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1 The SIR Model
The classic model for microparasite dynamics is the flow of hosts between
Susceptible, Infectious, and Recovered classes. This leads to the following stan-
dard formulation of the SIR model:

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI

(1)

Here, 1/γ is the average infectious period (we’ll gloss over the separation of
the generation time into incubation and infectious periods). The parameter β is
the transmission rate. The average infectious period (or technically, the serial
interval) is generally known or estimable from clinical data, and the goal is to
estimate the rate of transmission β.

2 Definition of R0

The transmission rate parameter β can be difficult to interpret as the absolute
value, and the impact on population dynamics, often depends on the size of host
population size and rates of host mixing. As such, the common summary value
used to describe epidemic dynamics is basic reproductive ratio, R0, which is the
expected number of secondary cases casued by a single infectious individual in
a wholly susceptible population. For the above model, R0 = S0β

γ .

3 Chain binomial model
The classic formulation of the SIR model is a continuous time, deterministic
model. In order use the likelihood framework we nee a stochastic version of
the model. Commonly, monitoring data on infectious diseases reports only the
number of cases and these reports are given as aggregates over some monitoring
interval (i.e. weekly or monthly). For these data the chain binomial epidemic
model is a useful stochastic epidemic model. We can write the chain binomial
model as
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P (It+1 = n|β, It, St) =
(
St
n

)
(1− exp(−βIt))n exp(−βIt)St−n

St+ 1 = St− It+ 1
(2)

Here the time step is taken as the average infectious period, 1/γ. Then the
number of cases, It+1, in time t + 1, is a binomial draw from the number of
susceptibles in the previous time step, St with probability (1−exp(−βI)) deter-
mined by the trasmission rate and number of infected hosts in the population
(NOTE: this probabity of infection comes from the formulation of the epidemic
as a continuous time birth-and-death process, and (exp(−βI)) gives the Poisson
probability of 0 new infections occuring in 1 time step). All infectious individ-
uals move into the recovered class with probability at the end of the infectious
period with probability 1. As such, the number of susceptibles at time t+ 1 is
simply the number at time t minus those that became infected.

4 Likelihood
To make a useful likelihood of this model we must consider that we usually do
not see the timeseries of susceptibles. Noting that the expression for St+1 is
recurssive we can see that S1 = S0 − I1

S1 = S0 − I1
S2 = S0 − (I1 + I2)

...

St+1 = S0 −
t∑
i=1

Ii

(3)

Let’s define Ŝt as S0 −
∑t−1
i=1 Ii. Then we can treat the unknown initial

number of susceptibles, S0 as a parameter and write the likelihood for the Is in
terms of β and S0. Thus, conditional the number previous time steps, we can
define It+1 as a binomial random variable:

nIt+1 ∼ Binomial(Ŝt, 1− exp(−βIt)). (4)

If we make the assumption that each epidemic generation depends only on the
state of the sytem in the previous timestep (“conditional independence”), then
we can write the joint likelihood for a time series of observed cases, I, as

L(I|β, S0) =
T∏
t=1

(
Ŝt
It

)
(1− exp(−βIt))It exp(−βIt)Ŝt−It (5)

(the
∏

symbol is like the summation symbol
∑

, but for multiplication instead).
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5 Example
Here are some data on an outbreak of measles from three different reporting
centers in Niamey, Niger from 2003. The data have been aggregated into 14-day
intervals (the generation time (= incubation + infectious period) for measles).

> niamey_cases1 <- c(4, 1, 12, 17, 37, 55, 51, 331, 323, 370, 145,

+ 224, 162, 26, 6)

> niamey_cases2 <- c(1, 2, 3, 6, 9, 24, 40, 55, 88, 158, 173, 155,

+ 141, 36, 20, 2)

> niamey_cases3 <- c(2, 7, 4, 14, 21, 49, 73, 151, 279, 245, 185,

+ 129, 49, 19, 2)

> ## basic plot

> plot(niamey_cases1,type="l",xlab="biweek",ylab="measles cases")

> ## add lines, one at a time, different line types

> lines(niamey_cases2, lty=2)

> lines(niamey_cases3, lty=3)

> legend("topleft",

+ legend=c("Center 1","Center 2","Center 3"),lty=1:3)
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Figure 1: Time series of cases at three reporting centers in Niamey, Niger.
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5.1 Basic Estimation
Following the standard recipe, the first step is to write a function for the likeli-
hood. Note that I’m using observations 2 onwards as the data as the probability
of observing any cases in the first time step, given that there were none previ-
ously is 0 in this model. Thus I am making an implicit assumption that the first
cases are coming from elsewhere.

> likelihood <- function(S0, beta, I) {

+ n <- length(I)

+ S <- floor(S0 - cumsum(I[-n]))

+ p <- 1 - exp(-beta * (I[-n]))

+ L <- dbinom(I[-1], S, p, log = TRUE)

+ Lik <- sum(-L, na.rm = TRUE)

+ }

We’ve used the floor() function for the vector of Ss (line 4 in the function),
because dbinom() expects integers.

We can visualize the likelihood surface by plotting the likelihood values over
grid of potential values for S0 and β. (For models with more parameters, cor-
responding to a higher-dimensional parameter space, this is unfortunately not
practical.) For S0 we’ll choose the range from sum(I) to 3*sum(I), and for β
we’ll choose values that would correspond to R0 equal to 1.5–5.

> tot1 <- sum(niamey_cases1)

> S0<-floor(seq(tot1+1,3*tot1,length=40))

> beta<-seq(1.5/S0[1],5/S0[1],length=40)

> lik<-matrix(NA,nrow=40,ncol=40)

> for(i in 1:40){

+ for(j in 1:40){

+ lik[i,j]<-likelihood(S0=S0[i],beta=beta[j],

+ I=niamey_cases1)

+ }

+ }

Or, alternatively:

> library(emdbook)

> lik <- apply2d(likelihood, S0, beta, I = niamey_cases1)

(If likelihood() were vectorized we could use outer() instead — this will
come up later.) Or:

> lik <- curve3d(likelihood(x, y, I = niamey_cases1), from = c(tot1 +

+ 1, 1.5/S0[1]), to = c(3 * tot1, 5/S0[1]), sys3d = "contour",

+ n = c(40, 40), levels = 200 * (2:11))$z

Now calculate the grid point that has the smallest negative log-likelihood:
save this value as a starting point for optimization.
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> symbols(rep(S0, 40), rep(beta, each = 40), circles = 50 * as.vector(lik)/max(lik),

+ xlab = ~S[0], ylab = ~beta, inches = FALSE)

> points(S0[mle.ind[1]], beta[mle.ind[2]], col = 2, pch = 16)

> contour(S0, beta, lik, levels = (200 * (2:11)), add = TRUE)
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Figure 2: Negative log Likelihood over a grid of parameter values. Black circles
give the values of the negative log likelihood, and the lines give contours. The
red point indicates the best parameter combination.

5



> mle.ind <- which(lik == min(lik), arr.ind = TRUE)

> init <- list(S0 = S0[mle.ind[1]], beta = beta[mle.ind[2]])

We can then mle2() (or optim()), to get MLEs.

> library(bbmle)

> mle.fit2 <- mle2(start = init, likelihood, method = "L-BFGS-B",

+ lower = c(tot1, 1e-06), upper = c(Inf, 0.1), data = list(I = niamey_cases1),

+ control = list(ndeps = c(1, 1e-05)))

I set lower and upper bounds for S0 and beta to stop the optimization
routines from getting into trouble later on (thus I had to use method="L-BFGS-
B"); similarly, ndeps controls the size of the step for numerical approximation of
the derivatives (it has to be bigger than the default of 0.001 for S0 and smaller
for beta). Unfortunately, this kind of tweaking is often necessary. (parscale
is another useful optimization control; it sets the overall parameter scale, and
sometimes works better than ndeps.)

While this gave me an answer, I actually ran into a problem later on, so I’m
going to cheat a little bit here and use a different set of starting conditions:

> newstart <- list(S0 = 2153.976, beta = 0.0009697629)

> mle.fit2 <- mle2(start = newstart, likelihood, method = "L-BFGS-B",

+ lower = c(tot1, 1e-06), upper = c(Inf, 0.1), data = list(I = niamey_cases1),

+ control = list(ndeps = c(1, 1e-05)))

This gives us estimates:

> coef(mle.fit2)

S0 beta
2.153976e+03 9.697650e-04

Now we can visualize the confidence regions for S0 and β. First we can add
the bivariate 95% confidence interval from the likelihood ratio test:

> contour(S0, beta, lik, levels = -logLik(mle.fit2) + qchisq(0.95,

+ 2)/2, col = "red", add = TRUE)

We can also add the confidence region based on the Fisher information ma-
trix. Recall that the Fisher information matrix is the variance-covariance ma-
trix for the estimates, which we get by inverting the matrix of second derivatives
(Hessian) estimated at the maximum likelihood estimate. The vcov() command
does this automatically.

> (covmat = vcov(mle.fit2))

S0 beta
S0 2.256644e+03 -2.129620e-03
beta -2.129620e-03 2.546555e-09
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The diagonal elements of this matrix are the (approximate) variances for S0

and β. Thus we can use either sqrt(diag(covmat)) or coef(summary(mle.fit2))
to get standard errors for the parameters1

The off-diagonal elements are the covariance between S0 and β. We can
translate this into a correlation using cov2cor().

> (cor.mat <- cov2cor(covmat))

S0 beta
S0 1.0000000 -0.8883703
beta -0.8883703 1.0000000

The correlation between the estimates of β and S0 is large (-0.888). In this
setting that means that the likelihood that there were many initial susceptible
hosts and relatively low transmission rate is similar to the likelihood that there
were few initial susceptibles and a relatively high transmission rate.

We can plot the confidence region based on the Fisher information matrix
using the ellipse() function from the ellipse package2

We could zoom in on this

> c2 = curve3d(likelihood(x, y, I = niamey_cases1), from = c(tot1 +

+ 1, 1.5/S0[1]), to = c(2500, 0.00125), sys3d = "contour",

+ n = c(40, 40))

> contour(c2$x, c2$y, c2$z, levels = -logLik(mle.fit2) + qchisq(0.95,

+ 2)/2, col = "red", add = TRUE)

> lines(ellipse(vcov(mle.fit2), centre = coef(mle.fit2)), col = 4)

6 Profile confidence limits
Now we want to calculate the likelihood profiles and confidence limits for β and
S0.

> p1 = profile(mle.fit2)

> confint(mle.fit2)

2.5 % 97.5 %
S0 2.074504e+03 2.269373e+03
beta 8.629068e-04 1.015379e-03

(it would be more efficient here to say confint(p2), which would use the
already-computed profile).

Compare with Fisher-information limits:

> confint(mle.fit2, method = "quad")

2.5 % 97.5 %
S0 2.060870e+03 2.247082e+03
beta 8.708585e-04 1.068671e-03

1The Z- and p-values that appear in the coef(summary(...)) output (which use the null
hypotheses β = 0 and S0 = 0) make very little sense in this particular case . . .

2Because the ellipse package was written by Canadians and Irish, the middle of the ellipse
is denoted by centre (!)
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> symbols(rep(S0, 40), rep(beta, each = 40), circles = 50 * as.vector(lik)/max(lik),

+ xlab = ~S[0], ylab = ~beta, inches = FALSE)

> points(S0[mle.ind[1]], beta[mle.ind[2]], col = 2, pch = 16)

> contour(S0, beta, lik, levels = (200 * (2:11)), add = TRUE)

> contour(S0, beta, lik, levels = -logLik(mle.fit2) + qchisq(0.95,

+ 2)/2, col = "red", add = TRUE)

> library(ellipse)

> lines(ellipse(vcov(mle.fit2), centre = coef(mle.fit2)), col = 4)
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Figure 3: Negative log Likelihood surface with confidence regions. Red is the
likelihood interval based on the χ2 approximation. Blue is the confidence ellipse
based on the Fisher information matrix.
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> plot(p1)
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Figure 4: Likelihood profiles. These are expressed in terms of the absolute
value of the square root of the deviance difference from the best fit (this makes
“well-behaved” profiles V-shaped and symmetric).
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7 Estimating R0

Now we can begin to approach the problem of estimatingR0. From the definition
above, R0 = S0β

γ , where γ is the recovery rate. Because of the way we set up
the model and the likelihood, we assume that all infected hosts recover at the
end of every two week period, so we can simplify the expression to R0 = S0β,
which is in terms only of our two estimated parameters. Thus the point estimate
for R0 is simply R̂0 = Ŝ0β̂. Getting an appropriate confidence interval on that
estimate, however, requires a bit more work.

> (R0.mle <- prod(coef(mle.fit2)))

[1] 2.088850

First we can look at the contours for R0 superimposed on the likelihood
surface for the parameters. Since R0 = S0β it is simple to get the value for all
the parameter combinations on the grid.

> R0.fun <- function(S0, beta) {

+ S0 * beta

+ }

> mmat <- outer(S0, beta, R0.fun)

The outer() command here is a quick way to generate matrices over the
parameter combinations in S0 and beta3

> likelihood_R0 <- function(S0, R0, I) {

+ n <- length(I)

+ beta <- R0/S0

+ S <- floor(S0 - cumsum(I[-n]))

+ p <- 1 - exp(-beta * (I[-n]))

+ L <- dbinom(I[-1], S, p, log = TRUE)

+ Lik <- sum(-L, na.rm = TRUE)

+ }

> R0start <- list(S0 = coef(mle.fit2)["S0"], R0 = coef(mle.fit2)["S0"]/coef(mle.fit2)["beta"])

> mle.fit3 = mle2(start = R0start, likelihood_R0, method = "L-BFGS-B",

+ lower = c(tot1, 0.5), upper = c(10 * tot1, 10), data = list(I = niamey_cases1),

+ control = list(ndeps = c(1, 0.001)))

> (c1 = confint(mle.fit3))

2.5 % 97.5 %
S0 2074.979964 2268.878996
R0 1.993813 2.189592

There are other ways to solve this problem, which are useful if you’re either
in more of a hurry or

� the delta method
3Since the default function that outer() uses is "*" (multiplication), we could just say

outer(S0,beta).
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> symbols(rep(S0, 40), rep(beta, each = 40), circles = 50 * as.vector(lik)/max(lik),

+ xlab = ~S[0], ylab = ~beta, inches = FALSE)

> contour(S0, beta, mmat, add = TRUE, col = "blue", labcex = 2)

> contour(S0, beta, mmat, add = TRUE, col = "blue", lty = 2, drawlabels = FALSE,

+ levels = seq(1.5, 12.5))

> lines(ellipse(vcov(mle.fit2), centre = coef(mle.fit2)), col = 5)
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Figure 5: R0 contours superimposed on the likelihood surface for S0 and β.
Cyan line is the Fisher information confidence ellipse — showing that R0 is
approximately in the range 2–2.5.
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> p3 = plot(profile(mle.fit3, which = "R0"))
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� resampling from the sampling distribution of the parameters, estimated
from the Fisher information matrix

� creating a likelihood function with a penalty term for the distance from a
“target”R0

8 R0 for other sites
Let’s do the same for the other two data sets and compare the estimates of R0.

I’m cheating a little bit (again), using curve3d to explore the parameter
space and find decent starting conditions. This will be harder with a more
complex model . . .

> curve3d(likelihood_R0(x, y, I = niamey_cases2), from = c(900,

+ 1), to = c(2000, 3), sys3d = "contour", n = c(40, 40), levels = 60:100)

> mle.fit.s2 = mle2(start = list(S0 = 1100, R0 = 2), likelihood_R0,

+ method = "L-BFGS-B", lower = c(tot1, 0.5), upper = c(10 *

+ tot1, 10), data = list(I = niamey_cases2), control = list(ndeps = c(1,

+ 0.001)))

> c2 = confint(mle.fit.s2)

> mle.fit.s3 = mle2(start = list(S0 = 1450, R0 = 2.2), likelihood_R0,

+ method = "L-BFGS-B", lower = c(tot1, 0.5), upper = c(10 *

+ tot1, 10), data = list(I = niamey_cases3), control = list(ndeps = c(1,

+ 0.001)))

> c3 = confint(mle.fit.s3)

� Likelihood ratio test???

� Simulated annealing for more reliable estimation ???

� Fit on log scales, ditto???

� parscale??
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> library(plotrix)

> R0vals = c(coef(mle.fit3)[2], coef(mle.fit.s2)[2], coef(mle.fit.s3)[2])

> cint = cbind(c1[2, ], c2[2, ], c3[2, ])

> suppressWarnings(plotCI(1:3, R0vals, li = cint[1, ], ui = cint[2,

+ ], axes = FALSE, ylab = ~R[0], xlab = "Site"))

> box()

> axis(side = 1, at = 1:3)

> axis(side = 2)
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Figure 6: Comparison of confidence intervals for reporting centers in Niamey.
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