJ534548" "AJ534549"

We then read the sequences. Of course, the computer must be connected to
the Internet:

sylvia.seq <- read.GenBank(x)

We check that the data have been correctly downloaded by looking at the
structure of the returned object:

> str(sylvia.seq)
List of 25
$ Z73494 : chr [1:1143] "a" "t" "g" "g" ...
$ AJ534526: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534527: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534528: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534529: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534530: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534531: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534532: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534533: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534534: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534535: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534536: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534537: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534538: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534539: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534540: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534541: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534542: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534543: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534544: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534545: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534546: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534547: chr [1:1143] "a" "t" "g" "g" ...
$ AJ534548: chr [1:1041] "g" "g" "a" "t" ...
$ AJ534549: chr [1:1041] "g" "g" "a" "t" ...
- attr(*, "species")= chr [1:25] "Sylvia_atricapilla_atricapilla"

"Chamaea_fasciata" "Sylvia_nisoria" "Sylvia_layardi" ...

We have effectively a list with 25 sequences: 23 of them have 1143 nucleotides,
and 2 have 1041. This necessitates an alignment operation with Clustal X. To
do this we first write the data in a file in FASTA format:

48 3 Phylogenetic Data in R

write.dna(sylvia.seq, "sylviaseq.fas", format = "fasta")

The first three lines of the file ‘sylviaseq.fas’ are:

> Z73494
atggctctca atcttcgaaa aaaccaccct atcctaaaag tcatcaacga cgccctaatc
gacctaccaa cgccgtctaa catctctact tgatgaaact tcggctcact cctaggtctt
....

The alignment operation shows that there are 102 missing nucleotides in
the last two sequences. The alignment made by Clustal X is saved in “Phylip”
format which is actually the interleaved format of Phylip [38]. The data are
read back into R using read.dna:

sylvia.seq.ali <- read.dna("sylviaseq.phy")

Note that we kept the original (unaligned) sequences from GenBank because
they have the species names. To save some memory, we can keep them in
a separate vector whose names are the accession numbers,7 and erase the
original sequences:

> taxa.sylvia <- attr(sylvia.seq, "species")
> names(taxa.sylvia) <- names(sylvia.seq)
> rm(sylvia.seq)

We then see that two of these names have to be fixed:

> sylvia.seq[c(1, 24)]
Z73494

"Sylvia_atricapilla_atricapilla"
AJ534548

"Illadopsis_abyssinica"

Böhning-Gaese et al. [10] wrote that Illadopsis abyssinica had a different
generic status, but they considered it as belonging to Sylvia: we change this
accordingly for consistency. We also remove the subspecies name of the first
sequence, and print all the species names:

> taxa.sylvia[1] <- "Sylvia_atricapilla"
> taxa.sylvia[24] <- "Sylvia_abyssinica"
> taxa.sylvia

Z73494 AJ534526
"Sylvia_atricapilla" "Chamaea_fasciata"

AJ534527 AJ534528
"Sylvia_nisoria" "Sylvia_layardi"

AJ534529 AJ534530
7 We show later the advantage of using this structure.

3.6 Case Studies 49

"Sylvia_subcaeruleum" "Sylvia_boehmi"
AJ534531 AJ534532

"Sylvia_buryi" "Sylvia_lugens"
AJ534533 AJ534534

"Sylvia_leucomelaena" "Sylvia_hortensis"
AJ534535 AJ534536

"Sylvia_crassirostris" "Sylvia_curruca"
AJ534537 AJ534538

"Sylvia_nana" "Sylvia_communis"
AJ534539 AJ534540

"Sylvia_conspicillata" "Sylvia_deserticola"
AJ534541 AJ534542

"Sylvia_balearica" "Sylvia_undata"
AJ534543 AJ534544

"Sylvia_cantillans" "Sylvia_melanocephala"
AJ534545 AJ534546

"Sylvia_mystacea" "Sylvia_melanothorax"
AJ534547 AJ534548

"Sylvia_rueppelli" "Sylvia_abyssinica"
AJ534549

"Sylvia_borin"

The ecological data are in a file ‘sylvia data.txt’ whose first three lines are:

mig.dist mig.behav geo.range
Sylvia_abyssinica 0 resid trop
Sylvia_atricapilla 5000 short temptrop
....

We read these data simply with read.table, and check the returned object:

> sylvia.eco <- read.table("sylvia_data.txt")
> str(sylvia.eco)
‘data.frame’: 26 obs. of 3 variables:
$ mig.dist : int 0 5000 7500 5900 5500 3400 2600 0 0 0 ...
$ mig.behav: Factor w/ 3 levels "long","resid",..
$ geo.range: Factor w/ 3 levels "temp","temptrop",..
....

Note that the species names are used as rownames in this data frame:

> rownames(sylvia.eco)
[1] "Sylvia_abyssinica" "Sylvia_atricapilla"
[3] "Sylvia_borin" "Sylvia_nisoria"
[5] "Sylvia_curruca" "Sylvia_hortensis"
[7] "Sylvia_crassirostris" "Sylvia_leucomelaena"

50 3 Phylogenetic Data in R

[9] "Sylvia_buryi" "Sylvia_lugens"
[11] "Sylvia_layardi" "Sylvia_subcaeruleum"
[13] "Sylvia_boehmi" "Sylvia_nana"
[15] "Sylvia_deserti" "Sylvia_communis"
[17] "Sylvia_conspicillata" "Sylvia_deserticola"
[19] "Sylvia_undata" "Sylvia_sarda"
[21] "Sylvia_balearica" "Sylvia_cantillans"
[23] "Sylvia_mystacea" "Sylvia_melanocephala"
[25] "Sylvia_rueppelli" "Sylvia_melanothorax"

The data are ready and can be saved in an R workspace before being
analyzed:

save(sylvia.seq.ali, taxa.sylvia, sylvia.eco,
file = "sylvia.RData")

3.6.2 Phylogeny of the Felidae

Johnson and O’Brien [75] studied the phylogenetic relationships of all extant
species of felids and cats using sequences from two mitochondrial genes: 16S
rRNA and NADH-5. For simplicity, we use only the first set of sequences. The
procedure of getting and preparing these data follows the same lines as with
the Sylvia case.

The accession numbers in GenBank range from AF006387 to AF006459
with only the odd numbers:

x <- paste("AF006", seq(387, 459, 2), sep = "")
felidseq16S <- read.GenBank(x)

The sequences are not of the same lengths (some insertions / deletions have
been reported in [75]):

> table(unlist(lapply(felidseq16S, length)))

372 373 374 375 376
3 9 15 9 1

> str(felidseq16S[1:5])
List of 5
$ AF006387: chr [1:374] "t" "t" "t" "g" ...
$ AF006389: chr [1:375] "t" "t" "t" "g" ...
$ AF006391: chr [1:372] "c" "t" "t" "g" ...
$ AF006393: chr [1:375] "t" "t" "t" "g" ...
$ AF006395: chr [1:374] "t" "t" "t" "g" ...

We write the sequences in a file in FASTA format to align them with Clustal X:

write.dna(felidseq16S, "felidseq16S.fas", format = "fasta")

3.6 Case Studies 51

We also save the names of the species with the accession numbers:

taxa.felid <- attr(felidseq16S, "species")
names(taxa.felid) <- names(felidseq16S)

The aligned sequences are read back in R:

felidseq16Sali <- read.dna("felidseq16S.phy")

And we may check that they have all the same length:

> table(unlist(lapply(felidseq16Sali, length)))

382
37

In addition to the sequence data, we use data on body mass (source [143]).
The first three lines from the file ‘felid bodymass.txt’ are:

Acinonyx_jubatus 50000
Caracal_caracal 13749.9
Catopuma_badia 2500
....

We read this tree with read.table:

DF <- read.table("felid_bodymass.txt")

Because there is only one variable, it is simpler to keep it as a vector with
names set as the species names:

> felid.body.mass <- DF$V2
> names(felid.body.mass) <- DF$V1
> felid.body.mass

Acinonyx_jubatus Caracal_caracal
50000.00 13749.90

Catopuma_badia Catopuma_temminckii
2500.00 11500.00

....

We save the aligned sequences, the species names, and the body mass data
for further analyses:

save(felidseq16Sali, taxa.felid, felid.body.mass,
file = "felid.RData")

52 3 Phylogenetic Data in R

3.6.3 Snake Venom Proteome

Fry [41] made an extensive analysis of the relationships among snake venom
proteins and related nontoxic proteins. We limit ourselves to a single data
set: the pseutarin C of the Eastern brown snake (Pseudonaja textilis) and the
related mammalian coagulation factor V [41, Fig. 3B]. The goal of the present
application is to get the protein sequence data.

The original data come from the SWISSPROT database of protein se-
quences. The 22 accession numbers and the corresponding species names are
stored in a file called ‘venom factorV.txt’ the first three lines of which are:

No species
Q9BQS7 Homo_sapiens
Q9Z0Z4 Mus_musculus
....

We read them with read.table setting as.is = TRUE to avoid these charac-
ter strings being treated as factors, and header = TRUE to specify that the
first line contains the names of the columns; we then display the first two rows
of the data frame:

> venom.no <- read.table("venom_factorV.txt",
as.is = TRUE, header = TRUE)

> venom.no[1:2,]
No species

1 Q9BQS7 Homo_sapiens
2 Q9Z0Z4 Mus_musculus

We read these data with seqinr which we load in memory, and then we
select the SWISSPROT database.

library(seqinr)
s <- choosebank("swissprot")

We can now query the database using the accession numbers. This is done
with the “ac” keyword of the function query. For instance, if we want to
retrieve the sequence of the Eastern brown snake (no. Q7SZN0), we do:

> query(s$socket, "venom", "ac=Q7SZN0")

$socket: description class
"->pbil.univ-lyon1.fr:5558" "socket"

mode text
"a+" "text"

opened can read
"opened" "yes"

3.6 Case Studies 53

can write
"yes"

$banque: swissprot
$call: query(socket = s$socket, listname = "venom",

query = "ac=Q7SZN0")
$name: [1] "venom"

list length mode content
1 $req 1 character sequences

We then retrieve the sequence itself with getSequence (we print the first
twenty amino acids to check):

> X <- getSequence(venom$req[[1]])
> X[1:20]
[1] "M" "G" "R" "Y" "S" "V" "S" "P" "V" "P" "K" "C" "L" "L"
[15] "L" "M" "F" "L" "G" "W"

To retrieve several sequences at the same time with their accession num-
bers, we need to use the keyword “OU”; for instance, to get the first two
sequences we are looking for we could do:

query(s$socket, "venom", "ac=Q9BQS7 OU ac=Q9Z0Z4")

We again use the function paste to put the 21 numbers together:

> paste("ac", venom.no$No, sep = "=")
[1] "ac=Q9BQS7" "ac=Q9Z0Z4" "ac=Q7ZU12" "ac=Q61147"
[5] "ac=P00450" "ac=Q804W6" "ac=Q804X3" "ac=Q7TN96"
[9] "ac=Q06194" "ac=P00451" "ac=P12263" "ac=O62730"
[13] "ac=Q804W5" "ac=Q90X47" "ac=Q7SZN0" "ac=Q804X4"
[17] "ac=P12259" "ac=Q28107" "ac=Q9GLP1" "ac=Q7TPK2"
[21] "ac=O88783"

But this time we need to have all these numbers in a single character string.
This is done with the option collapse. To see the result, let us do it with the
first four numbers:

> paste("ac", venom.no$No[1:4], sep = "=", collapse = " OU ")
[1] "ac=Q9BQS7 OU ac=Q9Z0Z4 OU ac=Q7ZU12 OU ac=Q61147"

Because there is no need to print the whole string with the 21 numbers, we
store it in an object called no4query, and use it as an argument to query:

> no4query <- paste("ac=", venom.no$No, sep = "",
+ collapse = " OU ")
> query(s$socket, "venom", no4query)

54 3 Phylogenetic Data in R

$socket: description class
"->pbil.univ-lyon1.fr:5558" "socket"

mode text
"a+" "text"

opened can read
"opened" "yes"
can write

"yes"

$banque: swissprot
$call: query(socket = s$socket, listname = "venom",

query = no4query)
$name: [1] "venom"

list length mode content
1 $req 21 character sequences

The last line of the printed output shows that the 21 sequences have been
found in ACNUC. We are now ready to download them. We do it by applying
the function getSequence to each element of the list venom$req:

venom.seq <- lapply(venom$req, getSequence)

We check the results by looking at the structure of venom.seq:

> str(venom.seq)
List of 21
$: chr [1:1065] "M" "K" "I" "L" ...
$: chr [1:1062] "M" "K" "F" "L" ...
$: chr [1:2211] "M" "F" "L" "A" ...
$: chr [1:2224] "M" "F" "P" "G" ...
$: chr [1:2258] "M" "F" "P" "A" ...
$: chr [1:2351] "M" "Q" "I" "E" ...
$: chr [1:2319] "M" "Q" "I" "A" ...
$: chr [1:2133] "M" "Q" "L" "E" ...
$: chr [1:1158] "M" "E" "S" "G" ...
$: chr [1:1157] "M" "K" "A" "G" ...
$: chr [1:2343] "M" "Q" "V" "E" ...
$: chr [1:2183] "M" "L" "L" "V" ...
$: chr [1:1460] "M" "G" "R" "Y" ...
$: chr [1:2258] "M" "R" "A" "A" ...
$: chr [1:2102] "M" "Q" "S" "S" ...
$: chr [1:1087] "M" "K" "G" "L" ...
$: chr [1:1802] "F" "S" "P" "T" ...
$: chr [1:1639] "M" "R" "T" "D" ...

3.6 Case Studies 55

$: chr [1:1377] "V" "W" "T" "L" ...
$: chr [1:745] "C" "F" "Q" "V" ...
$: chr [1:2119] "M" "K" "L" "R" ...

Because the retrieval operation lost the accession numbers, we assign them as
names to the list venom.seq:

names(venom.seq) <- venom.no$No

3.6.4 Mammalian Mitochondrial Genomes

Gibson et al. [51] made a comprehensive analysis of the mitochondrial genomes
of 69 species of mammals. They explored the variations in base composition in
different regions of this genome. We limit ourselves to simpler analyses. The
goal is to show how to read heterogeneous data in a big file, and manipulate
and prepare them in R.

The original data come from the OGRe (Organellar Genome Retrieval
system) database.8 All mammalian mtGenomes available in the database were
downloaded in April 2005. This represents 109 species. The data were saved
in a single file called ‘mammal mtGenome.fasta’.

The first six lines of this file show how the data are presented:

##
OGRe sequences
##

#DASNOVMIT : _Dasypus novemcinctus_ (nine-banded armadillo)...
#TAMTETMIT : _Tamandua tetradactyla_ (southern tamandua) : ...
....

After the 109 species names and codes, the sequences are printed in FASTA
format. For instance, the lines 116–118 are:

>DASNOVMIT(ATP6)
atgaacgaaaacctatttgcctcattcgctacccctaccataataggcct...
caagtattcttttccctacccctaaacggataattaccaaccgagtggta...
....

Thus the species codes used in the first part of the file are used for the
sequence names together with the names of the genes in parentheses. Conse-
quently we need to get the correspondence between these species codes and
the species names. Thanks to the flexibility of read.table we do this rela-
tively straightforwardly. If we examine the first lines from the file above, we
notice that the command needed to read the species names and codes will
need to:
8 http://ogre.mcmaster.ca/.

56 3 Phylogenetic Data in R

• Skip the first four lines,
• Read only 109 lines,
• Use the underscore " " as the character separating the two columns,
• Ignore what comes after the scientific name on each line.

The corresponding command is (we again use the as.is = TRUE option
for the same reason):

mtgen.taxa <- read.table("mammal_mtGenome.fasta", skip = 4,
nrows = 109, sep = "_", comment.char = "(", as.is = TRUE)

Note that we take advantage of the fact that the common names are within
parentheses: this is done with the option comment.char (whose default value
is "#"). We look at the first five rows:

> mtgen.taxa[1:5,]
V1 V2 V3

1 #DASNOVMIT : Dasypus novemcinctus NA
2 #TAMTETMIT : Tamandua tetradactyla NA
3 #ORYCUNMIT : Oryctolagus cuniculus NA
4 #OCHCOLMIT : Ochotona collaris NA
5 #LEPEURMIT : Lepus europaeus NA

There are a few undesirable side-effects to our command, but this is easily
solved. The fact that we set sep = " " resulted in the space after the second
underscore being read as a variable. We can delete it with:

mtgen.taxa$V3 <- NULL

The first column containing the species codes have a few extra characters that
we wish to remove. We can do this operation with gsub.

mtgen.taxa$V1 <- gsub("#", "", mtgen.taxa$V1)
mtgen.taxa$V1 <- gsub(" : ", "", mtgen.taxa$V1)

Finally we change the names of the columns and check the results:

> colnames(mtgen.taxa) <- c("code", "species")
> mtgen.taxa[1:5,]

code species
1 DASNOVMIT Dasypus novemcinctus
2 TAMTETMIT Tamandua tetradactyla
3 ORYCUNMIT Oryctolagus cuniculus
4 OCHCOLMIT Ochotona collaris
5 LEPEURMIT Lepus europaeus

After this small string manipulation, we can read the sequences with
read.dna. This function also has an option skip that we use here. We then
check the number of sequences read:

3.6 Case Studies 57

> mtgen <- read.dna("mammal_mtGenome.fasta",
format = "fasta", skip = 115)

> length(mtgen)
[1] 4033

We also check the names of the first ten sequences:

> names(mtgen)[1:10]
[1] "DASNOVMIT(ATP6)" "TAMTETMIT(ATP6)" "ORYCUNMIT(ATP6)"
[4] "OCHCOLMIT(ATP6)" "LEPEURMIT(ATP6)" "OCHPRIMIT(ATP6)"
[7] "BERBAIMIT(ATP6)" "BALMUSMIT(ATP6)" "PONBLAMIT(ATP6)"
[10] "CAPHIRMIT(ATP6)"

It would be interesting now to get only the name of the gene for each se-
quence in a separate vector. Again we can use gsub for this, but the command
is slightly more complicated because we want to remove all characters outside
the parentheses, and the latter as well. We use the fact that gsub can treat
regular expressions. For instance, we can do this:

genes <- gsub("ˆ[[:alnum:]]{1,}\\(", "", names(mtgen))

where "ˆ[[:alnum:]]{1,}\\(" means “a character string starting with one
or more alphanumeric character(s) and followed by a left parenthesis”. We
need to call gsub a second time to remove the trailing right parenthesis:

genes <- gsub("\\)$", "", genes)

Note in these two examples how the caret ˆ and the dollar $ are used to specify
that the characters we are looking for start or end the string, respectively.9

After this operation it appears that some values in genes indicate that
the sequence is actually empty:

> unique(genes)[11]
[1] "ND4Sequence does not exist"

To remove these missing sequences, we find them using grep:

> i <- grep("Sequence does not exist", names(mtgen))
> i
[1] 998 3371 3375

There are thus three missing sequences in the data set. We remove them with:

> mtgen <- mtgen[-i]

And we repeat the operation of extracting the sequence names:

genes <- gsub("ˆ[[:alnum:]]{1,}\\(", "", names(mtgen))
genes <- gsub("\\)$", "", genes)

9 The syntax of regular expressions used by R is detailed in a help page: ?regexp.

58 3 Phylogenetic Data in R

We can now look at how many sequences there are for each gene:

> table(genes)
genes

ATP6 ATP8 COX1 COX2
109 109 109 109
COX3 CYTB ND1 ND2
109 109 109 109
ND3 ND4 ND4L ND5
109 108 109 109
ND6 RNL RNS tRNA-Ala
109 109 109 109

tRNA-Arg tRNA-Asn tRNA-Asp tRNA-Cys
109 109 109 109

tRNA-Gln tRNA-Glu tRNA-Gly tRNA-His
109 109 109 109

tRNA-Ile tRNA-Leu(CUN) tRNA-Leu(UUR) tRNA-Lys
109 109 109 109

tRNA-Met tRNA-Phe tRNA-Pro tRNA-Ser(AGY)
109 109 107 109

tRNA-Ser(UCN) tRNA-Thr tRNA-Trp tRNA-Tyr
109 109 109 109

tRNA-Val
109

We see that we miss one sequence of “ND4” and two of “tRNA-Pro” (this can
be seen more clearly with sort(table(genes))). We are now ready to do all
sorts of analyses with this data set. We see how to analyze base frequencies
at three levels of variation:

• Between species (all genes pooled);
• Between genes (all species pooled);
• Between sites for a single protein-coding gene (all species pooled).

To calculate the base frequencies for each species, we first create a matrix
with 109 rows and 4 columns that will store the results:

BF.sp <- matrix(NA, nrow = 109, ncol = 4)

We set its rownames with the species names, and the colnames with the four
base symbols:

rownames(BF.sp) <- mtgen.taxa$species
colnames(BF.sp) <- c("A", "C", "G", "T")

We put in each row of this matrix the frequency of each base. This involves:

1. Selecting only the sequences with the corresponding species code using
grep;

3.6 Case Studies 59

2. Computing the base frequencies for the selected sequences with the func-
tion base.freq;

3. Repeating these two operations for all 109 species.

A simple approach is to use a for loop where a variable, say i, will vary from
1 to 109: this will be used as index for both BF.sp and mtgen.taxa$code. The
commands are relatively straightforward and use some elements seen above.
For clarity, we write two separate commands within the loop (the indices of
the selected genes are stored in x):

for (i in 1:109) {
x <- grep(mtgen.taxa$code[i], names(mtgen))
BF.sp[i,] <- base.freq(mtgen[x])

}

To visualize the results, we use the graphical function matplot which plots
the columns of a matrix. We add the options type = "l" to have lines (the
default is points), and col = 1 to avoid colors. We further add a legend
(Fig. 3.4):

matplot(BF.sp, type = "l", col = 1, xlab = "Species",
ylab = "Base frequency")

legend(0, 0.23, c("A", "C", "G", "T"), lty = 1:4, bty = "n")

0 20 40 60 80 100

0.
15

0.
20

0.
25

0.
30

0.
35

Species

B
as

e
fr

eq
ue

nc
y

A
C
G
T

Fig. 3.4. Plot of the base frequencies of the mitochondrial genome of 109 species
of mammals

The second analysis—between genes for all species pooled—will follow the
same lines as the previous one. The matrix used to store the results will have
37 rows, and its rownames will be the names of the genes.

60 3 Phylogenetic Data in R

A subtlety here is the need to use the option fixed = TRUE in grep: the
reason is that some gene names contain parentheses and these characters have
a special meaning in regular expressions. The option used here forces grep to
treat its first argument as a simple character string, and thus avoids this
annoyance. The full set of commands is:

BF.gene <- matrix(NA, nrow = 37, ncol = 4)
rownames(BF.gene) <- unique(genes)
colnames(BF.gene) <- c("A", "C", "G", "T")
for (i in 1:37) {

x <- grep(rownames(BF.gene)[i], names(mtgen), fixed = TRUE)
BF.gene[i,] <- base.freq(mtgen[x])

}

We represent the results in a different way by using the function barplot
which, by default, makes a stacked barplot of the rows for each column: we
thus need to transpose the matrix BF.gene first. Because some gene names
are somewhat long, we modify the margins; we also use the options las = 2
to force the labels on the x-axis to be vertical, and legend = TRUE to add a
legend (Fig. 3.5):

par(mar = c(8, 3, 3, 2))
barplot(t(BF.gene), las = 2, legend = TRUE)

A
T

P
6

A
T

P
8

C
O

X
1

C
O

X
2

C
O

X
3

C
Y

T
B

N
D

1
N

D
2

N
D

3
N

D
4

N
D

4L
N

D
5

N
D

6
R

N
L

R
N

S
tR

N
A

−
A

la
tR

N
A

−
A

rg
tR

N
A

−
A

sn
tR

N
A

−
A

sp
tR

N
A

−
C

ys
tR

N
A

−
G

ln
tR

N
A

−
G

lu
tR

N
A

−
G

ly
tR

N
A

−
H

is
tR

N
A

−
Ile

tR
N

A
−

Le
u(

C
U

N
)

tR
N

A
−

Le
u(

U
U

R
)

tR
N

A
−

Ly
s

tR
N

A
−

M
et

tR
N

A
−

P
he

tR
N

A
−

P
ro

tR
N

A
−

S
er

(A
G

Y
)

tR
N

A
−

S
er

(U
C

N
)

tR
N

A
−

T
hr

tR
N

A
−

T
rp

tR
N

A
−

T
yr

tR
N

A
−

V
al

T G C A

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.5. Plot of the base frequencies of the mitochondrial genome of 109 species
of mammals for each gene

3.6 Case Studies 61

For the third analysis—between sites for a single gene—we focus on the
genes of the cytochrome b whose code is CYTB. We first extract the sequences
of this gene by taking the appropriate indices in the way seen above:

cytb <- mtgen[grep("CYTB", names(mtgen))]

We now look at the length of each sequence using lapply and length, and
summarize the results with table:

> table(unlist(lapply(cytb, length)))

1135 1137 1138 1139 1140 1141 1143 1144 1146 1149
1 4 3 1 78 10 2 1 7 2

The majority of these sequences has 1140 sites and thus it is likely that they
are properly aligned. Furthermore a look at the first few nucleotides (which
can be done with str(cytb)) suggests this is true for the whole 109 sequences.
For simplicity we assume this to be correct, although a more rigorous check
of the alignment, as done for the other cases above, is possible.

To extract the first, second, or third codon position we need to do the
operation within each sequence. Thus we need a command such as (for the first
position) cytb[[1]][c(TRUE, FALSE, FALSE)] repeated for each sequence in
cytb. There are several solutions for this: we choose one where the extraction
using logical indexing is included in a function that we apply to each element
of cytb. This is done three times with moving the position of TRUE:

cytb1 <- lapply(cytb, function(x) x[c(TRUE, FALSE, FALSE)])
cytb2 <- lapply(cytb, function(x) x[c(FALSE, TRUE, FALSE)])
cytb3 <- lapply(cytb, function(x) x[c(FALSE, FALSE, TRUE)])

cytb1, cytb2, and cytb3 are three lists containing the first, second, and third
positions, respectively. We can now proceed in a similar way as done above:

> BF.cytb <- matrix(NA, 3, 4)
rownames(BF.cytb) <- c("1st codon position",

"2nd codon position",
"3rd codon position")

colnames(BF.cytb) <- c("A", "C", "G", "T")
BF.cytb[1,] <- base.freq(cytb1)
BF.cytb[2,] <- base.freq(cytb2)
BF.cytb[3,] <- base.freq(cytb3)
BF.cytb

A C G T
1st codon position 0.2902603 0.2628290 0.21503534 0.2318753
2nd codon position 0.2018149 0.2491915 0.13636144 0.4126321
3rd codon position 0.4043395 0.3778631 0.03600994 0.1817875

62 3 Phylogenetic Data in R

We plot the results again using barplot but adding a few annotations to
present the figure (Fig. 3.6):

barplot(t(BF.cytb), main = "Cytochrome b",
ylab = "Base frequency")

text(0.7, BF.cytb[1, 1]/2, "A", cex = 2)
text(0.7, BF.cytb[1, 1] + BF.cytb[1, 2]/2, "C", cex = 2)
text(0.7, sum(BF.cytb[1, 1:2])+BF.cytb[1, 3]/2, "G", cex = 2)
text(0.7, sum(BF.cytb[1, 1:3])+BF.cytb[1, 4]/2, "T", cex = 2)

1st codon position 2nd codon position 3rd codon position

Cytochrome b

B
as

e
fr

eq
ue

nc
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

C

G

T

Fig. 3.6. Plot of the base frequencies at the three codon positions of the gene of
the cytochrome b for 109 species of mammals for each gene

3.6.5 Butterfly DNA Barcodes

Hebert et al. [67] analyzed the molecular variation in the neotropical skipper
butterfly Astraptes fulgerator in order to assess the species limits among dif-
ferent forms known to have larval stages feeding on distinct host plants. They
sequenced a portion of the mitochondrial gene cytochrome oxydase I (COI)
of 466 individuals belonging to 12 larval forms. The goal of this application
is to prepare a large data set of DNA sequences, and align them for further
analyses (Chapter 5).

The GenBank accession numbers are AY666597–AY667060, AY724411,
and AY724412 (there is a printing error in [67] for these last two numbers).
We read the sequences with read.GenBank in the same way as seen for the
Sylvia or Felidae data.

x <- paste("AY66", 6597:7060, sep = "")

3.6 Case Studies 63

x <- c(x, "AY724411", "AY724412")
astraptes.seq <- read.GenBank(x)

We then look at how the sequence lengths are distributed:

> table(unlist(lapply(astraptes.seq, length)))

208 219 227 244 297 370 373 413 440 548 555 573 582 599 600
1 1 1 1 1 1 1 1 1 1 3 1 1 1 1

601 603 608 609 616 619 620 623 626 627 628 629 630 631 632
2 2 1 1 2 1 1 1 4 1 5 3 4 3 7

633 634 635 636 638 639
1 1 12 6 2 389

The sequences clearly need to be aligned. We resort to Clustal X once more
by first saving the sequences in FASTA format:

write.dna(astraptes.seq, "astraptesseq.fas", format = "fasta")

As before, the alignment made by Clustal X is saved in “Phylip” (interleaved)
format, and are read back into R:

astraptes.seq.ali <- read.dna("astraptesseq.phy")

We check the species names of the sequences downloaded from GenBank:

> table(attr(astraptes.seq, "species"))

Astraptes_sp._BYTTNER Astraptes_sp._CELT
4 23

Astraptes_sp._FABOV Astraptes_sp._HIHAMP
31 16

Astraptes_sp._INGCUP Astraptes_sp._LOHAMP
65 47

Astraptes_sp._LONCHO Astraptes_sp._MYST
41 3

Astraptes_sp._NUMT Astraptes_sp._SENNOV
4 102

Astraptes_sp._TRIGO Astraptes_sp._YESENN
51 79

All specimens were thus attributed to Astraptes sp. with further information
given as a code (explained in [67]). We do the same operation as above to
store the taxon names with the accession numbers:

taxa.astraptes <- attr(astraptes.seq, "species")
names(taxa.astraptes) <- names(astraptes.seq)

We finally save the data for further analyses:

save(astraptes.seq.ali, taxa.astraptes,
file = "astraptes.RData")

64 3 Phylogenetic Data in R

3.7 Exercises

Exercises 1–3 aim at familiarizing the reader with tree data structures in
R; Exercises 4–6 give more concrete applications of the concepts from this
chapter.

1. Create a random tree with 10 tips.
(a) Extract the branch lengths, and store them in a vector.
(b) Delete the branch lengths, and plot the tree.
(c) Give new, random branch lengths from a uniform distribution U [0, 10].

Do this in a way that works for any number of tips.
(d) Restore the original branch lengths of the tree.

2. Create a random tree with 5 tips, print it, and plot it. Find the way to
delete the class of this object, and print it again. Try to print it again:
comment on what happens. Find a way to force the plot of the tree as
before.

3. Generate three random trees with 10 tips. Write them in a file. Read this
file in R. Print a summary of each tree. Write a small program that will
do these operations for any number of trees (say N) and any number of
tips (n).

4. Extract the tree #1000 in TreeBASE. Make three copies of this tree, and
give them branch lengths (i) all equal to one, (ii) so that the node heights
are proportional to the number of species, and (iii) randomly extracted
from a uniform distribution U [0, 0.1].

5. Extract the sequences of the cytochrome b gene with the accession num-
bers U15717–U15724 (source: [59]).
(a) Print the species names of each sequence.
(b) Print, with a single command, the length of each sequence.
(c) Arrange the data in a matrix.
(d) Extract and store in three matrices the first, the second, and the

third codon positions of all sequences. Compute their base frequencies.
What do you conclude?

(e) Save the three matrices in three different files. Read these files, and
concatenate the three sets of sequences.

6. Get the following sequences from GenBank:
• AF518328–AF51837 (source: [89]),
• AF141220, AF004572, AF141219, AF004586, AF141217, AF004587,

AB033713, AB033699, AB032853, AB033695.
Prepare them along the same lines as in Section 3.6.

4

Plotting Phylogenies

Drawing phylogenetic trees has been important for a long time in the study
of biological evolution, as illustrated by Darwin’s only figure in his Origin of
Species [22]. A plotted phylogeny is the usual way to summarize the results of a
phylogenetic anlysis. This also gives the essence of the evolutionary processes
and patterns.

Quite surprisingly, graphical tools have been somewhat neglected in the
analysis of phylogenetic data. There is a very limited treatment on graphics in
recent phylogenetics textbooks [39, 60, 106]. On the other hand, an important
area of statistical research has been developed on the graphical analysis and
exploration of data. Some of these developments have been implemented in R
(e.g., see the lattice package). R also has a flexible and programmable graphical
environment.

There are undoubtedly values in the graphical exploration of phylogenetic
data. Character mapping has been done for some time in some issues, and
it will be valuable to have a more general approach for graphical analysis
and exploration of phylogenetic data. In this chapter, I explore some of these
ideas, as well as explaining how to plot phylogenetic trees in simple ways.
Inasmuch as there are many illustrations throughout the chapter, there are
no case studies.

4.1 Simple Tree Drawing

plot.phylo in ape can draw four kinds of trees: phylograms (also called
rectangular cladograms), cladograms (triangular cladograms), unrooted trees
(dendrograms), and radial (circular) trees. This function is a method: it uses
R’s syntax of the generic function plot, and acts specifically on "phylo" ob-
jects. It has several options; all of them are defined with default values. In its
most direct use (i.e., plot(tr)) a phylogram is plotted on the current graph-
ical device from left (root) to right (tips) with some space around (as defined
by the current margins). The branch lengths, if available, are used. The tip

66 4 Plotting Phylogenies

Apodemus alpicola
Apodemus uralensis

Apodemus flavicollis
Apodemus sylvaticus

Apodemus hermonensis
Apodemus mystacinus

Apodemus peninsulae
Apodemus semotus

Apodemus agrarius
Tokudaia minutus

Mus musculus
Mus caroli

Rattus norvegicus
Diplothrix legata

Fig. 4.1. A simple use of plot(tr)

labels are printed in italics, left-justified from the tips of their respective ter-
minal branches. The node labels and the root edge, if available, are ignored. As
an example, Fig. 4.1 shows a tree named tr showing the relationships among
some species of woodmice (Apodemus) and a few closely related species of
rodents published by Michaux et al. [100]. The tree was plotted, after being
read with tr <- read.tree("rodent.tre") (Section 3.2), by simply typing
plot(tr).1

The options alter these settings. They are described in Table 4.1. Most of
these options have intuitive effects (e.g., type, font, etc.), whereas some have
a NULL value by default. This means that, unless the user gives a specific value,
it is determined with respect to other arguments. We have seen an illustration
of this mechanism above with the simple command plot(tr).

An obvious case where one option alters the default value of another is
when the tree is plotted leftwards using direction = "l": the labels are now
right-justified, which seems an obvious consequence of the change in direction.
For instance, a leftwards cladogram of the same tree may be obtained with
(the resulting plot is in Fig. 4.2):

plot(tr, type = "c", use.edge.length = FALSE,
direction = "l")

If the user wants to keep the labels left-justified, then the option adj must be
used (Fig. 4.3):

plot(tr, type = "c", use.edge.length = FALSE,

1 In this chapter, the box delimiting the figures indicates the presence of margins
around the tree.

4.1 Simple Tree Drawing 67

Table 4.1. The options of plot.phylo. The values marked with (d) are the default
ones

Option Effect Possible values

type Type of tree "p" (d), "c", "u", "r"
use.edge.length Whether to use branch lengths TRUE (d), FALSE
node.pos Vertical position of the nodes with NULL (d), 1, 2

respect to the positions of the tips
show.tip.label Whether to show tip labels TRUE (d), FALSE
show.node.label Whether to show node labels FALSE (d), TRUE
edge.color The line colors of the edges NULL (d), a vector of strings

giving the colors
edge.width The line thickness of the edges NULL (d), a vector of

numeric values
font The font of the labels 1 (normal), 2 (bold)

3 (italics) (d),
4 (bold italics)

cex Relative character size A numeric value (default: 1)
adj Horizontal and vertical NULL (d), one or two numeric

adjustment of the labels values
srt Rotation of the labels A numeric value (default: 0)
no.margin Leave some space around the tree FALSE (d), TRUE
root.edge Draw the root edge FALSE (d), TRUE
label.offset Space between the tips 0 (d), a numeric value

and the labels
underscore Display the underscores FALSE (d), TRUE

in tip labels
x.lim Limits on the horizontal axis NULL (d), two numeric values
y.lim Limits on the vertical axis NULL (d), two numeric values
direction Direction of the tree "r" (d), "l", "u", "d"
lab4ut Style of labels for unrooted trees "horizontal" (d), "radial"

direction = "l", adj = 0)

Many publishers of journals or books prefer to receive figures in Encapsu-
lated PostScript (EPS) format. The function postscript in R may be used
to produce such files. Note that when the tree is plotted in a PostScript file,
the default is to print in landscape format so that the tree will be vertical if
the page is viewed in portrait format. To set the page in portrait format, you
must set horizontal = FALSE in the function postscript.

In R, it is possible to add further graphical elements to an existing plot
using the low-level plotting commands (see, e.g., [154, Chap. 4], for further
details on how R graphics work). plot.phylo exploits this by letting the user
manage the space around the tree. This can be accomplished in two non-
exclusive ways: either through setting the margins, or by changing the scales
of the axes.

68 4 Plotting Phylogenies

Apodemus alpicola
Apodemus uralensis
Apodemus flavicollis

Apodemus sylvaticus
Apodemus hermonensis

Apodemus mystacinus
Apodemus peninsulae

Apodemus semotus
Apodemus agrarius

Tokudaia minutus
Mus musculus

Mus caroli

Rattus norvegicus
Diplothrix legata

Fig. 4.2. A leftwards cladogram with default label justification

Apodemus alpicola
Apodemus uralensis
Apodemus flavicollis
Apodemus sylvaticus
Apodemus hermonensis
Apodemus mystacinus
Apodemus peninsulae
Apodemus semotus
Apodemus agrarius
Tokudaia minutus
Mus musculus
Mus caroli

Rattus norvegicus
Diplothrix legata

Fig. 4.3. A leftwards cladogram with left-justified labels

When plotting a tree, the current margins are used. The size of the latter,
in number of lines, can be found by querying the graphical parameters with
the command par("mar"). By default, this gives:

> par("mar")
[1] 5.1 4.1 4.1 2.1

These can be changed with, for instance:

par(mar = rep(1, 4))

4.1 Simple Tree Drawing 69

The option no.margin = TRUE in plot.phylo has the same effect as doing:

par(mar = rep(0, 4))

The margins of a graphic are usually used to add text around a plot: this
is done with the function mtext (marginal text). The axes can also be drawn
with the function axis, but this is likely to be informative only for the axis
parallel to the branches. Also the default display of the tick marks may not
be appropriate for the tree (see the functions axisPhylo and add.scale.bar,
Section 4.1.1). Finally, the function box adds a box delimiting the margins
from the plot region where the tree is drawn.

The other way to manage space around the tree is to alter the scales of
the plotting region itself. plot.phylo draws the edges using the lengths of
the "phylo" object directly, then computes how much space is needed for the
labels, and sets the axes so that the plotting region is optimally used. Unless
the axes are displayed explicitly with the axis function, the user does not
know the size of the plotting region. However, plot.phylo invisibly returns
(meaning that it is not normally displayed) a list with the option values when
it was called. This list can be accessed by assigning the call; its elements are
then extracted in the usual way:

> tr.sett <- plot(tr)
> names(tr.sett)
[1] "type" "use.edge.length" "node.pos"
[4] "show.tip.label" "show.node.label" "edge.color"
[7] "edge.width" "font" "cex"
[10] "adj" "srt" "no.margin"
[13] "label.offset" "x.lim" "y.lim"
[16] "direction"
> tr.sett$x.lim
[1] 0.0000000 0.1229417
> tr.sett$y.lim
[1] 1 14

This shows that the horizontal axis of the plot in Fig. 4.1 ranges from 0
to 0.123. To draw the same tree but leaving about half the space of the plot
region free either on the right-hand side, or on the left-hand side, one can do:

> plot(tr, x.lim = c(0, 0.246))
> plot(tr, x.lim = c(-0.123, 0.123))

Drawing unrooted trees is a difficult task because the optimal positions
of the tips and nodes cannot be found in a straightforward way. plot.phylo
uses a simple algorithm, inspired by the program drawtree in Phylip, where
clades are allocated angles with respect to their number of species [39]. With
this scheme, edges should never cross. The option lab4ut (labels for unrooted
trees) allows two positions for the tip labels: "horizontal" (the default) or

70 4 Plotting Phylogenies

Struthioniformes

Tinamiformes

Craciformes

Galliformes

Anseriformes

Turniciformes

Piciformes
GalbuliformesBucerotiformes

Upupiformes

Trogoniformes

Coraciiformes

Coliiformes

Cuculiformes

Psittaciformes

Apodiformes

Trochiliformes

Musophagiformes

Strigiformes
Columbiformes Gruiformes

Ciconiiformes

Passeriformes

Fig. 4.4. An unrooted tree of the bird families

"radial". Using the latter and adjusting the font size with "cex" is likely to
give readable trees in most situations, even if they are quite large. Figure 4.4
shows an unrooted tree of the recent bird orders [140]. The command used is:

plot(bird.orders, type = "u", font = 1, no.margin = TRUE)

Circular trees are drawn with ade4 using the function radial.phylog.
After converting our original tree as explained in Section 3.4.5, a simple call
to this function results in Fig. 4.5. In ade4, the tip labels are drawn on the
same level; the tips themselves are marked (by default) with black circles.

ape can also plot circular trees by using the option type = "radial" in
plot.phylo but this does not take branch lengths into account. All tips are
placed equispaced on a circle, the root being at the center of this circle. The
nodes are then placed on concentric circles with distances from the outer circle
depending on the number of descendant tips. Figure 4.6 shows an example
with the families of birds [140]. This representation can be used for rooted
and unrooted trees. It has the advantages of being easily computed; the lines
have no chance to cross and the tips are equally spaced.

apTreeshape has its own plot method for trees of class "treeshape"
(plot.tresshape): it results in a simple plot of a tree similar to the de-
fault behavior of plot.phylo (Fig. 3.1). An original feature of this method
is the possibility of directly plotting two trees on the same graphical device

4.1 Simple Tree Drawing 71

Apodemus alpicola

Ap
od

em
us

 u
ra

le
ns

is

A
po

de
m

us
 fl

av
ic

ol
lis

A
po

de
m

us
 s

yl
va

tic
us

Ap
od

em
us

 h
er

m
on

en
sis

Apodemus mystacinus

Apodemus peninsulae

Apodemus semotus

Apodem
us agrarius

T
okudaia m

inu

M
us m

usculus

M
us caroli

Rattus norvegicus

Diplothrix legata

Fig. 4.5. A circular tree with radial.phylog

with plot(t1, t2). Section 4.2 explains how to do similar plots with objects
of class "phylo".

4.1.1 Annotating Trees

plot.phylo allows us to display node labels with the option show.node.label:
this simply prints the labels using the same font and justification as for the
tips. This option is very limited, and it is often needed to have a more flex-
ible mechanism to display clade names, bootstrap values, estimated diver-
gence dates, and so on. Furthermore, the character strings displayed with
show.node.label = TRUE are from the node.label element of the "phylo"
object, whereas it may be needed to display values coming from some other
data.

Node Annotation

The function nodelabels offers a flexible way to add labels on a tree. It is a
low-level plotting function: the labels are added on a previously plotted tree.
It can print text (like the function text), plotting symbols (like points), or
“thermometers” (like symbols) on all or some selected nodes. The formatting
allows us to place the labels exactly on the node, or at a point around it, thus
giving the possibility of adding information. The text can be framed with
rectangles or circles, and colors can be used.

The number of options of nodelabels is quite small (Table 4.2), but it
takes advantage of the ... (pronounced “dot-dot-dot”) argument of R’s meth-
ods. This “mysterious” argument means that all arguments that are not pre-
defined (i.e., those not in Table 4.2 in the present case) are passed internally

72 4 Plotting Phylogenies

Struthionidae
Rheidae
Casuariidae
ApterygidaeTinamidaeCracidaeMegapodiidae

PhasianidaeNumididaeOdontophoridae

Anhimidae
Anseranatidae

Dendrocyg
nidae

Anatid
ae

Turnici
dae

Ind
ica

tor
ida

e

Pici
da

e

M
eg

ala
im

ida
e

Ly
bi

id
ae

Ram
ph

as
tid

ae

G
al

bu
lid

ae

Bu
cc

on
id

ae

B
uc

er
ot

id
ae

B
uc

or
vi

da
e

U
pu

pi
da

e

P
ho

en
ic

ul
id

ae

R
hi

no
po

m
as

tid
ae

T
ro

go
ni

da
e

C
or

ac
iid

ae

Le
pt

os
om

id
ae

M
er

op
id

ae

M
om

ot
id

ae

T
od

id
ae

A
lc

ed
in

id
ae

D
acelonidae

C
erylidae

C
oliidae

C
uculidae

C
entropidae

C
occyzidae

O
pisthocom

idae

C
rotophagidae

N
eom

orphidae

P
sittacidae

A
podidae

H
em

iprocnidae

Trochilidae

M
usophagidae

Tytonidae

Strigidae

Aegothelidae

Podargidae

Batrachostomidae

Steatornithidae

Nyctibiidae

Eurostopodidae

Caprimulgidae
Columbidae

EurypygidaeOtididaeGruidaeHeliornithidaePsophiidaeCariamidaeRhynochetidae
Rallidae

Pteroclidae
Thinocoridae

Pedionomidae

Scolopacidae

Rostratulidae

Jacanidae

Chionididae

Burhinidae

Charadriidae

Glareolidae

Laridae

Accipitrid
ae

Sagitta
riid

ae

Falconidae

Podicipedidae

Phaethontid
ae

Sulid
ae

Anhingidae

Pha
lac

ro
co

ra
cid

ae

Ard
eid

ae

Sco
pi

da
e

Pho
en

ico
pt

er
id

ae

Th
re

sk
io

rn
ith

id
ae

Pe
le

ca
ni

da
e

C
ic

on
iid

ae
Fr

eg
at

id
ae

S
ph

en
is

ci
da

e
G

av
iid

ae
P

ro
ce

lla
rii

da
e

A
ca

nt
hi

si
tti

da
e

P
itt

id
ae

E
ur

yl
ai

m
id

ae
T

yr
an

ni
da

e
T

ha
m

no
ph

ili
da

e
F

ur
na

rii
da

e
F

or
m

ic
ar

iid
ae

C
onopophagidae

R
hinocryptidae

C
lim

acteridae
M

enuridae
P

tilonorhynchidae
M

aluridae
M

eliphagidae
P

ardalotidae
E

opsaltriidae
Irenidae

O
rthonychidae

P
om

atostom
idae

Laniidae
Vireonidae

Corvidae
Bom

bycillidae

Cinclidae

M
uscicapidae

Sturnidae

Sittidae

Certhiidae

Paridae

Aegithalidae

Hirundinidae

Regulidae

Pycnonotidae

Cisticolidae

Zosteropidae

Sylviidae

Alaudidae

Nectariniidae

Melanocharitidae

Paramythiidae

Passeridae

Fringillidae

Fig. 4.6. A circular tree using type = "radial" in plot.phylo

to another function, in the present case either text or points (see below).
Particularly, text has a few options to define font, character expansion, and
position of the text (some examples are given in Table 4.2) which thus may
be used in nodelabels.

4.1 Simple Tree Drawing 73

Table 4.2. The options of nodelabels. The values marked with (d) are the default
ones

Option Effect Possible values

text Text to be printed A vector of strings;
can be left missing (d)

node Nodes where to print A vector of numerics or strings;
can be left missing (d)

adj Position with respect One or two numeric values
to the node

frame Type of frame around text "r" (d), "c", "n"
pch The type of plotting symbol An integer between 1 and 25,

or a character string
thermo Draw filled thermometers A numeric vector or matrix

with one or two levels
col Color for text or symbol A character string or a color code
bg Color for the background id. (default: "lightblue")

of the frame or the symbol
... Further arguments cex = , font = , vfont =

offset = , pos =

The option pch is defined as NULL by default, meaning that some text will
be printed by default; if pch is given a value, then text is ignored. The nodes
where the labels are printed are specified with node: this is done using the
numbers of the edge element of the "phylo" object. The numbers specified
can be either positive (1, 2, . . .) or negative (−1, −2, . . .), and can also be
given as character strings ("1", "2", . . . , or "-1", "-2", . . .). Obviously, it
seems necessary to know these node numbers to use nodelabels, but this is
not a difficulty: they can be displayed on the screen using this function with
no argument (i.e., nodelabels(); Fig. 4.7).

Another way to proceed is to assume that the vector of labels (or symbols
to plot) is already ordered along the nodes: they will be displayed on the nodes
in the correct order.

For a very simple operational example, consider plotting a tree showing
the estimated divergence dates among gorillas, chimpanzees, and humans. We
take the dates estimated by Stauffer et al. [145]:

trape <- read.tree(text = "((Homo,Pan),Gorilla);")
plot(trape, x.lim = c(-0.1, 2.2))
nodelabels("6.4 Ma", 1, frame = "c", bg = "white")
nodelabels("5.4 Ma", 2, frame = "c", bg = "white")

Because the labels need some space, we have to leave a little extra space
between the root and the left-hand side margin, hence the use of the x.lim
option (Fig. 4.8). We know that the root is numbered −1, so the first date
is printed by simply giving 1 as second argument. Similarly, the second node

74 4 Plotting Phylogenies

Apodemus alpicola
Apodemus uralens

Apodemus flavicollis
Apodemus sylvaticus

Apodemus hermonensis
Apodemus mystacinus

Apodemus peninsulae
Apodemus semotus

Apodemus agrarius
Tokudaia minutus

Mus musculus
Mus caroli

Rattus norvegicus
Diplothrix legata

−1

−2

−3

−4

−5
−6

−7
−8

−9

−10
−11

−12

−13

Fig. 4.7. Display of node numbers with nodelabels()

Homo

Pan

Gorilla

6.4 Ma

5.4 Ma

Fig. 4.8. Adding dates with nodelabels

is obviously numbered −2. If the node numbers are omitted, the labels are
printed successively on all nodes. Thus, the same figure could have been ob-
tained with:

plot(trape, x.lim = c(-0.1, 2.2))
nodelabels(c("6.4 Ma", "5.4 Ma"), frame = "c", bg = "white")

This is clearly useful if one has a large number of values to add on the tree.
It is also often needed to print numeric values close to, but not exactly on,

4.1 Simple Tree Drawing 75

the nodes, for instance, bootstrap values. Usually, such values are arranged
in a vector (say bs) and ordered along the node numbers, because this is the
interface of the "phylo" objects. It is common to print the bootstrap values
right to the nodes and without frames which can be done simply with:

plot(tr)
nodelabels(bs, adj = 0, frame = "n")

In some cases, this may need to be tuned slightly because the labels will
be stuck to the nodes and the font size may be too large (or too small): the
former can be moved slightly rightwards by giving a small negative value to
adj (e.g., adj = -0.2), and the font size can be set by using the option cex.

Note that here a single value has been given to adj: this sets the horizontal
justification only, and this conforms to standard R’s graphical functions (see
?par in R for details).

If a program outputs bootstrap values as node labels in a Newick tree,
then this can be handled easily because once the tree has been read with
read.tree these values are stored in the node.label element of the "phylo"
object (see Section 3.1.1). They can be plotted with something like:

plot(tr)
nodelabels(tr$node.label, adj = 0, frame = "n")

It is also usual to plot several values around a node. Michaux et al. [100]
showed on their tree bootstrap values from the different phylogeny reconstruc-
tion methods they used: parsimony, neighbor-joining, and maximum likeli-
hood. This can be done by successive calls to nodelabels with different values
for adj. The option font can be used to distinguish the different values. We
first input the bootstrap values on the keyboard simply using scan:

> bs.pars <- scan()
1: NA 76 34 54 74 100 56 91 74 60 63 100 100
14:
Read 13 items
> bs.nj <- scan()
1: NA 74 48 68 75 100 NA 91 67 82 52 100 100
14:
Read 13 items
> bs.ml <- scan()
1: NA 88 76 73 71 100 45 81 72 67 63 100 100
14:
Read 13 items

There are of course many other ways to input these values. Note that we
have given a missing value to the first node, because this is the root and the
tree was rooted with an outgroup. We then plot the tree without the margins
to leave more space for the bootstrap values, and add successively the latter
with three calls to nodelabels (Fig. 4.9):

76 4 Plotting Phylogenies

Apodemus alpicola

Apodemus uralensis

Apodemus flavicollis

Apodemus sylvaticus

Apodemus hermonensis

Apodemus mystacinus

Apodemus peninsulae

Apodemus semotus

Apodemus agrarius

Tokudaia minutus

Mus musculus

Mus caroli

Rattus norvegicus

Diplothrix legata

76

34

54

74

100

56

91

74

60

63

100

100

74

48

68

75

100

91

67

82

52

100

100

88

76

73

71

100

45

81

72

67

63

100

100

0.01

Fig. 4.9. Adding bootstrap values

plot(tr, no.margin = TRUE)
nodelabels(bs.pars, adj = c(-0.2, -0.1), frame = "n",

cex = 0.8, font = 2)
nodelabels(bs.nj, adj = c(1.2, -0.5), frame = "n",

cex = 0.8, font = 3)
nodelabels(bs.ml, adj = c(1.2, 1.5), frame = "n", cex = 0.8)
add.scale.bar(length = 0.01)

The last command adds a scale bar (see below for explanation of this function).
To graphically display the different levels of a single proportion, say bs.ml,

we can use the option thermo. It represents the proportions of two or more
categories as a filled thermometer. This representation is less usual than cir-
cular symbols such as piecharts, but the latter are less intelligible, particularly
with more than three proportions. The commands are (Fig. 4.10):

plot(tr, no.margin = TRUE)
nodelabels(thermo = bs.ml/100, col = "grey", bg = "white")

We now illustrate the use of the pch option by plotting symbols instead
of the raw numeric values. For this, we consider again the bootstrap values
of the maximum likelihood method (bs.ml). Suppose we want to plot a filled
circle for a bootstrap value greater than or equal to 90, a grey circle for a
value between 70 and 90, and an open circle for a value less than 70. We
first create a vector of mode character and assign strings with respect to the
original bootstrap values according to the rules defined above.

4.1 Simple Tree Drawing 77

Apodemus alpicola

Apodemus uralensis

Apodemus flavicollis

Apodemus sylvaticus

Apodemus hermonensis

Apodemus mystacinus

Apodemus peninsulae

Apodemus semotus

Apodemus agrarius

Tokudaia minutus

Mus musculus

Mus caroli

Rattus norvegicus

Diplothrix legata

Fig. 4.10. Plotting proportions on nodes with thermometers

p <- character(length(bs.ml))
p[bs.ml >= 90] <- "black"
p[bs.ml < 90 & bs.ml >= 70] <- "grey"
p[bs.ml < 70] <- "white"

We can now plot the tree, then call nodelabels giving p as value for the
option bg. We also specify pch = 21 which uses a color-filled circle.

plot(tr, no.margin = TRUE)
nodelabels(node = 2:13, pch = 21, bg = p[-1], cex = 2)

Here we must use node to avoid a symbol being plotted at the root. Also we
have to tell the option bg to ignore the first value of p (which is actually an
empty string). To finish the figure, we further add a legend by two calls to
points and text (Fig. 4.11):

points(rep(0.005, 3), 1:3, pch = 21, cex = 2,
bg = c("black", "grey", "white"))

text(rep(0.01, 3), 1:3, adj = 0,
c("90 <= BP", "70 <= BP < 90", "BP < 70"))

The function tiplabels plots labels at the tips of the tree, and has exactly
the same syntax as nodelabels except that the argument node is replaced by
tip.

78 4 Plotting Phylogenies

Apodemus alpicola

Apodemus uralensis

Apodemus flavicollis

Apodemus sylvaticus

Apodemus hermonensis

Apodemus mystacinus

Apodemus peninsulae

Apodemus semotus

Apodemus agrarius

Tokudaia minutus

Mus musculus

Mus caroli

Rattus norvegicus

Diplothrix legata

90 <= BP

70 <= BP < 90

BP < 70

Fig. 4.11. Plotting symbols on nodes

Axes and Scales

ape has two low-level plotting functions that add an indication of the scale of
the branches on a phylogeny plot.

add.scale.bar() adds a short bar at the bottom left corner of the plotting
region. If this default location is not suitable, it can be modified with the
arguments x and y. The length of the bar is calculated from the lengths of
the plotted tree (so this works even if the tree has no branch lengths); this
can be modified too with the length option (see Fig. 4.9).

axisPhylo() adds a scale on the bottom side of the plot which scales from
zero on the rightmost tip to increasing values leftwards (see Figs. 4.17 and
4.18). If the tree is ultrametric, this may represent a time scale. The option
side allows us to draw the scale on different sides of the plot: side = 1 (the
default) draws it below, 2 on the left, 3 above, and 4 on the right. Note that
either 2 or 4 should be used if the tree is vertical.

Manual Annotation

R’s low-level plotting commands can be used to annotate tree manually a once
it has been plotted. The useful functions in this context are text, segments,
arrows (all have explicit names), and mtext (marginal text). Except for the
last one, the coordinates must be given by the user.

A simple, but hopefully didactic example, plots a four-taxon tree, and add
various annotations (Fig. 4.12):

4.1 Simple Tree Drawing 79

Strix aluco

Asio otus

Athene noctua

Tyto alba

This is a node

R
oot

Simple text above

Text above with "line = 2"

Text below ("side = 1")

T
ex

t i
n

th
e

le
ft−

ha
nd

 m
ar

gi
n

("
si

de
 =

 2
")

Fig. 4.12. Manual annotation of a tree

tree.owls <- read.tree(text = "(((Strix_aluco:4.2,
Asio_otus:4.2):3.1,Athene_noctua:7.3):6.3,
Tyto_alba:13.5);")

plot(tree.owls, x.lim = 19)
box(lty = 2)
text(2, 1.5, "This is a node", font = 2)
arrows(3.5, 1.55, 6.1, 2.2, length = 0.1, lwd = 2)
text(0.5, 3.125, "Root", srt = 270)
points(rep(18.5, 4), 1:4, pch = 15:18, cex = 1.5)
mtext("Simple text above")
mtext("Text above with \"line = 2\"", at = 0, line = 2)
mtext("Text below (\"side = 1\")", side = 1)
mtext("Text in the left-hand margin (\"side = 2\")",

side = 2, line = 1)

The call to box helps to visualize the limit between the plotting region
and the margins. Note the use of the option x.lim to leave a little extra space
for the symbols plotted by points. By default, mtext prints the text at the
center of the closest line to the plotting region: this is altered by the options
at and line, respectively, as illustrated above. Note how double quotes are
specified inside a character string: a backslash is needed to escape them.

Colors (which are not used here) can be specified in all of these functions
with the col options.

80 4 Plotting Phylogenies

Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes

N
eoaves

P
roaves

Fig. 4.13. Simple bars

4.1.2 Showing Clades

Trees are statistical tools for classification of observations, and it is obvious
that in some situations clades (monophyletic groups) need to be identified in
a plotted phylogeny. This may be for simple illustrative purpose, for instance,
to show how different groups segregate on a phylogeny, or for exploratory
reasons. In the latter case, an automated approach is clearly required.

I have found four ways commonly used in the literature to show clades on
a phylogeny:

• Drawing bars in the face of the tips of the clade;
• Labeling the node corresponding to the most recent common ancestor of

the clade;
• Coloring the branches of the clade;
• Drawing an ellipse or a rectangle over the branches and tips belonging to

the clade.

The second approach is covered in Section 4.1.1. The first and fourth ap-
proaches are mostly appropriate for illustrative purposes, whereas the second
and third ones are the best suited for exploratory analyses.

Bars can be added easily on the side of a tree with the low-level plotting
command segments. The options of this function that are useful in this con-
text are lwd for the line width and col for its color. When drawing such bars,
it will be necessary to leave some space on the appropriate side of the plot.

It is useful to know that the tips of the tree are drawn in the same order as
in the element tip.label in the "phylo" object, and their coordinates on the

4.1 Simple Tree Drawing 81

y-axis are 1, 2, and so on. This may be helpful in specifying the coordinates
of the vertical bars. Figure 4.13 shows a simple example with a phylogeny of
bird orders; the commands used were:

plot(bird.orders, font = 1, x.lim = 40,
no.margin = TRUE)

segments(38, 1, 38, 5, lwd = 2)
text(39, 3, "Proaves", srt = 270)
segments(38, 6, 38, 23, lwd = 2)
text(39, 14.5, "Neoaves", srt = 270)

Some arguments are obviously repeated in the successive calls to segments
and text: they are the coordinates of the plotted objects. These calls may be
grouped in a single one (e.g., text(rep(39, 1), c(3, 14.5), c("Proaves",
"Neoaves"), srt = 270); they were kept distinct for clarity.

Colors are interesting for showing clades, because this can be some-
what automated in R, and thus used for exploratory graphical analyses. In
plot.phylo, the options edge.color and edge.width allow us to specify
the color and width of each branch of the tree. For instance, edge.color
= "blue" will color all edges in blue. As many colors as the number of
branches may be specified, the values being possibly recycled: edge.color
= c("blue", "red") will color the first, third, . . . , branches in blue, and
the second, fourth, . . . , in red. The problem is to know the numbers of the
branches. This may be easy with a small "phylo" object by printing it and
then visually finding the number of each branch. However, this may be more
difficult with large trees. The function which.edge may be used here because
it returns the indices of the branches that belong to a specified group. The
latter may be not monophyletic in which case the indices will include branches
up to the most recent common ancestor of the group. For instance, using the
same bird phylogeny:

> wh <- which.edge(bird.orders, 19:23)
> wh
[1] 31 35 37 38 39 40 41 42 43 44

It is now easy to define a vector of colors to be used in plot.phylo. We first
repeat a default color (say black) with as many branches as in the tree:

colo <- rep("black", dim(bird.orders$edge)[1])

The command dim(...)[1] extracts the number of rows in the element edge
of the tree:2 we now have a vector with 45 repetitions of "black". The colors
of the clades defined above (tips 19–23) are simply modified with:

colo[wh] <- "grey"

2 This could be done with length(bird.orders$edge.length), but this will not
work if the tree has no branch length.

82 4 Plotting Phylogenies

Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes

Fig. 4.14. Simple edge colors

The tree can now be drawn. We use wider lines to display the difference in
colors better (Fig. 4.14):

plot(bird.orders, "c", FALSE, font = 1, edge.color = colo,
edge.width = 3, no.margin = TRUE)

Showing a clade with a frame or an ellipse is not so easy because if the
contour is added after the tree is plotted, it will overlap the latter and hide
a portion of it if a colored background is chosen. An obvious solution is to
plot a contour without background (which is the default in most functions in
R). For instance, with the bird phylogeny, if we want a rectangle showing the
clade of the first five orders, we could do:

plot(bird.orders, font = 1)
rect(1.2, 0.5, 36, 5.4, lty = 2)

By default, the lines of the rectangle are the same as those of the tree
edges, hence it may be good to distinguish them with the usual options (lty
= 2 specifies dashed lines). The numeric arguments to rect give the position
of the leftmost, lower, rightmost, and upper sides of the rectangle. Those can
be obtained with the locator function which returns the coordinates on the
current R plot of points indicated by the user with a pointer (usually the
mouse of the computer).

A less straightforward, but maybe more efficient, solution is to edit the
code of plot.phylo, and add the above call to rect just after the call to plot.
This will draw the rectangle before the tree. A possible set of commands may
be (Fig. 4.15):

4.2 Combining Plots 83

Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes

Fig. 4.15. A framed clade

fix(plot.phylo)
add rect(1.2, 0.5, 36, 5.4, col = "lightgrey")
just after plot(0,)
then save and close the editor
plot(bird.orders, font = 1, no.margin = TRUE)

Note that the modifications done by fix alter only the functions loaded
in memory, not the ones on the disk. Thus the original functions are restored
when R is closed.

4.2 Combining Plots

It may be enlightening to combine several plots in a single figure. This may
be needed to indicate the distribution of some variables among recent species
(represented by the tips of the tree). ape has no special function to combine
trees with other plots: this must be done with standard R functions. ade4 has
a few special functions to plot variables in the face of the tips of a tree. Let
us first see what can be done with them.

If a variable must be plotted facing the tips of the tree, symbols.phylog
or dotchart.phylog can be used. To illustrate them, first convert the class
of our owl tree, and create a vector x with the mean body length (in cm) of
these four species; the plots are then made (Fig. 4.16):

tg <- newick2phylog(write.tree(tree.owls))

84 4 Plotting Phylogenies

 22.5 27.5 32.5 37.5
20 25 30 35 40

Fig. 4.16. The functions symbols.phylog (left) and dotchart.phylog (right)

x <- c(38, 36, 22, 34)
symbols.phylog(tg, squares = x)
dotchart.phylog(tg, x)

table.phylog is a multivariate version of symbols.phylog: the tree is plotted
horizontally facing a matrix with symbols representing the variables arranged
in columns. It is preferable that the variables are on the same scale.

To have a more flexible way of plotting variables, one can use plot.phylo
and manually add further graphical elements. It is useful to know here that
when plotting a phylogram or a cladogram, the tips have the coordinates 1,
2, and so on (whatever the direction). It is thus possible to add, for instance,
horizontal bars after leaving extra space with x.lim (or y.lim if the tree is
vertical). We could, for instance, plot the species richness of each avian order
in the face of the corresponding phylogeny. We have the vector Orders.dat
with names set as the orders:

> Orders.dat <- scan()
1: 10 47 69 214 161 17 355 51 56 10 39 152
13: 6 143 358 103 319 23 291 313 196 1027 5712
24:
Read 23 items
> names(Orders.dat) <- bird.orders$tip.label
> Orders.dat
Struthioniformes Tinamiformes Craciformes

10 47 69

4.2 Combining Plots 85

Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes

0 5 10
ln(species richness)

30 25 20 15 10 5 0

Fig. 4.17. Bars in the face of a tree plotted with plot.phylo

Galliformes Anseriformes Turniciformes
214 161 17

Piciformes Galbuliformes Bucerotiformes
355 51 56

Upupiformes Trogoniformes Coraciiformes
10 39 152

Coliiformes Cuculiformes Psittaciformes
6 143 358

Apodiformes Trochiliformes Musophagiformes
103 319 23

Strigiformes Columbiformes Gruiformes
291 313 196

Ciconiiformes Passeriformes
1027 5712

Fortunately, the data are in the same order as in the tree.3 We can thus
proceed in a straightforward manner (Fig. 4.17):

plot(bird.orders, x.lim = 50, font = 1, cex = 0.8)
segments(rep(40, 23), 1:23, rep(40, 23) +

log(Orders.dat), 1:23, lwd = 3)
axis(1, at = c(40, 45, 50), labels = c(0, 5, 10))
mtext("ln(species richness)", at = 45, side = 1, line = 2)

3 If they were not in the correct order, the names would solve this easily with
Orders.dat[bird.orders$tip.label].

86 4 Plotting Phylogenies

axisPhylo()

Once we have determined that the bars will span between 40 and 50 on the
horizontal scale (which could be done by examining the default x.lim of
plot.phylo), it is easy to set the other values in the command. Note how we
draw a ‘custom’ scale on the x-axis. We did not use no.margin = TRUE to
leave some space for the scales under the plot.

In the examples we have seen above, the different graphics were plotted in
the same plotting region. It is possible to plot different graphs on the same
graphical device. This is usually done by splitting the graphical device (i.e.,
the window or the file) in several regions then calling successively different
high-level plotting functions. The most useful approach is to use the function
layout. The main argument of this function is a matrix with integer numbers
indicating the numbers of the ‘subwindows’. For instance, to divide the device
into four equal parts:

> layout(matrix(1:4, 2, 2))

Printing the matrix makes clear how the device is divided:

> matrix(1:4, 2, 2)
[,1] [,2]

[1,] 1 3
[2,] 2 4

The first graph will be plotted in the top-left quarter, the second in the
bottom-left quarter, the third in the top-right quarter, and the fourth in the
bottom-right quarter. Whereas with:

> matrix(c(1, 1, 2, 3), 2, 2)
[,1] [,2]

[1,] 1 2
[2,] 1 3

the first graph will span the left half of the device, and the second and third
ones will be in the top-right and bottom-right quarters, respectively. Quite
a large number of graphs can be plotted on the same device, for instance 16
with:4

> matrix(1:16, 4, 4)
[,1] [,2] [,3] [,4]

[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

4 It may happen that R cannot plot the graphs if there is not enough space in the
plotting region.

4.2 Combining Plots 87

The layout function gives a lot of possibilities. To illustrate this, we con-
sider plotting two trees of the same species but showing different information.
Let us come back to the Apodemus data (Fig. 4.1). Michaux et al. [100] es-
timated divergence dates on their tree using a molecular clock. The tree on
Fig. 4.1 could also be analyzed with the nonparametric rate smoothing method
of Sanderson [135] using the calibration point of 12 Ma (million years ago) for
the divergence Mus/Rattus. This is done with the function chronogram (Sec-
tion 5.4). We can proceed very easily by reading the clock tree of Michaux et
al., computing the chronogram, splitting the graphical device in two, and fi-
nally plotting both trees successively. The set of needed commands is straight-
forward:

trk <- read.tree("Apodemus_molclock.tre")
trc <- chronogram(tr, scale = 12)
layout(matrix(1:2, 1, 2))
plot(trk)
plot(trc, show.tip.label = FALSE, direction = "l")

The figure obtained this way will not display the information nicely be-
cause of the default margins which are too wide here. We need a little extra
work to make the figure informative. We first change the tip labels of the first
tree to replace the genus names with their initials. This could be done manu-
ally by editing trk$tip.label and replacing "Apodemus agrarius" with "A.
agrarius", and so on. Fortunately, R has functions that manipulate regular
expressions which considerably facilitates this kind of task. Here we use the
function gsub (global substitution), for instance:

trk$tip.label <- gsub("Apodemus", "A.", trk$tip.label)

will replace every occurrence of "Apodemus" by "A.". We could do this for
the five genera in the tree but this is still tedious, and there is a more general
solution:

trk$tip.label <- gsub("[[:lower:]]{1,}_", "._", trk$tip.label)

The regular expression "[[:lower:]]{1,}_" means “one or more lowercase
letter(s) followed by an underscore”. We clearly take advantage of the fact
that the genus and species names are separated by this last character.

We can now plot the trees but we need to care about the space around
both. Let us first see the whole commands, then explain what has been done.
The resulting plot is in Fig. 4.18.

layout(matrix(1:2, 1, 2), width = c(1.4, 1))
par(mar = c(4, 0, 0, 0))
plot(trk, adj = 0.5, cex = 0.8, x.lim = 16)
nodelabels(node = 12, "?", adj = 2, bg = "white")
axisPhylo()

88 4 Plotting Phylogenies

A. alpicola

A. uralensis

A. flavicollis

A. sylvaticus

A. hermonensis

A. mystacinus

A. peninsulae

A. semotus

A. agrarius

T. minutus

M. musculus

M. caroli

R. norvegicus

D. legata

?

12 10 8 6 4 2 0 0 2 4 6 8 10 12

Fig. 4.18. Facing trees

plot(trc, show.tip.label = FALSE, direction = "l")
axisPhylo()

The critical options are width for layout and x.lim for plot: they allow
us to have both trees of the same size on the figure. These commands will
work for any other data providing these two options are set correctly. Note
that we remove the space around the trees except that below, so we cannot
use the option no.margin of plot.phylo: instead we use the par function.
The call to nodelabels is to indicate that one node (the divergence between
the two species of Mus) was not dated by Michaux et al. [100]. Finally, we
draw the axis below each tree using axisPhylo.

Note the possibility with layout of inserting a graph within a larger one.
In principle the different subwindows are completely independent, but if one
of them is surrounded by another, then the graph in the first will overlap
with the second. For instance, with the following matrix given as argument
to layout:

matrix(c(2, 1, 1, 1), 2, 2)
[,1] [,2]

[1,] 2 1
[2,] 1 1

4.3 Large Phylogenies 89

Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes

−3 −2 −1 0 1 2 3

0
50

10
0

15
0

Fig. 4.19. Insert an histogram

the first graph will be plotted on the whole graphical device, and the second
one will be on the top-left quarter, thus potentially partially overlapping the
first one. To further reduce the size of the insert, one could do:5

layout(matrix(c(2, rep(1, 8)), 3, 3))

Here is an example of how this could be used (Fig. 4.19):

plot(bird.orders, "p", FALSE, font = 1,
no.margin = TRUE)

arrows(4.3, 15.5, 6.9, 12, length = 0.1)
par(mar = c(2, 2, 0, 0))
hist(rnorm(1000), main = "")

4.3 Large Phylogenies

Large trees are a puzzle for phylogeneticists because trees are themselves ways
to summarize the relationships among species and other taxonomic units, but
when they reach a certain size, the information that was supposed to be
summarized is likely to be no more visible. The recent literature has seen the
definition of a terminology about “large trees”, “very large trees”, and even
“huge trees” reaching tens of thousands of tips, but it is clear that even a
5 layout has options width and height to modulate the sizes of the subwindows

in a more flexible way than done here.

90 4 Plotting Phylogenies

tree with a few hundred tips may hide the phylogenetic information that was
originally sought.

Large trees have become an issue with the availability of larger and larger
molecular databases such as GenBank, and the development of ambitious
projects to assemble the tree of life. Large trees are also becoming present in
fields such as genomics where a single experiment can result in thousands of
observations.

The general strategy to visualize a large tree is to plot only a portion of
the full phylogeny, while indicating its context, that is, how it relates to the
rest of the tree.

We show that most of the necessary ingredients to visualize and explore
large trees are present in various functions in ape. plot.phylo and drop.tip
may be used in conjunction with R’s functions layout and X11 to give a
powerful and flexible environment for the graphical exploration of phylogenies.
One function in ape, zoom, integrates these ideas to give an automated way
to explore large trees.

We have seen that drop.tip removes some terminal branches from a
"phylo" object, and eventually trims the corresponding internal branches.
It is thus possible to use this function to extract a subtree by passing all but
the wanted tips as argument. If one has the numbers of the wanted tips, say
in a vector x, this can be done with:

drop.tip(tr, tr$tip.label[-x])

Alternatively, if x is a vector with the labels of the tips to be kept, one could
do:

drop.tip(tr, which(!tr$tip.label %in% x))

The expression tr$tip.label %in% x returns a logical value for each tip
label: it is TRUE if the label is in x, FALSE otherwise. The operator ! inverts
these logical values, and the function which returns the indices of those that
are TRUE.

Thus the action of drop.tip is quite straightforward, but it may be useful
to show in some way the relationship of the returned subtree with the original
tree. This can be done with the option subtree which takes a logical value.
If it is TRUE (the default is FALSE), a branch is included in the returned tree
that shows how many tips have been deleted in the operation; this is done for
as many monophyletic groups as have been removed.

Let us see how this works with a supertree of the mammal order Chiroptera
[76]. Our goal is to extract a subtree with the first 15 tips. The tree has
921 tips, thus the second argument to drop.tip could either be 16:921 or
chiroptera$tiplabel[-(1:15)] with exactly the same result. We then plot
the extracted tree (Fig. 4.20). The three commands are:

data(chiroptera)
tr <- drop.tip(chiroptera, 16:921, subtree = TRUE)

4.3 Large Phylogenies 91

Paranyctimene raptor

Nyctimene aello

Nyctimene celaeno

Nyctimene certans

Nyctimene cyclotis

Nyctimene major

Nyctimene robinsoni

Nyctimene albiventer

Nyctimene draconilla

Nyctimene minutus

Nyctimene cephalotes

Nyctimene rabori

Nyctimene malaitensis

Nyctimene masalai

Nyctimene vizcaccia

[22 tips]

[122 tips]

[757 tips]

Fig. 4.20. Extracting a subtree

plot(tr, font = c(rep(3, 15), rep(2, 3)), cex = 0.8,
no.margin = TRUE)

Note how we specified the font argument to have only the species names in
italics.

drop.tip can thus be used to explore large trees. One can use layout, as
we have seen above, to plot the whole tree and a subtree on the same device.
Another possibility is to open another device and plot the whole tree and the
subtrees on the different devices. For instance, to explore the bat supertree,
the following commands can be used.

plot(chiroptera)
X11()
plot(tr)

This will open a second graphical window, and plot the extracted subtree.
Because this second window is the active device, all subsequent graphics will
be plotted in it.6

zoom is a function that allows exploration of large trees in a more user-
friendly way. Its principle is to plot the whole tree in the left third of the
device, and one or several subtrees in the remaining portion of the device.
The locations of the subtrees are indicated with colors on the whole tree.
The subtree(s) is (are) specified in the same way as in drop.tip. There are
two options: subtree which has the same effect as in drop.tip, and col

6 See ?dev.list on how to set the priority of graphical devices.

92 4 Plotting Phylogenies

Struthionidae

Rheidae

Casuariidae

Apterygidae

Tinamidae

Cracidae

Megapodiida

Phasianidae

Numididae

Odontophorid

Anhimidae

Anseranatida

Dendrocygni

Anatidae

Turnicidae

[122 tips]

Fig. 4.21. Using zoom

which indicates the colors to be used. By default, a preset rainbow palette is
used. Any further argument recognized by plot.phylo (see Table 4.1) may
be passed thanks to the “dot-dot-dot” argument (see p. 71).

A simple example of the use of zoom could be (Fig. 4.21):

data(bird.families)
zoom(bird.families, 1:15, col = "grey", no.margin = TRUE,

subtree = TRUE)

We have set subtree = TRUE (the default is FALSE) to show the context of
the specified subtree, and no.margin = TRUE (which is passed to plot.phylo
as part of the “dot-dot-dot” argument) to use as much space as available on
the device.

If several subtrees need to be visualized on the same plot, they have to be
specified as a list (because they could differ in size). For instance (Fig. 4.22),

zoom(bird.families, list(1:15, 38:48), col = rep("grey", 2),
no.margin = TRUE, font = 1, subtree = TRUE)

Here we have used the same grey color for both subtrees, but by default red
and cyan (green-blue) are used.

4.4 Perspectives

The graphical analysis and exploration of phylogenies are in their early days.
There is undoubtedly much to expect from research in this area. With the now

4.4 Perspectives 93

Struthionidae
Rheidae
Casuariidae
Apterygidae
Tinamidae
Cracidae
Megapodiidae
Phasianidae
Numididae
Odontophoridae
Anhimidae
Anseranatidae
Dendrocygnidae
Anatidae
Turnicidae

[122 tips]

Cuculidae
Centropidae
Coccyzidae
Opisthocomidae
Crotophagidae
Neomorphidae
Psittacidae
Apodidae
Hemiprocnidae
Trochilidae
Musophagidae

[9 tips]
[80 tips]

[1 tips]
[16 tips]

[5 tips]
[1 tips]

[14 tips]

Fig. 4.22. Using zoom to show two groups

widespread availability of powerful computers, it will be possible to explore
and analyze large phylogenies in a flexible way. Future developments will need
to take care of integration with other tools, and operability for the interchange
of information among different systems.

The examples presented in this chapter all use the graphics package of R
which is the default graphical environment of R. Future developments may
consider instead the grid package developed by Paul Murrell. This is a reim-
plementation of R’s graphical environment with greater performance and flex-
ibility. Among the improvements are:

• Graphical objects are editable and can be modified without redrawing the
whole plot;

• Plots may be arranged in many ways (rotated, scaled, overlapping, etc.);
• The user can “navigate” among plots;
• Graphical objects may be shared among plots.

Using grid clearly needs further development but some of the existing codes
in ape can be reused directly (such as the functions that compute the coor-
dinates of the edges of the tree). Another example of a potentially useful
development is the use of the 3-D graphical libraries OpenGL which is al-
ready interfaced with R via the package rgl. I have already conducted some
experiments with both grid and rgl demonstrating the ease of such adapta-
tions. The issue now is to determine which tools need to be developed on these
environments.

94 4 Plotting Phylogenies

4.5 Exercises

1. Draw Fig. 4.11 using a color scale in place of the grey one. The figure
should include a legend.

2. Plot the phylogeny of avian orders, and color the Proaves in blue. Repeat
this but only for the terminal branches of this clade.

3. Suppose you have a factor, say representing a character state, for each
node and each tip of a tree. Find a way to associate a color with each
branch depending on the state at both ends of the branch.

5

Phylogeny Estimation

Reconstructing the evolutionary relationships among living species is one of
the oldest problems in biology. It has clearly enjoyed an increasing interest as
witnessed by the reviews published in the last few years [4, 12, 68, 69, 155].
There have been some real advances during the past two decades, but several
difficulties remain.

• The estimation of phylogenies is a computationally hard problem which is
analytically intractable in the general case [19].

• Realistic models of character evolution involve many parameters, and it is
likely that real processes are much more complex than the most complex
models available in the literature.

• A common biological complication is that the species and the characters
under study do not have the same history; this is particularly the case for
genetic data [4].

• It is often necessary to estimate many parameters simultaneously but only
some of them are of interest [68].

• There is some confusion in the use of some terminology related to esti-
mation and statistics that is likely to reveal difficulties in communicating
across different scientific fields [69].

• Some confusion arises because phylogeny estimation methods are also used
for systematics (i.e., classification of species) rather than estimating evo-
lutionary parameters.

• Many studies assessed the “performance” of phylogenetic methods using
simulations but these considered only special cases, and the conclusions
drawn from these simulations are of very limited value [69].

• The different methods, models, and algorithms for phylogeny estimation
are available in distinct programs resulting in several practical difficulties.

The last point is of particular interest here. All these programs have their
own features and requirements in terms of operating systems, user interfaces,
data formats, or licenses. Many of them are not free. Comparing different

96 5 Phylogeny Estimation

methods is difficult because it is often hard to decide whether the observed
differences in the results are due to different assumptions, algorithms, run-
time environments, computer architectures, or other features that vary among
programs. Even the analysis of a single data set is made difficult by the need
to switch between different software and / or operating systems.

The development of phylogeny estimation in R is very new, and some
progress has been made in distance-based and maximum likelihood methods.
This is limited compared to the methods available in the literature (partic-
ularly with respect to the old, well-established parsimony methods, and the
current success of Bayesian methods). There are good reasons to focus on
distance and likelihood methods, because these methods have been shown to
perform well in a number of situations (although we have to be cautious in
generalizing these conclusions as mentioned above). There has been a long-
lasting debate on the merits of parsimony, and although this method has been
severely criticized [37], it can be viewed as a valid nonparametric method [69].
Bayesian methods enjoy a current success, but some critics pointed out the
limitations of this approach [39, 148]. However, Bayesian phylogeny estima-
tion may be implemented in a straightforward way because all the necessary
ingredients exist in R or have been developed in various packages.

5.1 Distance Methods

Distance methods have a long history because in their simplest formulation
they are generally tractable even with a large amount of data [152]. I concen-
trate on only two methods: UPGMA and neighbor-joining. The first section
deals with how to compute distances in R.

5.1.1 Calculating Distances

There is a difference between the concepts of statistical and evolutionary dis-
tances. In statistics, a distance can be viewed as a “physical” or geometric
distance between two observations, each variable being a dimension in a hy-
perspace. In evolutionary biology, a distance is an estimate of the divergence
between two units (individuals, populations, or species). This is usually mea-
sured in quantity of evolutionary change (e.g., numbers of mutations).

R has various functions to compute distances available in different pack-
ages. Table 5.1 lists these functions, which are detailed in the following sec-
tions.

Classical Distances

R has a rich set of methods to compute classical distances. dist in pack-
age stats performs distance calculations taking a matrix as its main argu-
ment. Its main option is method which can take one of the six following

5.1 Distance Methods 97

Table 5.1. Functions for computing distances in R

Package Function Data Types

stats dist Continous or binary
cophenetic Objects of class "hclust" or "dendrogram"

cluster daisy Continuous and / or discrete
ade4 dist.binary Binary

dist.prop Relative frequencies
dist.genet An object of class "genet"

ape dist.gene Discrete
dist.dna Aligned DNA sequences
weight.taxo ‘Taxonomic’ levels
cophenetic An object of class "phylo"

strings: "euclidean" (the default), "maximum", "manhattan", "canberra",
"binary", or "minkowski". As a simple example:

> X <- matrix(rep(c(0, 1, 5), 3), 3)
> rownames(X) <- LETTERS[1:3]
> X
[,1] [,2] [,3]

A 0 0 0
B 1 1 1
C 5 5 5
> dist(X)

A B
B 1.732051
C 8.660254 6.928203
> dist(X, method = "maximum")
A B

B 1
C 5 4
> dist(X, method = "manhattan")

A B
B 3
C 15 12

dist returns an object of class "dist" which is a vector storing only the lower
triangle of the distance matrix (because it is symmetric and all its diagonal
elements are equal to zero). These objects can be converted to matrices using
the generic function as.matrix, and matrices can be converted with as.dist:

> d <- dist(X)
> class(d)
[1] "dist"
> as.matrix(d)

98 5 Phylogeny Estimation

A B C
A 0.000000 1.732051 8.660254
B 1.732051 0.000000 6.928203
C 8.660254 6.928203 0.000000

The function daisy in the package cluster also performs distance cal-
culations but it implements some methods that can deal with mixed data
types. Two metrics are available via the option metric: "euclidean" or
"manhattan". The data types are specified with the option type.

Evolutionary Distances

ape has two functions to calculate evolutionary distances: dist.gene and
dist.dna. They handle allelic data and DNA sequences, respectively. Addi-
tionally ade4 has the function dist.genet that computes distances between
populations using allele frequency data

dist.gene provides a simple interface to compute the distance between
two haplotypes using a simple binomial distribution of the pairwise differences.
This allows us to compute easily the variance of the estimated distances with
the expected variance of the binomial distribution. The input data are a ma-
trix or a data frame where each row represents a haplotype, and each column
a locus.

dist.dna provides a comprehensive function for the estimation of dis-
tances from aligned DNA sequences using substitution models (Table 5.2). If
a correction for among-sites heterogeneity (usually based on a Γ distribution)
is available, this may be taken into account. The variances of the distances
can be computed as well.

dist.genet takes as input the allele frequencies from one or several loci,
and computes the distances between populations. The data must be a list of
class "genet". Such a list may be obtained from a matrix with the function
char2genet (see the help of this function for details). Five methods are avail-
able to compute these distances: standard (or Nei’s), angular (or Edwards’s),
Reynolds’s, Rogers’s, and Provesti’s. This is specified with the option method
which takes an integer value between 1 and 5.

By contrast to dist.gene, dist.dna and dist.genet return an object of
class "dist".

Special Distances

The package ade4 has two functions that compute distances with some special
types of data: dist.binary and dist.prop, for binary data and proportions,
respectively. The first one has the option method which takes an integer be-
tween 1 and 10; this includes the well-known Jaccard, and the Sokal and
Sneath methods. The second function has a similar option taking an integer
between 1 and 5; this includes Rogers’s, Nei’s, and Edwards’s methods.

5.1 Distance Methods 99

Table 5.2. Options of the function dist.dna

Options Effect Possible Values

model Specifies the substitution
model

"raw", "JC69", "K80" (d),
"K81", "F81", "F84", "T92",
"TN93", "GG95"

variance Whether to compute the
variances

FALSE (d), TRUE

gamma The value of α for the Γ cor-
rection

NULL (no correction) (d), a nu-
meric giving the value of α

pairwise.deletion Whether to delete the sites
with missing data in a pair-
wise way

FALSE (d), TRUE

base.freq The frequencies of the four
bases

NULL (calculated from the data)
(d), four numeric values

as.matrix Whether to return the re-
sults as a matrix or as an ob-
ject of class "dist"

TRUE (d), FALSE

ape has the function weight.taxo that computes a similarity matrix be-
tween observations characterized by categories that can be interpreted as a
taxonomic level (i.e., a numeric code, a character string, or a factor). The
value is 1 if both observations are identical, 0 otherwise.

Finally, stats has a generic function cophenetic that computes the dis-
tances among the tips of a hierarchical data structure: there are methods for
objects of class "hclust", "dendrogram", and "phylo".

5.1.2 Simple Clustering and UPGMA

There is a corpus of phylogeny estimation methods that are based on statis-
tical clustering methods. They were popular in the past, but have recently
declined since the rise of likelihood and Bayesian methods. These methods
are limited, mostly because of their assumption of constant rates of evolution
[106]. We do not consider them in detail, but using these methods is a nice
illustration of how different functions from different packages in R can interact
simply.

R has a reasonably large number of functions that perform clustering [154].
They mostly work on a distance (also called dissimilarity) matrix, but some of
them work directly on the original data matrix (observations and variables).
Remarkably, a tree estimated with the unweighted pair-group method using
arithmetic average (UPGMA) is built in exactly the same way as a hierarchical
clustering with the average method. Thus such a tree can be estimated in a
straightforward way, for instance, from a set of DNA sequences named X with:

M <- dist.dna(X)

100 5 Phylogeny Estimation

hc <- hclust(M, "average")
tr <- as.phylo(hc)

The substitution model can be changed with the appropriate option in
dist.dna. Giving the graphical functions detailed in the previous chapter,
it is easy to compare the trees estimated with different substitution models;
for instance:

M1 <- dist.dna(X)
tr1 <- as.phylo(hclust(as.dist(M1), "average"))
M2 <- dist.dna(X, model = "F84")
tr2 <- as.phylo(hclust(as.dist(M2), "average"))
layout(matrix(1:2, 2, 1))
plot(tr1, main = "Kimura (80) distances")
plot(tr2, main = "Felsenstein (84) distances")

We show some practical examples in Section 5.5.

5.1.3 Neighbor-Joining

The neighbor-joining (NJ) method is a fast and straightforward method for
estimating a phylogenetic tree from a distance matrix [134]. Its principle is
to construct a tree by successive pairing of taxons (the neighbors): the pair
that leads to the tree with the smallest total branch length is selected. The
procedure is iterated until the tree is dichotomous.

ape has the function nj that performs the NJ algorithm. Its use is ex-
tremely simple: it takes a distance matrix as unique argument, and returns
the estimated tree as an object of class "phylo". As for the UPGMA, it is
easy to obtain NJ trees with different substitution models. It is also possible
to call nj repeatedly for a series of models:

mod <- list("JC69", "K80", "F81", "F84")
lapply(mod, function(m) nj(dist.dna(X, model = m)))

In the above command, we insert the call to dist.dna with the call to nj in
a function where the model is treated as a variable. lapply then dispatches
the different models to this function, and returns the results as a list.

A strength of the NJ method is that it is fast [152], even with large sam-
ple sizes, both in terms of number of tips (which is dealt with by the NJ
method) and in terms of number of sites (which is dealt with by the distance
computation methods).

5.2 Maximum Likelihood Methods

Maximum likelihood is the cornerstone of modern statistics [27, 30]. The two
critical ingredients in estimating a phylogeny by maximum likelihood are:

5.2 Maximum Likelihood Methods 101

• A parametric model of evolution appropriate for the characters;
• An algorithm that will search through the trees in order to find the max-

imum likelihood one.

All the other ingredients (deriving the probability distribution of the data
and the likelihood function, etc.) are somewhat straightforward. The model
chosen depends essentially on the nature of the characters under study. Among
the many possible models of character evolution, those commonly used fall into
two categories: Markovian and Brownian. Markovian models are appropriate
for modeling the evolution of discrete characters, whereas Brownian ones are
more appropriate for continuous characters.

5.2.1 Substitution Models: A Primer

The vast majority of models of evolution for discrete characters are Markovian
implying that:

• The number of character states is finite;
• The probabilities of transitions among these states are controlled by some

parameters;
• The process is at equilibrium.

This can be applied to many kinds of data [110], but the recent rise of large-
scale molecular databases has led to this approach being applied essentially to
nucleotide (DNA) and protein sequences. An intermediate kind of data often
considered for coding nucleotide sequences is based on codons.

A substitution model is a formulation of the instantaneous rates of change
among the different states of the character. For instance, for a character with
two states, A and B, where the rate of change (i.e., the probability of change
from one state to another for a very short time) is symmetric and equal to
0.1, the rate matrix, usually denoted Q, is:

Q =
[

−0.1 0.1
0.1 −0.1

]
. (5.1)

The rows of Q correspond to the initial state, and its columns to the final
one. The elements on the diagonal are set so that the sum of each row is zero.
For an arbitrary time interval t, the probability matrix P is obtained by the
matrix exponentiation of Q:

P = etQ . (5.2)

The element pij from the ith row and jth column of P is the probability of
being in state j after time t giving that the initial state was i. The probabilities
in P take into account possible multiple changes (e.g., a change from A to
B may be the result of A → B, or A → B → A → B, . . .). The matrix
exponentiation is usually calculated with an infinite sum:

102 5 Phylogeny Estimation

etQ = I + tQ +
(tQ)2

2!
+

(tQ)3

3!
+ · · · (5.3)

= I +
∞∑

i=1

(tQ)i

i!
. (5.4)

In practice, an approximation is done. Several functions in R perform matrix
exponentiation. We use mexp in the package rmutil:

> library(rmutil)
> Q <- matrix(c(-0.1, 0.1, 0.1, -0.1), 2)
> Q

[,1] [,2]
[1,] -0.1 0.1
[2,] 0.1 -0.1
> mexp(Q) # t = 1

[,1] [,2]
[1,] 0.90936538 0.09063462
[2,] 0.09063462 0.90936538
> mexp(10*Q) # t = 10

[,1] [,2]
[1,] 0.5676676 0.4323324
[2,] 0.4323324 0.5676676

We effectively have probabilities because the rows sum to one. Note that Q is
independent of time whereas P is not. Both calculated matrices are symmetric;
they would be asymmetric if Q were.

When fitting a substitution model to some data, its parameter(s) will
usually be unknown. For the hypothetical two-states character we write:

Q =
[

. α
α .

]
, (5.5)

where α is the parameter and the dots on the diagonal indicate that these
values are set so that the rows sum to zero.

This methodology is generalized to DNA sequences (by assuming that Q is
4× 4), to protein sequences (20× 20), and codons (64× 64). The substitution
models differ in the way the rate matrix Q is modeled. We consider here in
detail the case of DNA sequences because substitution models for this kind of
data are implemented in several functions in ape.

For the simplest models of DNA substitution, it is possible to derive the
transition probabilities (i.e., the elements of P) without matrix exponentia-
tion: this is nicely explained by Felsenstein [39, p.156]. In the following, each
model is cited, the character code used in ape is given, and the model is briefly
described.

5.2 Maximum Likelihood Methods 103

Jukes and Cantor 1969 ("JC69")

This is the simplest model of DNA substitution [77]. The probability of change
from one nucleotide to any other is the same. It is assumed that all four bases
have the same frequencies (0.25). The rate matrix Q is:

A G C T
A
G
C
T

⎡
⎢⎢⎣

. α α α
α . α α
α α . α
α α α .

⎤
⎥⎥⎦ .

As with the general case above, the rows correspond to the original state of
the nucleotide, and the columns to the final state (the row and column labels
are omitted in the following models).

The overall rate of change in this model is thus 3α. The probability of
change from one base to another during time t can easily be derived (see
[39]):

pab(t) = (1 − e−4αt)/4 a �= b , (5.6)

where a and b are among A, G, C, and T.
The expected mean number of substitutions between two sequences is

3(1 − e−4αt)/4 because there are three different types of change. From this, it
is straightforward to derive an estimate of the distance.

This model is available in dist.dna, mlphylo, and phymltest.

Kimura 1980 ("K80")

Because there are two kinds of bases with different chemical structures, purines
(A and G) and pyrimidines (C and T), it is likely that the changes within and
between these kinds are different. Kimura [81] developed a model whose rate
matrix is: ⎡

⎢⎢⎣
. α β β
α . β β
β β . α
β β α .

⎤
⎥⎥⎦ .

A change within a type of base is called a transition and occurs at rate
α; a change between types is called a transversion and occurs at rate β. The
base frequencies are assumed to be equal.

This model is available in dist.dna, mlphylo, and phymltest.

104 5 Phylogeny Estimation

Felsenstein 1981 ("F81")

Felsenstein [34] extended the JC69 model by relaxing the assumption of equal
frequencies. Thus the rate parameters are proportional to the latter:⎡

⎢⎢⎣
. απG απC απT

απA . απC απT

απA απG . απT

απA απG απC .

⎤
⎥⎥⎦ .

There are three additional parameters (the base frequencies, πA, πG, πC ,
and πT , sum to one, thus only three of them must be estimated) but they are
usually estimated from the pooled sample of sequences.

This model is available in dist.dna, mlphylo, and phymltest.

Kimura 1981 ("K81")

Kimura [82] generalized his model K80 by assuming that two kinds of transver-
sions have different rates: A ↔ C and G ↔ T on one side, and A ↔ T and
C ↔ G on the other. ⎡

⎢⎢⎣
. α β γ
α . γ β
β γ . α
γ β α .

⎤
⎥⎥⎦ .

This model is available in dist.dna.

Felsenstein 1984 ("F84")

This model can be viewed as a synthesis of K80 and F81: there are different
rates for base transitions and transversions, and the base frequencies are not
assumed to be equal. The rate matrix is:

⎡
⎢⎢⎣

. πG(α/πR + β) βπC βπT

πA(α/πR + β) . βπC βπT

βπA βπG . πT (α/πY + β)
βπA βπG πC(α/πY + β) .

⎤
⎥⎥⎦ ,

where πR = πA + πG, and πY = πC + πT (the proportions of purines and
pyrimidines, respectively). Felsenstein and Churchill [40] gave formulae for
the probability matrix and the distance. This model is available in dist.dna,
mlphylo, and phymltest.

5.2 Maximum Likelihood Methods 105

Hasegawa, Kishino, and Yano 1985 ("HKY85")

This model is very close in essence to the previous one but its parameterization
is different [66]: ⎡

⎢⎢⎣
. απG βπC βπT

απA . βπC βπT

βπA βπG . απT

βπA βπG απC .

⎤
⎥⎥⎦ .

Due to some mathematical properties of this rate matrix, it does not seem
possible to derive analytical formulae of the transition probabilities, and so for
the distance as well [156]. This model is available in mlphylo and phymltest.

Tamura 1992 ("T92")

The model developed by Tamura [150] is a generalization of K80 that takes
into account the content of G + C. The rate matrix is:⎡

⎢⎢⎣
. αθ βθ β(1 − θ)

α(1 − θ) . βθ β(1 − θ)
β(1 − θ) βθ . α(1 − θ)
β(1 − θ) βθ αθ .

⎤
⎥⎥⎦ ,

where θ = πG + πC . Tamura [150] gave formulae for the distance, and Galtier
and Gouy [44] gave formulae for the transition probabilities. This model is
available in dist.dna and mlphylo.

Tamura and Nei 1993 ("TN93")

Tamura and Nei [151] developed a model where both kinds of base transitions,
A ↔ G and C ↔ T, have different rates αR and αY , respectively. The base
frequencies may be unequal. All the above models can be seen as particular
cases of the TN93 model. The rate matrix is:

⎡
⎢⎢⎣

. πG(αR/πR + β) βπC βπT

πA(αR/πR + β) . βπC βπT

βπA βπG . πT (αY /πY + β)
βπA βπG πC(αY /πY + β) .

⎤
⎥⎥⎦ .

Fixing αR = αY results in the F84 model, whereas fixing αR/αY = πR/πY

results in the HKY85 model [39]. This model is available in dist.dna,
mlphylo, and phymltest.

106 5 Phylogeny Estimation

The “General Time-Reversible” Model ("GTR")

This is the most general time-reversible model. All substitution rates are dif-
ferent, and the base frequencies may be unequal [87]. The rate matrix is:⎡

⎢⎢⎣
. απG βπC γπT

απA . δπC επT

βπA δπG . ζπT

γπA επG ζπC .

⎤
⎥⎥⎦ .

There are no analytical formulae for the transition probabilities, nor for
the distance [39]. This model is available in mlphylo and phymltest.

Galtier and Gouy 1995 ("GG95")

Galtier and Gouy [43] developed a nonequilibrium model where the G + C
content is allowed to change through time. Sequences are assumed to evolve
on each lineage depending on its G + C content. This is estimated from the
G + C content of the recent species or populations. It is thus necessary to
estimate ancestral G + C contents. The rate matrices for each lineage are
similar to the one for the T92 model except that θ may vary.

This model is available in dist.dna.

5.2.2 Estimation with Molecular Sequences

If the probabilities of change along a tree are known (using one of the models
described in the previous section), the likelihood of the tree can be computed.
However, the states of the data on the nodes of the tree are unknown, and
it is necessary to sum the probabilities for all possible states on the nodes
which may involve a very large number of terms even for a moderate data set.
Felsenstein [34] presented an algorithm that allows considerable time saving
in this computation. The idea is to compute successively the likelihoods of
each character state at each node by summing the probabilities giving the
likelihoods of the descendants (hence the name “pruning algorithm”).

Denote as M the number of states (e.g., M = 4 for DNA data), pab(t) the
probability of change from state a to state b during time t. Then the likelihood
of state a at node z, given the likelihood of its descendants x and y (assuming
a binary tree) and the branch lengths txz and tyz is:

Laz =

(
M∑

b=1

pab(txz)Lbx

) (
M∑

b=1

pab(tyz)Lby

)
. (5.7)

If x is a tip, then Lbx = 1 if state b is observed, 0 otherwise.
Once this computation has been applied to all nodes of the tree, the like-

lihood of the character for the tree is obtained by:

5.2 Maximum Likelihood Methods 107

L =
M∑

a=1

πaLar , (5.8)

where πa is the frequency of the ath state, and r is the root of the tree. The
root can actually be placed on any internal node of the tree because the latter
is unrooted [34]. The likelihood of the full data set is:

L =
N∏

i=1

M∑
a=1

πaLair , (5.9)

where N is the number of characters. Taking the logarithm of this expression
leads to:

lnL =
N∑

i=1

ln

(
M∑

a=1

πaLair

)
. (5.10)

With molecular sequences, a further layer of complexity is added by con-
sidering heterogeneity among characters (sites). Two types of heterogeneity
are often considered: partitions and mixtures [123, 158]. With partitions, the
different characters are assigned in different categories, whereas with mixtures
we assume that there are different categories, but we do not know which sites
belong to which categories. Denote as fk the frequency of the kth category in
the mixture (with

∑
k fk = 1), then (5.7) would become:

Laiz =
∑

k

fk

(
M∑

b=1

pk
ab(txz)Lbix

) (
M∑

b=1

pk
ab(tyz)Lbiy

)
. (5.11)

The exponent k of p indicates that these probabilities depend on the categories
of the mixture.

The presence of partitions is ignored in this formulation, but they can be
taken into account easily because the log-likelihood is summed over all sites:
the full log-likelihood would become a sum of individual log-likelihoods similar
to (5.10) for each partition.

The partitions can have different models of evolution and different mix-
tures as well. On the other hand, the models of evolution and / or the mixtures
can be constrained to be the same across partitions (possibly with different pa-
rameter values). One can also imagine nested partitions with different shared
model components, for instance, four partitions each with different mixtures,
and a model of substitutions common to two partitions.

This general framework is implemented in ape. This covers many mod-
els of molecular evolution currently used in phylogenetics. Among those not
included in this framework are the nonequilibrium models where some param-
eters are assumed to change over time (typically the nucleotide frequencies).
Not included as well are the models with a nonfinite number of states, such as
the number of repeats in microsatellites, and the models of insertions–deletions
(indels).

108 5 Phylogeny Estimation

The user interface for defining a model of evolution is one of the functions
DNAmodel, AAmodel, or CODONmodel, depending on the kind of data analyzed.
These functions create an object whose class has the same name. Let us focus
on DNA sequence data: the two other functions work sensibly in the same
way.

DNAmodel has six arguments that define three aspects of a model of DNA
evolution: the substitution model, the Γ -variation among sites, and the pro-
portion of invariant sites. A partition can be defined for each of these aspects.
The option part.model defines the partitions used for the substitution mod-
els: it needs a single vector of integers that specifies the partition each site
belongs to; this vector is recycled if necessary. For instance, part.model =
c(1, 1, 2) is used for a coding sequence in which the third codon position
will be in a different partition. Another choice for two concatened sequences of,
say 800 and 900 nucleotides, part.model = c(rep(1, 800), rep(2, 900))
will specify a different partition for each sequence. If more than one parti-
tion is specified, it is possible to use different substitution models by giving a
vector of models to model; for instance, model = c("K80", "JC69") means
using Kimura’s 1980 model for the first partition and Jukes–Cantor’s one for
the second (in other words, the transition / transversion ratio will be allowed
to vary only in the first partition).

The intersite variation is specified in a way similar to the substitution
models. Two arguments can be used: part.gamma which is used in the same
way as part.model, and ncat which specifies the number of categories of the
discretized Γ distribution [157] (1 by default meaning that there is no intersite
variation).

The specification of invariant sites follows the same logic with two argu-
ments: part.invar and invar. The latter is a logical vector giving whether
there are invariant sites for each partition.

We have just seen that partitions are specified separately for the three
components of the model. The partitions that are actually used (i.e., the
sets of nucleotides with the same parameters of evolution) when fitting the
model specified by DNAmodel result from crossing over all three components.
This allows us to formulate a large number of models. To see how this works
we consider a simple example with two partitions for the substitution model
and two partitions for the intersite variation. If both partitions coincide the
resulting model obviously has two partitions:

ACCT...Sequence

1 400 800Partitions

K80 K80Substitution
 model

Γ ΓΓ−variation

κ1, α1 κ2, α2Parameters

5.2 Maximum Likelihood Methods 109

where κ1 and κ2 are the transition/transversion ratios, and α1 and α2 are
the shape parameters for the Γ distribution of intersite variation. The code
to specify this model is:

DNAmodel(part.model = c(rep(1, 400), rep(2, 400)),
model = "K80",
part.gamma = c(rep(1, 400), rep(2, 400)))

On the other hand, if they do not coincide the model has three partitions
resulting from crossing over the two specified partitions. This allows us to
specify parameters that are shared across several partitions.

ACCT...Sequence

1 200 600 800Partitions

K80 K80Substitution
 model

Γ ΓΓ−variation

κ1, α1 κ2, α1 κ2, α2Parameters

The code is now:

DNAmodel(part.model = c(rep(1, 200), rep(2, 600)),
model = "K80",
part.gamma = c(rep(1, 600), rep(2, 200)))

Of course, the interest of DNAmodel is to let the user formulate some models
that make sense biologically for the particular data at hand. A model of
interest for a sequence could be:

DNAmodel(part.model = c(1, 1, 2), model = c("K80", "JC69"),
part.gamma = c(1, 1, 2), ncat = c(4, 1))

This defines two partitions with respect to the codon positions: in the first
one, Kimura’s two-parameter model is assumed with an intersite variation
following a Γ -distribution with four categories, and in the second one Jukes–
Cantor’s model is assumed with no intersite variation (because one category
has been assumed for the second partition of part.gamma). This model seems
biologically reasonable because mutations on the third codon position are
likely to be less constrained than on the first and second ones, and thus tran-
sitions and transversions may occur at equal rates. Because mutations on the
first and second codon positions have greater structural impact on the protein,
it is likely that they vary along the sequence.

The above model assumes that the base frequencies are balanced: to relax
this assumption, the model can be modified with:

DNAmodel(part.model = c(1, 1, 2), model = c("F84", "F81"),
part.gamma = c(1, 1, 2), ncat = c(4, 1))

110 5 Phylogeny Estimation

All the options of DNAmodel have default values which are:

DNAmodel(part.model = 1, model = "K80",
part.gamma = 1, ncat = 1,
part.invar = 1, invar = FALSE)

This implies that calling DNAmodel() generates a model with Kimura’s two-
parameter model for all sites, with no intersite variation, and no invariants.

When flexibility in model-building is possible, it is critical to assess the
relevance of the models with empirical data [13, 14]. This is possible in the
maximum likelihood framework, and this has been discussed repeatedly in the
phylogenetic literature [71, 121]. This is dealt with in the next two sections.

5.2.3 Finding the Maximum Likelihood Tree

Once a model of sequence evolution has been chosen, its parameters must
be estimated. In the maximum likelihood framework, this involves finding
the values of the parameters that maximize (5.10) for a given data set. A
difficulty comes from the fact that there are two kinds of parameters that
need to be estimated: purely numeric parameters (branch lengths, substitution
parameters, shape parameter of the Γ -distribution of intersite variation, etc.)
and the topology of the tree. Maximum likelihood methods for tree estimation
use numerical methods to estimate the first kind of parameter [40, 58, 159].
This is relatively straightforward because computer scientists have devoted a
lot of effort to creating numerical methods that maximize complex functions
with possibly many variables [e.g., 6, 139].

On the other hand, finding the topology that maximizes the likelihood is
a much more difficult task. Several algorithms (sometimes called heuristics1)
have been proposed for exploring the tree space.

ape has the function mlphylo that performs maximum likelihood estima-
tion of phylogeny using molecular sequences. Its interface is:

mlphylo(model = DNAmodel(), x, phy, search.tree = FALSE)

where x is a DNA sequence data set, phy is a phylogenetic tree (as an object
of class "phylo"), and search.tree specifies whether to search the tree space
for the best topology (the default is only to estimate the branch lengths and
other parameters). If the option model is omitted, Kimura’s [81] model is used.

This function can be used to estimate the parameters of a relatively com-
plex model of DNA evolution for a given phylogeny (leaving the default for
search.tree).

If the tree space is searched (i.e., search.tree = TRUE), a method close to
that of Guindon and Gascuel [58] is used. This involves starting from an initial
tree (e.g., using nj), and then rearranging its topology with nearest-neighbor
1 This redefinition is unfortunate because “heuristics” has a more useful meaning

in epistemology.

5.2 Maximum Likelihood Methods 111

interchanges (NNI). In Guindon and Gascuel’s algorithm, NNIs are selectively
done under some optimization criteria, leading to a very fast method of tree
space search.

mlphylo returns an object of class "phylo" which is the estimated tree,
with additional attributes. There are several method functions to extract this
information: logLik returns the log-likelihood, AIC the Akaike information
criterion, and summary prints details on the estimated tree and parameters
(they are all generic).

5.2.4 DNA Mining with PHYML

The previous section explains how to define and fit a variety of molecular
evolution models. How to select the appropriate model(s) for parameter es-
timation is an issue that has attracted a lot of attention and debate among
statisticians [13, 15, 21, 99]. The importance of model selection in a like-
lihood framework has been made repeatedly in the phylogenetic literature
[101, 122, 120]. Posada and Crandall [121] developed a computer program,
to be used with the program PAUP*, that fits a series of DNA evolution
models to a given data set. This program is supposed to help in selecting a
substitution model for further analyses.2

In order to provide a similar functionality, but with a free phylogeny esti-
mation program, ape has the function phymltest which, instead of PAUP*,
uses PHYML developed by Guindon and Gascuel [58]. Another difference is
that phymltest lets PHYML search for the best tree for all fitted models.
All substitution models available in PHYML are used; these are: JC69, K80,
F81, F84, HKY85, TN93, and GTR. Additionally, models with(out) invariant
sites and / or intersite variation (with the usual Γ distribution) are used. This
results in 28 fitted models. The interface is:

phymltest(seqfile, format = "interleaved", itree = NULL,
exclude = NULL, execname, path2exec = NULL)

where seqfile is the name of the file with the sequences (given as a character).
The other arguments have default values, except execname, the name of the
PHYML executable, which must be specified as a character string. Under
Windows, execname may be left missing if the PHYML executable file is
named ‘phyml win32.exe’ (its original name in PHYML’s distribution).

Some care must be taken to set correctly the three diffferent paths involved
here: the path to PHYML’s executable, the path to the sequence file, and the
path to R’s working directory. Here are two possible uses under Linux and
Windows, respectively:

phymltest("/home/paradis/data/seq.txt",

2 MODELTEST has had remarkable success: the paper published in Bioinformatics
was cited 3068 times (source: Web of Science, January 23, 2006).

112 5 Phylogeny Estimation

execname = "phyml_linux",
path2exec = "/usr/local/bin")

phymltest("D:/data/seq.txt", path2exec = "D:/phyml")

If R returns an error message because of a problem in finding one of
the files, it might be better to move all files in the same directory, say
‘/home/paradis/phyml’ or ‘D:/phyml’, and set the latter as R’s working di-
rectory:

Linux:
setwd("/home/paradis/phyml")
phymltest("seq.txt", execname = "phyml_linux")
Windows:
setwd("D:/phyml")
phymltest("seq.txt")

phymltest returns an object of class "phymltest" that has three meth-
ods: the print method prints a table of all fitted models with the number of
free parameters, the values of the log-likelihood, and the Akaike Information
Criterion (AIC); the summary method computes and prints all possible likeli-
hood ratio tests (LRTs) between pairs of nested models; and the plot method
plots, on a vertical axis, all AIC values with an indication of the corresponding
model (see Section 5.5 for an example).

5.3 Bootstrap Methods and Distances Between Trees

The use of the bootstrap has enjoyed great success in phylogenetic analyses
[35]. The idea of the bootstrap can be sketched as follows: suppose we are
interested in quantifying the confidence level in a parameter estimate given
some data, but we cannot apply the methods based on distributional theory
of this parameter. Then we could resample the sample at hand many times,
mimicking the process of sampling the real population several times. The vari-
ation in the estimated parameter from the “bootstrap” samples is a measure
of the confidence level in this estimate [29].

The idea is simple, intuitive, and elegant, but, in some situations, requires
intensive computations [32]. The application of the bootstrap in phylogeny
estimation is almost as simple: estimate a tree with a given method, resample
the original data (the matrix taxa × characters) a large number of times,
and analyze these “bootstrap” samples with the same method, and calculate
the number of times the clades observed in the estimated tree appear in the
“bootstrap” ones.

The application of the bootstrap to assess confidence levels in phylogenetic
estimation has been criticized, but Efron, Halloran, and Holmes [31] showed
that this was due to confusion in the interpretation of the original bootstrap
method by Felsenstein [35]. Efron et al. also proposed another way to compute

5.3 Bootstrap Methods and Distances Between Trees 113

the bootstrap values for hypothesis testing rather than assessing confidence
levels [31].

In this section, we examine the different ways of resampling phylogenetic
data, comparing (possibly a large number of) phylogenetic trees, and com-
puting bootstrap values.

5.3.1 Resampling Phylogenetic Data

R has a powerful function, sample, that can be used to create a bootstrap
sample from a data set: this function returns a sample, by default without
replacement, of the vector given as argument. If the option replace = TRUE
is used, then sampling is done with replacement which is clearly what is needed
for a bootstrap sample. Below is a simple example with a vector x containing
10 values 1, 2, . . . , 10:

> x <- 1:10
> sample(x)
[1] 9 8 6 1 10 7 5 4 3 2
> sample(x, replace = TRUE)
[1] 7 5 2 4 10 6 2 1 2 2

Note that sample(x) returns a (random) permutation of the data. We can
also give a single integer value to sample, say 10, which will then return a
sample of integers from 1 to 10.

With phylogenetic data we are mostly interested in resampling the columns
of the matrix taxa × characters (where taxa are the rows, and characters the
columns). If this matrix is called X, then one can simply do:

X[, sample(ncol(X), replace = TRUE)]

Note the presence of the comma just after the left bracket which means that
all rows of X will be selected (see p. 15). Here is an example of how this could
be used:

> x <- scan(what = "")
1: a a c t t a a c t t c a c c t
16:
Read 15 items
> X <- matrix(x, 3, 5, byrow = TRUE)
> X

[,1] [,2] [,3] [,4] [,5]
[1,] "a" "a" "c" "t" "t"
[2,] "a" "a" "c" "t" "t"
[3,] "c" "a" "c" "c" "t"
> X[, sample(ncol(X), replace = TRUE)]

[,1] [,2] [,3] [,4] [,5]
[1,] "a" "c" "c" "a" "a"

114 5 Phylogeny Estimation

[2,] "a" "c" "c" "a" "a"
[3,] "a" "c" "c" "a" "c"

It happens sometimes that the columns of a matrix are affected with
weights, for instance, because the same values have been observed several
times for all taxa [31, 84]. This may be a useful way to reduce the size of
the data matrix, particularly if few sites are polymorphic. In these cases, re-
sampling must take these weights into account. Suppose each column of X is
associated with a weight stored in a vector w (length(w) is equal to ncol(X)),
then a bootstrap sample is obtained using the option prob of sample:

X[, sample(ncol(X), replace = TRUE, prob = w)]

The values passed to prob need not sum to 1 because they are used as relative
probability weights. If the values in w are integer weights, one may need to
use the option size to produce a sample of the appropriate size:

X[, sample(ncol(X), replace = TRUE, prob = w, size = sum(w))]

An issue in resampling phylogenetic data is that the columns may not be
independent, particularly in the case of molecular sequences. A solution is
to sample the sites by groups (or blocks) rather than individually. There are
several ways to do this in R. One is to build blocks of sites using the function
splitseq in seqinr, sample among these blocks, and reconstitute the sequence:

> library(seqinr)
> x <- scan(what = "")
1: a a a c c c g g g t t t
13:
Read 12 items
> x
[1] "a" "a" "a" "c" "c" "c" "g" "g" "g" "t" "t" "t"
> x.codon <- splitseq(x)
> x.codon
[1] "aaa" "ccc" "ggg" "ttt"
> x.boot <- sample(x.codon, replace = TRUE)
> x.boot
[1] "ccc" "aaa" "ttt" "ggg"
> s2c(c2s(x.boot))
[1] "c" "c" "c" "a" "a" "a" "t" "t" "t" "g" "g" "g"

The length of the blocks sampled may be altered with the option word of
splitseq (which is 3 by default):

> s2c(c2s(sample(splitseq(x, word = 2), replace = TRUE)))
[1] "t" "t" "a" "a" "g" "t" "g" "g" "g" "g" "a" "c"

5.3 Bootstrap Methods and Distances Between Trees 115

A more general solution to this problem is to sample the indices of the
vector instead of the vector itself. Let us consider the same case of sampling
blocks of three nucleotides in the vector x. First, build a vector with the indices
3, 6, . . . :

> block <- 3
> i <- seq(block, length(x), block)
> i
[1] 3 6 9 12

Then, sample this vector i as before:

> i.boot <- sample(i, replace = TRUE)
> i.boot
[1] 12 6 12 9

What we want in fact is a vector with the values 10, 11, 12, 4, 5, 6, 10, 11, 12,
7, 8, and 9. The pattern is clear: the 3rd, 6th, 9th, and 12th values are those
in i.boot, the 2nd, 5th, 8th, and 11th ones can be obtained with i.boot -
1, and the 1st, 4th, 7th, and 10th ones can be obtained with i.boot - 2.
We first create a vector of the appropriate length, and then feed in the values
with a loop:

> boot.ind <- numeric(length(x))
> boot.ind[i] <- i.boot
> for (j in 1:(block - 1)) boot.ind[i - j] <- i.boot - j
> boot.ind
[1] 10 11 12 4 5 6 10 11 12 7 8 9

The bootstrap sample is finally obtained with:

> x[boot.ind]
[1] "t" "t" "t" "c" "c" "c" "t" "t" "t" "g" "g" "g"

Note that we did not use the value of block (3) or length(x) (12) in
the above commands, so they can be used in different situations. They also
can be used to resample blocks of columns of a data matrix: in this case it is
necessary to replace length(x) by ncol(x), and the final command by x[,
boot.ind].

Because in most cases, a large number of bootstrap samples will be needed,
it is useful to include the appropriate sampling commands in a loop and / or
a function. This is what is done by the function boot.phylo described below.

5.3.2 Bipartitions and Computing Bootstrap Values

Once bootstrap samples and trees have been obtained, it is necessary to sum-
marize the information from them. ape provides several functions for this task
depending on the approach taken.

116 5 Phylogeny Estimation

A bipartition is made with two subsets of the tips of a tree as defined by an
internal branch. prop.part takes as its argument a list of trees and returns an
object of class "prop.part" which is a list of all observed bipartitions together
with their frequencies. There are print and summary methods for this class;
the latter prints only the frequencies. Here is the result with a four-taxa tree:

> tr <- read.tree(text = "((a,(b,c)),d);")
> prop.part(tr)
==> 1 time(s):[1] a b c d
==> 1 time(s):[1] a b c
==> 1 time(s):[1] b c

Instead of a list of bipartitions indexed to the internal branches, prop.part
returns a list indexed to the numbers of the nodes, and gives the tips that
are descendants of the corresponding node: thus the first vector in the list
includes all tips because the first node is the root. It is then straightforward
to get the bipartitions. The following code prints them for an object named
Y:

for (i in 2:length(Y)) {
cat("Internal branch", i - 1, "\n")
print(Y[[i]], quote = FALSE)
cat("vs.\n")
print(Y[[1]][!(Y[[1]] %in% Y[[i]])], quote = FALSE)
cat("\n")

}

prop.clades takes two arguments: a tree (as a "phylo" object), and either
a list of trees, or a list of bipartitions as returned by prop.part. In the latter
case, the list of bipartitions must be named explicitly (e.g., prop.clades(tr,
part = list.part)). This function returns a numeric vector with, for each
clade in the tree given as first argument, the number of times it was observed
in the other trees or bipartitions. For instance, we have the obvious following
result:

> prop.clades(tr, tr)
[1] 1 1 1

Like the previous functions, the results are indexed according to the node
numbers.

Note that both prop.part and prop.clades do not require that all trees
analyzed have the same tips (as identified by the labels). This may give un-
desirable results with prop.part, but this may be useful in some situations,
particularly with prop.clades, because the “support” values may come from
a sample of trees with a larger number of tips.

Using the two functions just described, bootstrap samples obtained as de-
scribed in the previous section, and the appropriate function(s) for phylogeny

5.3 Bootstrap Methods and Distances Between Trees 117

estimation, one can perform the bootstrap for the estimated phylogeny in
a straightforward way using basic programming techniques. However, to do
such an analysis directly, the function boot.phylo can be used instead. Its
interface is:

boot.phylo(phy, x, FUN, B = 100, block = 1)

with the following arguments:

phy an object of class "phylo" which is the estimated tree;
x the original data matrix (taxa as rows and characters as columns);
FUN the function used to estimate phy from x. Note that if the tree was

estimated with a distance method, this must be specified as something
such as:
FUN = function(xx) nj(dist.dna(xx))

or:
FUN = function(xx) nj(dist.dna(xx, "TN93"))

B the number of bootstrap replicates;
block the size of the “block” of columns, that is, the number of columns

that are sampled together during the bootstrap sampling process (e.g., if
block = 2, columns 1 and 2 are sampled together, the same for columns
3 and 4, 5 and 6, and so on; see above).

boot.phylo returns exactly the same vector as prop.clades. The boot-
strap trees generated by this function are not saved, and so cannot be ex-
amined or further analyzed, for instance, to perform the two-level bootstrap
procedure developed by Efron et al. [31]. This can be circumvented by doing
the bootstrap samples beforehand. A typical program to get a list of bootstrap
trees could be:

B <- 100
btr <- list()
length(btr) <- B
for (i in 1:B)
btr[[i]] <- nj(dist.dna(x[, sample(ncol(x), replace = TRUE)]))

Then, if tr.est is the estimated tree, doing:

prop.clades(tr.est, brt)

or:

pp <- prop.part(brt)
prop.clades(tr.est, part = pp)

will give the same results as using boot.phylo (except for the differences due
to random sampling!)

118 5 Phylogeny Estimation

5.3.3 Distances Between Trees

The idea of distances between trees is somehow related to the bootstrap be-
cause this requires summarizing and quantifying the variation in topology
from different trees. Several ways to compute these distances have been pro-
posed in the literature [39, Chap. 30]. Two of them are available in the function
dist.topo.

Penny and Hendy [118] proposed measuring the distance between two
trees as twice the number of internal branches that differ in their bipartitions.
Rzhestky and Nei [133] proposed a modification of this distance to take multi-
chotomies into account: this is the default method in dist.topo. For a trivial
example:

> tr <- read.tree(text = "((a,b),(c,d));")
> tb <- read.tree(text = "((a,d),(c,b));")
> dist.topo(tr, tb)
[1] 2
> dist.topo(tr, tr)
[1] 0

Billera, Holmes, and Vogtmann [9] developed a more elaborate distance
based on the concept of tree space. This space is actually a cube complex
because it is made up of cubes that share certain faces. Two trees with the
same topology lie in the same cube of dimension n − 2 (n being the number
of tips). If they do not have the same topology they will be in two distinct
cubes. However, these cubes meet at the origin where the internal branches
that are different between the trees are equal to zero. Thus it is possible to
define a geometric distance for different topologies. This is computed with the
option method of dist.topo:

> tr <- rtree(10)
> trb <- rtree(10)
> dist.topo(tr, trb)
[1] 12
> dist.topo(tr, trb, method = "BHV01")
[1] 3.455182
> dist.topo(tr, tr, method = "BHV01")
[1] 0

5.3.4 Consensus Trees

Consensus trees are an interesting way to summarize a set of trees: if they are
dichotomous, the clades not observed in all (strict consensus) of the majority
(majority-rule consensus) will be collapsed as multichotomies.

The function consensus returns the consensus from a list of trees given
in the same way as for prop.part or prop.clades. There is one option, p,

5.4 Molecular Dating 119

which specifies the threshold, as a real between 0.5 and 1, of the proportion
of the bipartitions for their inclusion in the consensus tree. If p = 1 (the
default), then the strict consensus tree is returned, whereas p = 0.5 returns
the majority-rule consensus tree. This corresponds to the parameter l of the
Ml consensus methods in [39].

5.4 Molecular Dating

Some parameters are confounded in phylogenetic models (branch lengths and
substitution rates), therefore it is not possible to estimate branch lengths in
units that are proportional to time. This must be done using additional as-
sumptions on rate variations. Sanderson [135, 136] proposed two approaches
for the estimation of dates using molecular phylogenies. These are imple-
mented in ape with a set of functions that are explained below.

Nonparametric rate smoothing (NPRS) assumes that each branch of the
tree has its own rate, but these rates change smoothly between connected
branches [135]. Given a tree with estimated branch lengths in terms of number
of substitutions, it is possible to estimate the dates of the nodes by minimizing
the changes in rates from one branch to another. Practically this is done by
minimizing the function: ∑

|r̂k − r̂j |p , (5.12)

where r̂ is the estimated absolute rate, k and j are two nodes of the same
branch, and p is an exponent (usually 2). The function ratogram computes
the absolute rates for a tree with branch lengths using the NPRS method. By
default the age of the root is one, but this can be changed with the option
scale. The function chronogram computes the ages of the nodes with the
same method. Its options are the same as for ratogram.

In order to make a trade-off between nonparametric and parametric meth-
ods, Sanderson [136] proposed to modify his method by using a semiparamet-
ric approach based on a penalized likelihood. The latter (denoted Ψ) is made
of the likelihood of the “saturated” model (the one that assumes one rate
for each branch of the tree) minus a roughness penalty (denoted Φ) which is
similar to (5.12) multiplied by a smoothing parameter λ:

Ψ = lnL − λΦ , (5.13)

L =
∏

rx
k

exp(−rk)
x!

. (5.14)

with x being the number of substitutions observed on a branch. The product
of the likelihood function L is made over all branches of the tree. If λ = 0
then the above model is the (saturated) model with one distinct rate for
each branch. If λ = +∞, then the model converges to a clocklike model with

120 5 Phylogeny Estimation

the same rate for all branches. In order to choose an optimal value for λ,
Sanderson [136] suggested a cross-validation technique where each terminal
branch is removed from the data and then its length is predicted from the
remaining data. A different criterion is used here:

D2
i =

n−2∑
j=1

(t̂j − t̂−i
j)2

t̂j
, (5.15)

where t̂j is the estimated date for node j with the full data, and t̂−i
j is the

one estimated after removing tip i. This criterion is easier to calculate than
Sanderson’s [136].

The penalized likelihood method is implemented in the function chronopl;
its interface is:

chronopl(phy, lambda, node.age = NULL, nodes = NULL,
CV = FALSE)

where phy is an object of class "phylo" with branch lengths giving the number
of substitutions (or its expectation), lambda is the smoothing parameter λ,
node.age is a numeric vector giving the dates that are known, nodes is the
number of the nodes dates of which are known, and CV is a logical specifying
whether to do the cross-validation. This function returns a tree with branch
lengths proportional to time (i.e., a chronogram) with attributes rates (the
estimated absolute rates, r̂), and ploglik (the penalized likelihood). If CV =
TRUE, an additional attribute D2 is returned with the value calculated with
(5.15) for each tip.

The cross-validation may be done for different values of λ in a straightfor-
ward way, for instance, for λ = 0.1, 1, 10, . . . , 106:

l <- 10ˆ(-1:6)
cv <- numeric(length(l))
for (i in 1:length(l))
cv[i] <- sum(attr(chronopl(phy, lambda = l[i]), "D2"))

plot(l, cv)

Sanderson suggested selecting the value of λ that minimizes the cross-validation
criterion. If CV = TRUE, chronopl returns a value D2

i for each tip, so it is pos-
sible to examine which observations are particularly influential, for instance
with:

chr <- chronopl(phy = phy.est, lambda = 1)
plot(attr(chr, "D2"), type = "l")

5.5 Case Studies 121

5.5 Case Studies

In this section, we come back to some of the data prepared in Chapter 3. We
see how we can estimate phylogenies, eventually repeat some analyses done
in the original publications, and possibly see how we could go further with R.

5.5.1 Sylvia Warblers

To continue with the Sylvia data, it may be necessary to reload the data
prepared and saved previously:

load("sylvia.RData")

A distance matrix can be estimated from these aligned sequences using
dist.dna; because 2 of the 25 sequences are substantially incomplete, we use
the option pairwise.deletion = TRUE:

syl.K80 <- dist.dna(sylvia.seq.ali, pairwise.deletion = TRUE)

We recall that the default model for this function is Kimura’s two-parameter
one. We use the option model to try different models:

syl.F84 <- dist.dna(sylvia.seq.ali, model = "F84",
pairwise.deletion = TRUE)

syl.TN93 <- dist.dna(sylvia.seq.ali, model = "TN93",
pairwise.deletion = TRUE)

syl.GG95 <- dist.dna(sylvia.seq.ali, model = "GG95",
pairwise.deletion = TRUE)

A way to compare these distance matrices is simply to look at their correla-
tions. We do this by binding all distances in a single matrix, and compute the
correlations among its columns (the results are rounded to three digits):

> round(cor(cbind(syl.K80, syl.F84, syl.TN93, syl.GG95)), 3)
syl.K80 syl.F84 syl.TN93 syl.GG95

syl.K80 1.000 0.908 1.000 0.927
syl.F84 0.908 1.000 0.911 0.686
syl.TN93 1.000 0.911 1.000 0.925
syl.GG95 0.927 0.686 0.925 1.000

This shows some substantial differences in the estimated distances. Note that
a perfect correlation does not guarantee that the distances are the same: some
graphical analyses are needed to check this. We do this to examine the satu-
ration of substitutions in the sequences. We first compute the distances using
the Jukes–Cantor model and the raw distance (i.e., proportion of different
sites):

122 5 Phylogeny Estimation

syl.JC69 <- dist.dna(sylvia.seq.ali, model = "JC69",
pairwise.deletion = TRUE)

syl.raw <- dist.dna(sylvia.seq.ali, model = "raw",
pairwise.deletion = TRUE)

We then plot these two distances in a simple plot expecting the raw distances
to be smaller because they do not consider multiple substitutions on a single
site; we also plot the Jukes–Cantor distance versus the Kimura one to show
the potential influence of the transition/transversion ratio (Fig. 5.1):

layout(matrix(1:2, 1))
plot(syl.JC69, syl.raw)
abline(b = 1, a = 0) # draw x = y line
plot(syl.K80, syl.JC69)
abline(b = 1, a = 0)

These plots show, as expected, that the most divergent sequences are slightly
saturated, whereas the transition/transversion ratio does not seem to affect
the estimated distances greatly.

0.05 0.10 0.15

0.
04

0.
08

0.
12

0.
16

syl.JC69

sy
l.r

aw

0.05 0.10 0.15

0.
05

0.
10

0.
15

syl.K80

sy
l.J

C
69

Fig. 5.1. Saturation plots for the cytochrome b sequences of 25 species of Sylvia
showing the effects of multiple substitutions (left) and of the transition/transversion
ratio (right)

A point we explore briefly is the impact of the choice of the substitution
model on the phylogeny estimation with the NJ method. We estimate a tree
with the function nj for each distance matrix:

5.5 Case Studies 123

nj.sylvia.K80 <- nj(syl.K80)
nj.sylvia.F84 <- nj(syl.F84)
nj.sylvia.TN93 <- nj(syl.TN93)
nj.sylvia.GG95 <- nj(syl.GG95)

To see if the estimated topology is the same, we compute the topological
distance among them:

> dist.topo(nj.sylvia.K80, nj.sylvia.F84)
[1] 20
> dist.topo(nj.sylvia.K80, nj.sylvia.TN93)
[1] 0
> dist.topo(nj.sylvia.K80, nj.sylvia.GG95)
[1] 16
> dist.topo(nj.sylvia.F84, nj.sylvia.TN93)
[1] 20
> dist.topo(nj.sylvia.F84, nj.sylvia.GG95)
[1] 26
> dist.topo(nj.sylvia.TN93, nj.sylvia.GG95)
[1] 16

The same topologies were obtained with Kimura’s and Tamura and Nei’s
models. We visualize the clades that are consistently observed with the dif-
ferent substitution models by computing the consensus tree with the function
consensus and plot it after changing its tip labels with the species names in
place of the GenBank numbers (Fig. 5.2):

sylvia.cons <- consensus(nj.sylvia.K80, nj.sylvia.F84,
nj.sylvia.GG95, nj.sylvia.TN93)

sylvia.cons$tip.label <- taxa.sylvia[sylvia.cons$tip.label]
plot(sylvia.cons, no.margin = TRUE)

We now do a bootstrap analysis like the one reported by Böhning-Gaese
et al. [10] using boot.phylo directly:

> nj.boot.sylvia <- boot.phylo(phy = nj.sylvia.K80,
x = sylvia.seq.ali,
FUN = function(xx) nj(dist.dna(xx,

pairwise.deletion = TRUE)),
B = 200)

> nj.boot.sylvia
[1] 200 9 181 192 96 40 74 78 75 194 196 91 193 185
[15] 99 147 74 169 194 136 85 199 76

Note how the FUN argument is used here: because we resample the original
aligned sequences, the tree is estimated by first computing the distances, then
performing the neighbor-joining. We use 200 bootstrap replicates as in [10].

124 5 Phylogeny Estimation

Chamaea fasciata
Sylvia nisoria
Sylvia layardi
Sylvia subcaeruleum
Sylvia boehmi
Sylvia buryi
Sylvia lugens
Sylvia leucomelaena
Sylvia crassirostris
Sylvia hortensis
Sylvia curruca
Sylvia nana
Sylvia communis
Sylvia conspicillata
Sylvia deserticola
Sylvia undata
Sylvia balearica
Sylvia cantillans
Sylvia melanocephala
Sylvia mystacea
Sylvia melanothorax
Sylvia rueppelli
Sylvia abyssinica
Sylvia borin
Sylvia atricapilla

Fig. 5.2. Consensus tree for Sylvia based on four neighbor-joining trees estimated
with different substitution models

How could these bootstrap values have been influenced by the fact that
we deal with coding sequences? We can assess this by using the option block
of boot.phylo; this will result in resampling at the codon level instead of at
the site level:

> nj.boot.sylvia.codon <- boot.phylo(nj.sylvia.K80,
sylvia.seq.ali,
function(xx) nj(dist.dna(xx,
pairwise.deletion = TRUE)),
200, 3)

> nj.boot.sylvia.codon
[1] 200 13 179 199 83 37 74 92 84 192 196 92 187 179
[15] 99 135 71 167 197 134 86 199 91

The results are very close to the site-level resampling analysis; we thus consider
the latter in the following.

We now plot the estimated tree by NJ with the bootstrap values on the
nodes. We first copy the estimated tree, substitute the accession numbers
(which were used as tip labels) with the species names, add to this tree
the bootstrap values (as percents), and finally root this unrooted tree using
Chamaea fasciata as outgroup:

nj.est <- nj.sylvia.K80
nj.est$tip.label <- taxa.sylvia[nj.est$tip.label]
nj.est$node.label <- nj.boot.sylvia / 2
nj.est <- root(nj.est, "Chamaea_fasciata")

5.5 Case Studies 125

The tree is then plotted with plot, the bootstrap values are added with
nodelabels, and we draw a scale bar (Fig. 5.3):

plot(nj.est, no.margin = TRUE)
nodelabels(nj.est$node.label, bg = "white")
add.scale.bar(y = 0.5, length = 0.01)

Sylvia subcaeruleum
Sylvia curruca
Sylvia crassirostris

Sylvia leucomelaena
Sylvia hortensis

Sylvia lugens
Sylvia buryi

Sylvia boehmi
Sylvia layardi

Sylvia nana
Sylvia nisoria

Sylvia communis
Sylvia conspicillata

Sylvia balearica
Sylvia undata

Sylvia deserticola
Sylvia cantillans

Sylvia mystacea
Sylvia melanocephala
Sylvia rueppelli

Sylvia melanothorax
Chamaea fasciata

Sylvia abyssinica
Sylvia borin

Sylvia atricapilla

90.5

4.5

100

73.5

37

84.5

97
68

42.5
99.5

38

20

37

39

37.5
97

98

45.5

96.5
92.5

49.5

96
48

0.01

Fig. 5.3. Phylogenetic relationships among 25 species of the genus Sylvia based
cytochrome b sequences analyzed with neighbor-joining and Kimura’s two-parameter
distance

The bootstrap values shown in Fig. 5.3 are very close to those obtained
by Böhning-Gaese et al. [10]. It is interesting to note that the clades well
supported by the bootstrap analysis were also those that were consistently
found in the four trees estimated by NJ with the different substitution models.

We finish by saving the final tree in a file using the Newick format:

write.tree(nj.est, "sylvia_nj_k80.tre")

5.5.2 Phylogeny of the Felidae

To continue the analyses with the Felidae data [75], we first load the data
previously prepared and saved:

load("felid.RData")

We focus here on an analysis with phymltest. PHYML has been installed
(this is a single executable file) in the same directory where the sequence file
has been saved (which is also set as R’s working directory). The command for
the present analysis is thus simply:

126 5 Phylogeny Estimation

phymltest.felid <- phymltest("felidseq16S.phy",
execname = "phyml_linux")

This takes a few minutes to run on a PC with a processor at 3 GHz and 521 Mb
of cache memory, and 2 Gb of RAM memory. Displaying the results shows the
log-likelihood and AIC values for each model:

> phymltest.felid
nb.free.para loglik AIC

JC69 1 -2301.182 4604.364
JC69+I 2 -2162.121 4328.243
JC69+G 2 -2151.150 4306.300
JC69+I+G 3 -2144.011 4294.023
K80 2 -2174.653 4353.306
K80+I 3 -2031.520 4069.040
K80+G 3 -2012.344 4030.688
K80+I+G 4 -2001.572 4011.144
F81 4 -2301.058 4610.116
F81+I 5 -2161.592 4333.185
F81+G 5 -2143.511 4297.022
F81+I+G 6 -2139.011 4290.023
F84 5 -2163.884 4337.768
F84+I 6 -2013.974 4039.949
F84+G 6 -1993.178 3998.356
F84+I+G 7 -1985.373 3984.745
HKY85 5 -2170.704 4351.408
KHY85+I 6 -2018.443 4048.886
HKY85+G 6 -1997.119 4006.238
HKY85+I+G 7 -1988.521 3991.041
TN93 6 -2138.149 4288.298
TN93+I 7 -2002.168 4018.336
TN93+G 7 -1977.770 3969.539
TN93+I+G 8 -1972.596 3961.192
GTR 9 -2132.276 4282.553
GTR+I 10 -1998.004 4016.009
GTR+G 10 -1973.184 3966.367
GTR+I+G 11 -1967.919 3957.838

The summary function computes all possible paired likelihood ratio tests (211
tests):

> summary(phymltest.felid)
model1 model2 chi2 df P.val

1 JC69 JC69+I 278.121860 1 0.0000
2 JC69 JC69+G 300.064594 1 0.0000
3 JC69 JC69+I+G 314.341858 2 0.0000

5.5 Case Studies 127

4 JC69 K80 253.058660 1 0.0000
5 JC69 K80+I 539.323882 2 0.0000
....

We can plot these results to have a more synthetic view (Fig. 5.4):

plot(phymltest.felid)

Akaike information criterion for phymltest.felid

4000

4100

4200

4300

4400

4500

4600

GTR + I + Γ
TN93 + I + Γ
GTR + Γ
TN93 + Γ
F84 + I + Γ
HKY85 + I + Γ
F84 + Γ
HKY85 + Γ
K80 + I + Γ
GTR + I
TN93 + I
K80 + Γ
F84 + I
KHY85 + I
K80 + I
GTR
TN93
F81 + I + Γ
JC69 + I + Γ
F81 + Γ
JC69 + Γ
JC69 + I
F81 + I
F84
HKY85
K80
JC69
F81

Fig. 5.4. Results of the analysis of 16S mitochondrial sequences from 35 species of
Felidae and two other carnivores with phymltest

The most complex model GTR + I + Γ is the one that best explains
the data in terms of AIC. An interesting pattern from Fig. 5.4 is that for a
given substitution model, adding invariants (I) considerably improves the fit,
whereas this improvement is even better by adding Γ , and again better with
both; thus there is a hierarchy X >>> X + I >> X + Γ > X + I + Γ .

When comparing the substitution models, the key element seems to take
the transition / transversion ratio into account. Once this has been included
in the model (F80 being the simplest one), taking unequal base frequencies
into account is also important although less than the previous parameter.

Once the analysis with phymltest has been done, it is possible to read the
trees estimated by PHYML:

tr <- read.tree("felidseq16S.phy_phyml_tree.txt")

This file contains the 28 trees estimated by PHYML, the last one being the
one estimated with the most complex model. We extract this tree, substitute
its tip labels to get the species names in place of the accession numbers, root
the tree with Galidia elegans as outgroup, remove the two non-felid species,
and plot the final tree (Fig. 5.5):

128 5 Phylogeny Estimation

mltree.felid <- tr[[28]]
mltree.felid$tip.label <- taxa.felid[mltree.felid$tip.label]
mltree.felid <- root(mltree.felid, "Galidia_elegans")
mltree.felid <- drop.tip(mltree.felid, c("Crocuta_crocuta",

"Galidia_elegans"))
plot(mltree.felid)
add.scale.bar(length = 0.01)

Leopardus wiedii
Leopardus pardalis

Profelis aurata
Caracal caracal

Prionailurus rubiginosa
Leptailurus serval

Catopuma badia
Catopuma temminckii

Herpailurus yaguarondi
Lynx rufus
Lynx lynx

Lynx canadensis
Puma concolor

Acinonyx jubatus
Felis chaus

Felis nigripes
Felis margarita

Felis catus
Felis silvestris

Felis libyca
Oncifelis guigna

Oncifelis geoffroyi
Leopardus tigrinus
Oncifelis colocolo
Prionailurus viverrinus

Prionailurus bengalensis
Prionailurus planiceps

Pardofelis marmorata
Otocolobus manul

Neofelis nebulosa
Panthera pardus

Panthera leo
Panthera onca

Panthera tigris
Uncia uncia

0.01

Fig. 5.5. Maximum likelihood estimate of the extant Felidae using 16S mitochon-
drial sequences with GTR + I + Γ

From this ML estimate of the phylogeny of the Felidae, we can now esti-
mate a chronogram with the NPRS method [137]. Johnson and O’Brien [75]
wrote that extant felids last shared a common ancestor 10–15 million years
ago. We use the midpoint of this range as the age of the root. We plot the
estimated chronogram and draw the time-axis with axisPhylo (Fig. 5.6):

felid.chrono <- chronogram(mltree.felid, scale = 12.5)
par(mar = c(2, 0, 0, 0))
plot(felid.chrono, cex = 0.8)
axisPhylo()

We save this chronogram for further analysis:

write.tree(felid.chrono, "felid.chrono.tre")

5.5 Case Studies 129

Leopardus wiedii
Leopardus pardalis
Profelis aurata
Caracal caracal
Prionailurus rubiginosa
Leptailurus serval
Catopuma badia
Catopuma temminckii
Herpailurus yaguarondi
Lynx rufus
Lynx lynx
Lynx canadensis
Puma concolor
Acinonyx jubatus
Felis chaus
Felis nigripes
Felis margarita
Felis catus
Felis silvestris
Felis libyca
Oncifelis guigna
Oncifelis geoffroyi
Leopardus tigrinus
Oncifelis colocolo
Prionailurus viverrinus
Prionailurus bengalensis
Prionailurus planiceps
Pardofelis marmorata
Otocolobus manul
Neofelis nebulosa
Panthera pardus
Panthera leo
Panthera onca
Panthera tigris
Uncia uncia

12 10 8 6 4 2 0

Fig. 5.6. Chronogram of the extant Felids estimated with the NPRS method

5.5.3 Butterfly DNA Barcodes

We have 466 aligned sequences of COI: we limit ourselves here to simple anal-
yses. Hebert et al. [67] showed that there seem to be several (ten actually)
species instead of one originally recognized. We compute the pairwise dis-
tances between all specimens with dist.dna. We take care to use the option
pairwise.deletion = TRUE because many sequences do not have the same
length:

M.astraptes.K80 <- dist.dna(astraptes.seq.ali,
pairwise.deletion = TRUE)

We look at the distribution of the distances using summary:

> summary(M.astraptes.K80)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.01590 0.02107 0.02749 0.03887 0.08326

As a comparison, we can look at the summary of the distances without the
option pairwise.deletion = TRUE:

> summary(dist.dna(astraptes.seq.ali))
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.00122 0.00000 0.07155

This shows that most distances would be equal to zero because only a few
sites remain after removing all those with at least one missing data (which is
the default of dist.dna).

We may plot an histogram of the 108,345 distances (Fig. 5.7):

130 5 Phylogeny Estimation

Histogram of M.astraptes.K80

M.astraptes.K80

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08

0
50

00
10

00
0

15
00

0
20

00
0

Fig. 5.7. Distribution of pairwise distances among 466 specimens Astraptes fulgera-
tor based on cytochrome oxydase I sequences analyzed with Kimura’s two-parameter
distance

hist(M.astraptes.K80)

This clearly shows three peaks in the distribution: at 0, around 0.02, and
around 0.07. This is in complete agreement with Hebert et al.’s results which
showed that these peaks correspond to differentiation within populations, in-
traspecies, and interspecies, respectively.

It is possible to estimate an NJ tree with the distance matrix to assess
how the different taxa are differentiated:

tr <- nj(M.astraptes.K80)
tr$tip.label <- taxa.astraptes[tr$tip.label]

The resulting tree is a bit too large to be displayed with plot.phylo, so we
may use zoom instead. For this we have to find the indices of each taxon in
the vector of tip labels. Here is a possible solution:

taxon <- unique(taxa.astraptes)
L <- list()
length(L) <- 10
for (i in 1:10)
L[[i]] <- grep(taxon[i], tr$tip.label)

We can now use L as an argument to zoom. We may plot all the subtrees at
once in a large PDF file with:

pdf("astraptes.pdf", width = 30, height = 30)
zoom(tr, L)
dev.off()

5.7 Exercises 131

and then open it with an appropriate viewer. Each taxon can be visualized
separately with, for instance, zoom(tr, L[1]).

5.6 Perspectives

The capabilities of R to estimate phylogenies are still limited compared to pro-
grams such as Phylip of PAUP*; however, there are good reasons to continue
the current development of these methods.

• Some methods are easily implemented because the needed functions al-
ready exist in R. For instance:
– The implementation of Bayesian methods should be eased by the func-

tionalities already present in ape (computation of tree likelihood, gen-
eration of random trees) and other packages (random numbers, prob-
ability density functions);

– The flexibility of R for reading and manipulating various kinds of data
will ease the implementation of new methods of phylogeny estimation,
such as those based on genomic rearrangements [88].

• R has many functionalities for efficient computation, particularly for large
data sets, which are useful in the estimation of large phylogenies [58, 144,
152, 159].

• The integration of phylogeny estimation with other facets of phylogenetics,
such as tree drawing (Chapter 4) or analysis of macroevolution (Chapter 6)
is a very useful feature for users.

• The implementation of different methods in different programs makes their
comparison difficult, because even the implementation of the same method
in different programs could result in substantial differences among the
results.

The last point has rarely been considered in the phylogenetic literature,
although it has been demonstrated that even simple computational tasks (such
as computing a sample variance) may give very different results depending on
the statistical package [98, 97]. Kosiol and Goldman [85] showed that analyzing
the same protein sequences with the same method but using different packages
resulted in differences that would be considered statistically significant.

5.7 Exercises

1. Consider a DNA sequence that evolves according to the Jukes–Cantor
(JC69) model.
(a) Build the corresponding rate matrix using for the overall rate of change

the value 3 × 10−4.

132 5 Phylogeny Estimation

(b) Compute, using two different approaches, the probability matrix for
t = 1, t = 1000, and t = 1 × 106. What do you observe? Was that
expected?

(c) What could you conclude about phylogeny estimation from this exer-
cise?

2. Consider a GTR model with the following parameters: α = 0.001, β =
5 × 10−4, γ = 2 × 10−4, δ = 3 × 10−4, ε = 1 × 10−4, ζ = 5 × 10−5,
πA = 0.35, πG = 0.17, πC = 0.25, and πT = 0.23.
(a) Build the corresponding rate matrix.
(b) Compute the probability matrix for t = 1.
(c) Find a method to simulate the evolution of a DNA sequence under

this GTR model for an arbitrary t.
(d) What are the expected base frequencies when t is very large?

3. Sketch a function doing Bayesian estimation of phylogeny. The code should
include comments explaining the rationale of the choices.

4. Take the data prepared in Exercise 5 of Chapter 3.
(a) Build saturation diagrams for the whole sequence, and for each codon

position.
(b) Examine graphically the effects of unequal transition and transversion

rates and / or unequal base frequencies on the distance estimates for
each data set (whole sequences and each codon position).

5. Analyze the data prepared in Exercise 6 of Chapter 3. Use the function
phymltest, and compare the results with those from the Felidae analysis
above.

6

Analysis of Macroevolution with Phylogenies

Reconstructing the history of species is a necessary step in understanding the
mechanisms of biological evolution. Once a phylogeny has been estimated, a
lot of questions on how species have evolved can be addressed. Why are some
taxonomic groups more diverse than others? How have species traits evolved?
Have some traits favored diversification? Are some traits linked through evo-
lution?

By contrast to the field of molecular evolution which is recent in the history
of sciences, these questions are old issues that were already lively debated in
the nineteenth century. The remarkable development of phylogenetics during
the past decades has renewed interest in these long-standing issues, and led
to the development of new analytical methods to address them. This chapter
presents these methods. Their common feature is that they take an estimated
tree as raw data. The first section presents methods to analyze species data
in a phylogenetic framework, the second one, methods that estimate ancestral
characters, and the third one, methods to analyze diversification above the
species level. All sections consider, in most cases, ultrametric trees with dated
nodes as a key element of raw data.

6.1 Phylogenetic Comparative Methods

Comparing observations made on different species is an intuitive and appeal-
ing approach that certainly dates back to antiquity [64]. For instance, if some
combinations of traits are consistently associated across several species, this
could suggest that evolutionary forces, such as selection, shaped these associ-
ations. However, nonrandom associations of some traits among some species
may be due to common heritage from their ancestor, and thus concomitant
change through time cannot be inferred [131]. Conversely, if characters have
evolved randomly without association, more closely related species are more
likely to be similar than others, thus creating apparent relationships among
characters [36].

134 6 Analysis of Macroevolution with Phylogenies

It is consequently necessary to consider the phylogenetic relationships
among species when analyzing their characters. Several attempts in this di-
rection have been made early on by considering partial phylogenetic informa-
tion such as taxonomic information (see [64] for a review). With the growing
availability of complete phylogenies with estimated branch lengths, it is now
possible to go further [36].

From an analytical perspective, two issues may be addressed when incor-
porating phylogeny into comparative data:

• Taking interspecies nonindependence into account when studying traits
and their relationships, and

• Estimating the parameters of character evolution.

Both issues are tightly connected. It is indeed important to realize that
the impact of phylogeny on trait distributions depends not only on phylogeny
but also on the way these traits evolve.

Particular emphasis has been given to the first issue because traditional
comparative methods (i.e., without phylogeny) have been widely used for
decades [65]. The methods devised to “correct for phylogenetic dependence”
usually assume a simple model of character evolution: Brownian motion for
continuous characters, or parsimonious change for discrete ones. However,
even if these models do not apply to a particular situation, phylogeny is still
important in the distribution of species traits [62].

When estimating parameters of character evolution, a model must be for-
mulated explicitly and fit to the data (the characters and the tree), usually
by maximum likelihood. Several models can be fit to the same data set and
compared with the usual statistical techniques (e.g., likelihood ratio tests, or
information criteria).

Table 6.1 lists the methods currently available in ape and ade4 together
with their main features. Most of these methods do not specifically require
an ultrametric tree: different sets of branch lengths may be used implying
different assumptions on rates of evolution [48, 54]. The branch lengths may
be modified, or even created if the tree has none, with compute.brlen.

Table 6.1. Comparative methods implemented in R and their main features

PIC Auto- Auto- Multiv. GLS GEE Mixed OU
regres. correl. decomp.

Correct for phylo. dependence � � � � � �
Estimate evol. parameters � �
Univariate � � � �
Relationships among variables � � �
Continuous variables � � � � � � � �
Categorical variables �
Allow multichotomies � � � � � � �

6.1 Phylogenetic Comparative Methods 135

6.1.1 Phylogenetically Independent Contrasts

Felsenstein [36] was probably the first to propose a method that fully takes
phylogeny into account in the analysis of comparative data. The idea behind
the “contrasts”1 method is that, if we assume that a continuous trait evolves
randomly in any direction (i.e., the Brownian motion model), then the “con-
trast” between two species is expected to have a distribution centered on zero,
and a variance proportional to the time since divergence. If the contrasts are
scaled with the latter, then they have a variance equal to one.

A contrast is computed with [36]:

Cij =
xi − xj√

dij

, (6.1)

where xi and xj are the values of the trait observed on species i and j,
and the distance between both species dij is measured on the tree. This is
straightforward if xi and xj are observed on recent species, but this can be
done also for internal nodes because under the assumptions of the Brownian
model the ancestral state of the variable can be calculated; a rescaling of the
internal branches eventually occurs [36].

In this formulation, the tree needs to be binary (fully dichotomous), and a
contrast is computed for each node. Thus for n species, n−1 contrasts will be
computed. The contrasts are independent with respect to the phylogeny (un-
like the original values of x), and standard statistical methods for continuous
variables can be used.

The method of phylogenetically independent contrasts (PICs), is imple-
mented in the function pic. This function computes the PICs giving a tree
and a vector of values. The result is a vector of numeric values with the com-
puted PICs.

As a simple example we take a data set analyzed by Lynch [94] consisting
of the log-transformed body mass and longevity of five species of primates.

> tree.primates <- read.tree("primfive.tre")
> body <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
> longevity <- c(4.74493, 3.3322, 3.3673, 2.89037, 2.30259)
> names(body) <- names(longevity) <- c("Homo",
+ "Pongo", "Macaca", "Ateles", "Galago")
> pic.body <- pic(body, tree.primates)
> pic.longevity <- pic(longevity, tree.primates)
> pic.body

-1 -2 -3 -4
3.3583189 1.1929263 1.5847416 0.7459333

1 Phylogenetically independent contrasts, often called “contrasts” in the phyloge-
netic literature, are related to the statistical contrasts used in analysis of variance
and other methods (see ?contrasts in R) in the sense that they both consider
contrasts in expected means.

136 6 Analysis of Macroevolution with Phylogenies

> pic.longevity
-1 -2 -3 -4

0.8970604 0.8678969 0.7176125 2.1798897

We plot the tree and show the values of the PICs with nodelabels (Fig. 6.1):

plot(tree.primates)
nodelabels(round(pic.body, 3), adj = c(0, -0.5),

frame = "n")
nodelabels(round(pic.longevity, 3), adj = c(0, 1),

frame = "n")

Homo

Pongo

Macaca

Ateles

Galago

3.358

1.193

1.585

0.746

0.897

0.868

0.718

2.18

Fig. 6.1. A tree of five primate genera showing phylogenetically independent con-
trasts of ln(body mass) and ln(longevity), above and below, respectively

A plot of the two sets of PICs shows no clear relationship between them
(Fig. 6.2):

plot(pic.body, pic.longevity)
abline(a = 0, b = 1, lty = 2) # x = y line

This is confirmed by a correlation and a simple regression:

> cor(pic.body, pic.longevity)
[1] -0.5179156
> lm(pic.longevity ˜ pic.body)

Call:
lm(formula = pic.longevity ˜ pic.body)

6.1 Phylogenetic Comparative Methods 137

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

pic.body

pi
c.

lo
ng

ev
ity

Fig. 6.2. Plot of the four pairs of contrasts from Fig. 6.1; the dashed line is x = y

Coefficients:
(Intercept) pic.body

1.6957 -0.3081

Garland et al. [48] recommended that linear regressions with PICs should
be done through the origin (i.e. the intercept is set to zero). It is clear from
Fig. 6.2 that the result will be different if their suggestion is followed:

> lm(pic.longevity ˜ pic.body - 1)

Call:
lm(formula = pic.longevity ˜ pic.body - 1)

Coefficients:
pic.body
0.4319

None of the above coefficients is significantly different from zero which is
hardly surprising considering the small sample size. Doing the regression
among PICs through the origin is justified if the characters evolve under
a Brownian motion model and there is a linear relation between them [48].
However, this is likely to ignore a possible nonlinear relationship [127]. In all
cases, it seems wise to plot the PICs as done here.

Purvis and Garland [124] introduced a modification of Felsenstein’s [36]
method in order to take multichotomies into account. This is not implemented
in the function pic, but this may done by combining this function with others
such as multi2di (Section 3.4.3). There are alternative approaches, such as

138 6 Analysis of Macroevolution with Phylogenies

generalized least squares, to cope with multichotomies with continuous traits
(Section 6.1.5).

6.1.2 Phylogenetic Autoregression

If it is postulated that species are not independent through their phylogenetic
relationships, then the latter may be used to quantify the association between
the variables observed on the species. This approach was used by Cheverud,
Dow, and Leutenegger [18] and later refined by Rohlf [132]. This is based on
the following model:

x = ρWx + ε , (6.2)

where x is the studied variable, W is a connectivity matrix based on the phy-
logeny, ρ is a parameter, and ε is the variation not explained by the phylogeny.
The rows of W sum to one and the values indicate the “distance” between the
different species (the diagonal elements are thus equal to zero). The parameter
ρ is estimated from the data: positive values indicate an influence of the phy-
logeny on x, whereas negative values indicate the opposite (distantly related
species are more identical). If ρ = 0, then the phylogeny has no influence on
x. The variation in x explained by the phylogeny can be calculated as [18]:

R2 = 1 − V ar(ε)
V ar(x)

. (6.3)

Cheverud et al.’s [18] method, including Rohlf’s [132] correction, is imple-
mented in the function compar.cheverud. This function takes as arguments
a numeric vector, and a matrix that is transformed to give the connectivity
matrix. The matrix given to the function could be a correlation matrix (ob-
tained with vcv.phylo), or a distance matrix (obtained with cophenetic):
the results will be the same.

Let us consider again the small primate data set. The correlation matrix
is obtained with the function vcv.phylo:

> W <- vcv.phylo(tree.primates, cor = TRUE)
> CM.prim <- compar.cheverud(body, W)
> CM.prim
$rhohat
[1] -2.623383

$Wnorm

Homo Pongo Macaca Ateles Galago
[1,] 0.00000000 0.09051724 0.2112069 0.2672414 0.4310345
[2,] 0.09051724 0.00000000 0.2112069 0.2672414 0.4310345
[3,] 0.18846154 0.18846154 0.0000000 0.2384615 0.3846154

6.1 Phylogenetic Comparative Methods 139

[4,] 0.21678322 0.21678322 0.2167832 0.0000000 0.3496503
[5,] 0.25000000 0.25000000 0.2500000 0.2500000 0.0000000

$residuals
[,1]

Homo -1.681081
Pongo -2.049707
Macaca -1.740552
Ateles -1.296137
Galago -1.237742

The result is a list with three elements: the estimated value of ρ (rhohat),
the normalized matrix W (Wnorm), and the estimated residuals εi (residuals).
The proportion of variation explained by the phylogeny is thus:

> 1 - var(CM.prim$residuals) / var(body)
[,1]

[1,] 0.9763006

This analysis suggests a negative influence of phylogeny on the distribution
of body mass in these primates. This is quite nonintuitive, but looking at the
contrasts calculated in the previous section, we can see they are all positive.
This suggests that there is a trend in the evolution of body mass, and thus
the Brownian motion model does not apply.

6.1.3 Autocorrelative Models

Gittleman and Kot [53] introduced a method close to Cheverud et al.’s [18]
but based on an autocorrelation approach. This uses Moran’s autocorrelation
index I [102]:

I =
n

S0

n∑
i=1

n∑
j=1

wij(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2
, (6.4)

S0 =
n∑

i=1

n∑
j=1

wij , (6.5)

where wij is the distance between species i and j, and x̄ is the observed mean
of x. This is somehow similar to the correlation between two variables, but
instead looks at different values of the same variables (in the present context,
made on different species), and where each pair is weighted with w. Because
it is expected that more closely related species are more similar, the latter

140 6 Analysis of Macroevolution with Phylogenies

can be derived from the phylogeny. Gittleman and Kot [53] proposed that in
the absence of an accurate phylogeny, the weights can be derived from the
taxonomy.

In the absence of phylogenetic autocorrelation, the mean expected value of
I and its variance are known [53]. It is thus possible to test the null hypothesis
of the absence of dependence among observations.

Gittleman and Kot’s [53] method is implemented in the function Moran.I.
Considering the primate small data set, the distances between species can be
computed with the function cophenetic:

> Moran.I(body, cophenetic(tree.primates))
$observed
-0.4250254

$expected
[1] -0.25

$sd
[1] 0.0743147

$p.value
0.01851316

The result is a list with four elements: the observed value of I (observed),
its expected value under the null hypothesis of no correlation (expected),
the standard-deviation of the observed I (sd), and the P -value of the null
hypothesis (p.value).

In agreement with the autoregression analysis, a negative autocorrelation
was found. Note that the expected value is negative (−0.25): this is not really
intuitive, but in the absence of correlation among observations, the expected
value of Moran’s autocorrelation coefficient is negative (see [102]).

ade4 has the function gearymoran that computes Moran’s coefficient and
tests its significance with a randomization procedure. The two main argu-
ments of this function are a distance matrix and a data frame with one or
several vectors. The option nrepet specifies the number of replications of the
randomization test (999 by default). We leave this option as its default for
the present analysis:

> gearymoran(cophenetic(tree.primates),
+ data.frame(body, longevity))
class: krandtest
test number: 2
permutation number: 999
test obs P(X<=obs) P(X>=obs)

1 body -0.423 0.014 1
2 longevity -0.339 0.166 0.849

6.1 Phylogenetic Comparative Methods 141

The result for body mass is very close to the one with Moran.I. This latter
function gives with longevity:

> Moran.I(longevity, cophenetic(tree.primates))
$observed
[1] -0.3182082

$expected
[1] -0.25

$sd
[1] 0.0734518

$p.value
[1] 0.3530901

For this variable, the computed coefficients are very close between both func-
tions, but the P -values are somehow different although both not significant.

Gittleman and Kot [53] suggested the use of correlograms to visualize
the results of phylogenetic autocorrelative analyses. The idea is to look at
the correlation at different distance categories. This can be done even in the
absence of a complete phylogeny using taxonomic levels. If a phylogeny is
available, then at least two distance categories must be defined. Both methods
(with taxonomic levels or with a phylogeny) are implemented in two functions:
correlogram.formula and correlogram.phylo, respectively. The options in
these two functions are slightly different.

As an example, we take the data compiled by Gittleman [52] on 112 species
of carnivores. This includes various life-history variables as well as taxonomic
levels (species, genus, family, super-family, and order). We consider (as in
[53]) the correlation levels in mean body mass at the various taxonomic levels.
The function correlogram.formula requires a formula where the levels are
separated with slashes:2

> data(carnivora)
> correl.carn <- correlogram.formula(
+ log10(SW) ˜ Order/SuperFamily/Family/Genus,
+ data = carnivora)
> correl.carn
$obs
[1] 0.614371364 0.404715752 -0.266621894 -0.001377008

$p.values
[1] 9.529087e-07 0.000000e+00 0.000000e+00 5.432094e-01

2 This is the usual notation to specify nested effects in R’s formulae.

142 6 Analysis of Macroevolution with Phylogenies

Rank

I /
 Im

ax

Genus Family SuperFamily Order

−0.2

0.0

0.2

0.4

0.6

Fig. 6.3. Phylogenetic correlogram of ln(body mass) among 112 species of carni-
vores; the filled circles indicate the significant coefficients (P < 0.05)

$labels
[1] "Genus" "Family" "SuperFamily" "Order"

attr(,"class")
[1] "correlogram"

The returned object is of class "correlogram"; there is a plot method for
this class (Fig. 6.3):

plot(correl.carn)

The correlation coefficient at the “Genus” level is computed among pairs of
species belonging to the same genus, and the same for those at the “Family”,
“SuperFamily”, and “Order” levels.

6.1.4 Multivariate Decomposition

Multivariate methods can be used to summarize the structure of phylogenetic
trees leading to possible measures of phylogenetic dependence. Diniz-Filho, de
Sant’Ana, and Bini [26] developed a method they called phylogenetic eigen-
vector regression (PVR). Its principle is to do an eigen decomposition of the
doubly centered matrix of among-species distances. A regression of the stud-
ied variable is then made on the matrix of eigenvectors. Diniz-Filho et al.
[26] recommended first running a phylogenetic autocorrelation analysis (Sec-
tion 6.1.3) to test for the presence of significant phylogenetic dependence.
If the test is significant, this dependence may be quantified with PVR: the

6.1 Phylogenetic Comparative Methods 143

number of eigenvectors used in the regression is selected according to the
expectation under a broken-stick model.

Ollier, Couteron, and Chessel [108] proposed a related approach that differs
substantially in the details. Instead of using a distance matrix, they use a
matrix built from the topology of the tree. They then perform an orthonormal
transform on this matrix leading to a matrix that is a linear combination of
their original matrix. They finally perform an eigen decomposition of the last
matrix, keeping only the eigenvectors with positive eigenvalues on which the
studied variable is regressed.

The function variance.phylog in package ade4 implements Ollier et al.’s
[108] method: it takes as main arguments an object of class "phylog" and a
numeric vector. To perform the analysis with the primates data we first need to
transform the tree of class "phylo" into one of class "phylog" (Section 3.4.5):

> tpg <- newick2phylog(write.tree(tree.primates))
> variance.phylog(tpg, body)
$lm

Call:
lm(formula = fmla, data = df)

Coefficients:
(Intercept) A1 A2
2.139e-16 -8.685e-01 -1.371e-01

$anova
Analysis of Variance Table

Response: z
Df Sum Sq Mean Sq F value Pr(>F)

A1 1 3.7719 3.7719 56.2198 0.01733
A2 1 0.0940 0.0940 1.4005 0.35825
Residuals 2 0.1342 0.0671

$sumry
Df Sum Sq Mean Sq F value Pr(>F)

Phylogenetic 2 3.86582 1.93291 28.81013 0.03355
Residuals 2 0.13418 0.06709

The test of the phylogenetic dependence (or inertia) corresponds to the test of
the linear model with the selected eigenvectors as predictors. We thus conclude
with a significant phylogenetic inertia for body mass. The same analysis with
longevity gives:

> variance.phylog(tpg, longevity)

144 6 Analysis of Macroevolution with Phylogenies

$lm

Call:
lm(formula = fmla, data = df)

Coefficients:
(Intercept) A1 A2
-2.958e-16 -7.305e-01 1.226e-01

$anova
Analysis of Variance Table

Response: z
Df Sum Sq Mean Sq F value Pr(>F)

A1 1 2.66807 2.66807 4.2460 0.1755
A2 1 0.07520 0.07520 0.1197 0.7624
Residuals 2 1.25673 0.62837

$sumry
Df Sum Sq Mean Sq F value Pr(>F)

Phylogenetic 2 2.74327 1.37163 2.18285 0.31418
Residuals 2 1.25673 0.62837

The test is in agreement with the results from the autocorrelation analysis.
Desdevises et al. [24] proposed a method close to Diniz-Flihol et al.’s [26]:

instead of selecting the eigenvectors according to a broken-stick model, they
suggested selecting all statistically significant eigenvectors in the regression.

Giannini [50] proposed a method with a matrix coding the tree structure
similar to the one used by Ollier et al. [108]: he then performed a linear
regression of the studied variable on this matrix. The best subset of the “tree”
matrix was selected using Monte Carlo permutations.

6.1.5 Generalized Least Squares

The method of generalized least squares (GLS) can be seen as an extension
of the method of ordinary least squares. With the latter, observations are
assumed to have the same variance, and covariances equal to zero. These
assumptions are relaxed with GLS.

The use of GLS in comparative methods came as a way to generalize the
contrasts approach. Grafen [54] first proposed this approach as a way to deal
with multichotomies in trees and also as a way to integrate more complex
models of multi-character evolution. He suggested a model where each node is
given a height equal to the number of tips minus one; these heights are then
scaled so that the root has height one and the other heights are raised to power

6.1 Phylogenetic Comparative Methods 145

ρ (with ρ > 0). Grafen’s model is actually similar to a Brownian motion model
with modified branch lengths. Under a Brownian motion model of character
evolution, the covariance between species i and j, denoted vij , is given by:

vij = σ2Ta , (6.6)

where Ta is the distance between the root and the most common recent an-
cestor of species i and j, and σ2 is the variance of the Brownian process.

Martins and Hansen [96] suggested the Ornstein–Uhlenbeck model where
the covariance between two species is given by:

vij = σ2exp(−αdij) , (6.7)

where σ2 is similar to the variance of the Brownian process, α specifies how
“fast” the species character diverge after speciation, and dij is the distance
between both species. We show the Ornstein–Uhlenbeck model again in Sec-
tion 6.1.8.

The function gls in package nlme is used to fit models with GLS. This is
a very general function that can accomodate correlation among observations
and heterogeneous variance functions. The former is specified with an object of
class "corStruct" (correlation structure): the variance–covariance matrix is
then generated during the analysis through several functions called internally
by gls.

Julien Dutheil introduced the idea of using the correlation structures
used in the package nlme to code phylogenetic correlation structures. The
three models sketched above are specified with the functions corGrafen,
corBrownian, and corMartins, respectively:

corGrafen(value, phy, fixed = FALSE)
corBrownian(value = 1, phy)
corMartins(value, phy, fixed = FALSE)

where value is the parameter of the model, phy is an object of class "phylo",
and fixed a logical indicating whether to estimate the parameters from the
data (the default). These functions return an object of class with three ele-
ments:

1. The name of the called function (i.e., "corGrafen", "corMartins", or
"corBrownian");

2. "corPhyl";
3. "corStruct".

The last one is important because it allows us to fit these models with
gls.3 An evolutionary model is then fit as is any linear model with GLS.
For instance, coming back to the primate data, we first create a correlation
structure that follows a Brownian motion model:
3 The package nlme is loaded when ape is started.

146 6 Analysis of Macroevolution with Phylogenies

bm.prim <- corBrownian(phy = tree.primates)

We then fit the linear model where longevity is a function of body mass. A
small data manipulation is required by creating a data frame that includes
the studied variables to ease the way they are passed to gls:4

DF.prim <- data.frame(body, longevity)

We can now fit the model:

m1 <- gls(longevity ˜ body, correlation = bm.prim,
data = DF.prim)

We extract the details of the model fit with summary:

> summary(m1)
Generalized least squares fit by REML
Model: longevity ˜ body
Data: DF.prim

AIC BIC logLik
17.48072 14.77656 -5.74036

Correlation Structure: corBrownian
Formula: ˜1
Parameter estimate(s):
numeric(0)

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5000672 0.7754516 3.224014 0.0484
body 0.4319328 0.2864904 1.507669 0.2288

....

Note that no parameter is estimated in the present correlation structure, hence
the output numeric(0). In contrast to what was suggested by the plot of PIC
values (Section 6.1.1), the relationship between variables now appears positive
although not statistically significant. This underlines the difference between
both methods: GLS focuses on the relationship between variables, whereas
the PIC method focuses on the relationship between contrasts (i.e., between
changes in the variables through the phylogeny). The two present variables
are indeed strongly positively correlated:

> cor(body, longevity)
[1] 0.8296107

4 When this data frame is created, the names of the vectors are used as rownames
(see p. 16); the latter are then matched with the tip labels of the tree, even if
they are not in the same order.

6.1 Phylogenetic Comparative Methods 147

We now fit the Ornstein–Uhlenbeck model based on Martins and Hansen’s
correlation structure to the same data:

> ou.prim <- corMartins(1, tree.primates)
> m2 <- gls(longevity ˜ body, correlation = ou.prim,
+ data = DF.prim)
> summary(m2)
Generalized least squares fit by REML
Model: longevity ˜ body
Data: DF.prim

AIC BIC logLik
17.81707 14.21152 -4.908536

Correlation Structure: corMartins
Formula: ˜1
Parameter estimate(s):
alpha

51.55332

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5989768 0.3843447 6.762099 0.0066
body 0.3425349 0.1330977 2.573561 0.0822

....

The AIC value does not indicate an improvement compared to the Brownian
model. Not surprisingly, the parameter estimates are very close in these two
models.

6.1.6 Generalized Estimating Equations

The use of generalized estimating equations (GEEs) for the analysis of com-
parative data had two motivations: to deal easily with multichotomies, and
to analyze categorical variables in a natural way [116].

GEEs were introduced by Liang and Zeger [92] as an extension of gen-
eralized linear models (GLMs) for correlated data. The correlation structure
is specified through a correlation matrix. Similarly to GLMs, the model is
specified with a link function g:

g(E[yi]) = xT
i β , (6.8)

However, the distinction comes from the way the variance–covariance matrix
is given:

V = φA1/2RA1/2 , (6.9)

148 6 Analysis of Macroevolution with Phylogenies

where A is an n×n diagonal matrix defined by diag{V(E[yi])}: that is, a ma-
trix with all its elements zero except the diagonal which contains the variances
of the n observations expected under the (marginal) GLM, R is the correla-
tion matrix of the elements of y, φ is the scale (or dispersion) parameter, and
V(E[yi]) is the variance function. These two components, φ and V(E[yi]), are
defined with respect to the distribution assumed for y in the same way as
in a standard GLM. If the observations are independent, then R is an n × n
identity matrix.

Beyond the technicalities of the GEE approach lies the possibility of ana-
lyzing different kinds of variables thanks to the GLM framework. The analysis
is done with the function compar.gee. This uses the same interface as glm: the
model is given as a formula, and the distribution of the response is specified
with the option family. By default this option is "normal", thus we do not
need to use it for the small primate data:

> compar.gee(longevity ˜ body, phy = tree.primates)
[1] "Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27"
[1] "running glm to get initial regression estimate"
[1] 2.5989768 0.3425349

Call:
formula: longevity ˜ body

Number of observations: 5

Model:
Link: identity
Variance to Mean Relation: gaussian

Summary of Residuals:
Min 1Q Median 3Q Max

-0.7275418 -0.4857216 -0.1565515 0.4373258 0.4763833

Coefficients:
Estimate S.E. t Pr(T > |t|)

(Intercept) 2.5000672 0.4325167 5.780279 0.06773259
body 0.4319328 0.1597932 2.703074 0.17406821

Estimated Scale Parameter: 0.4026486
"Phylogenetic" df (dfP): 3.32

The output from compar.gee is very close to the one from gee; the former
additionally prints the phylogenetic number of degrees of freedom (dfP). Some
simulations showed that if the statistical tests on the regression parameters
are done with a t-test with the usual residual number of degrees of freedom,

6.1 Phylogenetic Comparative Methods 149

then type I error rates are inflated [116]. A solution to this problem is to
correct the number of degrees of freedom with:

dfP =
∑

tree branch length∑n
i=1 distance from root to tipi

× n , (6.10)

where n is the number of species in the tree. This correction was found empir-
ically, and works in practice, but it still needs to be confirmed theoretically,
and possibly refined.

6.1.7 Mixed Models and Variance Partitioning

In the literature on comparative methods, some emphasis is put on relation-
ships among variables: many comparative analyses are motivated by establish-
ing relationships among ecological or physiological variables [45, 46]. Lynch
[94] pointed out that these approaches do not consider all the available infor-
mation on the evolutionary process. He suggested rather to shift the attention
on (co)variation of the traits by using an approach close to one used in quan-
titative genetics to assess the different components of genetic variation. He
proposed the following model:

xi = µ + ai + ei , (6.11)

where µ is the grand mean of the trait, ai comes from a normal distribution
with a variance–covariance matrix σ2

aG where G is a correlation matrix derived
from the phylogeny (we can write this as a ∼ N (0, σ2

aG)), and the eis are
independent normal variables so that e ∼ N (0, σ2

e). This univariate model can
be extended to several variables in which case there are additional parameters,
Cova and Cove, namely the covariance explained by the phylogeny and the
residual covariance, respectively [94].

Lynch [94] proposed an expectation–maximization (EM [23]) algorithm to
fit model (6.11) by maximum likelihood but this is very slow and becomes
intractable with large sample sizes. Housworth et al. [70] proposed a reparam-
eterization of (6.11) and a new algorithm to remedy this problem, but this
applied only to uni- and bivariate cases.

Fitting model (6.11) is actually a difficult task. A possible explanation
may be because both components of variance are confounded, and cannot
be estimated separately. In mixed-effects models, variance components are
usually estimated with different groups that are statistically independent, but
observations within groups can be correlated [119]. With phylogenetic data,
there is only one group, and thus σ2

a and σ2
e are confounded.

The function compar.lynch uses the EM algorithm proposed by Lynch
[94] to fit model (6.11). We illustrate its use with the small primate data set.
We first build a correlation matrix in the way seen previously:

> G <- vcv.phylo(tree.primates, cor = TRUE)

150 6 Analysis of Macroevolution with Phylogenies

> compar.lynch(cbind(body, longevity), G = G)
$vare

[,1] [,2]
[1,] 0.04908818 0.1053366
[2,] 0.10533661 0.2674316

$vara
body longevity

body 3.0018670 0.9582542
longevity 0.9582542 0.3068966

$A
[,1] [,2]

[1,] 2.5056671 0.8006949
[2,] 2.5705959 0.8201169
[3,] 1.1485439 0.3663313
[4,] 0.9654236 0.3065841
[5,] -2.7534270 -0.8779460

$E
[,1] [,2]

[1,] 0.34915743 0.89988706
[2,] -0.19919129 -0.53226494
[3,] -0.01781930 -0.04337929
[4,] -0.17678902 -0.46056213
[5,] 0.04423158 0.13618796

$u
body longevity

1.239433 3.044322

$lik
[,1]

[1,] -12.21719

The results are returned as a list with five elements:

vare: the estimated residual variance–covariance matrix;
vara: the estimated additive effect variance–covariance matrix;
u: the estimates of the phylogeny wide means;
A: the additive value estimates;
E: the residual value estimates;
lik: the log-likelihood.

6.1 Phylogenetic Comparative Methods 151

6.1.8 The Ornstein–Uhlenbeck Model

The Brownian motion model assumes that continuous characters could diverge
indefinitely after divergence from the same values. A more realistic model
would be one where characters are constrained to evolve around a given value.
A candidate model is the Ornstein–Uhlenbeck (OU) model. The quantity of
character change along a short time interval dt according to a general OU
model is [7, 86]:

dxt = −α(xt − θ)dt + dεt , (6.12)

where α controls the strength of character evolution towards the “optimum”
value θ, and εt ∼ N (0, σ2). If α = 0, the OU model reduces to a Brownian
motion model. A discrete-time version of (6.12) is:

xt+1 = −α(xt − θ) + εt . (6.13)

It is straightforward to simulate an OU model in R using (6.13). If we set
α = 0 and θ = 0, then we simulate a Brownian motion model with zero as
initial value and σ2 = 1, on 99 time-steps with:

x <- cumsum(c(0, rnorm(99)))

The OU equivalent with α = 0.2 and θ = 0 would be:

x <- numeric(100)
for (i in 2:100)
x[i] <- -0.2 * x[i - 1] + rnorm(1)

To replicate the Brownian motion simulation, say five times, we can use
the following code:

X <- replicate(5, cumsum(c(0, rnorm(99))))

For the OU version of this code, we first create a function that includes the
commands above:

sim.ou <- function() {
x <- numeric(100)
for (i in 2:100)
x[i] <- -0.2 * x[i - 1] + rnorm(1)

x # returns the value of x
}

The function can then be used in the same way as above:

X2 <- replicate(5, sim.ou())

It is interesting to look at the variance of the five replicates of each model:

152 6 Analysis of Macroevolution with Phylogenies

0 20 40 60 80 100

−
10

−
5

0
5

10
15

Brownian

X

0 20 40 60 80 100
−

10
−

5
0

5
10

15

OU

X
2

Fig. 6.4. Simulations with five replicates of the Brownian motion (left) and
Ornstein–Uhlenbeck models (right)

> var(X[100 ,])
[1] 75.83865
> var(X2[100 ,])
[1] 0.8434638

A plot of the simulated values shows even more clearly the contrast between
both models (Fig. 6.4):

layout(matrix(1:2, 1, 2))
yl <- range(X)
matplot(X, ylim = yl, type = "l", col = 1, main = "Brownian")
matplot(X2, ylim = yl, type = "l", col = 1, main = "OU")

The function compar.ou fits a general OU model where θ may vary through
the phylogeny [61]. The interface is:

compar.ou(x, phy, node = NULL, alpha = NULL)

where x is a numeric variable, phy is a tree (as an object of class "phylo"),
node specifies the nodes where θ changes, and alpha is the value of α. The
latter parameter is assumed to be constant throughout the phylogeny; only
the optimum θ can change. When a node number is given in node, then it is
assumed that the optimum changes at this point for all branches from this
node. By default (i.e., if node = NULL), it is assumed that θ is the same for
all branches.

6.1 Phylogenetic Comparative Methods 153

By default, α is estimated from the data but this is not usually a good
idea as the estimation is unstable. It is preferable to give a fixed value when
fitting the model. Hansen [61] made similar observations on the instability of
the estimates of α.

As a simple example with the primate data, we fit an OU model to the
longevity data using α = {0.2, 2}:

> compar.ou(longevity, tree.primates, alpha = .2)
$deviance
[1] 17.87657

$para
estimate stderr

sigma2 8.218722 3.6762567
theta1 2.448405 0.4280387

$call
compar.ou(x = longevity, phy = tree.primates, alpha = 0.2)

> compar.ou(longevity, tree.primates, alpha = 2)
$deviance
[1] 12.42138

$para
estimate stderr

sigma2 0.7484398 0.3348018
theta1 3.0805691 0.3127302

$call
compar.ou(x = longevity, phy = tree.primates, alpha = 2)

The function returns the deviance (−2 × log-likelihood) of the model, the
parameter estimates with their standard errors, and the function call recalling
the fitted model. This example shows that the model with α = 2 fits better
because its deviance is smaller, indicating that there is substantial constraint
in the evolution of longevity. The estimated optimum, with its 95% confidence
interval, is θ̂ = 3.08 ± 0.62, and the estimated variance of the OU process is
σ̂2 = 0.74 ± 0.67. The estimates of α and σ2 are highly correlated which could
be the result of the small sample size.

6.1.9 Perspectives

Comparative methods have enjoyed great success during the past 20 years,
both in terms of methodological and conceptual developments, and in terms
of empirical applications. Much emphasis has been put on correcting for phy-
logenetic dependence in order to use standard statistical methods. There is

154 6 Analysis of Macroevolution with Phylogenies

surely some gain in shifting attention to estimating evolutionary parameters
inasmuch as the essence of comparative data is the evolutionary processes that
generated them. In this respect, the Ornstein–Uhlenbeck model is likely to be
an interesting alternative to the commonly used Brownian motion model [16].

R offers a wide range of phylogenetic comparative methods. Some methods
not discussed here are:

• Garland et al. [47] developed a method based on simulations.
• Read and Nee [130] developed a method for the analysis of binary traits

(e.g., presence or absence).
• Grafen and Ridley [55, 56, 57] developed similar methods for discrete char-

acters.
• Huelsenbeck et al. [72] developed a Bayesian method to take phylogeny

uncertainty into account.

These methods can be easily programmed in R.

6.2 Estimating Ancestral Characters

For some time, the estimation of ancestral characters was considered as a
component of phylogeny estimation with parsimony methods where deriv-
ing ancestral and derived characters is an essential step [39]. With the de-
velopment of alternative methods where ancestral character values are not
necessary (distance methods) or their probabilistic distribution is taken into
account (likelihood methods), the estimation of ancestral values has become
less critical in phylogeny estimation.

The use of phylogenies to test evolutionary hypotheses has created new
interest in estimating ancestral character values. Many issues depend on how
characters evolved from an ancestral value [42]. Some researchers have focused
their attention on statistical methods of ancestral character estimation where
uncertainty in the estimates is taken into account [107]. Ancestral character
values are not observed, and thus it is more rational to consider them as
parameters in a model where the character values of recent species are the
observed variables. Consequently, the word “estimation” is preferable to “re-
construction”. In the same way, it is better to write “character values” rather
than “character states” inasmuch as we consider both continuous and discrete
characters (“state” implicitly refers to discrete characters).

ape has a single function to perform ancestral character estimation: ace.
By default, ace performs estimation for continuous characters assuming a
Brownian motion model fit by maximum likelihood. The options of ace have
different effects depending on the types of character under study. In all cases
a fully resolved phylogeny is required.

6.2 Estimating Ancestral Characters 155

6.2.1 Continuous Characters

Two methods can be used for continuous characters: least squares (method =
"pic"), and maximum likelihood (method = "ML", the default). The model
of evolution is specified with the option model.

The least squares estimator follows from the phylogenetically independent
contrasts method [36] (Section 6.1.1). This assumes a Brownian motion model
of evolution: this allows us to compute the variance of each ancestral character
estimate. A confidence interval can be computed with the usual formula x̂a ±
1.96

√
V (x̂a), with x̂a being the estimated ancestral value.

The maximum likelihood estimator under a Brownian motion model de-
veloped by Schluter et al. [138] uses a likelihood function where the ancestral
values are parameters:

L(σ2, xa|T , x) =
1
σn

exp
(

1
2σ

∑ (xi − xj)2

tij

)
, (6.14)

where σ2 is the variance of the Brownian motion process, xa are the ancestral
values, T is the phylogeny, and x are the observed values of the character at
the tips of T . Once (6.14) has been maximized, the standard errors of σ2 and
x̂a are obtained with the second partial derivatives, and confidence intervals
are computed as above. Note that σ2 is also estimated.

Let us try these two methods on the body mass of the primate data set.
We first fit a Brownian motion model with the default maximum likelihood
method:

> ace(body, tree.primates)
$loglik
[1] -6.714469

$ace
[1] 1.183725 2.192018 2.571320 3.503182

$sigma2
[1] 1.9711502 0.6970463

$CI95
[,1] [,2]

[1,] -0.5058590 2.873308
[2,] 0.9868737 3.397163
[3,] 1.4844055 3.658235
[4,] 2.6858445 4.320519

$call
ace(x = body, phy = tree.primates)

156 6 Analysis of Macroevolution with Phylogenies

The results are returned as a list with the ancestral estimates (ace) and their
95% confidence intervals in a matrix (CI); these values are indexed with the
numbers of the node (see Section 3.1.1). With the default method, the function
returns additionally the log-likelihood (loglik) and the estimated variance of
the Brownian motion model with its standard error in a vector of length two
(sigma2).

The option CI, whose default is TRUE, allows us to compute the 95% con-
fidence intervals of the ancestral estimates. We now use the least squares
method to fit the same model:

> ace(body, tree.primates, method = "pic")
$ace

-1 -2 -3 -4
1.183725 2.780824 3.200378 3.852630

$CI95
[,1] [,2]

[1,] -1.296931 3.664381
[2,] 0.854866 4.706781
[3,] 1.367000 5.033757
[4,] 2.582428 5.122832

$call
ace(x = body, phy = tree.primates, method = "pic")

The least squares estimates are slightly larger than the maximum like-
lihood ones, particularly for the oldest nodes. Furthermore, the confidence
intervals computed by maximum likelihood are usually narrower than those
by least squares.

6.2.2 Discrete Characters

Markovian models provide a useful and practical tool for modeling the evo-
lution of discrete characters [109]. We already have seen this framework with
the substitution models of DNA sequences (Section 5.2.1). Because Markovian
models have a probabilistic formulation, they can be fit by maximum likeli-
hood and compared, for a given data set, with standard statistical methods.
ace allows the user to set a variety of models in a flexible way.

Discrete characters are given as vectors or factors, and specify the option
type = "discrete". The option model is used to parameterize the transition
rates among the states. The number of states is taken from the data (this can
be seen with unique(x)).

The model is specified with a matrix of integers representing the indices of
the parameters: 1 represents the first parameter, 2 the second one, and so on.
The same number may appear several times in the matrix, meaning that the

6.2 Estimating Ancestral Characters 157

rates have the same values. For instance, with a two-state character, model
= matrix(c(0, 1, 1, 0), nrow = 2) specifies that the transitions among
both states occur at equal rates, and so there is only one parameter to be
estimated from the data. This is best visualized by printing the matrix (the
diagonal is always ignored here):

> matrix(c(0, 1, 1, 0), nrow = 2)
[,1] [,2]

[1,] 0 1
[2,] 1 0

If instead we use the following matrix,

> matrix(c(0, 1, 2, 0), nrow = 2)
[,1] [,2]

[1,] 0 2
[2,] 1 0

then different rates are assumed for both changes, and there are two param-
eters. We may recall that in the rate matrix, the rows represent the initial
states and the columns the final states.

If there are three states, some possible models could have the following
rate matrices.

> matrix(c(0, 1, 1, 1, 0, 1, 1, 1, 0), nrow = 3)
[,1] [,2] [,3]

[1,] 0 1 1
[2,] 1 0 1
[3,] 1 1 0
> matrix(c(0, 1, 2, 1, 0, 3, 2, 3, 0), nrow = 3)

[,1] [,2] [,3]
[1,] 0 1 2
[2,] 1 0 3
[3,] 2 3 0
> matrix(c(0, 1:3, 0, 4:6, 0), nrow = 3)

[,1] [,2] [,3]
[1,] 0 3 5
[2,] 1 0 6
[3,] 2 4 0

To indicate that a transition is impossible, a zero must be given in the
appropriate cell of the matrix. For instance, a “cyclical” change model could
be specified by:

> matrix(c(0, 0, 3, 1, 0, 0, 0, 2, 0), nrow = 3)
[,1] [,2] [,3]

[1,] 0 1 0

158 6 Analysis of Macroevolution with Phylogenies

[2,] 0 0 2
[3,] 3 0 0

where, if the three states are denoted A, B, C, the permitted changes are the
following: A → B → C → A.

The number of possible models is very large, even with three states. The
interest is to let the user define the models that may be sensible for a particular
study and test whether they are appropriate.

There are short-cuts with character strings that can be used instead of a
numeric matrix. The possible short-cuts are:

• model = "ER" for the equal-rates model,
• model = "SYM" for the symmetrical model,
• model = "ARD" for the all-rates-different model.

For a three-state character, these short-cuts result in exactly the same rate
matrices shown above, respectively. By default, if the user sets type =
"discrete", then the default model is "ER".

If the option CI = TRUE is used, then the likelihood of each ancestral state
is returned for each node in a matrix called lik.anc. They are computed with
a formula similar to (5.7), and scaled so that they sum to one for each node.

With the primate data, consider a character that sets Galago apart from
the other genera (say “big eyes”). We first fit the default model (equal rates):

> x <- c(2, 2, 2, 2, 1)
> ace(x, tree.primates, type = "discrete")
$loglik
[1] -1.768921

$rates
[1] 0.3775508

$se
[1] 0.3058119

$lik.anc
1 2

-1 0.304788504 0.6952115
-2 0.015697605 0.9843024
-3 0.019989199 0.9800108
-4 0.006221023 0.9937790

$call
ace(x = x, phy = tree.primates, type = "discrete")

The likelihood of the states “big eyes” and “small eyes” at the root are 0.3
and 0.7, respectively. Under this model, it is highly likely that the three other
nodes of the tree were “small eyes”.

6.2 Estimating Ancestral Characters 159

We now fit the all-rates-different model:

> ace(x, tree.primates, type = "discrete", model = "ARD")
$loglik
[1] -1.602901

$rates
[1] 0.3059753 1.0892927

$se
[1] 0.3864119 1.2243605

$lik.anc
1 2

-1 0.52689038 0.4731096
-2 0.11586096 0.8841390
-3 0.11724120 0.8827588
-4 0.04222992 0.9577701

$call
ace(x = x, phy = tree.primates, type = "discrete",

model = "ARD")

Interestingly, the likelihoods on the root are quite affected by the model: the
state of the root is now much less certain. For the other nodes, the likely state
is still “small-eyes”. The increase in likelihood with the additional parameter
is not significant:

> 1 - pchisq(2*(1.768921 - 1.602901), 1)
[1] 0.5644603

The genus Homo is sufficiently different from the other primate genera that
it is not hard to find a discrete character that separates them. So we consider
a character taking the value 1 in Homo,5 and 2 in the four other genera. We fit
the above two models and examine how their assumptions affect the likelihood
of ancestral estimates.

> y <- c(1, 2, 2, 2, 2)
> ace(y, tree.primates, type = "discrete")
$loglik
[1] -2.772593

$rates

5 This could be standing and moving upright, speaking complex languages, com-
plex social structures, cooking food, writing poems, using computers to analyze
phylogenies, and so on.

160 6 Analysis of Macroevolution with Phylogenies

[1] 14.59506

$se
[1] 386.9471

$lik.anc
1 2

-1 0.5000000 0.5000000
-2 0.5000000 0.5000000
-3 0.4999997 0.5000003
-4 0.5000000 0.5000000

$call
ace(x = y, phy = tree.primates, type = "discrete")

> ace(y, tree.primates, type = "discrete", model = "ARD")
$loglik
[1] -1.808865

$rates
[1] 8.030159 32.120695

$se
[1] NaN NaN

$lik.anc
1 2

-1 0.5000000 0.5000000
-2 0.5000000 0.5000000
-3 0.5000000 0.5000000
-4 0.5002041 0.4997959

$call
ace(x = y, phy = tree.primates, type = "discrete",

model = "ARD")

The distribution of y leads to much uncertainty in the ancestral likelihoods,
a fact well-known to the users of the parsimony-based methods.

A more concrete application of ace with discrete characters is presented
below with the Sylvia data.

6.3 Analysis of Diversification

The increasing availability of estimated phylogenies has led to a renewed in-
terest in the study of macroevolution processes. For a long time, this issue

6.3 Analysis of Diversification 161

was in the territory of paleontology. The fact that complete phylogenies be-
come more numerous for more and more taxonomic groups has brought the
biologists into the party.

The analysis of diversification is based on ultrametric trees with dated
nodes. Most methods are based on a probabilistic model of speciation and
extinction called the “birth–death” model [79]. This model assumes that there
is an instantaneous speciation probability (denoted λ) and an instantaneous
extinction probability (µ).

There are variations and extensions to this basic model. The most well
known is when µ = 0 (i.e., no extinction), which is called the Yule model.
Nee et al. [104] suggested a generalization of the birth–death model where λ
and µ vary through time. I suggested a model, called the Yule model with
covariates, where λ varies with respect to species traits [115]. Because the
birth–death model and its variants are probabilistic models, they can be fit to
data by maximum likelihood. These models can be used both for parameter
estimation and hypothesis testing. From a biological point of view, the main
interest is the possibility of testing a variety of biological hypotheses depending
on the fit models.

Other approaches consider a graphical or statistical analysis of the dis-
tribution of the branching times without assuming an explicit model. These
methods focus on hypothesis testing.

6.3.1 Graphical Methods

Phylogenetic trees can be used to depict changes in the number of species
through time. This idea has been explored by Nee et al. [105] and Harvey
et al. [63]. The lineages-through-time plot is very simple in its principle: it
plots the number of lineages observed on a tree with respect to time. With a
phylogeny estimated from recent species, this number is obviously increasing
because no extinction can be observed. If diversification has been constant
through time, and the numbers of lineages are plotted on a logarithmic scale,
then a straight line is expected. If diversification rates decreased through time,
then the observed plot is expected to lay above the straight line, whereas the
opposite result is expected if diversification rates increased through time.

The interpretation of lineages-through-time plots is actually not straight-
forward because in applications with real data the shape of the observed curve
rarely conforms to one of the three scenarios sketched above [33]. This graph-
ical method is of limited value to test hypotheses; particularly, its behavior
is not known in the presence of heterogeneity in diversification parameters.
However, it is an interesting exploratory tool given its very low computational
cost.

There are three functions in ape for performing lineages-through-time
plots: ltt.plot, ltt.lines, and mltt.plot. The first one does a simple plot
taking a phylogeny as argument. By default, the x- and y-axes are labeled
“Time” and “N”, but this can be changed with the options xlab and ylab,

162 6 Analysis of Macroevolution with Phylogenies

−12 −8 −4 0

2
4

6
8

10
12

14

Time

N

−12 −8 −4 0

1
2

5
10

Time
N

Fig. 6.5. Lineages-through-time plot of the clock tree of Michaux et al. [100]
(Fig. 4.18) with a logarithmic scale on the right-hand side

respectively. This function has also a “dot-dot-dot” (...) argument (see p. 71
for an explanation of this argument) that can be used to format the plot (e.g.,
to alter the appearance of the line). As an illustration, let us come back to
the rodent tree displayed in Fig. 4.18. It is ultrametric and so can be analyzed
with the present method. We simply display the plot twice, with the default
options, and set the y-axis on a logarithmic scale (Fig. 6.5):

layout(matrix(1:2, 1, 2))
ltt.plot(trk)
ltt.plot(trk, log = "y")

ltt.lines can be used to add a lineages-through-time plot on an existing
graph (it is a low-level plotting command). It has only two arguments: an
object of class "phylo" and the “dot-dot-dot” argument to specify the for-
matting of the new line (because by default, it is likely to look like the line
already plotted). For instance, if we want to draw the lineages-through-time
plots of both trees on Fig. 4.18, we could do:

ltt.plot(trk)
ltt.lines(trc, lty = 2)

mltt.plot is more sophisticated for plotting several lineages-through-time
plots on the same graph. Its interface is:

mltt.plot(phy, ..., dcol = TRUE, dlty = FALSE,
legend = TRUE, xlab = "Time", ylab = "N")

6.3 Analysis of Diversification 163

Note that the “dot-dot-dot” argument is not the last one; thus it does not have
the same meaning as in the first two functions. Here, ‘...’ means “a series
of objects of class "phylo"”. The options dcol and dlty specify whether the
lines should be distinguished by their colors and / or their types (solid, dashed,
dotted, etc.). To produce a graph without colors, one will need to invert the
default values of these two options. The option legend indicates whether to
draw a legend (the default). To compare the lineages-through-time plots of
our two trees, we could do (Fig. 6.6):

mltt.plot(trk, trc, dcol = FALSE, dlty = TRUE)

−12 −10 −8 −6 −4 −2 0

2
4

6
8

10
12

14

Time

N

trk
trc

Fig. 6.6. Multiple lineages-through-time plot of the clock tree of Michaux et al. [100]
and the tree estimated from the nonparametric rate smoothing method (Fig. 4.18)

Note that the axes are set to represent both lines correctly, which may
not be the case when using ltt.lines (although the axes may be set with
xlim and ylim passed to ltt.plot with the “dot-dot-dot”). The advantage
of the latter is that the lines may be customized at will, whereas this is done
automatically by mltt.plot.

6.3.2 Birth–Death Models

Birth–death processes provide a simple way to model diversification. There
are reasons to believe that these models do not correctly depict macroevo-
lutionary processes [93], but they are useful to use for data analysis because
there has been considerable work to derive probability functions related to
these processes making likelihood-based inference possible [79, 80].

164 6 Analysis of Macroevolution with Phylogenies

The Simple Birth–Death Model

The estimation of speciation and extinction probabilities when all speciation
and extinction events are observed through time is not problematic [78]. Some
difficulties arise when only the recent species are observed. Nee et al. [104] de-
rived maximum likelihood estimates of these parameters in this case. They
used the following reparameterization: r = λ−µ, a = µ/λ. The estimates λ̂ and
µ̂ are then obtained by back-transformation. The function birthdeath imple-
ments this method: it takes as single argument an object of class "phylo".
Note that this tree must be dichotomous. If this is not the case, it could be
transformed with multi2di (Section 3.4.3): this assumes that a series of spe-
ciation events occurred very rapidly. The results are returned as an object of
class "birthdeath". As an example, we come back to the 14-species rodent
tree examined above with lineages-through-time plots:

> bd.trk <- birthdeath(trk)
> bd.trk

Estimation of Speciation and Extinction Rates
With Birth-Death Models

Phylogenetic tree: trk
Number of tips: 14

Deviance: 25.42547
Log-likelihood: -12.71274

Parameter estimates:
d / b = 0 StdErr = 0
b - d = 0.1438844 StdErr = 0.02939069

(b: speciation rate, d: extinction rate)
Profile likelihood 95% confidence intervals:

d / b: [0, 0.5178809]
b - d: [0.07706837, 0.2412832]

The standard errors of the parameter estimates are computed using the usual
method based on the second derivatives of the likelihood function at its maxi-
mum. In addition, 95% confidence intervals of both parameters are computed
using profile likelihood: they are particularly useful if the estimate of a is at
the boundary of the parameter space (i.e., 0, which is often the case [117]).

birthdeath returns a list that allows us to extract the results if necessary.
As an illustration of this, let us examine the question of how sensitive the
above result could be to removing one species from the tree. The idea is
simple: we drop one tip from the tree successively, and look at the estimated
parameters (returned in the element para of the list). Instead of displaying
the results directly we store them in a matrix called res. Each row of this
matrix receives the result of one analysis:

6.3 Analysis of Diversification 165

> res <- matrix(NA, 14, 2)
> for (i in 1:14)
+ res[i,] <- birthdeath(drop.tip(trk, i))$para
> res

[,1] [,2]
[1,] 0 0.1354675
[2,] 0 0.1354675
[3,] 0 0.1361381
[4,] 0 0.1369858
[5,] 0 0.1376716
[6,] 0 0.1439786
[7,] 0 0.1410251
[8,] 0 0.1410251
[9,] 0 0.1421184
[10,] 0 0.1490515
[11,] 0 0.1318945
[12,] 0 0.1318945
[13,] 0 0.1361381
[14,] 0 0.1361381

This shows that the analysis is only slightly affected by the deletion of one
species from the tree. With a larger tree, one could examine these results
graphically, for instance, with a histogram (i.e., hist(res[, 2])).

Combining Phylogenetic and Taxonomic Data

It often occurs that a phylogeny is not complete in the sense that not all living
species are included. This leads to some difficulties in the analysis of diversi-
fication because there are some obvious missing data. Pybus et al. [126] have
approached this problem using simulations and randomization procedures.
A more formal and general approach has been developed independently by
Bokma [11] and myself [113]. The idea is to combine the information from
phylogenetic data (branching times) and taxonomic data (species diversity).
Formulae can be derived to calculate the probabilities of both kinds of obser-
vations, and because they depend on the same parameters (λ and µ) they can
be combined into a single likelihood function.

The approach developed in [113] is implemented in the function bd.ext.
Let us consider the phylogeny of bird orders (Fig. 4.13). The number of species
in each order can be found in Sibley and Monroe [141]. These are entered by
hand:

> data(bird.orders)
> S <- c(10, 47, 69, 214, 161, 17, 355, 51, 56, 10, 39, 152,
+ 6, 143, 358, 103, 319, 23, 291, 313, 196, 1027, 5712)
> bd.ext(bird.orders, S)

166 6 Analysis of Macroevolution with Phylogenies

Extended Version of the Birth-Death Models to
Estimate Speciation and Extinction Rates

Data: phylogenetic: bird.orders
taxonomic: S

Number of tips: 23
Deviance: 289.1639

Log-likelihood: -144.5820
Parameter estimates:

d / b = 0 StdErr = 0
b - d = 0.2866789 StdErr = 0.007215592

(b: speciation rate, d: extinction rate)

The output is fairly similar to the one from birthdeath. Note that it is
possible to plot the log-likelihood function with respect to different values
of a and r in order to derive profile likelihood confidence intervals of the
parameter estimates (see [113] for examples).

The Yule Model with Covariates

The two applications of birth–death models above assume that speciation and
extinction rates were constant through time. It is obvious that, biologically,
this assumption must be relaxed because diversification has clearly fluctuated
over time [142]. Nee et al. [104] suggested extending the simple birth–death
model to include time-varying speciation and extinction rates, but this does
not seem to have been implemented or further developed.

Another approach to this problem is to assume that these rates vary with
respect to one or several species traits. This is appealing biologically because
a major issue in biology is to identify the biological traits that lead to higher
speciation and / or extinction rates [42, 73].

I proposed [115] to model speciation rates using a linear model written as

ln
λi

1 − λi
= β1xi1 + β2xi2 + · · · + βpxip + α , (6.15)

where λi is the speciation rate for species i, xi1, xi2, . . . , xip are variables
measured on species i, and β1, β2, . . . , βp, α are the parameters of the model.
The function ln(x/(1 − x)) is called the logit function (it is used in logistic
regression and GLMs): it allows the term on the left-hand side to vary between
−∞ and +∞. The terms on the right-hand side must be interpreted in the
same way as a usual linear regression model. Let us rewrite (6.15) in matrix
form as logit(λi) = xT

i β. Giving some values of the vector β and of the traits
xi it is possible to predict the value of the speciation rate with the inverse
logit function:

6.3 Analysis of Diversification 167

λi =
1

1 + e−xT
i β

. (6.16)

If we make the assumption that there is no extinction (µ = 0), then it is
possible to derive a likelihood function to estimate the parameters of (6.15)
giving an observed phylogeny and values of x [115]. Because this uses a regres-
sion approach, different models can be compared with likelihood ratio tests
in the usual way.

A critical assumption of this model is that the extinction rate is equal to
zero. This is clearly unrealistic but it appeared that including extinction rates
in the model made it too complex to permit parameter estimation [115]. Some
simulations showed that the test of the hypothesis β = 0 is affected by the
presence of extinctions but it keeps some statistical power (it can detect an
effect when it is present; see [115] for details).

The function yule.cov fits the Yule model with covariates. It takes as
arguments a phylogenetic tree, and a one-sided formula giving the predictors
of the linear model (e.g., ˜ a + b). The variables in the latter can be located
in a data frame, in which case the option data must be used. They can be
numeric vectors and / or factors: they are treated as continuous and discrete
variables, respectively. The predictors must be provided for the tips and the
nodes of the tree; for the latter they can be estimated with ace (Section 6.2).
The results are simply displayed on the console. To fit the null model (i.e.,
with constant speciation rate), one can use the function yule which fits the
simple Yule model. It returns an object of class "yule". An application of
these functions with the Felidae data is detailed below (Section 6.5.2).

6.3.3 Survival Models

The problem of missing species in phylogenies motivated some initial works
on how to deal with this problem in the analysis of diversification. I suggested
the use of continuous-time survival models for this purpose because they can
handle missing data in the form of censored data [111].

Typical survival data are times to failure of individuals or objects [20].
It often occurs that some individuals are known to have been living until a
certain time, but their exact failure times are unknown for various reasons
(e.g., they left the study area, or the study ended before they failed or died).
This is called censorship. The idea is to use this concept for missing species
in phylogenies inasmuch as it is often possible to establish a minimum time
of occurence for them [111].

Using survival models to analyze diversification implies that speciation and
extinction rates cannot be estimated separately. The estimated survival (or
hazard) rate must be interpreted as a diversification rate [111]. It is denoted
δ (= λ − µ). In theory a variety of models could be used, but only three are
implemented in ape (see [111] for details):

• Model A assumes a constant diversification rate through time;

168 6 Analysis of Macroevolution with Phylogenies

• Model B assumes that diversification changed through time according to
a Weibull distribution with a parameter denoted β. If β > 1, then the di-
versification rate decreased through time; if β < 1, then the rate increased
through time. If β = 1, then Model B reduces to Model A;

• Model C assumes that diversification changed with a breakpoint at time
Tc.

These three models can be fit with the function diversi.time. This func-
tion takes as main arguments the values of the branching times (which can
be computed beforehand, for instance, with branching.times). As a simple
example, we take the data on Ramphocelus analyzed in [111]. This genus of
passerine birds includes eight species: six of them were studied by Hackett [59]
who resolved their phylogenetic relationships. For the two remaining species,
some approximate dates of branching could be inferred from data reported in
[59]. We enter the data by hand in R:

> x <- c(0.8, 1, 1.15, 1.55, 2.3, 0.8, 0.8)
> indicator <- c(rep(1, 5), rep(0, 2))
> diversi.time(x, indicator)

Analysis of Diversification with Survival Models

Data: x
Number of branching times: 7

accurately known: 5
censored: 2

Model A: constant diversification
log-likelihood = -7.594 AIC = 17.188
delta = 0.595238 StdErr = 0.266199

Model B: diversification follows a Weibull law
log-likelihood = -4.048 AIC = 12.096
alpha = 0.631836 StdErr = 0.095854
beta = 2.947881 StdErr = 0.927013

Model C: diversification changes with a breakpoint at time = 1
log-likelihood = -7.321 AIC = 18.643
delta1 = 0.15625 StdErr = 0.15625
delta2 = 0.4 StdErr = 0.2

Likelihood ratio tests:
Model A vs. Model B: chiˆ2 = 7.092 df = 1, P = 0.0077
Model A vs. Model C: chiˆ2 = 0.545 df = 1, P = 0.4604

6.3 Analysis of Diversification 169

The results are simply printed on the screen. Note that here the branching
times are scaled in million years ago (Ma), and thus the estimated parameters
δ̂ (delta), α̂ (alpha), δ̂1 (delta1, value of δ after Tc in model C), and δ̂2
(delta2, value of δ before Tc in model C) must be interpreted with respect to
this time scale. However, the estimate of β̂ (beta) and the values of the LRTs
are scale independent.

6.3.4 Goodness-of-Fit Tests

As pointed out earlier in this chapter, the estimation of extinction rates is dif-
ficult with phylogenies of recent species because extinctions are not observed
[114]. However, it is clear that extinctions affect the distribution of branching
times of a given tree [63, 103]. An alternative approach to parametric mod-
els is to focus on this distribution and compare it to a theoretical one with
statistical goodness-of-fit tests based on the empirical cumulative distribution
function (ECDF) [146, 149]. These tests compare the ECDF of branching
times to the distribution predicted under a given model. The null hypothesis
is that the observed distribution comes from this theoretical one. A difficulty
of these tests is that their distribution depends on the null hypothesis, and
thus the critical values must be determined on a case-by-case basis.

The function diversi.gof implements the goodness-of-fit tests as applied
to testing a model of diversification [112]. It takes as main argument a vector
of branching times in the same way as diversi.time. The second argument
(null) specifies the distribution under the null hypothesis: by default null
= "exponential" meaning that it tests whether the branching times follow
an exponential distribution. The other possible choice is null = "user" in
which case the user must supply a theoretical distribution for the branching
times in a third argument (z).

As an application we consider the same data on Ramphocelus as in the
previous section:

> diversi.gof(x)

Tests of Constant Diversification Rates

Data: x
Number of branching times: 7
Null model: exponential

Cramer-von Mises test: W2 = 0.841 P < 0.01
Anderson-Darling test: A2 = 4.81 P < 0.01

Two tests are computed: the Cramér–von Mises test which considers all
data points equally, and the Anderson–Darling test which gives more emphasis
in the tails of the distribution [147]. The critical values of both tests have been

170 6 Analysis of Macroevolution with Phylogenies

determined by Stephens [146]. If we want to consider only the five accurately
known data points, the results are not changed:

> diversi.gof(x[indicator == 1])

Tests of Constant Diversification Rates

Data: x[indicator == 1]
Number of branching times: 5
Null model: exponential

Cramer-von Mises test: W2 = 0.578 P < 0.01
Anderson-Darling test: A2 = 3.433 P < 0.01

The results of these tests are scale independent.
Another goodness-of-fit test is the γ-statistic [125]. It is based on the in-

ternode intervals of a phylogeny: under the assumption that the clade diver-
sified at constant rates, it follows a normal distribution with mean zero and
standard deviation one. The γ-statistic can be calculated with the function
gammaStat which takes as unique argument an object of class "phylo". The
null hypothesis can be tested with:

1 - 2*pnorm(abs(gammaStat(tr)))

6.3.5 Tree Shape and Indices of Diversification

The methods for analyzing diversification we have seen until now require
knowledge of the branch lengths of the tree. Some researchers have inves-
tigated whether it is possible to get some information on diversification using
only the topology of a phylogenetic tree (see [1, 3, 83] for reviews). Intuitively,
we may expect unbalanced phylogenetic trees to result from differential di-
versification rates. On the other hand, different models of speciation predict
different distributions of tree shapes.

apTreeshape implements statistical tests for two indices of tree shape:
Sackin’s and Colless’s. Their formulae are:

IS =
n∑

i=1

di , (6.17)

IC =
n−1∑
j=1

|Lj − Rj | , (6.18)

where di is the number of branches between tip i and the root, and Lj and Rj

are the number of tips descendant of the two subclades originating from node
j. These indices have large values for unbalanced trees, and small values for

6.3 Analysis of Diversification 171

fully balanced trees. They can be calculated for a given tree with the functions
sackin and colless. Two other functions, sackin.test and colless.test,
compute the indices and test, using a Monte Carlo method, the hypothesis
that the tree was generated under a specified model. Both functions have the
same options:

colless.test(tree, model = "yule", alternative = "less",
n.mc = 500)

sackin.test(tree, model = "yule", alternative = "less",
n.mc = 500)

where tree is an object of class "treeshape", model gives the null model,
alternative specifies whether to reject the null hypothesis for small (default)
or large values (alternative = "greater") of the index, and n.mc gives the
number of simulated trees to generate the null distribution. The two possible
null models are the Yule model (the default), and the PDA (model = "pda").
These models are described on p. 45.

A more powerful test of the above indices is the shape statistic which is the
likelihood ratio under both Yule and PDA models. This statistic has distinct
distributions under both models, so it is possible to define a most powerful
test (i.e., one with optimal probabilities of rejecting either hypothesis when it
is false). This is implemented in the function likelihood.test. We generate
a random tree with the Yule model, and then try the function:

> trs <- rtreeshape(1, model = "yule")
> likelihood.test(trs)
Test of the Yule hypothesis:
statistic = -1.207237
p.value = 0.2273407
alternative hypothesis: the tree does not fit the Yule model

Note: the p.value was computed according to
a normal approximation

> likelihood.test(trs, model = "pda")
Test of the PDA hypothesis:
statistic = -3.280261
p.value = 0.001037112
alternative hypothesis: the tree does not fit the PDA model

Note: the p.value was computed according to
a normal approximation

Aldous [2, 3] introduced a graphical method where, for each node, the
number of descendants of both subclades from this node are plotted one versus
the other with the largest one on the x-axis. The expected distribution of these
points is different under the Yule and PDA models. The function aldous.test

172 6 Analysis of Macroevolution with Phylogenies

1 2 5 10 20 50

1
2

5
10

20

Size of parent clade (log scale)

S
iz

e
of

 s
m

al
le

r
da

ug
ht

er
 c

la
de

 (
lo

g
sc

al
e)

PDA model

Yule model

Fig. 6.7. Plot of the number of descendants of both subclades for each node of a
tree with 50 tips simulated under a Yule model. The labeled lines are the expected
distribution under these models, and the leftmost line is a quantile regression on the
points

makes this graphical analysis. Together with the points, the expected lines are
drawn under these two models. The option xmin = 20 controls the scale of
the x-axis: by default, the smallest clades are not represented which may be
suitable for large trees. If we do the Aldous test with the small tree simulated
above (Fig. 6.7):

aldous.test(trs, xmin = 1)

The expected lines are labeled with the null models just above them. The
most leftward line (by default in red) is a quantile regression on the points.

6.4 Perspectives

There is certainly much to expect from the study of evolutionary processes
using phylogenies of recent species. Phylogenetic data are accumulating at a
rapid pace, and we can hope that more focus on macroevolutionary issues
will lead to insights into the mechanisms of biological evolution. The meth-
ods already implemented in R cover a wide range of issues. It is likely that
developments will continue in the same direction to offer biologists a com-
plete environment for data analysis. Future developments could also include
methods not yet available in R such as biogeographical models [90].

6.5 Case Studies 173

6.5 Case Studies

6.5.1 Sylvia Warblers

We begin by reading in the Sylvia data if necessary. We first drop the outgroup
species (Chamaea fasciata) for which we have no ecological data:

load("sylvia.RData")
tr <- read.tree("sylvia_nj_k80.tre")
tr <- drop.tip(tr, "Chamaea_fasciata")

We also sort the data frame of ecological data so that its rows are in the same
order as the tip labels of the tree:6

DF <- sylvia.eco[tr$tip.label,]

We focus on an analysis of the geographical range by trying to reconstruct
the evolution of this character. Migratory behavior is tightly linked with ge-
ographical range:

> table(DF$geo.range, DF$mig.behav)

long resid short
temp 0 4 0
temptrop 9 0 4
trop 0 7 0

We can assume in a first step that evolutionary changes among the three
states occur at the same rate. We fit a model with ace using the option type
= "discrete"—which may be abbreviated with "d"—and the default model
(equal rates):

> syl.er <- ace(DF$geo.range, tr, type = "d")
> syl.er
$loglik
[1] -25.26805

$rates
[1] 136.5994

$se
[1] NaN
....

6 Most functions in ape and ade4 do not need this because the tip labels and the
rownames are matched, but because here there are extra species in sylvia.eco,
we do both operations at once.

174 6 Analysis of Macroevolution with Phylogenies

The fact that no standard error has been computed for the rate parameter
indicates that the likelihood surface of this model is flat, and the latter poorly
fits the data. We fit the symmetrical model where transition rates differ from
one state to another but transitions between two given states have equal rates
in both directions. We use the short-cut model = "SYM":

> syl.sym <- ace(DF$geo.range, tr, type = "d", model = "SYM")
$loglik
[1] -21.71442

$rates
[1] 28.20588 -18.23412 97.49406

$se
[1] 21.39655 22.74213 98.51708
....

This model clearly fits better: this is not surprising because we added two pa-
rameters. We can compute the likelihood ratio test comparing the two models
to test whether the increase in fit is significant:7

> 1 - pchisq(2*(syl.sym$loglik - syl.er$loglik), 2)
[1] 0.0286206

This is significant, but we may want to try a more parsimonious “custom”
model where only the transitions temp ↔ temptrop ↔ trop are permitted.
We define a symmetric matrix mod that is used as a model in ace:

> mod <- matrix(0, 3, 3)
> mod[2, 1] <- mod[1, 2] <- 1
> mod[2, 3] <- mod[3, 2] <- 2
> mod

[,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 2
[3,] 0 2 0

The rate matrix mod has two parameters: the first one for the transitions temp
↔ temptrop, and the second one for the transitions temptrop ↔ trop.

> syl.mod <- ace(DF$geo.range, tr, type = "d", model = mod)
> syl.mod
$loglik

7 A likelihood ratio test is computed as twice the difference in log-likelihoods, and
follows a χ2 distribution with the number of degrees of freedom given by the
difference in number of parameters. The function pchisq gives the cumulative
density function of the χ2 distribution (i.e., Pr(x ≤ χ2)).

6.5 Case Studies 175

[1] -24.29444

$rates
[1] 32.79765 98.11600

$se
[1] NaN NaN
....

This model does not fit better, so we stick to the symmetrical model.
How do we interpret the rates estimated by ace? We use the methodology

described for substitution models to calculate a probability matrix from the
rate matrix (Section 5.2.1). We first build the latter with the estimated rates
that are arranged columnwise in the matrix:

> Q <- matrix(0, 3, 3)
> Q[1, 2] <- Q[2, 1] <- syl.sym$rates[1]
> Q[1, 3] <- Q[3, 1] <- syl.sym$rates[2]
> Q[2, 3] <- Q[3, 2] <- syl.sym$rates[3]
> Q

[,1] [,2] [,3]
[1,] 0.00000 28.20588 -18.23411
[2,] 28.20588 0.00000 97.49406
[3,] -18.23411 97.49406 0.00000

We set the diagonal of the matrix so that the rows sum to zero (the command
below will work if this diagonal is initially filled with zeros):

> diag(Q) <- -rowSums(Q)
> Q

[,1] [,2] [,3]
[1,] -9.971765 28.20588 -18.23411
[2,] 28.205880 -125.69994 97.49406
[3,] -18.234115 97.49406 -79.25994

The rate matrix is now ready and we can compute the probabilities for a given
time. The latter must be relevant with respect to the estimated parameters
(i.e., on the same scale as the original branch lengths); here we take t = 0.05:

> library(rmutil)
> P <- mexp(0.05 * Q)
> rownames(P) <- c("temp", "temptrop", "trop")
> colnames(P) <- c("temp", "temptrop", "trop")
> round(P, 3)

temp temptrop trop
temp 0.792 0.187 0.022
temptrop 0.187 0.380 0.433
trop 0.022 0.433 0.545

176 6 Analysis of Macroevolution with Phylogenies

These probabilities suggest that temperate-tropical is the most “unstable”
state, and that most transitions occur between this state and the tropical
one. Temperate species seem to evolve only from temperate-tropical ones.

We now plot the likelihoods of the ancestral characters on the tree to-
gether with the values observed for the species. We first create a vector of
mode character to store the colors used for the symbols on the tips: black for
temperate, white for tropical, and grey for temperate-tropical.

co <- rep("grey", 24)
co[DF$geo.range == "temp"] <- "black"
co[DF$geo.range == "trop"] <- "white"

We plot the tree as a cladogram to better display the information; the option
label.offset is used to leave some space for the symbols. The latter are
drawn with tiplabels: the symbols are colored with the vector co prepared
above, and adj = 1 avoids the symbols overlapping with the tips of the tree.
Finally, the likelihoods of the ancestral characters are added with nodelabels
using the option thermo (Fig. 6.8):

plot(tr, "c", FALSE, no.margin = TRUE, label.offset = 1)
tiplabels(pch = 22, bg = co, cex = 2, adj = 1)
nodelabels(thermo = syl.sym$lik.anc,

bg = c("black", "grey", "white"), cex = 0.8)

From this analysis we can infer that the ancestor of the genus Sylvia was,
probably, a tropical bird. Because all tropical Sylvia are also resident, this
genus probably evolved from a tropical resident species.

6.5.2 Phylogeny of the Felidae

We continue the analysis of the Felidae phylogeny by first reading back the
tree in R:

tr <- read.tree("felid.chrono.tre")

We are interested here in the diversification parameters of this group. We first
estimate the global speciation rate of this phylogeny by fitting a Yule model:

> yule(tr)
$lambda
[1] 0.2318725

$se
[1] 0.04036382

$loglik
[1] 7.349097

6.5 Case Studies 177

Sylvia subcaeruleum
Sylvia curruca
Sylvia crassirostris
Sylvia leucomelaena
Sylvia hortensis
Sylvia lugens
Sylvia buryi
Sylvia boehmi
Sylvia layardi
Sylvia nana
Sylvia nisoria
Sylvia communis
Sylvia conspicillata
Sylvia balearica
Sylvia undata
Sylvia deserticola
Sylvia cantillans
Sylvia mystacea
Sylvia melanocephala
Sylvia rueppelli
Sylvia melanothorax
Sylvia abyssinica
Sylvia borin
Sylvia atricapilla

Fig. 6.8. Ancestral estimates of geographical range for 24 species of Sylvia. The
thermometers on the nodes show the relative likelihoods of the three states: tem-
perate (black), temperate-tropical (grey), tropical (white). The state of the recent
species are shown on the tips of the tree

attr(,"class")
[1] "yule"

The estimated speciation probability is quite high (λ̂ = 0.23 ± 0.08). We now
try to fit the simple birth–death model:

> birthdeath(tr)

Estimation of Speciation and Extinction Rates
with Birth-Death Models

Phylogenetic tree: tr
Number of tips: 35

Deviance: -16.81068
Log-likelihood: 8.405339

Parameter estimates:
d / b = 0.6280969 StdErr = 0.2103922
b - d = 0.1340512 StdErr = 0.05509144

(b: speciation rate, d: extinction rate)
Profile likelihood 95% confidence intervals:

d / b: [0.3227608, 0.7970532]
b - d: [0.084925, 0.2029478]

178 6 Analysis of Macroevolution with Phylogenies

This is an interesting result because in most applications of the birth–death
model without fossils the estimated extinction probability is usually zero, even
when there are speciations [114]. The estimated parameters are â = 0.63 and
r̂ = 0.13. By back-substitution using λ = r/(1 − a) and µ = λa, we obtain
λ̂ = 0.36 and µ̂ = 0.23. We can compare the Yule model with the birth–
death model with a likelihood ratio test because the latter has one additional
parameter (µ):

> 1 - pchisq(2*(8.405339 - 7.349097), 1)
[1] 0.146102

This is not significant at the 0.05 level leading us to accept the null hypothesis
that µ = 0, but we need to be very cautious about this result because the
estimation of extinction rates is particularly difficult with phylogenies of recent
species [114].

We now explore the possible impact of body mass on speciation rate. We
first load the previously saved workspace with the data on body mass:

load("felid.RData")

We check that each species in our tree has data on body mass:

> IN <- tr$tip.label %in% names(felid.body.mass)
> tr$tip.label[!IN]
[1] "Prionailurus_rubiginosa" "Felis_catus"
[3] "Felis_libyca"

This is not the case as three species appear to have no data on body mass.
An examination of the latter data shows that a mismatch is due to a different
termination of the species name of the rusty-spotted cat:

> names(felid.body.mass)[36]
[1] "Prionailurus_rubiginosus"

Thus we simply change the name of this species, and give a body mass of
3500 g to both species of cats:

names(felid.body.mass)[36] <- "Prionailurus_rubiginosa"
x <- rep(3500, 2)
names(x) <- c("Felis_catus", "Felis_libyca")
felid.body.mass <- c(felid.body.mass, x)

As a final check before proceeding, we verify that all species in the tree have
a body mass in our data:

> all(tr$tip.label %in% names(felid.body.mass))
[1] TRUE

6.5 Case Studies 179

We can now assess the effect of body mass on speciation rate of Felidae.
We must first estimate the ancestral values of this variable using ace. The
function yule.cov is sensitive to the distribution of the predictors: if they
are too skewed the fitting procedure is likely to fail [115]. Consequently, we
log-transform body mass and center the variable:

> range(felid.body.mass)
[1] 1300 433200
> X <- scale(log(felid.body.mass[tr$tip.label]), scale=FALSE)
> range(X)
[1] -1.930336 2.898372

The option scale = FALSE prevents data scaling (only centering is done). We
also have sorted the data in the same order as in the tree (which is required
by yule.cov). We then estimate the ancestral body mass with ace using the
default maximum likelihood method:

X.node <- ace(X, tr)$ace

These values must be sorted according the node numbers of the tree, which
is done by ace. We can now feed the data to yule.cov:

> yule.cov(tr, ˜ c(X, X.node))

---- Yule Model with Covariates ----

Phylogenetic tree: tr
Number of tips: 35
Number of nodes: 34

Deviance: -15.25978
Log-likelihood: 7.629888

Parameter estimates:
Estimate StdErr

(Intercept) -1.1870642 0.1612194
c(X, X.node) -0.1615685 0.1539165

The increase in log-likelihood is very small compared to the Yule model so it is
not necessary to compute the P -value. In spite of this, we find a slight negative
effect of body mass on speciation rate meaning that the smaller species tend
to speciate more rapidly. An easier way to interpret this result is to use the
inverse logit-transformation (6.16), and plot the calculated values of λ with
respect to the predictor. In the present case, the predictor varies between
−1.93 and 2.90, so we create a sequence between −2 and 3 (with a reasonable
increment to smooth the plot) to cover the observed variation:

> x <- seq(-2, 3, 0.05)

180 6 Analysis of Macroevolution with Phylogenies

We compute the corresponding predicted value of λ:

lambda <- 1 / (1 + exp(-(-0.1615685 * x + -1.1870642)))

We could simply make the plot with plot(x, lambda), but we can make it
more informative by transforming the scale of the x-axis so that it is similar
to the scale of the original body mass data: this implies adding the mean of
the log-transformed body mass (the inverse of centering), and then taking the
exponential (the inverse of the logarithmic transformation). We do the plot
with type = "l" to draw a curve, and we use rug to plot on the x-axis the
observed values of body mass (Fig. 6.9):

0 50000 100000 150000

0.
16

0.
20

0.
24

0.
28

Body mass (g)

P
re

di
ct

ed
λ

Fig. 6.9. Predicted variation in speciation rate (λ) with respect to body mass for
the Felidae

ox <- exp(x + mean(log(felid.body.mass[tr$tip.label])))
plot(ox, lambda, type = "l", xlab = "Body mass (g)",

ylab = expression("Predicted "*lambda))
rug(felid.body.mass[tr$tip.label])

The function expression allows us to write special characters on a plot.
We should keep in mind that the depicted relationship is not statistically
significant (see [115] for an example of significant effects with primates).

6.6 Exercises

1. Simulate for 99 time-steps two independent Brownian motion models with
the same initial values. These variables should be taken as two species

6.6 Exercises 181

that have diverged after t = 1, and they should be stored in a two-column
matrix.
(a) Simulate the divergence of each species in two daughter-species at

t = 100 under the same model for 100 time-steps: the results should
be stored in a four-column matrix. Plot the whole evolution for the
200 time-steps on a single graph.

(b) Repeat (a) but using an Ornstein–Uhlenbeck model with α = 0.2,
θ1 = −1 for the first pair of species, and θ2 = 1 for the second one.

(c) Repeat (b) with θ1 = −20 and θ2 = 20. Compare the results.

2. Calculate the expected values of the Brownian motion and the Ornstein–
Uhlenbeck models after 100 time-steps. Compare with the observed values
from the simulations above.

3. Implement Desdevises et al.’s [24] method in R (see p. 144).

4. Consider the phylogeny estimated for the Felidae (Section 5.5.2). Com-
pute the phylogenetically independent contrasts for body mass using the
following branch lengths:
• The maximum likelihood estimates from PHYML (Fig. 5.5);
• From the chronogram estimated by NPRS (Fig. 5.6);
• Setting the node heights so that they are equal to the number of de-

scendants (see compute.brlen);
• All equal to one.
Compare the results and comment on the assumptions underlying the use
of each set of branch lengths.

5. Consider the neighbor-joining tree estimated for the genus Sylvia and the
associated bootstrap values.
(a) Compute the phylogenetically independent contrasts for the contin-

uous variable (migratory distance, mig.dist) in the ecological data
set.

(b) We want to give more importance in the analysis to the contrasts
associated with the nodes that are well supported by the bootstrap
analysis. Propose a solution.

(c) Compare the two sets of contrasts.

6. Analyze the diversification pattern from the phylogeny estimated in Ex-
ercise 5 of Chapter 5.

7

Developing and Implementing Phylogenetic
Methods in R

We have seen several times in this book that it is not necessary to know R
in depth to use it for data analysis, even to tackle complex analyses. On the
other hand, we need to know more of the language and R’s features to develop
and implement methods with it.

The materials in this chapter are not a formal introduction to R, but high-
light some useful points in the present context. The primary references are the
manuals distributed with R (located in the directory R HOME/doc/manual/)
and available on CRAN.1 This chapter essentially uses materials from Writing
R Extensions [129] and the R Language Definition [128].

7.1 Features of R

R is a language that is qualified as a dialect of S, a language for statistics [8].
The syntax of both languages is essentially identical, but their implementa-
tions differ. This implies that programs written in S will not necessarily run
under R, but compatibility is very large. For a brief comparison of R and S,
one can see the R-FAQ available both on CRAN,2 and distributed with R
(R HOME/FAQ).

R is an interpreted language: all commands are read by a parser, then
interpreted, and, if syntactically correct, executed. There are different ways
to enter commands in R: they can be typed directly at R’s prompt (in a
console or a terminal), or read from a file with the function source.

7.1.1 Object-Orientation

R is an object-oriented language. Object-orientation is often seen as a complex
mechanism in computer programming (e.g., C++ is often cited as being more

1 http://cran.r-project.org/manuals.html.
2 http://cran.r-project.org/faqs.html.

184 7 Developing and Implementing Phylogenetic Methods in R

complex than C). In R, however, this feature is not as complex as in Java or
in C++, and considerably simplifies things.

We have seen the use of generic functions several times in the previous
chapters. Let us now see some details. A generic function is named after its
main use: print, summary, plot, and so on. All these functions have similar
content, for instance:3

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

Consider an object x of class "cls", then print(x) is equivalent to
print.cls(x). The function print.cls (as well as any function print.*)
is called a method. If the method of a particular class does not exist, then the
generic uses the default method (for instance, if print.cls does not exist,
print(x) uses print.default(x)).

A nice example of the use of generics/methods is when plotting an ob-
ject. Suppose x is a numeric vector (say, 1, 2, 3, . . .), then the command
plot(x) will do a simple plot of the values of x. But if x is a phylogenetic
tree (e.g., an object of class "phylo"), we do not want this! Because the func-
tion plot.phylo is defined in the package ape, plot(x) will correctly plot the
tree (Chapter 4).

A method is written in exactly the same way as another function: only
its name must follow the rule generic.class where generic is the name
of the generic, and class is the name of the class. A method must have,
at least, all the arguments of the generic, with the same names and in the
same order. If the generic function has a “dot-dot-dot” argument (which is
often the case), this is almost always the last one. For instance, consider the
function all.equal that compares two objects taking some approximations
into account. The generic is:

> all.equal
function (target, current, ...)
UseMethod("all.equal")
<environment: namespace:base>

The method that does this comparison for two objects of class "phylo" is, of
course, called all.equal.phylo, and its first few lines are:

> all.equal.phylo
function (target, current, ...)
{

3 It may be useful to recall that typing the name of an object results in printing
its content; thus typing the name of a function, without the parentheses, prints
its content.

7.1 Features of R 185

commands to compare two objects of class "phylo"
...

A method is used practically as its generic is, but it is possible to
force the use of a particular method. For instance, because an object of
class "phylo" is a list, it is possible to compare two of these objects with
all.equal.list(tr1, tr2) (which is done internally by all.equal.phylo).

7.1.2 Variable Definition and Scope

In R, it is not necessary to declare the variables and objects used within a
function (in contrast to languages such as C or Fortran). For instance, an
expression like x <- 1 creates the vector x and sets its attributes accordingly;
if x already exists then it is erased beforehand. On the other hand, for an
expression like y <- x, x must already exist.

When writing a computer program (whatever the language), it is often
necessary to decide whether a variable is local (used only within a function)
or global (can be used by several functions in the program). In R, because
the declaration of variables is implicit, a rule is needed. This rule is called
lexical scoping. To understand this mechanism, let us consider the very simple
function:

> foo <- function() print(x)
> x <- 1
> foo()
[1] 1

Because no variable named x has been created within foo, R will seek
in the enclosing environment if there is an object called x, and will print its
value (otherwise, a message error is displayed, and the execution is stopped).

If an object x is created within our function, the value of x in the global
environment is not changed.

> x <- 1
> foo2 <- function() {
+ x <- 2
+ print(x)
+ }
> foo2()
[1] 2
> print(x)
[1] 1

Now print(x) uses the object x that is defined within its environment, that
is, the environment of foo2.

The word enclosing above is important. In our two example functions,
there are two environments: the global one and the one of the function foo

186 7 Developing and Implementing Phylogenetic Methods in R

Hard disk

EPS

../library/..

"Data" objects
(vectors, lists, ...)

Functions and
operators

Active memory (RAM)

commands

Internet

Fig. 7.1. A schematic view of how R works

or foo2. If there are three or more nested environments, the search for the
objects is made progressively from a given environment to the enclosing one,
and so on, up to the global one.

7.1.3 How R Works

All the actions of R are done on objects stored in the active memory of the
computer: no temporary files are used (Fig. 7.1). Files on the disk are read
and written for input and output of data and results (graphics, etc.) The user
executes the functions via some commands. The results are displayed directly
on the screen, stored in an object, or written on the disk (particularly for
graphics). Because the results are themselves objects, they can be considered
as data and analyzed as such. Data files can be read on the local disk or on a
remote server through the Internet.

The functions available to the user are stored in a directory called
R HOME/library (R HOME is the directory where R is installed). This di-
rectory contains packages of functions, which are themselves structured in

7.2 Writing Functions in R 187

directories. The package named base is in a way the core of R and contains
the basic functions of the language for reading, manipulating, and writing
data.

7.2 Writing Functions in R

Writing functions can be somehow extrapolated from what has been said in
the previous sections. Quite logically, a function is defined with the function
function which takes as arguments the variable(s) that will be used locally
within the function when it is called. R functions are objects, and the result
of the function function can be assigned in the same way as other objects
(the examples below are purely didactical):

> f <- function(x) print(mode(x))
> f
function(x) print(mode(x))
> f(1)
[1] "numeric"
> f(TRUE)
[1] "logical"
> f("a")
[1] "character"

In this example, the object x is local to the variable and if an object called x
exists in the workspace, it will not be used:

> x <- FALSE
> print(mode(x))
[1] "logical"
> f(x = 1)
[1] "numeric"

Note that we used the tagged argument in the last call to emphasize this
point.

Default arguments (often called options) are set by preassigning them in
the function definition:

> fb <- function(x, prefix = "Mode:")
+ print(paste(prefix, mode(x)))
> fb(1)
[1] "Mode: numeric"
> fb(1, "")
[1] " numeric"
> fb(1, "The mode is")
[1] "The mode is numeric"

188 7 Developing and Implementing Phylogenetic Methods in R

Quite often, default arguments are logicals to control what is computed by
the function. For instance, if we want a function that calculates the mean of
a sample with the possibility of removing all negative values, we can control
this with a logical argument whose default value will be FALSE:

> foo <- function(x, rm.negative = FALSE)
+ if (rm.negative) print(mean(x[x >= 0]))
+ else print(mean(x))
> y <- rnorm(100)
> foo(y)
[1] 0.04609175
> foo(y, TRUE)
[1] 0.751289

To be executed, a function must be loaded in memory, and this can be
done in several ways. The commands of a function can be typed directly
on the keyboard, as with any other command, or copied and pasted from
an editor. If the function has been written in a text file, it can be loaded
with source like another program; a single file can contain several functions.
Similarly, functions can be saved in an ‘.RData’ file, as with any R objects,
and loaded in memory with load. Finally, it is possible to create a package:
this is discussed in Section 7.4.

To load some functions, packages, or data in memory when R is started,
the best option is to configure the file ‘.Rprofile’. This file, if it exists, is read
by R at start-up: it must be located in the HOME directory of the user. This
file is user dependent, so that if a computer is shared by several users, they
may have different ‘.Rprofile’ files. The path to the HOME directory can
be printed in R with the command:

> Sys.getenv("HOME")
HOME

"/home/paradis"

This directory should not be confused with the R HOME directory which is
the place where R is installed, and is unique to a computer. Here is an example
on a Linux system:

> Sys.getenv("R_HOME")
R_HOME

"/usr/lib/R"

The contents of ‘.Rprofile’ are normal R commands, and comments can
be included as well. This is normally the place where you will customize R by
modifying the options. The list and meanings of these options is explained in
?options. Here is an example:

options(width = 60) # narrower output on the screen
options(editor = "emacs") # the default on Linux is vi...

7.3 Interfacing R with Other Languages 189

options(show.signif.stars = FALSE) # avoid the Milky Way
library(ade4)
library(ape)
library(seqinr)
load("/home/paradis/data/always_load_this.RData")
source("/home/paradis/data/always_source_this.R")

7.3 Interfacing R with Other Languages

Phylogenetic methods are often computationally intensive, and thus phyloge-
netic programs are mostly written in low-level languages (mainly C or C++).
These programs need to be compiled (in contrast to programs in interpreted
languages such as R) to be used. However, and this is completely transparent
to the user, R uses compiled programs too: most computational tasks in R
are made by compiled C or Fortran programs.

R has several mechanisms to interface compiled programs with its inter-
preter (the CLI we have seen through this book). At least three benefits can
be found in using these interfaces when implementing a phylogenetic method
in R.

• The performance of an R program can be greatly improved when the com-
putationally demanding part is done with compiled codes (see an example
below);

• The R application programmer interface (API) can be used making avail-
able many C functions useful in computational statistics (mathematical,
matrix calculus, probability distribution, optimization functions, and so
on);

• Existing programs in C or C++ can be ported to R.

The cost is that one has to learn these interfaces, but this is relatively
easy, and outlined in this section.

7.3.1 Simple Interfaces

The R function .C gives the way to call a C function from R using a simple
interface that matches the arguments in C. The latter must be pointers. An
example could be:

void fcn(int * arg1, double * arg2, char ** arg3)
{
...
}

190 7 Developing and Implementing Phylogenetic Methods in R

The code in this function can be any C code, and can call other functions.
fcn can be called from R with:

.C("fcn", as.integer(i), as.double(x), as.character(b),
PACKAGE = "pkg")

It is necessary that the data types to be checked before passing the variables
to the C code: this explains the distinction between integers and doubles here.
R does not distinguish these two data types, so there is a single numeric mode
(Section 2.2.1). On the other hand, C has different data types for integers and
reals, hence the conversion when passing data from R to C. "pkg" is the name
of the R package where fcn can be found.

To be able to use fcn from R, this C function must be compiled and
loaded into R. The compilation is done so as to produce a library file (‘*.dll’
under Windows, or ‘*.so’ for the other operating systems). The library is
loaded with the function library.dynam. Usually, it is easier to build a small
package where the needed codes are included (Section 7.4).

In practice, .C is not called directly by the user but it is included in an R
function, for example,

fcn <- function(i, x)
{
.C("fcn", as.integer(i), as.double(x), as.character(b),

PACKAGE = "pkg")
}

so that the user does not see whether the function calls a compiled code:

fcn(i, x)

Programs written in C++ are called in a way similar to C from R, but in
the C++ code a wrapper must be written:

// X_main.cc:
#include ...
extern "C" {
void X_main () {
...

}
} // extern "C"

Such a program must be compiled with a C++ compiler.

7.3.2 Complex Interfaces

We have seen that with .C, only simple data types can be passed to the C
code. This may be problematic if one wants to manipulate R objects that have

7.3 Interfacing R with Other Languages 191

a complex structure, such as lists, and for which the number of elements is
not known a priori. In this situation, the function .Call can be used. Its use,
from the R side, is simpler than .C:

.Call("fcn", a, b)

There is no data type checking here: this is done in the C program. The
structure of the latter is more complex, and makes use of the data type SEXP
(S expression):

SEXP fcn(SEXP a, SEXP b)
{
...
}

All the details on how to handle SEXP data in C are explained in [129].
There is an even more complex mechanism with the function .External

which can be used with an a priori unknown number of arguments. It is used
in a similar way in R:

.External("fcn", a, b)

But in C there is only one argument:

SEXP fcn(SEXP args)
{
...
}

The elements passed with args may be extracted sequentially with special
functions:

...
first = CADR(args);
second = CADDR(args);
third = CADDDR(args);
fourth = CAD4R(args);
...

The sources of ape and ade4 provide some examples of the use of .C and
.Call with phylogenetic data, and those of seqinr of the use of .Call with
sequence data.

192 7 Developing and Implementing Phylogenetic Methods in R

7.4 Writing R Packages

All the details of writing an R package are explained in a clear way in [129].
We show here only how we can make a minimal package that could be used
to port some C codes to R.

A nice way to write an R package is to compile and install R and C codes
so that it can be tested. If this is sucessful and the developer wants to publish
the package, then the next stage is to write the documentation.

7.4.1 A Minimalist Package

A package may contain only R codes which is straightforward to make and
install. We consider cases where some codes need to be compiled. Suppose we
have written the R and C functions, and they are collected in files called ac-
cordingly (‘*.R’ and ‘*.c’). Then we need to create two other files: ‘DESCRIP-
TION’ and ‘zzz.R’. The files must be arranged in the following directories.

/pkg/DESCRIPTION
/pkg/R/*.R
/pkg/src/*.C

The file ‘DESCRIPTION’ contains some general information on the pack-
age. It must contain at least the following fields.

Package: pkg
Version: 0.1
Date: 2005-12-25
Title: PKG
Author: John Marillion <john@marillion.net>
Maintainer: John Marillion <john@marillion.net>
Description: This is a minimalist install for pkg.
License: GPL version 2 or newer

This file must eventually be more detailed if there are dependencies with
other packages or libraries. The file ‘zzz.R’ is necessary if there are compiled
codes. Its content is:

.First.lib <- function(lib, pkg) {
library.dynam("pkg", pkg, lib)

}

where "pkg" should be replaced by the quoted name of the package, but pkg
should be left unchanged; for instance, for ape this is library.dynam("ape",
pkg, lib). The function .First.lib is executed when the package is loaded
with library(pkg).

Once the files and directories have been prepared, pkg can be installed
with the command (from a shell):

7.5 Performance Issues and Strategies 193

R CMD INSTALL pkg

The package may then be used in R.

7.4.2 The Documentation System

Every function written in R when distributed in a package must be docu-
mented. This is not necessary for the installation.

There is a single documentation format called Rd that is processed during
the installation to create help pages in simple text (read with ?), HTML, and
PDF.

Once the help pages have been prepared and put in a directory /pkg/man,
it is possible to check the package with:

R CMD check pkg

7.5 Performance Issues and Strategies

From all we have seen in this book, it appears that we often have a choice
among several possibilities for the same task. This is common in computer
programming where different algorithms can be used to do the same operation.
Here, we also have a choice among different computer languages that can be
interfaced among each other.

Roughly, there are three strategies when implementing a method in R:
use only R codes, interface C and / or C++ codes with R using the simple
interface function .C, and doing the same but with the complex interface
functions .Call and / or .External. These three strategies are detailed in
Table 7.1 with their gains and costs.

Although more costs are listed for the “R + C” strategies, this actually
reveals a contrast simplicity versus performance. Interfacing C programs with
R will almost always result in a significant increase in performance at the cost
of more complex programming.

To give an idea of the gain in performance that could result from trans-
ferring a computation done in R to C, we can consider a concrete example
from ape. When plotting a tree, the function plot.phylo computes the coor-
dinates of the nodes and tips in the graph, and then draws the appropriate
lines. Originally, all computations were done only in R code. One of these
functions returned the distance from the root to each node and tip using edge
lengths:

node.depth.edgelength <- function(x, el)
Input: the matrix ‘edge’ of an object of class
"phylo", and the corresponding vector ‘edge.length’.
{

tmp <- as.numeric(x)

194 7 Developing and Implementing Phylogenetic Methods in R

Table 7.1. Comparative gains and costs of different strategies when implementing
a computational method in R

Gains Costs

Pure R Easily programmed.
Programs can be tested directly.
Programs can be shared directly
among operating systems.
Performance can be very good.
Bugs are easily fixed.

Performance can be poor if vec-
torization cannot be achieved.

.C C and C++ programs can be
ported to R.
C functions already programmed
in R can be used.
Performance is generally greatly
improved.

Programs need to be compiled to
be tested.
Compilation is system depen-
dent.
Bugs are more difficult to find
than in R.
Only simple R data types (vec-
tors) can be passed to C.

.Call Same as .C.
Complex R objects (e.g., lists)
can be passed to C.

Same than .C but the last point.
Need to learn the R macros to
manipulate R objects in C.

.External Same as .Call. Same as .Call.
The number of objects passed to
C may vary.

nb.tip <- max(tmp)
nb.node <- -min(tmp)
xx <- as.numeric(rep(NA, nb.tip + nb.node))
names(xx) <- as.character(c(-(1:nb.node), 1:nb.tip))
xx["-1"] <- 0
for (i in 2:length(xx)) {

nod <- names(xx[i])
ind <- which(x[, 2] == nod)
base <- x[ind, 1]
xx[i] <- xx[base] + el[ind]

}
xx

}

From version 1.4 of ape, this function has been replaced by a small C program
called from R:

void node_depth_edgelength(int *ntip, int *nnode, int *edge1,
int *edge2, int *nms, double *edge_length, double *xx)

{
int i, j, k;

7.5 Performance Issues and Strategies 195

for (i = 1; i < *ntip + *nnode; i++) {
j = 0;
while (edge2[j] != nms[i]) j++;
if (edge1[j] < 0) k = -edge1[j] - 1;
else k = nnode + edge1[j] - 1;
xx[i] = xx[k] + edge_length[j];

}
}

which is called from R with:

.C("node_depth_edgelength", as.integer(nb.tip),
as.integer(nb.node), as.integer(x$edge[, 1]),
as.integer(x$edge[, 2]), as.integer(nms),
as.double(x$edge.length),
as.double(numeric(nb.tip + nb.node)),
DUP = FALSE, PACKAGE = "ape")[[7]]

Although the C program is slightly shorter than its R version, the way argu-
ments are passed is more complex and needs more caution. It is possible to
compare the performance of both approaches (Table 7.2).

Table 7.2. Comparative speed (in seconds) of two programs performing the
same task on phylogenetic trees with n tips (times measured with the function
system.time)

n Pure R R + C

100 0.04 < 0.01
1000 2.19 < 0.01
2000 6.62 0.01
5000 38.63 0.04

10,000 185.13 0.15

Two comments arise from this comparison. First, a program written in
pure R can be very fast with small data sets: 0.04 s is actually negligible. In
practice, a tree with more than 500 tips is not readable when plotted directly
on the screen. The second comment is that with large data sets the gain in
speed is critical, and this should be considered when developing computation-
ally intensive methods.

A critical issue in R programming is vectorization. This means that re-
peated calls to compiled codes by the interpreter are avoided. For instance,
when generating random variables, the number of independent replicates, say
100, is passed as argument, thus the compiled code is called only once which
is more efficient than calling it 100 times. To fix ideas, we can use a trivial
example consisting of the sum of many numbers. Say we generate 1,000,000

196 7 Developing and Implementing Phylogenetic Methods in R

normal random variables with mean zero and variance unity, and we want to
compute their sum. Ignoring the (vectorized) function sum, a possible solution
could be:

x <- rnorm(1e6)
s <- 0
for (i in 1:1e6) s <- s + x[i]

The time needed to perform the for loop that does the summation is 2.5 s.
Of course, a beginner with R quickly learns that there is the function sum and
will never do the above: sum(x) actually takes 0.01 s.

The use of vectorization may be less obvious. Consider we want to sum
only the negative values of x; the most intuitive approach may be to use an
if statement such as:

s <- 0
for (i in 1:1e6) if (x[i] < 0) s <- s + x[i]

This takes 3.5 s to be completed. A vectorized version is possible with logical
indexing:

sum(x[x < 0])

The computation time is now 0.12 s. To do the same task with a dedicated
compiled C code, we can write the following function,

#include <R.h>

void sum_neg(double *x, int *n, double *sum)
{
int i;

*sum = 0;
for (i = 0; i < *n; i++) {
if (x[i] < 0) *sum += x[i];

}
}

and call it (after compilation) from R with the function:

sumneg <- function(x)
{

sumneg <- 0
ans <- .C("sum_neg", as.double(x), as.integer(length(x)),

as.double(sumneg), package = "apex")
ans[[3]]

}

7.5 Performance Issues and Strategies 197

The time needed to complete sumneg(x) is 0.09 s. The gain will obviously be
even smaller with a smaller data set. This shows clearly that writing compiled
code may not always be advantageous with R.

The crucial point, in terms of performance, is thus whether vectorization
can be achieved in an R program. We have seen above an example where
a C code was used to manipulate objects of class "phylo". This is a case
where vectorization cannot be done easily because we need to manipulate the
elements in a complex way so that we need repeated loops and if statements.

However, vectorization can be achieved in some cases with objects of class
"phylo". The functions birthdeath, yule, or yule.cov provide some ex-
amples. For instance, the speciation rate estimator under the Yule model is
λ̂ = BT /XT where BT is the number of observed branching events during
time T , and XT is the sum of all branch lengths during the same time [78].
This estimator can be computed for a tree, say tr, relatively easily:

-min(as.numeric(tr$edge)) / sum(tr$edge.length)

This considers that the nodes are numbered with negative numbers, thus the
smallest one is the number of nodes. The branch lengths are stored in a single
numeric vector, thus the second term is easily computed.

A strategy often used by R developers is to first develop the program in
pure R. When it is stable and some “computational bottlenecks” have been
eventually identified, some tasks can be transferred to C programs. A mixed
strategy is to keep the most complex data manipulation (e.g., involving lists,
names, etc.) in R, and using compiled codes to do computations on vectors:
this is the strategy used in plot.phylo.

References

[1] Agapow P.-M. & Purvis A. 2002. Power of eight tree shape statistics
to detect nonrandom diversification: A comparison by simulation of two
models of cladogenesis. Systematic Biology 51: 866–872.

[2] Aldous D. 1996. Probability distributions on cladograms. In: Ran-
dom Discrete Structures, Aldous D. & Pemantle R., editors, pages 1–18.
IMA,.

[3] Aldous D. J. 2001. Stochastic models and descriptive statistics for
phylogenetic trees, from Yule to today. Statistical Science 16: 23–34.

[4] Baldauf S. L. 2003. Phylogeny for the faint of heart: A tutorial. Trends
in Genetics 19: 345–351.

[5] Baldauf S. L., Bhattacharya D., Cockrill J., Hugenholtz P., Pawlowski J.
& Simpson A. G. B. 2004. The tree of life: An overview. In: Assembling
the tree of life, Cracraft J. & Donoghue M. J., editors, pages 43–75.
Oxford University Press, Oxford.

[6] Barhen J., Protopopescu V. & Reister D. 1997. TRUST: A deterministic
algorithm for global optimization. Science 276: 1094–1097.

[7] Barndorff-Nielsen O. E. & Shephard N. 2001. Non-Gaussian Ornstein–
Uhlenbeck-based models and some of their uses in financial economics
(with discussion). Journal of the Royal Statistical Society. Series B.
Methodological 63: 167–241.

[8] Becker R. A., Chambers J. M. & Wilks A. R. 1988. The New S Language.
Chapman & Hall, London.

[9] Billera L. J., Holmes S. P. & Vogtmann K. 2001. Geometry of the space
of phylogenetic trees. Advances in Applied Mathematics 27: 733–767.

[10] Böhning-Gaese K., Schuda M. D. & Helbig A. J. 2003. Weak phyloge-
netic effects on ecological niches of Sylvia warblers. Journal of Evolu-
tionary Biology 16: 956–965.

[11] Bokma F. 2003. Testing for equal rates of cladogenesis in diverse taxa.
Ecology 57: 2469–2474.

[12] Brocchieri L. 2001. Phylogenetic inferences from molecular sequences:
Review and critique. Theoretical Population Biology 59: 27–40.

200 References

[13] Buckland S. T., Burnham K. P. & Augustin N. H. 1997. Model selection:
An integral part of inference. Biometrics 53: 603–618.

[14] Burnham K. P. & Anderson D. R. 2002. Model Selection and Multi-
model Inference. A Practical Information-Theoretic Approach (Second
Edition). Springer, New York.

[15] Burnham K. P. & White G. C. 2002. Evaluation of some random
effects methodology applicable to bird ringing data. Journal of Applied
Statistics 29: 245–264.

[16] Butler M. A. & King A. A. 2004. Phylogenetic comparative analysis:
A modeling approach for adaptive evolution. American Naturalist 164:
683–695.

[17] Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins
D. G. & Thompson J. D. 2003. Multiple sequence alignment with the
Clustal series of programs. Nucleic Acids Research 31: 3497–3500.

[18] Cheverud J. M., Dow M. M. & Leutenegger W. 1985. The quantitative
assessment of phylogenetic constraints in comparative analyses: Sexual
dimorphism in body weight among primates. Evolution 39: 1335–1351.

[19] Chor B. & Tuller T. 2005. Maximum likelihood of evolutionary trees:
Hardness and approximation. Bioinformatics 21: i97–i106.

[20] Cox D. R. & Oakes D. 1984. Analysis of Survival Data. Monographs
on statistics and applied probability. Chapman and Hall, London.

[21] Crosbie S. F. & Manly B. F. J. 1985. Parsimonious modelling of capture-
mark-recapture studies. Biometrics 41: 385–398.

[22] Darwin C. 1859. On the Origin of Species by Means of Natural Selection.
John Murray, London.

[23] Dempster A. P., Laird N. M. & Rubin D. B. 1977. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal
of the Royal Statistical Society. Series B. Methodological 39: 1–38.

[24] Desdevises Y., Legendre P., Azouzi L. & Morand S. 2003. Quantify-
ing phylogenetically structured environmental variation. Evolution 57:
2647–2652.

[25] Diaconis P. W. & Holmes S. P. 1998. Matchings and phylogenetic trees.
Proceedings of the National Academy of Sciences USA 95: 14600–14602.

[26] Diniz-Filho J. A. F., de Sant’Ana C. E. R. & Bini L. M. 1998. An
eigenvector method for estimating phylogenetic inertia. Evolution 52:
1247–1262.

[27] Edwards A. W. F. 1992. Likelihood (Expanded Edition). Johns Hopkins
University Press, Baltimore.

[28] Edwards A. W. F. 1998. History and Philosophy of Phylogeny Methods.
Talk at the EC Summer School Methods for Molecular Phylogenies,
Newton Institute, Cambridge, UK.

[29] Efron B. 1981. Nonparametric estimates of standard error: the jacknife,
the bootstrap and other methods. Biometrika 68: 589–599.

[30] Efron B. 1998. R. A. Fisher in the 21st century (with discussion).
Statistical Science 13: 95–114.

References 201

[31] Efron B., Halloran E. & Holmes S. 1996. Bootstrap confidence levels
for phylogenetic trees. Proceedings of the National Academy of Sciences
USA 93: 13429–13434.

[32] Efron B. & Tibshirani R. 1991. Statistical analysis in the computer age.
Science 253: 390–395.

[33] Emerson B., Paradis E. & Thbaud C. 2001. Revealing the demographic
histories of species using DNA sequences. Trends in Ecology & Evolution
16: 707–716.

[34] Felsenstein J. 1981. Evolutionary trees from DNA sequences: A maxi-
mum likelihood approach. Journal of Molecular Evolution 17: 368–376.

[35] Felsenstein J. 1985. Confidence limits on phylogenies: An approach
using the bootstrap. Evolution 39: 783–791.

[36] Felsenstein J. 1985. Phylogenies and the comparative method. American
Naturalist 125: 1–15.

[37] Felsenstein J. 1988. Phylogenies and quantitative characters. Annual
Review of Ecology and Systematics 19: 445–471.

[38] Felsenstein J. 1993. Phylip (Phylogeny Inference Package) Version
3.5c. http://evolution.genetics.washington.edu/phylip/phylip.html. De-
partment of Genetics, University of Washington, Seattle.

[39] Felsenstein J. 2004. Inferring Phylogenies. Sinauer Associates, Sunder-
land, MA.

[40] Felsenstein J. & Churchill G. A. 1996. A Hidden Markov model approach
to variation among sites in rate of evolution. Molecular Biology and
Evolution 13: 93–104.

[41] Fry B. G. 2005. From genome to “venome”: molecular origin and evo-
lution of the snake venom proteome inferred from phylogenetic analysis
of toxin sequences and related body proteins. Genome Research 15:
403–420.

[42] Futuyma D. J. 1998. Evolutionary Biology (Third Edition). Sinauer
Associates, Sunderland, MA.

[43] Galtier N. & Gouy M. 1995. Inferring phylogenies from DNA sequences
of unequal base compositions. Proceedings of the National Academy of
Sciences USA 92: 11317–11321.

[44] Galtier N. & Gouy M. 1998. Inferring pattern and process: Maximum-
likelihood implementation of a nonhomogeneous model of DNA sequence
evolution for phylogenetic analysis. Molecular Biology and Evolution 15:
871–879.

[45] Garland, Jr. T. & Adolph S. C. 1991. Physiological differentiation of
vertebrate populations. Annual Review of Ecology and Systematics 22:
193–228.

[46] Garland, Jr. T. & Carter P. A. 1994. Evolutionary physiology. Annual
Review of Physiology 56: 579–621.

[47] Garland, Jr. T., Dickerman A. W., Janis C. M. & Jones J. A. 1993.
Phylogenetic analysis of covariance by computer simulation. Systematic
Biology 42: 265–292.

202 References

[48] Garland, Jr. T., Harvey P. H. & Ives A. R. 1992. Procedures for the
analysis of comparative data using phylogenetically independent con-
trasts. Systematic Biology 41: 18–32.

[49] Gentleman R. 2004. Some perspectives on statistical computing. Cana-
dian Journal of Satistics 32: 209–226.

[50] Giannini N. P. 2003. Canonical phylogenetic ordination. Systematic
Biology 52: 684–695.

[51] Gibson A., Gowri-Shankar V., Higgs P. G. & Rattray M. 2005. A
comprehensive analysis of mammalian mitochondrial genome base com-
position and improved phylogenetic methods. Molecular Biology and
Evolution 22: 251–264.

[52] Gittleman J. L. 1986. Carnivore life history patterns: Allometric, phylo-
genetic and ecological associations. American Naturalist 127: 744–771.

[53] Gittleman J. L. & Kot M. 1990. Adaptation: Statistics and a null model
for estimating phylogenetic effects. Systematic Zoology 39: 227–241.

[54] Grafen A. 1989. The phylogenetic regression. Philosophical Transactions
of the Royal Society of London. Series B. Biological Sciences 326: 119–
157.

[55] Grafen A. & Ridley M. 1996. Statistical tests for discrete cross-species
data. Journal of Theoretical Biology 183: 255–267.

[56] Grafen A. & Ridley M. 1997. A new model for discrete character
evolution. Journal of Theoretical Biology 184: 7–14.

[57] Grafen A. & Ridley M. 1997. Non-independence in statistical tests for
discrete cross-species data. Journal of Theoretical Biology 188: 507–514.

[58] Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Systematic Biology
52: 696–704.

[59] Hackett S. J. 1996. Molecular phylogenetics and biogeography of tan-
agers in the genus Ramphocelus (Aves). Molecular Phylogenetics and
Evolution 5: 368–382.

[60] Hall B. G. 2004. Phylogenetic Trees Made Easy: A how-to Manual
(Second Edition). Sinauer Associates, Sunderland, MA.

[61] Hansen T. F. 1997. Stabilizing selection and the comparative analysis
of adaptation. Evolution 51: 1341–1351.

[62] Hansen T. F. & Martins E. P. 1996. Translating between microevolu-
tionary process and macroevolutionary patterns: The correlation struc-
ture of interspecific data. Evolution 50: 1404–1417.

[63] Harvey P. H., May R. M. & Nee S. 1994. Phylogenies without fossils.
Evolution 48: 523–529.

[64] Harvey P. H. & Pagel M. D. 1991. The comparative Method in Evolu-
tionary Biology. Oxford University Press, Oxford.

[65] Harvey P. H. & Purvis A. 1991. Comparative methods for explaining
adaptations. Nature 351: 619–624.

References 203

[66] Hasegawa M., Kishino H. & Yano T.-a. 1985. Dating of the human-
ape splitting by a molecular clock of mitochondrial DNA. Journal of
Molecular Evolution 22: 160–174.

[67] Hebert P. D. N., Penton E. H., Burns J. M., Janzen D. H. & Hallwachs
W. 2004. Ten species in one: DNA barcoding reveals cryptic species
in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of
the National Academy of Sciences USA 101: 14812–14817.

[68] Holder M. & Lewis P. O. 2003. Phylogeny estimation: Traditional and
Bayesian approaches. Nature Reviews Genetics 4: 275–284.

[69] Holmes S. 2003. Statistics for phylogenetic trees. Theoretical Population
Biology 63: 17–32.

[70] Housworth E. A., Martins E. P. & Lynch M. 2004. The phylogenetic
mixed model. American Naturalist 163: 84–96.

[71] Huelsenbeck J. P. & Rannala B. 1997. Phylogenetic methods come of
age: testing hypotheses in an evolutionary context. Science 276: 227–
232.

[72] Huelsenbeck J. P., Rannala B. & Masly J. P. 2000. Accomodating
phylogenetic uncertainty in evolutionary studies. Science 288: 2349–
2350.

[73] Hunter J. P. 1998. Key innovations and the ecology of macroevolution.
Trends in Ecology & Evolution 13: 31–36.

[74] Ihaka R. & Gentleman R. 1996. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics 5: 299–314.

[75] Johnson W. E. & O’Brien S. J. 1997. Phylogenetic reconstruction of
the Felidae using 16S rRNA and NADH-5 mitochondrial genes. Journal
of Molecular Evolution 44: S98–S116.

[76] Jones K. E., Purvis A., MacLarnon A., Bininda-Emonds O. R. P. &
Simmons N. B. 2002. A phylogenetic supertree of the bats (Mammalia:
Chiroptera). Biological Reviews of the Cambridge Philosophical Society
77: 223–259.

[77] Jukes T. H. & Cantor C. R. 1969. Evolution of protein molecules. In:
Mammalian Protein Metabolism, Munro H. N., editor, pages 21–132.
Academic Press, New York.

[78] Keiding N. 1975. Maximum likelihood estimation in the birth-and-death
process. Annals of Statistics 3: 363–372.

[79] Kendall D. G. 1948. On the generalized “birth-and-death” process.
Annals of Mathematical Statistics 19: 1–15.

[80] Kendall D. G. 1949. Stochastic processes and population growth. Jour-
nal of the Royal Statistical Society. Series B. Methodological 11: 230–
264.

[81] Kimura M. 1980. A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide sequences.
Journal of Molecular Evolution 16: 111–120.

204 References

[82] Kimura M. 1981. Estimation of evolutionary distances between ho-
mologous nucleotide sequences. Proceedings of the National Academy of
Sciences USA 78: 454–458.

[83] Kirkpatrick M. & Slatkin M. 1993. Searching for evolutionary patterns
in the shape of a phylogenetic tree. Evolution 47: 1171–1181.

[84] Kosakovsky Pond S. L. & Muse S. V. 2004. Column sorting: rapid
calculation of the phylogenetic likelihood function. Systematic Biology
53: 685–692.

[85] Kosiol C. & Goldman N. 2005. Different versions of the Dayhoff rate
matrix. Molecular Biology and Evolution 22: 193–199.

[86] Lachaud B. 2005. Cut-off and hitting times of a sample of Ornstein–
Uhlenbeck processes and its average. Journal of Applied Probability 42:
1069–1080.

[87] Lanave C., Preparata G., Saconne C. & Serio G. 1984. A new method
for calculating evolutionary substitution rates. Journal of Molecular
Evolution 20: 86–93.

[88] Larget B., Simon D. L. & Kadane J. B. 2002. Bayesian phylogenetic
inference from animal mitochondrial genome arrangements. Journal of
the Royal Statistical Society. Series B. Methodological 64: 681–693.

[89] Lecompte É., Granjon L., Peterhans J. K. & Denys C. 2002. Cytochrome
b-based phylogeny of the Praomys group (Rodentia, Murinae): A new
African radiation? Comptes Rendus Biologies 325: 827–840.

[90] Legendre P. & Makarenkov V. 2002. Reconstruction of biogeographic
and evolutionary networks using reticulograms. Systematic Biology 51:
199–216.

[91] Leisch F. 2002. Dynamic generation of statistical reports using literate
data analysis. In: Compstat 2002—Proceedings in Computational Statis-
tics, Haerdle W. & Roenz B., editors, pages 575–580. Physika Verlag,
Heidelberg.

[92] Liang K.-Y. & Zeger S. L. 1986. Longitudinal data analysis using
generalized linear models. Biometrika 73: 13–22.

[93] Losos J. B. & Adler F. R. 1995. Stumped by trees? A generalized null
model for patterns of organismal diversity. American Naturalist 145:
329–342.

[94] Lynch M. 1991. Methods for the analysis of comparative data in evolu-
tionary biology. Evolution 45: 1065–1080.

[95] Maddison D. R., Swofford D. L. & Maddison W. P. 1997. NEXUS: An
extensible file format for systematic information. Systematic Biology
46: 590–621.

[96] Martins E. P. & Hansen T. F. 1997. Phylogenies and the comparative
method: A general approach to incorporating phylogenetic information
into the analysis of interspecific data [erratum in vol. 153, no. 4, p. 488].
American Naturalist 149: 646–667.

[97] McCullough B. D. 1999. Assessing the reliability of statistical software:
Part II. American Statistician 53: 149–159.

References 205

[98] McCullough B. D. & Vinod H. D. 1999. The numerical reliability of
econometric software. Journal of Economic Literature 37: 633–665.

[99] McLeod A. I. 1993. Parsimony, model adequacy and periodic correlation
in time-series forecasting. International Statistical Review 61: 387–393.

[100] Michaux J., Chevret P., Filipucci M.-G. & Macholan M. 2002. Phy-
logeny of the genus Apodemus with a special emphasis on the subgenus
Sylvaemus using the nuclear IRBP gene and two mitochondrial markers:
cytochrome b and 12S rRNA. Molecular Phylogenetics and Evolution
23: 123–136.

[101] Minin V., Abdo Z., Joyce P. & Sullivan J. 2003. Performance-based
selection of likelihood models for phylogeny estimation. Systematic Bi-
ology 52: 674–683.

[102] Moran P. A. P. 1950. Notes on continuous stochastic phenomena.
Biometrika 37: 17–23.

[103] Nee S., Holmes E. C., Rambaut A. & Harvey P. H. 1995. Inferring
population history from molecular phylogenies. Philosophical Transac-
tions of the Royal Society of London. Series B. Biological Sciences 349:
25–31.

[104] Nee S., May R. M. & Harvey P. H. 1994. The reconstructed evolutionary
process. Philosophical Transactions of the Royal Society of London.
Series B. Biological Sciences 344: 305–311.

[105] Nee S., Mooers A. Ø. & Harvey P. H. 1992. Tempo and mode of evo-
lution revealed from molecular phylogenies. Proceedings of the National
Academy of Sciences USA 89: 8322–8326.

[106] Nei M. & Kumar S. 2000. Molecular Evolution and Phylogenetics.
Oxford University Press, Oxford.

[107] Oakley T. H. 2003. Maximum likelihood models of trait evolution.
Comments on Theoretical Biology 8: 1–17.

[108] Ollier S., Couteron P. & Chessel D. 2005. Orthonormal transform to
decompose the variance of a life-history trait across a phylogenetic tree.
Biometrics doi:10.1111/j.1541-0420.2005.00497.x.

[109] Pagel M. 1994. Detecting correlated evolution on phylogenies: A general
method for the comparative analysis of discrete characters. Proceedings
of the Royal Society of London. Series B. Biological Sciences 255: 37–
445.

[110] Pagel M. & Meade A. 2004. A phylogenetic mixture model for de-
tecting pattern-heterogeneity in gene sequence or character-state data.
Systematic Biology 53: 571–581.

[111] Paradis E. 1997. Assessing temporal variations in diversification rates
from phylogenies: Estimation and hypothesis testing. Proceedings of the
Royal Society of London. Series B. Biological Sciences 264: 1141–1147.

[112] Paradis E. 1998. Testing for constant diversification rates using molec-
ular phylogenies: A general approach based on statistical tests for good-
ness of fit. Molecular Biology and Evolution 15: 476–479.

206 References

[113] Paradis E. 2003. Analysis of diversification: Combining phylogenetic
and taxonomic data. Proceedings of the Royal Society of London. Series
B. Biological Sciences 270: 2499–2505.

[114] Paradis E. 2004. Can extinction rates be estimated without fossils?
Journal of Theoretical Biology 229: 19–30.

[115] Paradis E. 2005. Statistical analysis of diversification with species traits.
Evolution 59: 1–12.

[116] Paradis E. & Claude J. 2002. Analysis of comparative data using
generalized estimating equations. Journal of Theoretical Biology 218:
175–185.

[117] Paradis E., Claude J. & Strimmer K. 2004. APE: Analyses of phyloge-
netics and evolution in R language. Bioinformatics 20: 289–290.

[118] Penny D. & Hendy M. D. 1985. The use of tree comparison metrics.
Systematic Zoology 34: 75–82.

[119] Pinheiro J. C. & Bates D. M. 2000. Mixed-Effects Models in S and
S-PLUS. Springer, New York.

[120] Posada D. & Buckley T. R. 2004. Model selection and model aver-
aging in phylogenetics: Advantages of Akaike information criterion and
Bayesian approaches over likelihood ratio tests. Systematic Biology 53:
793–808.

[121] Posada D. & Crandall K. A. 1998. MODELTEST: Testing the model
of DNA substitution. Bioinformatics 14: 817–818.

[122] Posada D. & Crandall K. A. 2001. Selecting the best-fit model of
nucleotide substitution. Systematic Biology 50: 580–601.

[123] Pupko T., Huchon D., Cao Y., Okada N. & Hasegawa M. 2002. Com-
bining multiple data sets in a likelihood analysis: Which models are the
best? Molecular Biology and Evolution 19: 2294–2307.

[124] Purvis A. & Garland, Jr. T. 1993. Polytomies in comparative analyses
of continuous characters. Systematic Biology 42: 569–575.

[125] Pybus O. G. & Harvey P. H. 2000. Testing macro-evolutionary mod-
els using incomplete molecular phylogenies. Proceedings of the Royal
Society of London. Series B. Biological Sciences 267: 2267–2272.

[126] Pybus O. G., Rambaut A., Holmes E. C. & Harvey P. H. 2002. New
inferences from tree shape: Numbers of missing taxa and population
growth rates. Systematic Biology 51: 881–888.

[127] Quader S., Isvaran K., Hale R. E., Miner B. G. & Seavy N. E. 2004. Non-
linear relationships and phylogenetically independent contrasts. Journal
of Evolutionary Biology 17: 709–715.

[128] R Development Core Team. 2005. R Language Definition. Version 2.2.0.
R Foundation for Statistical Computing, Vienna.

[129] R Development Core Team. 2005. Writing R Extensions. Version 2.2.0.
R Foundation for Statistical Computing, Vienna.

[130] Read A. F. & Nee S. 1995. Inference from binary comparative data.
Journal of Theoretical Biology 173: 99–108.

References 207

[131] Ridley M. 1992. Darwin sound on comparative method. Trends in
Ecology & Evolution 7: 37.

[132] Rohlf F. J. 2001. Comparative methods for the analysis of continuous
variables: Geometric interpretations. Evolution 55: 2143–2160.

[133] Rzhetsky A. & Nei M. 1992. A simple method for estimating and testing
minimum-evolution trees. Molecular Biology and Evolution 9: 945–967.

[134] Saitou N. & Nei M. 1987. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution
4: 406–425.

[135] Sanderson M. J. 1997. A nonparametric approach to estimating diver-
gence times in the absence of rate constancy. Molecular Biology and
Evolution 14: 1218–1231.

[136] Sanderson M. J. 2002. Estimating absolute rates of molecular evolu-
tion and divergence times: A penalized likelihood approach. Molecular
Biology and Evolution 19: 101–109.

[137] Sanderson M. J., Purvis A. & Henze C. 1998. Phylogenetic supertrees:
Assembling the trees of life. Trends in Ecology & Evolution 13: 105–109.

[138] Schluter D., Price T., Mooers A. Ø. & Ludwig D. 1997. Likelihood of
ancestor states in adaptive radiation. Evolution 51: 1699–1711.

[139] Schnabel R. B., Koontz J. E. & Weiss B. E. 1985. A modular system
of algorithms for unconstrained minimization. ACM Transactions on
Mathematical Software 11: 419–440.

[140] Sibley C. G. & Ahlquist J. E. 1990. Phylogeny and Classification of
Birds: A Study in Molecular Evolution. Yale University Press, New
Haven, CT.

[141] Sibley C. G. & Monroe, Jr. B. L. 1990. Distribution and Taxonomy of
Birds of the World. Yale University Press, New Haven, CT.

[142] Skelton P., editor. 1993. Evolution: A Biological and Palaeontological
Approach. Addison-Wesley and The Open University, Harlow, UK.

[143] Smith F. A., Lyons S. K., Ernest S. K. M., Jones K. E., Kaufman D. M.,
Dayan T., Marquet P. A., Brown J. H. & Haskell J. P. 2003. Body mass
of late quaternary mammals. Ecology 84: 3403.

[144] Stamatakis A., Ludwig T. & Meier H. 2005. RAxML-III: A fast
program for maximum likelihood-based inference of large phylogenetic
trees. Bioinformatics 21: 456–463.

[145] Stauffer R. L., Walker A., Ryder O. A., Lyons-Weiler M. & Hedges S. B.
2001. Human and ape molecular clocks and constraints on paleontolog-
ical hypotheses. Journal of Heredity 92: 469–474.

[146] Stephens M. A. 1974. EDF statistics for goodness of fit and some
comparisons. Journal of American Statistical Association 69: 730–737.

[147] Stephens M. A. 1982. Anderson-Darling test for goodness of fit. In:
Encyclopedia of Statistical Science. Volume 1, Kotz S. & Johnson N. L.,
editors, pages 81–85. John Wiley & Sons, New York.

208 References

[148] Suzuki Y., Glazko G. V. & Nei M. 2002. Overcredibility of molecu-
lar phylogenies obtained by Bayesian phylogenetics. Proceedings of the
National Academy of Sciences USA 99: 16138–16143.

[149] Tallis G. M. 1983. Goodness of fit. In: Encyclopedia of Statistical
Science. Volume 3, Kotz S. & Johnson N. L., editors, pages 451–461.
John Wiley & Sons, New York.

[150] Tamura K. 1992. Estimation of the number of nucleotide substitutions
when there are strong transition-transversion and G+C-content biases.
Molecular Biology and Evolution 9: 678–687.

[151] Tamura K. & Nei M. 1993. Estimation of the number of nucleotide
substitutions in the control region of mitochondrial DNA in humans
and chimpanzees. Molecular Biology and Evolution 10: 512–526.

[152] Tamura K., Nei M. & Kumar S. 2004. Prospects for inferring very large
phylogenies by using the neighbor-joining method. Proceedings of the
National Academy of Sciences USA 101: 11030–11035.

[153] Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. & Higgins
D. G. 1997. The CLUSTAL X windows interface: Flexible strategies
for multiple sequence alignment aided by quality analysis tools. Nucleic
Acids Research 25: 4876–4882.

[154] Venables W. N. & Ripley B. D. 2002. Modern Applied Statistics with S
(Fourth Edition). Springer, New York.

[155] Whelan S., Liò P. & Goldman N. 2001. Molecular phylogenetics: state-
of-the-art methods for looking into the past. Trends in Genetics 17:
262–272.

[156] Yang Z. 1994. Estimating the pattern of nucleotide substitution. Journal
of Molecular Evolution 39: 105–111.

[157] Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: Approximate methods. Journal
of Molecular Evolution 39: 306–314.

[158] Yang Z. 1996. Maximum-likelihood models for combined analyses of
multiple sequence data. Journal of Molecular Evolution 42: 587–596.

[159] Yang Z. 2000. Maximum likelihood estimation on large phylogenies and
analysis of adaptive evolution in human influenza virus A. Journal of
Molecular Evolution 51: 423–432.

Index

..., 71

.C, 189

.Call, 191

.External, 191

.Rprofile, 188
?, 18
$, 17, 18, 56

a, aaa, 42
AAstat, 43
ace, 154, 167, 173, 179
ACNUC, 31
add.scale.bar, 78
aldous.test, 171
all.equal.phylo, 39
all.equal.treeshape, 39
apply, 22, 41
arguments

function, 20
as.dist, 97
as.matching, 40
as.phylo, 40
as.treeshape, 38
axisPhylo, 78, 128

balance, 38
base composition, 42, 43, 58
base.freq, 42, 59
bd.ext, 165
bind.tree, 35
birthdeath, 164, 177
boot.phylo, 117, 123
branching.times, 38, 168
break, 22

Brownian motion, 135, 155

c2s, 41
char2genet, 98
choosebank, 31, 52
chronogram, 119, 128
chronopl, 120
Clustal X, 6
coalescent.intervals, 38
colless, 171
colless.test, 171
comp, 41
compar.cheverud, 138
compar.gee, 148
compar.lynch, 149
compar.ou, 152
compute.brlen, 36, 134, 181
consensus, 118, 123
cophenetic, 99, 138, 140
corBrownian, 145
corGrafen, 145
corMartins, 145
correlation structure, 145, 148
correlogram.formula, 141
correlogram.phylo, 141
count, 43
CRAN, 5, 183

daisy, 98
data.frame, 17
dev.copy, 20
dev.copy2eps, 20
dev.off, 19
dev.print, 20

210 Index

di2multi, 38
dist, 96
dist.binary, 98
dist.dna, 98, 103, 104, 121, 129
dist.gene, 98
dist.genet, 98
dist.prop, 98
dist.topo, 118, 123
distance, 96

topology, 118
diversi.gof, 169
diversi.time, 168
DNAmodel, 108
dotchart.phylog, 83
drop.tip, 35, 90

Emacs, 7
ESS, 7
expression, 180

factor, 14
for, 21
function, 187

gammaStat, 170
GC, GC2, GC3, 43
GC.content, 43
gearymoran, 140
getSequence, 33, 53, 54
Ghostscript, 7
glm, 148
gls, 145
grep, 57
gsub, 56, 57, 87

hclust, 99
help, 18
help.search, 19
HOME, 188

if, 22
indexing

logical, 13
numeric, 13, 16
with names, 14, 16

intersystems interface, 2, 189
invers, 41
is.binary.tree, 38
is.rooted, 36

is.ultrametric, 38

lapply, 22, 41, 50, 54, 61, 63, 100
LATEX, 3
length, 12, 61
library, 6
likelihood.test, 171
list, 17
load, 20
ls, 10
ls.str, 11
ltt.lines, 162
ltt.plot, 161

margins (plot), 66, 78
Matchings, 27
matrix, 15
mlphylo, 103, 106, 110
mltt.plot, 162
mode, 12
Moran.I, 140
mtext, 69, 78
multi2di, 38, 164

names, 14
neighbor-joining, 100
Newick, 28
newick2phylog, 29
next, 22
NEXUS, 28
nj, 100, 122, 130
nodelabels, 71, 125, 136, 176

options, 188
Ornstein–Uhlenbeck model, 145, 151

package, 5, 192
pandit, 30, 38
par, 68, 88
paste, 41, 46, 50, 62
pchisq, 174
phylogeny

bootstrap, 115
distance, 96
maximum likelihood, 100

PHYML, 6, 111
phymltest, 103, 106, 111, 125
pic, 135
plot, 65
plot.phylo, 65

Index 211

plot.tresshape, 70
postscript, 19, 67
prop.clades, 116
prop.part, 116

query, 32, 52

R HOME, 188
radial.phylog, 70
rate matrix, 101
ratogram, 119
rcoal, 45
read.alignment, 31
read.dna, 30, 48, 51, 56, 63
read.fasta, 31
read.GenBank, 30, 46, 50, 62
read.nexus, 28
read.table, 49, 51, 52, 55
read.tree, 28
regular expression, 57, 87
replicate, 22
rev, 41
rm, 11
root, 37
rotate, 36
rtree, 44
rtreeshape, 45
rug, 180
runif, 36

s2c, 41
sackin, 171
sackin.test, 171
sample, 113
sapply, 22
save, 20, 33
scale, 179
seg.sites, 43
seq, 40, 50

source, 21, 183, 188
splitseq, 42
str, 10
substitution models, 98, 108, 111
summary.phylo, 38
summary.SeqFastaAA, 43
summary.SeqFastadna, 43
Sweave, 3
symbols.phylog, 83

table, 15, 50, 58, 61, 63, 173
table.phylog, 84
tapply, 22
text, 71, 72, 77, 78, 81
tiplabels, 77, 176
translate, 42
treebase, 30, 38
treeshape, 28

unique, 156
unroot, 37
UPGMA, 99

variance.phylog, 143
vcv.phylo, 138

weight.taxo, 99
which.edge, 81
working directory, 7
write.dna, 35, 47, 50, 63
write.nexus, 34
write.tree, 33

X11, 90

yule, 167, 176
yule.cov, 167, 179

zoom, 91, 130

0000
0000

	Preface
	Contents
	1 Introduction
	1.1 Strategic Considerations
	1.2 Notations
	1.3 Preparing the Computer

	2 First Steps in R for Phylogeneticists
	2.1 The Command Line Interface
	2.2 The Data Structures
	2.3 The Help System
	2.4 Creating Graphics
	2.5 Saving and Restoring R Data
	2.6 Using R Functions
	2.7 Repeating Commands
	2.8 Exercises

	3 Phylogenetic Data in R
	3.1 Phylogenetic Data as R Objects
	3.2 Reading Phylogenetic Data
	3.3 Writing Data
	3.4 Manipulating Data
	3.5 Generating Random Trees
	3.6 Case Studies
	3.7 Exercises

	4 Plotting Phylogenies
	4.1 Simple Tree Drawing
	4.2 Combining Plots
	4.3 Large Phylogenies
	4.4 Perspectives
	4.5 Exercises

	5 Phylogeny Estimation
	5.1 Distance Methods
	5.2 Maximum Likelihood Methods
	5.3 Bootstrap Methods and Distances Between Trees
	5.4 Molecular Dating
	5.5 Case Studies
	5.6 Perspectives
	5.7 Exercises

	6 Analysis of Macroevolution with Phylogenies
	6.1 Phylogenetic Comparative Methods
	6.2 Estimating Ancestral Characters
	6.3 Analysis of Diversi.cation
	6.4 Perspectives
	6.5 Case Studies
	6.6 Exercises

	7 Developing and Implementing Phylogenetic Methods in R
	7.1 Features of R
	7.2 Writing Functions in R
	7.3 Interfacing R with Other Languages
	7.4 Writing R Packages
	7.5 Performance Issues and Strategies

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

