
Spectral Analysis in R

Helen J. Wearing

June 8, 2010

Contents

1 Motivation 1

2 What is spectral analysis? 2

3 Assessing periodicity of model output 7

4 Assessing periodicity of real data 11

5 Other details and extensions 12

1 Motivation

Cyclic dynamics are the rule rather than the exception in infectious disease data, which may be due
to external forcing by environmental drivers or the inherent periodicity of immunizing (or partially
immunizing) infections or a combination of both. As an example, plotted in the figure below are weekly
case reports of childhood diseases from Copenhagen, Denmark during the mid-twentieth century.

1

1930 1940 1950 1960

0
20

00
40

00

Date

M
ea

sl
es

1940 1950 1960

0
20

0
40

0
60

0
80

0

Date.1
C

hi
ck

en
po

x

1930 1940 1950 1960

0
10

00
30

00

Date.2

M
um

ps

1940 1950 1960

0
50

0
15

00

Date.3

R
ub

el
la

What types of questions might we ask of these data? In this module, we introduce how to estimate the
periodicity of time series using spectral analysis. Specifically, we will look at recurrent epidemics from
either simulated or real data. We can often use these summary metrics as probes to match model output
to data.

2 What is spectral analysis?

In a nutshell: the decomposition of a time series into underlying sine and cosine functions of different
frequencies, which allows us to determine those frequencies that appear particularly strong or important.

Let’s briefly re-familiarize ourselves with sine and cosine functions!

2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

t

x

cos(4 pi t)
sin(4 pi t)

The frequency (f) of a sine or cosine function is typically expressed in terms of the number of cycles
per unit time. For example, in the above figure the frequency of each function is 2 cycles per unit time.

The period (T) of a sine or cosine function is defined as the length of time required for one full cycle.
Thus, it is the reciprocal of the frequency (T = 1/f). In the above figure T = 1/2.

Fitting sine waves

One way of viewing spectral analysis is as a linear multiple regression problem, where the dependent
variable is the observed time series, and the independent variables are the sine functions of all possible
(discrete) frequencies.

Suppose we have a time series xt of length n, for convenience assume n is even. We can fit a time series
regression with xt as the response and the following n− 1 predictor variables:

cos
(

2πt
n

)
, sin

(
2πt
n

)
, . . . , cos

(
2(n/2− 1)πt

n

)
, sin

(
2(n/2− 1)πt

n

)
, cos(πt)

If we represent the estimated regression coefficients by a1, b1, . . . , an/2−1, bn/2−1, an/2, respectively, we
can write xt as

xt = a0 +
n/2−1∑
k=1

[ak cos(2πkt/n) + bk sin(2πkt/n)] + an/2 cos(πt) (1)

3

The cosine parameters, ak, and sine parameters, bk, tell us the degree to which the respective functions
are correlated with the data. This regression model is a finite Fourier series for a discrete time series.

Note that because the number of coefficients equals the length of the time series, there are no degrees
of freedom for error. The intercept term, a0, is just the mean, x̄, of the time series. The lowest possible
frequency is one cycle, or 2π radians, per record length (which is 2π/n radians per sampling interval).
A general frequency, in this representation, is k cycles per record length (2πk/n radians per sampling
interval). The highest frequency is 0.5 cycles per sampling interval (π radians per sampling interval).

We should pay close attention to the sampling interval and record length. Many time series are of
a variable that is continuous in time but is sampled to give a time series at discrete time steps. The
sampling interval (or sampling rate) constrains the highest frequency (known as the Nyquist frequency)
that we can detect. For example, if we sample every week, we cannot detect cycles less than 2 weeks in
length. On the other hand, the length of the time series determines the lowest frequency that we can
distinguish.

Periodogram

The periodogram quantifies the contributions of the individual frequencies to the time series regression
and is defined as

Pk = a2
k + b2k

where Pk is the periodogram value at frequency k (for k = 1, . . . , n/2). The periodogram values can
be interpreted in terms of variance of the data at the respective frequency or period. A plot of Pk, as
spikes, against k is a Fourier line spectrum. The raw periodogram in R is obtained by joining the tips of
the spikes in the Fourier line spectrum to give a continuous plot and scaling it so that the area equals
the variance.

Although we have introduced the periodogram in the context of a linear multiple regression, the calcu-
lations are usually performed with the fast Fourier transform algorithm (FFT) (and this is what R uses
too).

To summarize, spectral analysis will identify the correlation of sine and cosine functions of different
frequency with the observed data. If a large correlation (sine or cosine coefficient) is identified, you can
conclude that there is a strong periodicity of the respective frequency (or period) in the data.

Let’s consider a simple example to clarify the underlying ”mechanics” of spectrum analysis in R before
we discuss further details of the technique.

Simple Example

We will create a simple time series, and then see how we can extract the frequency information using
spectral analysis. First, create a time variable t and then specify the time-dependent variable x:

> t <- seq(0,200,by=0.1)

> x <- cos(2*pi*t/16) + 0.75*sin(2*pi*t/5)

The variable x is made up of two underlying periodicities: the first at a frequency of 1/16 or period of
16 (one observation completes 1/16’th of a full cycle, and a full cycle is completed every 16 observations)
and the second at a frequency of 1/5 (or period of 5). The cosine coefficient (1.0) is larger than the sine
coefficient (0.75).

4

> par(mfrow=c(2,1))

> plot(t,x,'l')
> spectrum(x)

0 50 100 150 200

−
1.

5
0.

0
1.

5

t

x

0.0 0.1 0.2 0.3 0.4 0.5

1e
−

18
1e

−
03

frequency

sp
ec

tr
um

Series: x
Raw Periodogram

bandwidth = 0.000143

The R command spectrum calculates the periodogram and automatically plots it against frequency.

There are three technical points we should briefly discuss (and some we won’t but feel free to ask further
questions if you have any):

• pre-processing of the data

• smoothing of the periodogram

• how to make R output better looking and give more intuitive estimates of the spectral density!

Preparing the Data for Analysis

Usually, we want to subtract the mean from the time series. Otherwise the periodogram and density
spectrum will mostly be ”overwhelmed” by a very large value for the first cosine coefficient (a0). In R
, the spectrum function goes further and automatically removes a linear trend from the series before
calculating the periodogram. It seems appropriate to fit a trend and remove it if the existence of a trend

5

in the underlying stochastic process is plausible. Although this will often be the case, there may be cases
in which you prefer not to remove a fitted trend and this can be accomplished using spec.pgram, which
gives the user more control over certain arguments.

Smoothing

The periodogram distributes the variance over frequency, but it has two drawbacks. The first is that the
precise set of frequencies is arbitrary, in as much as it depends on the record length. The second is that
the periodogram does not become smoother as the length of the time series increases but just includes
more spikes packed closer together. The remedy is to smooth the periodogram, and one way to do this
is by using a smoothing kernel of spikes before joining the tips. The smoothed periodogram is also
known as the sample spectrum. However, the smoothing will reduce the heights of peaks, and excessive
smoothing will blur the features we are looking for. It is a good idea to consider spectra with different
amounts of smoothing, and this is made easy for us with the R function spectrum. The argument span
is the number of spikes in the kernel. An alternative method for computing a smoothed spectrum is to
calculate the Fourier line spectrum for a number of shorter sub-series of the time series and average the
line spectra of the subseries.

Spectral analysis in R

The spectrum function defaults to a logarithmic scale for the spectrum, but we can change this by
setting the log parameter to ”no”. The default frequency axis is in cycles per sampling interval. It is
more intuitive to convert the frequency axis to cycles per unit time, we can do this by extracting the
frequency values that R returns and dividing by the length of the sampling interval. We should also
multiply the spectral density by 2 so that the area under the periodogram actually equals the variance
of the time series.

> del<-0.1 # sampling interval

> x.spec <- spectrum(x,log="no",span=10,plot=FALSE)

> spx <- x.spec$freq/del

> spy <- 2*x.spec$spec

> plot(spy~spx,xlab="frequency",ylab="spectral density",type="l")

6

0 1 2 3 4 5

0
20

40
60

80
10

0

frequency

sp
ec

tr
al

 d
en

si
ty

3 Assessing periodicity of model output

Let’s now look at how all this works on simulated data. We will start by simulating the seasonal SIR
model that was introduced yesterday. First, specify the model

> require(deSolve)

> seasonal.sir.model <- function (t, x, params) {

+ with(

+ as.list(c(x,params)),

+ {

+ beta <- beta0*(1+beta1*cos(2*pi*t))

+ dS <- mu*(N-S)-beta*S*I/N

+ dI <- beta*S*I/N-(mu+gamma)*I

+ dR <- gamma*I-mu*R

+ res <- c(dS,dI,dR)

+ list(res)

+ }

+)

+ }

7

Then we simulate the model using lsoda and calculate the periodogram on the last part of the time
series (after discarding transients).

> times <- seq(0,100,by=1/120)

> params <- c(mu=1/50,N=1,beta0=1000,beta1=0.4,gamma=365/13)

> xstart <- c(S=0.06,I=0.001,R=0.939)

> out <- as.data.frame(lsoda(xstart,times,seasonal.sir.model,params,rtol=1e-12,hmax=1/120))

> par(mfrow = c(3,1))

> plot(I~time,data=out,type='l',subset=time>=40)
> Iend<-subset(out,time>=40,select=c(I))

> del<-1/120

> x.spec <- spectrum(Iend,span=5,log="no",plot=FALSE)

> spx <- x.spec$freq/del

> spy <- 2*x.spec$spec

> plot(spy~spx,xlab="frequency",ylab="smoothed spectral density",type="l")

> plot (spy~spx, subset=spx<=2,xlab="frequency",ylab="spectral density",type = "l") #Zoom-in on low frequencies

> dom.freq=spx[which.max(spy)] #Extract the dominant frequency

40 50 60 70 80 90 100

0.
00

0
0.

00
6

time

I

0 10 20 30 40 50 60

0.
00

00
0.

00
10

frequency

sm
oo

th
ed

 s
pe

ct
ra

l d
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
00

00
0.

00
10

frequency

sp
ec

tr
al

 d
en

si
ty

Exercise 1. Explore the effects of changing amplitude of seasonality, β1, on the periodicity of this
model. Be careful to distinguish between transient and asymptotic dynamics. What happens if you log
transform the simulated data and then apply the spectrum?

8

**Exercise 2. Construct a figure that illustrates the relationship between β1 and the dominant period
of the output.

Stochastic model

As you saw yesterday, the dynamics of the deterministic SIR model without seasonality are damped
oscillations toward an equilibrium. In the stochastic version, you probably saw a lot of extinction because
the populations you looked at were small and there was no import parameter. Below is some code to
simulate the stochastic SIR model using the tau-leap method for a population of 1 million and with
a small import parameter ν. What you find is that demographic stochasticity amplifies the intrinsic
oscillations of the system and we observe sustained cycles.

The tau-leap code describing the SIR model with births and deaths:

> sir.birth.death.onestep.tauleap <- function (x, params) {

+ S <- x[2]

+ I <- x[3]

+ R <- x[4]

+ N <- S+I+R

+ with(

+ as.list(params),

+ {

+ births<-min(S,rpois(1,mu*N*tau))

+ Sdeaths<-min(S,rpois(1,mu*S*tau))

+ Ideaths<-min(I,rpois(1,mu*I*tau))

+ Rdeaths<-min(R,rpois(1,mu*R*tau))

+ dSI <- min(S,rpois(1,beta*S*(I/N+nu)* tau))

+ dIR <- min(I,rpois(1,gamma*I * tau))

+ new.sir<-cbind(S +births-Sdeaths- dSI , I -Ideaths+ dSI - dIR, R -Rdeaths+ dIR)

+ cbind(tau,new.sir)

+ }

+)

+ }

As before, we set parameters and loop through the process:

> sir.birth.death.model <- function (x, params, nstep) {

+ X <- array(dim=c(nstep+1,4))

+ colnames(X) <- c("time","S","I","R")

+ X[1,] <- x

+ for (k in 1:nstep) {

+ X[k+1,] <- x <- sir.birth.death.onestep.tauleap(x,params)

+ }

+ X

+ }

Now let’s simulate and plot the resulting time series:

> set.seed(38499583)

> nsims <- 1

> pop.size <- 1000000

9

> I0 <- 10

> S0 <- round(0.1*pop.size)

> nstep <- round(30*365)

> xstart <- c(time=0,S=S0,I=I0,R=pop.size-I0-S0)

> params <- c(mu=0.014,beta=300,gamma=365/13,nu=0.000001,tau=1/365)

> x <- as.data.frame(sir.birth.death.model(xstart,params,nstep))

> x$cum.time <- cumsum(x$time)

> max.time<-max(x$cum.time)

> max.y<-1.4*max(x$I)

> plot(I~cum.time,data=x,xlab='time',ylab='incidence',col=1,
+ xlim=c(0,max.time),ylim=c(0,max.y),type='l')

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00
25

00
30

00

time

in
ci

de
nc

e

Calculating the spectra:

> Iend<-subset(x,select=c(I))

> x.spec <- spectrum(Iend,span=3,log="no",plot=FALSE)

> spx <- x.spec$freq/params[5]

> spy <- 2*x.spec$spec

> plot (spy~spx, subset=spx<=2,xlab="frequency",ylab="spectral density",type = "l")

> dom.freq=spx[which.max(spy)]

10

0.0 0.5 1.0 1.5 2.0

0.
0e

+
00

1.
0e

+
08

2.
0e

+
08

3.
0e

+
08

frequency

sp
ec

tr
al

 d
en

si
ty

We see that most of the variance of the time series is described by the low frequencies (long periods), as
we would expect from looking at the simulated data.

4 Assessing periodicity of real data

Everything we have looked at in the context of spectral analysis and simulated data can also be applied
to real data. The data that was plotted at the beginning of this tutorial from Copenhagen is available
in the file ”Copenhagen.csv”.

Exercise 3. Use what you have learned to analyze the periodicity of the Copenhagen data. Read in
the data. Choose one of the diseases and plot the time series. Calculate the spectrum. Can you uncover
periodic patterns in the time series?

Probe matching

Statistics from spectral analysis (such as the dominant period) can be used to compare simulated time
series to observed time series. This type of model fitting can be done using a variety of descriptive
statistics, which are often referred to as ”probes”. The model most similar to the data, as measured by
these probes, is considered to be the most likely candidate to represent the mechanism underlying the

11

cycles ????. Although such statistics are using only a subset of the information in the data, they are
often good enough to distinguish between different dynamical regimes.

5 Other details and extensions

Confidence Intervals / Significance

Although the spectrum of a time series is innately useful for describing the distribution of variance as
a function of frequency, sometimes we would like to know how the sample spectrum for a given time
series differs from that of some known generating process. We would also like to assess the statistical
significance of peaks in the spectrum. Significance can be evaluated only by reference to some standard
of comparison. The question is ”significantly different than what?”. A standard for comparison is a null
model, and is usually theoretically-based, but can be data-based. The simplest null model is white noise,
which has an even distribution of variance over frequency. The white noise spectrum is consequently a
horizontal line. Variance is not preferentially concentrated in any particular frequency range. However,
in testing for significance of spectral peaks, white noise may be inappropriate. Positive autocorrelation
in a time series can skew its frequency concentration toward the low-frequency side of the spectrum.
One option for dealing with this is to use the theoretical spectrum of an autoregressive process as the
null model.

Cross-spectrum

The cross-spectrum is an extension of spectral analysis to the simultaneous analysis of two time series.
Briefly, the purpose of cross-spectral analysis is to uncover the correlations between two series at different
frequencies. For example, disease incidence may be related to certain environmental variables. If we
looked at the cross-spectrum of the two time series, we may find a periodicity in an environmental
variable that is ahead ”in phase” of the disease cycles.

Nonstationarity and wavelets

Spectral analysis is appropriate for the analysis of stationary time series and for identifying periodic
signals that are corrupted by noise. However, spectral analysis is not suitable for non-stationary ap-
plications, instead wavelets have been developed to summarize the variation in frequency composition
through time.

To do wavelet analysis in R you will need to install the package Rwave.

The following demonstrates a somewhat contrived example that illustrates the power of wavelet analysis.

> t = seq(0,1,len=512)

> w = 2 * sin(2*pi*16*t)*exp(-(t-.25)^2/.001)

> w= w + sin(2*pi*64*t)*exp(-(t-.75)^2/.001)

> w = ts(w,deltat=1/512)

> plot(t,w,'l')

12

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

w

Now for the wavelet transform of this time series (the functions in the file ”mk.cwt.R” help produce
prettier graphs and are courtesy of Christian Gunning):

> require(Rwave)

> require(lattice)

> source("mk.cwt.R")

> tmp<-mk.cwt(w,noctave = floor(log2(length(w)))-1,nvoice=10)

> print(plot.cwt(tmp,xlab="time (units of sampling interval)"))

13

time (units of sampling interval)

pe
rio

d

 4

 8

 16

 32

 64

128

256

512

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

The intensity of the colormap represents the variance of the time series that is associated with particular
frequencies (y-axis) through time (x-axis). As we can see, wavelet analysis is able to detect frequencies
that are localized in time, and therefore if the dominant period of a time series changes over time,
wavelets can be used to detect this transition.

14

