Simulating epidemics in R

John M. Drake

June 6, 2010
Contents
1 Introduction 1
2 The SIR model 1
3 Stochastic model 5
4 Fitting continuous-time models to data: trajectory matching 12

1 Introduction

This workshop will introduce techniques for estimating the parameters of epidemiological models. At
the same time, we’ll cover ways of evaluating models (e.g., overall model fit) and parts of models (e.g.,
hypothesis tests based on parameters or combinations of parameters). Typically, we assume (that is, we
pretend we know to be true) that the model takes a certain structure. In this module, we introduce some
of these structures. This introduction serves several purposes. First, by first looking at some specific
models we will start the estimation part of the workshop with a shared conceptual baseline. Second, the
models we look at here are fundamental and relatively general and therefore readily extended for your
own purposes in the future. Third, we introduce a number of numerical tools that are useful for studying
epidemiological systems. And, finally, by simulating these systems we produce some datasets in which
the dynamical data-generating process is truly known. By trying out our estimation techniques on these
known processes, we can study how well the various techniques perform under different circumstances.

2 The SIR model

The simplest place to start is with the classical STR model. This model expands the SI model you
studied yesterday to include a class of “recovered” individuals, which are assumed to be immune. The
simply keeps track of how many individuals are in each class: individuals that leave one class must enter
another class (this is the conservation property), with exceptions for births and deaths. As with the ST

model, the state variables change according to a system of differential equations:

ds

2N MNILDS —

o M (I,t)S—psS
dI

XIS —~T—ul
7 (I,t)S—~yI—p

dR

AT —

w7 pR

Here, u is the birth and death rates (which we assume to be equal), N is the host population size, and
v the recovery rate. The only interesting bit is the force of infection A(I,t). We’ll assume that it has

the so-called frequency dependent form
I

MI0) = (1)

so that the risk of infection a susceptible faces is proportional to the fraction of the population that
is infectious. Notice that we allow for the possibility of a contact rate, 5, that varies in time. In this
model, S, I, and R may be interpreted either as proportions of the population (if N = 1) or abundances
(it N > 1).

Like many epidemiological models, one can’t solve the STR equations explicitly. Rather, to find the
trajectory of a continuous-time model such as the STR, we must integrate those ordinary differential
equations (ODEs) numerically. What we mean by this is that we use a computer algorithm to approxi-
mate the solution. In general, this can be a tricky business. Fortunately, this is a well studied problem
in numerical analysis and (when the equations are smooth, well-behaved functions of a relatively small
number of variables) standard numerical integration schemes are available to approximate the integral
with arbitrary precision. Particularly, R has a very sophisticated ODE solver facility which for many
problems will give highly accurate solutions. To use the numerical integration package, we must load
the package

> require(deSolve)

[Note: If you get a warning that the package was not loaded, check to make sure it is installed on your
computer.]

The ODE solver needs to know the right-hand sides of the ODE. We give it this information as a function:

> sir.model <- function (t, x, params) {
+ S <= x[1]

+ I <- x[2]

+ R <- x[3]

+ with(

+ as.list (params),

+ {

+ dS <- mux*(N-S)-beta*S*I/N

+ dI <- beta*S*I/N-(mu+gamma)*I
+ dR <- gamma*I-mu*R

+ res <- c¢(dS,dI,dR)

+ list(res)

+ }

+)

+ }

Notice that here, we’ve assumed [is constant.

[Note: In case the with function is unfamiliar, it serves here to make the parameters params available
to the expressions in the brackets, as if they were variables. One could achieve the same effect by, for
example, dS <- params["mu"]*(params["N"]-S)-params["beta"]*S*I/params["N"] and so on.|

We'll now define the times at which we want solutions, assign some values to the parameters, and specify
the initial conditions, i.e., the values of the state variables S, I, and R at the beginning of the simulation:

> times <- seq(0,10,by=1/120)
> params <- c(mu=1/50,N=1,beta=1000,gamma=365/13)
> xstart <- ¢(S=0.06,I=0.001,R=0.939)

Now we can simulate a model trajectory with the 1soda command:

> out <- as.data.frame(lsoda(xstart,times,sir.model,params))
and plot the results

> op <- par(fig=c(0,0.5,0,1),mar=c(4,4,1,1))

> plot(I~time,data=out,type='1"',log="'y")

> par(fig=c(0.5,1,0,1) ,mar=c(4,1,1,1) ,new=T)

> plot(I~S,data=out,type='p',log="'xy',yaxt='n',xlab='S',cex=0.5)
> par (op)

le-02

1le-03

le-04

le-05

1le-06

0O 2 4 6 8 10 0.02 0.03 0.05

time S

Exercise 1. Explore the dynamics of the system for different values of the f and p parameters by
simulating and plotting trajectories as time series and in phase space (e.g., I vs. S).

*Exercise 2. Modify the codes given to study the dynamics of an SEIR model.

Seasonality

The simple STR model always predicts damped oscillations towards an equilibrium (or pathogen ex-
tinction if Ry is too small). This is at odds with the recurrent outbreaks seen in many real pathogens.
Sustained oscillations require some additional drivers in the model. An important driver in childhood
infections of humans (e.g., measles) is seasonality in contact rates because of aggregation of children
the during school term. We can analyze the consequences of this by assuming sinusoidal forcing on
according to B(t) = By (1 + f1 cos(2mt)). Translating this into R:

> seasonal.sir.model <- function (t, x, params) {
+ with(

+ as.list(c(x,params)),

+ {

+ beta <- betaO*(1l+betal*cos(2*pi*t))

+ dS <- mu*(N-S)-beta*S*I/N

+ dI <- beta*S*I/N-(mu+gamma)*I
+ dR <- gamma*I-mu*R
+ res <- c(dS,dI,dR)
+ list(res)
+

+

+

—

}

We'll simulate as before, with the same mean contact rate, By as before, but now with a fairly strong
amplitude of seasonality, 3.

times <- seq(0,100,by=1/120)

params <- c(mu=1/50,N=1,beta0=1000,betal=0.4,gamma=365/13)

xstart <- c¢(S=0.06,I=0.001,R=0.939)

out <- as.data.frame(lsoda(xstart,times,seasonal.sir.model,params,rtol=1e-12,hmax=1/120))
op <- par(fig=c(0,0.5,0,1),mar=c(4,4,1,1))
plot(I~time,data=out,type='1"',log='y',subset=time>=90)

par(fig=c(0.5,1,0,1) ,mar=c(4,1,1,1) ,new=T)
plot(I~S,data=out,type='p',log="'xy',subset=time>=50,yaxt="'n',xlab="'S',cex=0.5)

text (0.02,0.0005, "last 50 yr of simulation")

par (op)

VVVVVVVYVVYV

1e-03

last 5:0 yr of simulation

le-05

le-07

I I I I I
90 92 94 96 98

0.010 0.015 0.025 0.040

time S

Exercise 3. Explore the effects of changing amplitude of seasonality, 51 on the dynamics of this model.
Be careful to distinguish between transient and asymptotic dynamics.

So far today we have used one model (the STR model) to introduce two concepts (frequency-dependent
transmission and seasonal forcing) and one technique (numerical solution of ODEs).

3 Stochastic model

In this next section we extend our toolbox to include a stochastic model. Why do we need a stochastic
model? The models introduced in the preceding section were both systems of deterministic differential
equations. Although useful for some puposes, these models makes two very restrictive assumptions. First,
they assume that the change in the number of susceptible and infectious individuals in the population
happens continuously. In fact, since the population is finite and the class values (S and I) are categorical,
changes in the state variables in reality occur in jumps. This is the problem of assuming a continuous
state space. A more realistic model is one that is restricted to the integers. To relax this assumption we
could easily integerize this model by asserting that each infected individual gives rise to 8 new infected
individuals in each time step and numerically iterating the model forward in time. But, this just reinforces
another unrealistic assumption, which is that each infected individual gives rise to precisely the same
number of secondary infections, which arise simultaneously after precisely the same amount of time.
This deterministic assumption clearly is not biologically realistic. A solution that solves both problems

is to use a model that is both naturally restricted to the integers and in which the number of secondary
infections is a random variable. Such a model is said to exhibit demographic stochasticity. Demographic
stochasticity is a kind of process noise (to be contrasted with sampling error.

In the first section, we discussed a model that was deterministic, continuous in time, and continuous
in the state variables S, I, and R. Here, we relax the assumptions of determinism and continuous
state-space.

At this point, there are still a number of different directions we could go. We will make two additional
assumptions that, together with the assumption of demographic stochasticity uniquely determine a whole
class of models. First, we assume that the epidemic is a Markov chain. A Markov chain is defined as a
stochastic process with the property that the future state of the system is dependent only on the present
state of the system and conditionally independent of all past states. This is known as the memoryless
property. Second, we assume that the changes in the state variables (increments and decrements) occur
one at a time. That is, we cannot have two individuals simultaneously undergoing a transition, where
“transition” refers to any change in the state variables (birth, death, conversion between classes, etc.).
For historical reasons, the continuous time Markov chain with increments and decrements of one is known
as a birth-death process. (In general, a Markov chain with integer-valued increments and decrements is
known as a jump process.)

Since this terminology is well entrenched, we’ll continue using it. Thus, when we refer to the “birth of a
susceptible” we really mean a demographic birth. But, when we refer to the “death of a susceptible”, this
could be a demographic death or it could be the transition of a individual from the susceptible class to
the infected class. In this general terminology, “birth” means “add one to the state variable” and “death”
means “subtract one from the state variable”. As with the deterministic STR model, transitions will be
conserved, but (demographic) births and (demographic) deaths need not be conserved.

[Note: An aside about birth-death processes is that notation varies considerably from author to author,
even though the authors are referring to exactly the same stochastic process. Particularly, the compu-

tational literature uses a notation borrowed from chemistry, e.g., S LENYS + 1, probably because the
algorithms that are commonly used to simulate birth-death processes were developed in the context of
chemical kinetics. Probabilists, by contrast, often use the generating function notation and scientists that
come to birth-death processes from a background in statistical mechanics represent the process using the
Forward Kolmogorov Equation or Fokker-Planck Equation (a partial differential equation). Textbooks in
ecology and epidemiology differ, too. The point is that once you learn to “read” the different notations,
they are all saying the same thing, i.e., that changes in the state variables occur according to such and
such rates. It’s these rates that are the basis of simulation modeling.]

Simple stochastic SI epidemic

To illustrate the approach, we’ll start with a simple closed stochastic ST epidemic. Because the pop-
ulation is closed (no births, deaths, or migration) we represent total population size as a constant N.
We denote the initial number of infected individuals by Iy and have the initial number of susceptible
individuals Sg = N — Iy. By analogy to our deterministic model, we want the average rate at suscep-
tibles individually become infectious (the force of infection) to be 3 % and the average rate at which
the population as a whole converts from susceptible to infectious to be %S. That is, at average rate
I} %S the value of S is decremented by one and the value of I is incremented by one. But when do
these increments and decrements occur. To answer this, we turn to our assumption that the epidemic
process is Markovian. If we can determine what the sequence of “inter-event times” is, then we have
fully specified the trajectory of the epidemic, for we know that at each of those times the number of
susceptibles decreases by one and the number of infecteds increases by one. So, what are the inter-event
times? The memoryless property of the continuous time Markov chain entails that the time between
events is independent of the time between any other set of events, and, moreover, if we were to investigate

the process at any point in time between events that the time to the next event would be independent
of the time elapsed since the previous event. This defines the birth-death process as a kind of Poisson
process. There is only one distribution for the inter-event times that has this property, the exponential
distribution. Since we know how to simulate random variables (in this case we use the function rexp)
we just simulate the sequence of event times and make our increments and decrements accordingly. This
approach is known as Gillespie’s direct method.

All that remains, then, is to relate the rate at which our process is happening to the generation of
exponential random numbers. An exponential distribution is defined by a single parameter, although
the formula may be written in different ways. The parameterization assumed by R conveniently assumes
the distribution is expressed in terms of a Poisson process, such that the argument is itself already the
rate. Thus, we simulate the inter-event time and update the state variables using one function

> birth.death.onestep <- function (x, params) {
+ S <- x[2]

+ I <- x[3]

+ beta <- params['beta']

+ new.I <- I+1

+ new.S <- S-1

+ new.t <- rexp(n=1,rate=beta*S*I/(S+I))

+ c(tau=new.t,S=new.S,I=new.I)

+

}

As in the examples above, we write a loop to iterate this simulation routine. Note that because time is
continuous, we don’t actually know how many events will occur in some specified period of time. Instead,
we save some pre-set number of “events”.

> birth.death.model <- function (x, params, nstep) {
+ X <- array(dim=c(nstep+1,3))

+ colnames(X) <- c("time","S","I")

+ X[1,] <- x

+ for (k in 1:nstep) {

+ X[k+1,] <- x <- birth.death.onestep(x,params)
+ }

+ X

+ }

Using the same parameters as before, we run some simulations and plot. Notice the function cumsum is
used to add up the inter-event times to give a time series.

set.seed (38499583)
nsims <- 10
pop.size <- 200
I0 <- 2
nstep <- pop.size-I0
xstart <- c(time=0,S=(pop.size-10),I=I0)
params <- c(beta=3e-2)
x <- vector(mode='list',length=nsims)
for (k in 1:nsims) {
x[[k]] <- as.data.frame(birth.death.model (xstart,params,nstep))
x[[k]]$cum.time <- cumsum(x[[k]]$time)

+ + VVVVVVVVYV

+

> max.y<-max(x[[1]]$cum. time)

> plot(c(0,pop.size),c(0,pop.size),type='n',xlab="time',ylab="'incidence',xlim=c(0,max.y))
> for (k in 1:nsims) {

+ lines(I”cum.time,data=x[[k]],col=k,type='o")

+ 7}

incidence
100 150 200
| | |

50

0 100 200 300 400

time

Exercise 4. Simulate the stochastic SI model using Gillespie’s direct method. Experiment with the
initial number of infecteds (Ip) and with the total population size (V). What effects do these have on
the predictability of the epidemic?

Extending the SI model

In this section we extend the simple ST model to an arbitrary number of compartments. For concreteness,
we study a stochastic version of the STR model from the first section. The main difference between the
ST model and the STR model is that in the STR model there’s more than one kind of event that can
occur. (Actually, this is true of the ST model with births and deaths, too, but we didn’t look at that).
That means we need to account for two things: (1) Our determination of the next event time has to take
into consideration the multiple processes that are occurring simultaneously, and (2) Once we determine
what time the event occurs we have to determine what type of event it is. Since the transition processes

are independent we can calculate a “total rate” as the sum of the individual rates. That is, the rate
at which the whole system is evolving is the sum of the rates of the individual processes which are the
absolute values of the different transition terms in the model. For example, the transitions associated
with the susceptible class are transition to the infected class (at rate 54.5), births (at rate uN), and
deaths (at rate wS). Thus, the “total rate” for the susceptible class is B%S + N + pS. Our total
rate for the whole proceess will include the rates for the I and R classes as well. The next step in the
multi-dimensional Gillespie simulation is to determine which event occurs. In the long run each event
much occur at its specific rate. This means that we can just randomly choose which event occurs so long
as we do it in a weighted way such that each transition is selected in proportion to its contribution to
the total rate. First we define our one-step function. Notice the ordering of the if statements.

sir.birth.death.onestep <- function (x, params) {

S <- x[2]

I <- x[3]

R <- x[4]

N <- S+I+R

with(
as.list (params),
{

total.rate <- mu*N+beta*S*I/N+mu*S+mu*I+gamma*I+mu*R
new.t <- rexp(n=1,rate=total.rate)
new.sir <- c¢(S,I,R)

U <- runif(1)
new.sir<-c(S,I,R-1) #death of recovered
if (U<=(mu*N+beta*S*I/N+mu*S+gamma*I+mu*I)/total.rate) new.sir<-c(S,I-1,R)
#death of infected
if (U<=(mu*N+beta*S*I/N+mu*S+gamma*I)/total.rate) new.sir<-c(S,I-1,R+1)
#recovery of infected
if (U<=(mu*N+beta*S*I/N+mu*S)/total.rate) new.sir<-c(S-1,I,R) #death of a susceptible

if (U<=(mu*N+beta*S*I/N)/total.rate) new.sir<-c(S-1,I+1,R) #transmission event
if (U<=(mu*N/total.rate)) new.sir<-c(S+1, I, R) #birth of susceptible
c(new.t,new.sir)

}

)

+ + + 4+ +++F+++F++FFFEAEFFFAEFFFAENV

-

As before, we set parameters and loop through the process

> sir.birth.death.model <- function (x, params, nstep) {
+ X <- array(dim=c(nstep+1,4))

+ colnames(X) <- c("time",“S","I","R")

+ X[1,] <- x

+ for (k in 1:nstep) {

+ X[k+1,] <- x <- sir.birth.death.onestep (x,params)
+ }

+ X

+ }

Now let’s repeat for 10 runs and plot.

> set.seed(38499583)
> nsims <- 10
> pop.size <- 100
> I0 <- 8
> S0 <- round(0.98*pop.size)
> nstep <- 1600
> xstart <- c(time=0,S8=S0,I=I0,R=pop.size-I10-S0)
> params <- c(mu=0.00001,beta=60,gamma=365/13)
> x <- vector(mode='list',length=nsims)
> for (k in 1:nsims) {
+ x[[k]] <- as.data.frame(sir.birth.death.model (xstart,params,nstep))
+ x[[k]]$cum.time <- cumsum(x[[k]]$time)
+ }
> max.time<-x[[1]]$cum. time [max(which(x[[1]]$I>0))]
> max.y<-1.4¥max(x[[1]1]1$I)
> plot(I~cum.time,data=x[[1]],xlab="'time',ylab="'incidence',col=1,
+ xlim=c (0,max.time),ylim=c(0,max.y))
> for (k in 1:nsims) {
+ lines(I”cum.time,data=x[[k]],col=k,type='o")
+ }
8]
©
&]
5}
S
=
8]
O —]

0.00 0.05 0.10 0.15 0.20 0.25 0.30

time

Exercise 5. Simulate the stochastic STR model using Gillespie’s direct method. As before, experiment

10

with the initial number of infecteds (Ip) and with the total population size (N). What effects do these
have on the predictability of the epidemic? How would you adapt the model to include seasonality?

Additional issues

The birth-death framework is a popular approach to stochastic epidemic modeling. It has some important
limitations, however. Overcoming these limitations is an area of active research:

e For even moderately large systems, Gillespie’s direct method is very slow.

e The Markovian assumption entails that the inter-event times of the birth-death process are expo-
nentially distributed. This is a biologically unrealistic assumption that has considerable impact on
the variance of the process. Non-Markovian (i.e., non-memoryless) processes are the solution, but
these come at the cost of additional conceptual and computational complexity.

We will briefly address the first of these issues today. Specifically, one of the parameter estimation
methods that will be introduced tomorrow (particle filtering) requires the simulation of a large number
of realizations of hypothesized trajectories-too many, in fact, to be simulated with Gillespie’s direct
method. When we get to particle filtering we’ll want to use an alternative algorithm that approximates
trajectories of the directly simulated process sampled at regular time intervals. The algorithm we will be
using is one of the so-called “tau-leap” methods. Specifically, rather than considering our process to be
directly observed at every event, we will sample the process at times 0, 7, 27, 37, It turns out that the
number of events of each time within an interval of duration 7 is approximately Poisson distributed with
mean equal to the rate of the transition at the start of the interval divided by the duration of the interval.
For instance, between times ¢ and t+7 the number of new infections is given by a Poisson random variate
with mean (8 % We can change our update function to use the tau-leap method as follows. Notice that
the tau-leap method can occasionally give rise to a greater number of events than actually possible (e.g.,
a greater number of infections than there are susceptible individuals to be infected). This is related
to assumptions that are made in the derivation of the approximation. For our purposes, it will suffice
in such cases to set the number of events to the maximum possible. In our function below, this is
accomplished using the function min at the time the rates are calculated.

> sir.birth.death.onestep.tauleap <- function (x, params, tau) {
+ S <- x[2]

+ I <- x[3]

+ R <- x[4]

+ N <- S+I+R

+ with(

+ as.list(params),

+ {

+ dSI <- min(S,rpois(1,beta*S*I/N * tau))

+ dIR <- min(I,rpois(1,gamma*I * tau))

+ new.sir<-cbind(S - dSI , I + dSI - dIR, R + dIR)
+ cbind (timestep,new.sir)

+ }

+)

+ }

This section on the simple stochastic ST and STR epidemics has introduced two concepts (continuous
time Markov chains and the birth death process) and two techniques (Gillespie’s direct method, tau-leap
method).

11

4 Fitting continuous-time models to data: trajectory matching

Thie final section of this module is a segue into the rest of the workshop. To get started, we focus on
one of the simplest approaches there is to estimation. If we assume that the only source of variability
in the data is measurement error, and that this is symmetrically distributed with a constant variance,
then least squares is a statistically appropriate basis for estimation. As a demonstration, we fit the
deterministic STR model to data on an outbreak of flu in a British boarding school.

> load('flu.RData')
> plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)')

300
|

250
|
/

200
|
o
/

I(t)
150
|

100
|

™~
/o

I I I I I I I
2 4 6 8 10 12 14

Day

The first thing we do is write a specialized function for simulating the STR model in a case where the
removal rate is hard-wired in and with no demography.

> closed.sir.model <- function (t, x, params) {
+ S <- x[1]

+ I <-x[2]

+ R <- x[3]

+ b <- params[1]

+ g <- params[2]

12

+ dS <- -b*S*I
+ dI <- b*S+I-g*I
+ dR <- g*I

+ 1ist(c(dS,dI,dR))
+ F

Now we set up a function that will calculate the sum of the squared differences between the observations
and the model at any parameterization (more commonly known as “sum of squared errors”).

> sse.sir <- function(params0,data){

+ t <- datal,1]

+ cases <- datal,2]

+ b <- params0[1]

+ g <- params0[2]

+ S0 <- 762

+ I0 <- 1

+ RO <- 0

+ out <- as.data.frame(lsoda(y=c(S=S0,I=I0,R=R0),times=t,closed.sir.model,parms=c(b,g),hmax=1/120))
+ sse<-sum((out$I-cases) "2)

+

}

Now, let’s see how this function works. To get things started, we’ll fix ¢g. Individual infected with flu
typically are infectious for roughly one day prior to presenting with symptoms. In this case, we know
that sick individuals were immediately removed from interacting with susceptible individuals as soon as
they were detected. Therefore, for current purposes we assume g = n = 1. In what follows, we first
create a dataframe to contain different parameter combinations and our sum of squared errors. We use
the function seq to generate a sequence of b values uniformly on a log scale and the function rep to
assign to each value of b the given value of g. Then we use a for loop to evaluate our function sse.sir
at each combination of parameters. Finally, we plot the resulting values as a function of b.

sse.example<-data.frame(b=1%10"-seq(2,3,length.out=20), g=rep(1,20),sse=NA)
for(i in 1:dim(sse.example) [1]){
sse.example$sse[i]<-sse.sir(as.numeric(sse.example[i,]),data=flu)
}
plot(sse”b,data=sse.example,type='b',log="'xy"')

vV + + Vv Vv

13

— o
S /
S 0no
) /
<r o
S |o-o- /
o © -0 °
o o
o — N
o ° /
® \ o
— o
()
) Q /
7] 8] °
o
8 °
)
o
o _|
o o
Ire!
—
o
o \ o
S | o’
3 T T T T
|
0.001 0.002 0.005 0.010

So far, so good. We can look at our plot and see that there is indeed a local minimum in the sum of
squared errors. Specifically, it looks as if the best fit value of b (the value that minimizes the sum of
squared errors) is around b =0.003. Just two problems remain: (1) The location of this minimum isn’t
exactly fixed. It looks like it falls somewhere between the 9th and 11th points, but where exactly is
uncertain. (2) The minimum of this function is only correct if our assumption tildeg = 1.0 is valid, but
this was only an approximation.

To solve these problems we need to (1) fit both b and ¢ simultaneously, in which case the sum of squared
errors is a surface in two dimenions and we are looking for the minimum of this surface, and (2) examine
the shape of this minimum over smaller and smaller ranges until we’ve zeroed in on a pair of values (13, J)
that are known with sufficient precision for whatever purposes we might hope to use them for.

This process is referred to as optimization and, fortunately for us, there are many robust algorithms
available for this purpose. One of them, the Nelder-Mead algorithm, is the default in the Rfunction
optim. We can use it to return the best fit values for b and g as follows.

> params0<-c(0.001,0.5)
> fitl <- optim(paramsO,sse.sir,data=flu); fitl$par

[1] 0.002567216 0.473148936

Finally, we plot these fits against the data.

14

plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)',ylim=c(0,350),col="'red')

t <- seq(1,max(flu$day),by=0.05)

mod. pred<-as.data.frame(lsoda(c(S=762,I=1,R=0),times=t,
closed.sir.model,fit1$par,hmax=1/120))

vV + Vv VvV

lines(mod.pred$I~t)

I(t)
200 250 300 350
| | | |

150
|

100
|

2 4 6 8 10 12 14

Day

Exercise 6. The file plague.RData gives weekly mortality for the plague outbreak in Mumbai, Decem-
ber 1905 to July 1906. We assume that human mortality X is proportional to the number of infectious
rats X (¢t) = pl(t) and that the epidemic in the rat population can be represented by a simple closed
STR model where S, I, and R are proportions of the rate population. Use least squares to estimate the
parameters of this model, assuming that one in a million rats are infected at time ¢ = 0. Compare model
output with data using a plot.

Exercise 7. Repeat the fit you performed in the previous exercise, treating /(0) as an unknown param-
eter that must be estimated.

Hint. All parameters are necessarily positive. It sometimes helps the optimization algorithm if negative
parameter values are impossible. Thus, it might be useful to re-parameterize the model with a new
parameter b = log(f3), i.e., dS/dt = —e’SI, and so on.

[1] 2.350065 2.313281 -12.917853 14.083983

15

[1] 2.357647 2.320961 -12.956612 14.091217

Acknowledgements. This tutorial is the extant type of a lineage that has an unknown evolutionary
history. Thanks to Aaron King, Ben Bolker, Ottar Bjgrnstad, and Dave Smith for the use of source

materials from recent common ancestors.

16

