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1. BEYOND HOMOGENEOUS POPULATIONS: AGE STRUCTURE

FiGUrE 1. SIR dynamics in an age-structured population.

Today’s first lecture showed how force of infection can vary with age. What sort of mechanisms might
give rise to these effects? Here we’ll see to what extent we can infer these mechanisms on the basis of age-
specific incidence and seroprevalence data. We’ll start by introducing age into the simplest mechanistic
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model we can think of, which has separate classes for juveniles and adults:
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The As denote the age-specific force of infections:
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In this model, each population can infect each other but the infection moves through the populations
separately. Let’s simulate such a model. To make things concrete, we’ll assume that the transmission
rates  are greater within groups than between them.

bl <- 0.005
b2 <- 0.005
gamma <- 10

ja.model <- function (t, x, ...) {
s <- x[c("Sj","Sa")]
i <= x[c("Ij","Ta"m)]
r <- x[c(“Rj","Ra“)]
n <- s+i+r
lambda.j <- (b1+b2)*i[1]+b1%*i[2]
lambda.a <- bi1*i[1]+(b1+b2)*i[2]

list(
c(
-lambda. j*s[1],
-lambda.a*s[2],
lambda. j*s[1]-gamma*i[1],
lambda.a*s[2] -gamma*i[2],
gamma*i[1],
gammax*i[2]
)
)
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require(deSolve)
## initial conditions
yinit <- c(Sj=2000,8a=1000,1j=0,Ia=1,Rj=0,Ra=0)
sol <- ode(
y=yinit,
times=seq(0,2,by=0.01),
func=ja.model

)

plot(sol)
dim(sol)
head(sol)
plot(sol,log='y")

time <- soll[,1] # time

y <- soll[,-1] # all other variables
n <- apply(y,1,sum) # population size
prop <- y/n # fractions

subsampled.prop <- propl[seq(1,length(time),by=10),]
subsampled.time <- time[seq(1,length(time),by=10)]
barplot (
t (subsampled. prop),
names.arg=subsampled.time,
xlab="'time',main='Population structure',
space=0,
col=c(
rgb(0.5,1,0.5),
rgh(0,1,0),
rgb(1,0.5,0.5),
rgb(1,0,0),
rgb(0.5,0.5,1),
rgb(0,0,1)
s
legend = colnames (prop),
args.legend=1ist (bg="white")
)
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FI1GURE 2. The population structure changes over the course of the epidemic.

The results of the above are plotted in Fig. 2. However, we haven’t yet modeled the aging process. We
can do this very simply using the same ingredients that go into the basic SIR model. In that model,
the waiting times in the S and I classes are exponential. Let’s assume the same thing about the aging
process. We'll also add in births.



KING AND WEARING

dSy

— =-)\;S5 B —aS
i JOJ + aoyg
ds

d—t’“:—AAsA —pSa+aS;y
dl

TJZ )\JSJ—’YIJ —OéIJ
il 3)
7 AaSa—v1a —puls+aly
dR;

I +v1 a Ry
dR

TtAz +9Ia —pRa+aR;

Now, let’s simulate this model, under the same assumptions about transmission rates as above.

bl <- 0.005
b2 <- 0.005
gamma <- 10
births <- 100
da <- ¢(20,60)

ja.demog.model <- function (t, x,
s <= x[c("Sj","Sa")]
i <= x[c("Ij","Ia")]
r <- x[c("Rj","Ra")]
n <- s+i+r
lambda.j <- (b1+b2)*i[1]+b1*i[2]
lambda.a <- b1*i[1]+(b1+b2)*i[2]
alpha <- 1/da

SO

H R R R HREHR

alpha = 1/da

susceptibles

infecteds
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total pop

juv. force of infection
adult. force of infection

+alpha[1]#s[1]-alpha[2]*s[2],

list(
c(
-lambda. j*s[1] -alpha[1]#*s[1]+births,
-lambda.a*s[2]
lambda. j*s[1]-gamma*i[1]-alpha[1]*i[1],
lambda.a*s[2] -gammax*i [2]+alpha[1]*i[1]-alpha[2]*i[2],
gamma*i[1]-alpha[1]*r[1],
gammaxi[2]+alphal[1]#*r[1]-alphal[2]*r[2]
)
)

}

Note that in this function, ; =alphal[2], i.e., death is just another age class.

require (deSolve)
## initial conditions

yinit <- ¢(Sj=2000,S5a=1000,Ij=0,Ia=1,Rj=0,Ra=5000)

sol <- ode(
y=yinit,

times=seq(0,200,by=0.1),

func=ja.demog.model

)
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plot(sol)
dim(sol)
head(sol)
plot(sol,log='y")

equil <- drop(tail(sol,1))[-1]

n <- equil[c("Sj","Sa")]+equil[c("Ij","Ia")]+equil[c("Rj","Ra")]
seroprev <- equil[c("Rj","Ra")]/n

names (seroprev) <- c("J","A")

barplot (height=seroprev,width=da,ylab="seroprevalence")

To compute Ry, we need to know the stable age distribution of the population, which we can find by
solving for the disease-free equilibrium: S% = B/a and S% = B/pu.

Now we have the stable age distribution, we can calculate Ry by constructing the next generation matrix.
Intuitively, this is a matrix that specifies how many new age-specific infections are generated by a typical
infected individual of each age class (in a fully susceptible population). For example, let’s consider an
infected adult and ask how many new juvenile infections it generates: this is the product of the number
of susceptible juveniles (from the stable age distribution), the per capita transmission rate from adults
to juveniles and the average duration of infection, i.e. S% x 854 X 1/(7+ p). This forms one element of
our next generation matrix. The other elements look very similar, except there are extra terms when we
consider an infected juvenile because there is a (very small) chance they may age during the infectious
period and therefore cause new infections as an adult:

S3Big + S3Bsa  SjBya
NGM = (S(;Ha) () () (ytw) )

aBas o  SiBasa  ShBaa (4)
(o) T (v+mr) () (v+n)
Ry can then be computed as the dominant eigenvalue (i.e., the one with the largest real part) of this

matrix. In R, we do

alpha <- 1/da[1]

mu <- 1/da[2]

n <- births/c(alpha,mu)

beta <- matrix(c(bl+b2,bl,bl1,bl1+b2),nrow=2,ncol=2)
ngm <- matrix(

c(
n[1]*betal1,1]/(gamma+alpha)+alpha/(gamma+mu)*n[1]*betal1,2]/(gamma+mu),
n[2]*betal[2,1]/(gamma+alpha)+alpha/(gamma+mu)*n[2]*beta[2,2]/(gamma+mu) ,
n[1]*betal1,2]/(gamma+mu),
n[2]*betal2,2]/(gamma+mu)

s

nrow=2,

ncol=2

)

eigen (ngm)
eigen (ngm,only.values=TRUE)
max (Re (eigen(ngm,only.values=T)$values))
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2. GETTING MORE REALISTIC: NOBODY’S YOUTH IS EXPONENTIAL

In the model above, the aging process follows an exponential distribution, which means that whether an
individual is 1 year old or 10 years old, the chance of them becoming an adult is the same! To improve
on this, we can assume that the time a juvenile must wait before becoming an adult follows a gamma
distribution. This is equivalent to saying that the waiting time is a sum of some number of exponential
distributions. This suggests that we can achieve such a distribution by adding age classes to the model,
so that becoming an adult means passing through some number of stages. We’ll use 30 age classes, and
since they don’t have to be of equal duration, we’ll assume that they’re not. Specifically, we’ll have 20
1-yr age classes to take us up to adulthood and break adults into 10 age classes of 5 yr duration each.
The last one will take us up through age 80.

Now, when we had just two age classes, we could write out each of the equations easily enough, but now
that we’re going to have 30, we’ll need to be more systematic. In particular, we’ll need to think of 3 as
a matrix of transmission rates. Let’s see how to define such a matrix in R. So that we don’t change too
many things all at once, let’s keep the same contact structure as in the juvenile-adult model.

ages <- c(seq(1,20,by=1),seq(25,65,by=5),80) # upper end of age classes
da <- diff(c(0,ages)) # widths of age classes
beta <- matrix(nrow=30,ncol=30)

beta[1:20,1:20] <- bil+b2

beta[21:30,21:30] <- bl+b2

beta[1:20,21:30] <- bl

beta[21:30,1:20] <- bl

dim(beta)

filled.contour(beta,plot.title=title(main="WAIFW matrix"))

Let’s use the techniques we learned from John to simulate the re-introduction of a pathogen into a
population of hosts. We’ll assume that, at the time of introduction, all children are susceptible, as are
adults over 45, but that individuals aged 20-45 have seen the pathogen before and are immune. The
vector yinit expresses these initial conditions.

yinit <- c(
S=c(rep(100,20),rep(0,5),rep(200,5)),
I=c(rep(0,25),1,rep(0,4)),
R=c(rep(0,20),rep(1000,5) ,rep(0,5))

)

The codes that follow will be a bit easier to follow if we introduce some indexes that will allow us to
pick out certain bits of the yinit vector.

sindex <- 1:30
iindex <- 31:60
rindex <- 61:90
juvies <- 1:20
adults <- 21:30

Now, to capture the aging process, it’s convenient to define another matrix to hold the rates of movement
between age classes.

aging <- diag(-1/da)
aging[row(aging)-col (aging)==1] <- 1/head(da,-1)

Have a look at the aging matrix, for example by doing:
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aging[1:5,1:5]
aging[1:5,6:10]
aging[25:30,25:30]
filled.contour(aging)

What can you say about its structure?

Now we can put the pieces together to write a simulator for the age-structured SIR dynamics.

ja.multistage.model <- function (t, x, ...) {
s <- x[sindex] # susceptibles
i <- x[iindex] # infecteds
r <- x[rindex] # recovereds
lambda <- betaj*ji # force of infection

dsdt <- -lambda*s+aging*}s
didt <- lambda*s+aging/*/,i-gamma*i

drdt <- aging*jir+gamma*i
dsdt[1] <- dsdt[1]+births
list(
c(
dsdt,
didt,
drdt
)
)

}

We can plug this into ode just as we did the simpler models to simulate an epidemic. We’ll then plot
the epidemic curve.

sol <- ode(
y=yinit,
times=seq(0,100,by=0.1),
func=ja.multistage.model
)
time <- soll[,1]
infects <- sol[,1+iindex]
plot(time,apply(infects,1,sum),type='1")
lines(time,apply(infects/[, juvies],1,sum),col="'red')
lines(time,apply(infects[,adults],1,sum),col="'blue')

Let’s mimic a situation where we have cross-sectional seroprevalence data. In using such data, we’d typ-
ically assume that the system was at equilibrium. What does the equilibrium age-specific seroprevalence
look like in this example?

equil <- drop(tail(sol,1))[-1]

n <- equil[sindex]+equil[iindex]+equil [rindex]
seroprev <- equil[rindex]/n

names (seroprev) <- ages

barplot (height=seroprev,width=da)
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Let’s also compute Ry. To do so, we’ll need the stable age distribution. We can get that by simulating
an infection-free population:

yinit.sonly <- c(
S=c(rep(250,30)),
I=c(rep(0,30)),
R=c(rep(0,30))
)
sol <- ode(
y=yinit.sonly,
times=seq(0,300,by=1),
func=ja.multistage.model
)
time <- soll[,1]
pop <- apply(sol[,-1],1,sum)
plot (time,pop,type='1")

Alternatively, we can get the stable age distribution by finding the population structure that balances
the birth, aging, and death processes. At equilibrium, we have the matrix equation

— Q] 0 0 s 0 ny B 0
o) —Qo 0 cee 0 N9 0 0
0 (65 —Q3 s 0 . ns + 0 — 0
0 e Qg9 —Qg3p n3g 0 0

To solve this equation in R, we can do

## get stable age distribution
n <- solve(aging,-c(births,rep(0,29)))

The following lines then compute Ry. This calculation comes from a recipe described in detail by
Diekmann and Heesterbeek (2000) and Hurford et al. (2010).

F <- diag(n)*/betataging-diag(diag(aging))

V <- diag(gamma-diag(aging))

max (Re (eigen(solve(V,F),only.values=T)$values))
Exercise 1. Modify the structure of the transmission matrix to reflect reasonable assumptions about
the mixing of different age-groups in human populations. Use image or filled.contour to plot the
matrix. Compute Ry for your assumptions. Simulate and plot the age-structured SIR dynamics under
your assumptions and determine the equilibrium prevalence and seroprevalence.



AGE STRUCTURED MODELS 11
3. WHAT DO REAL CONTACT NETWORKS LOOK LIKE?

The POLYMOD study (Mossong et al., 2008) was a journal-based look into the contact network in
contemporary European society. Let’s have a look what these data tell us about the contact structure.

moss <- read.csv(
url ("http://www.math.mcmaster.ca/ bolker/eeid/data/mossong.csv"),
as.is=TRUE
)

age.categories <- moss$contactor[1:30]

moss$contactor <- ordered(moss$contactor,levels=age.categories)

moss$contactee <- ordered(moss$contactee,levels=age.categories)

Since contacts are symmetric, we’ll need to estimate the symmetric contact matrix.

x1 <- with(
moss,
tapply(contact.rate,list(contactor,contactee) ,unique)
)

xsym <- (x1+t(x1))/2

filled.contour (ages,ages,logl0(xsym))
filled.contour(
ages,ages,log10(xsym),
plot.title=title(
main=quote (log[10] (contact rate)),
xlab="age",ylab="age")
)
barplot (height=apply (x1,1,sum))
barplot (height=apply (x1,2,sum))

While this matrix tells us how many contacts are made per year by an individual of each age, it doesn’t
tell us anything about the probability that a contact results in communication of infection. Let’s assume
that each contact has a constant probability ¢ of resulting in a transmission event.

q <- 3e-5
beta <- g*xsym
filled.contour (ages,ages,logl0(beta))

Now let’s simulate the introduction of such a pathogen into a population characterized by this contact
structure.

sol <- ode(
y=yinit,
times=seq(0,200,by=0.5),
func=ja.multistage.model
)
time <- sol[,1]
infects <- sol[,1+iindex]
plot(time,apply(infects,1,sum),type='1")
lines(time,apply(infects/[, juvies],1,sum),col="red")
lines(time,apply(infects[,adults],1,sum),col="blue')
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As before, we can also look at the equilibrium seroprevalence

equil <- drop(tail(sol,1))[-1]

n <- equil[sindex]+equil[iindex]+equil[rindex]
seroprev <- equil[rindex]/n

names (seroprev) <- ages

barplot (height=seroprev,width=da)

and compute the Ry for this infection.

n <- solve(aging,-c(births,rep(0,29)))

F <- diag(n)/*J/betataging-diag(diag(aging))

V <- diag(gamma-diag(aging))

max (Re (eigen(solve(V,F),only.values=T)$values))
Exercise 2. Do

sero <- read.csv(url("http://www.math.mcmaster.ca/ bolker/eeid/data/seroprev.csv"))

to get some simulated age-specific seroprevalence data. Estimate the force of infection for each of these
series using the catalytic model. Discuss your findings. What can you conclude about the contact
structure in the populations from which these data are generated?
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