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1 Introduction

In this section we bring together the two tools introduced so far in this course: statistical estimation
and dynamical systems. As a demonstration, we fit the closed deterministic SIR model to data on an
outbreak of flu in a British boarding school. The data are available in the workspace flu.RData.

> load('flu.RData')

> plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)')

1



●
●

●

●

●

●

●

●

●

●

●

●

●
●

2 4 6 8 10 12 14

0
50

10
0

15
0

20
0

25
0

30
0

Day

I(
t)

2 Fitting continuous-time models to data: trajectory matching
with least squares

To get started, we focus on one of the simplest approaches there is to estimation. If we assume that the
only source of variability in the data is measurement error, and that this is symmetrically distributed
with a constant variance. If these conditions apply, then least squares is a statistically appropriate basis
for estimation. Moreover, as mentioned earlier, in the case that errors are normally distributed with
Gaussian distribution then least squares estimates are also the maximum likelihood estismates. Finally,
if we’re doing some exploratory work, least squares is often a simple approach to get things started, to
find some initial values, to discover deviations (by inspeciting residuals), etc.

The first thing we do is write a specialized function for simulating the SIR model in a case where the
removal rate is hard-wired in and with no demography. This is only very slightly different (and simpler)
than the models we were simulating earlier.

> closed.sir.model <- function (t, x, params) {

+ S <- x[1]

+ I <- x[2]

+ R <- x[3]
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+ beta <- params[1]

+ gamma <- params[2]

+ dS <- -beta*S*I

+ dI <- beta*S*I-gamma*I

+ dR <- gamma*I

+ list(c(dS,dI,dR))

+ }

Now we set up a function that will calculate the sum of the squared differences between the observations
and the model at any parameterization (more commonly known as “sum of squared errors”).

> require(deSolve)

> sse.sir <- function(params0,data){

+ t <- data[,1]

+ cases <- data[,2]

+ beta <- params0[1]

+ gamma <- params0[2]

+ S0 <- 762

+ I0 <- 1

+ R0 <- 0

+ out <- as.data.frame(ode(y=c(S=S0,I=I0,R=R0),times=t,closed.sir.model,parms=c(beta,gamma),hmax=1/120))

+ sse<-sum((out$I-cases)^2)

+ }

Now, let’s see how this function works. To start, we’ll fix γ. Individual infected with flu typically are
infectious for roughly one day prior to presenting with symptoms. In this case, we may suspect that
sick individuals were immediately removed from interacting with susceptible individuals as soon as they
were detected. Therefore, for current purposes we assume γ = g̃ = 1. In what follows, we first create
a dataframe to contain different parameter combinations and our sum of squared errors. We use the
function seq to generate a sequence of β values uniformly on a log scale and the function rep to assign
to each value of β the given value of γ. Then we use a for loop to evaluate our function sse.sir at each
combination of parameters. Finally, we plot the resulting values as a function of β.

> sse.example<-data.frame(beta=1*10^-seq(2,3,length.out=20), gamma=rep(1,20),sse=NA)

> for(i in 1:dim(sse.example)[1]){

+ sse.example$sse[i]<-sse.sir(as.numeric(sse.example[i,]),data=flu)

+ }

> plot(sse~beta,data=sse.example,type='b',log='xy')
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So far, so good. We can look at our plot and see that there is indeed a local minimum in the sum of
squared errors. Specifically, it looks as if the best fit value of β (the value that minimizes the sum of

squared errors) is around β̂ = 0.003. Just two problems remain: (1) The location of this minimum isn’t
exactly fixed. It looks like it falls somewhere between the 9th and 11th points, but where exactly is
uncertain. (2) The minimum of this function is only correct if our assumption γ̃ = 1.0 is valid, but this
was only an approximation.

To solve these problems we need to (1) fit both β and γ simultaneously, in which case the sum of squared
errors is a surface in two dimenions and we are looking for the minimum of this surface, and (2) examine
the shape of this minimum over smaller and smaller ranges until we’ve zeroed in on a pair of values
(β̂, γ̂) that are known with sufficient precision for whatever purposes we might hope to use them for.

This process is referred to as optimization and, fortunately for us, there are many robust algorithms
available for this purpose. One of them, the Nelder-Mead algorithm, is the default in the function optim.
We can use it to return the best fit values for β and γ as follows.

> params0<-c(0.001,0.5)

> fit0 <- optim(params0,sse.sir,data=flu); fit0$par

[1] 0.002567216 0.473148936

The first set of parameters returned by optim are not always the best. Therefore, we’ll run it one more
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time just to be sure, starting at the values returned by the first optimization.

> fit1 <- optim(fit0$par,sse.sir,data=flu); fit1$par

[1] 0.002567234 0.473118744

Finally, we plot these fits against the data.

> plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)',ylim=c(0,350),col='red')

> t <- seq(1,max(flu$day),by=0.05)

> mod.pred<-as.data.frame(lsoda(c(S=762,I=1,R=0),times=t,

+ closed.sir.model,fit1$par,hmax=1/120))

> lines(mod.pred$I~t)
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Exercise 1. The file plague.RData gives weekly mortality for the plague outbreak in Mumbai, Decem-
ber 1905 to July 1906. We assume that human mortality X is proportional to the number of infectious
rats X(t) = µI(t) and that the epidemic in the rat population can be represented by a simple closed
SIR model where S, I, and R are proportions of the rate population. Use least squares to estimate the
parameters of this model, assuming that one in a million rats are infected at time t = 0. Compare model
output with data using a plot.
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Exercise 2. Repeat the fit you performed in the previous exercise, treating I(0) as an unknown param-
eter that must be estimated.

Hint. All parameters are necessarily positive. It sometimes helps the optimization algorithm if negative
parameter values are impossible. Thus, it might be useful to re-parameterize the model with a new
parameter b = log(β), i.e., dS/dt = −ebSI, and so on.

[1] 2.350065 2.313281 -12.917853 14.083983

[1] 2.357647 2.320961 -12.956612 14.091217

3 Fitting continuous-time models to data: trajectory matching
with Maximum Likelihood

Now we have a very generic tool that you can use to fit just about any complicated dynamical model you
might invent. But, this morning Ben gave the hard sell for likelihood. Now we want to fit a dynamical
model using maximum likelihood (and not just the Gaussian case, where MLE and least sqaures are
equivalent). As before, we write a function for simulating the SIR model in a case where the removal
rate is “hard-wired” (i.e., not passed as a parameter) and with no demography.

> closed.sir.model <- function (t, x, params) {

+ S <- x[1]

+ I <- x[2]

+ R <- x[3]

+ beta <- params[1]

+ gamma <- params[2]

+ dS <- -beta*S*I

+ dI <- beta*S*I-gamma*I

+ dR <- gamma*I

+ list(c(dS,dI,dR))

+ }

Now we write a function to return the negative log-likelihood of the data, give some combination of
parameters. Recalling that β and γ must (by definition) be greater than one, we will think of β and γ as
simple transformations of two other parameters β = eb and γ = eg. The parameters b and g are defined
from negative infinity to positive infinity. This will help our numerical algorithms (e.g., mle2) to behave
better. Further, we will assume te observations to be Poisson distributed. This seems appropriate, since
we have discrete observations of cases and it is natural to expect the variance to scale with the number
infected.

> sir.nll <- function(b){

+ times <- seq(0,14)

+ parms <- c(exp(b), 0.75)

+ S0 <- 762

+ I0 <- 1

+ R0 <- 0

+ out <- as.data.frame(ode(y=c(S=S0,I=I0,R=R0),times=times,closed.sir.model,parms=parms,hmax=1/120))

+ nll<--sum(dpois(x=flu$flu, lambda=tail(out$I,14), log=TRUE))
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+ }

>

Using mle2 we fit the model (according to the likelihood criterion).

> require(bbmle)

> params0 <-list(b=-6)

> fit0 <- mle2(sir.nll, start=params0); fit0

Call:

mle2(minuslogl = sir.nll, start = params0)

Coefficients:

b

-6.03314

Log-likelihood: -271.05

> fit <- mle2(sir.nll, start=as.list(coef(fit0))); fit

Call:

mle2(minuslogl = sir.nll, start = as.list(coef(fit0)))

Coefficients:

b

-6.033135

Log-likelihood: -271.05

This makes available all the tools introduced this morning, such as the likelihood profile on b,

> p<-profile(fit)

and plot.

> plot(p, absVal=TRUE)
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How does this model look when plotted against the data?

> plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)',ylim=c(0,350),col='red')

> t <- seq(1,max(flu$day),by=0.05)

> mod.pred<-as.data.frame(ode(c(S=762,I=1,R=0),times=t, closed.sir.model,c(exp(coef(fit)), 0.75),hmax=1/120))

> lines(mod.pred$I~t)
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Hmmm... Not so good.

Recalling that we obtained our parameter b (and therefore the transmission rate β) assuming a particular
value of γ, we wonder now how good this assumption was. Indeed, it is not hard to extend our approach
to estimate b and g simultaneously, as follows.

> closed.sir.model <- function (t, x, params) {

+ S <- x[1]

+ I <- x[2]

+ R <- x[3]

+ beta <- params[1]

+ gamma <- params[2] #now gamma is a parameter

+ dS <- -beta*S*I

+ dI <- beta*S*I-gamma*I

+ dR <- gamma*I

+ list(c(dS,dI,dR))

+ }

> sir.nll <- function(b, g){ #read in b and g

+ times <- seq(0,14)

+ parms <- c(exp(b),exp(g)) #anti-log to get beta and gamma

+ S0 <- 762

+ I0 <- 1
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+ R0 <- 0

+ out <- as.data.frame(ode(y=c(S=S0,I=I0,R=R0),times=times,closed.sir.model,parms=parms,hmax=1/120))

+ nll<--sum(dpois(x=flu$flu, lambda=tail(out$I,14), log=TRUE))

+ }

>

As before, we pick some initial values and fit.

> params0 <-list(b=-6, g=-0.7)

> fit0 <- mle2(sir.nll, start=params0); fit0

Call:

mle2(minuslogl = sir.nll, start = params0)

Coefficients:

b g

-6.1140864 -0.7404035

Log-likelihood: -76.57

> fit <- mle2(sir.nll, start=as.list(coef(fit0))); fit

Call:

mle2(minuslogl = sir.nll, start = as.list(coef(fit0)))

Coefficients:

b g

-6.1140809 -0.7404055

Log-likelihood: -76.57

>

+

As before, we ask for likelihood profiles.

> p<-profile(fit)

> plot(p, absVal=TRUE)
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Now that we have two parameters, it’s also sensible to look at the contour plot.

> require(emdbook)

> cc <- curve3d(sir.nll, xlim=c(-6.17,-6.07),ylim=c(-0.85,-0.65),

+ sys3d="image",ann=FALSE, useRaster=TRUE)

> mtext(side=1,line=2.5,"log(beta)")

> mtext(side=2,line=3.5,"log(gamma)",las=0)

> contour(cc$x,cc$y,cc$z,add=TRUE)

> points(coef(fit)[1],coef(fit)[2],pch=16)

11



−6.16 −6.14 −6.12 −6.10 −6.08

−
0.

85
−

0.
80

−
0.

75
−

0.
70

−
0.

65

log(beta)

lo
g(

ga
m

m
a)

 80 

 85 

 90  90 

 90 

 9
5 

 95 

 1
00

 

 1
00

 

 1
05

 

 1
10

 

●

Finally, we plot these fits against the data.

> plot(flu~day,data=flu, type='b', xlab='Day', ylab='I(t)',ylim=c(0,350),col='red')

> t <- seq(0,max(flu$day),by=0.05)

> mod.pred<-as.data.frame(ode(c(S=762,I=1,R=0),times=t,

+ closed.sir.model,exp(coef(fit)),hmax=1/120))

> lines(mod.pred$I~t)

>
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Much better!

*Exercise 3. Propose a model for the plague data fit earlier with least squares and fit instead using
likelihood.
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