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1 Introduction
You will need the bbmle, ggplot2, and coefplot2 packages installed, and op-
tionally glmmML, lme4, and glmmADMB. coefplot2 and glmmADMB need to be
installed via

install.packages("coefplot2",repos="http://r-forge.r-project.org")

install.packages("glmmADMB",repos="http://r-forge.r-project.org")

Why linear models? Stats 101: everything is normally distributed (and the
residuals have constant variance). If the response variable depends on a con-
tinuous (as opposed to categorical) predictor variable, then the relationship is
linear.

Linear models are:

� Fast and numerically stable (works for huge and/or wonky data sets)

� No need for starting values

� Easy to account for random effects (experimental blocks etc.)

� Lots of data (especially in economics, business, etc.) is reasonably normal

� Transformations can often fix problems with heteroscedasticity (non-constant
variance)/non-normality/non-linearity

� Assuming normality (equivalently least-squares solutions) is
usually OK asymptotically (large data sets)

Why not?

� More specific models are more efficient/powerful

� Would like a model that reflects the data better

� Some data (discrete, zero-rich) are resistant to transformation
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� Understanding effect sizes on transformed scales is hard

� Linear relationships often force out-of-bounds predictions (proportions
outside {0, 1}; negative counts)

� If you need arguments in favor of GLMs: O’Hara and Kotze (2010);
Warton and Hui (2011)

Generalized linear models (GLMs) allow (some) non-normal data (e.g. Pois-
son, binomial) and (some) nonlinear relationships (e.g. exponential, logistic
curves). Retain advantages of linear models (fast, stable, usually don’t need
starting values . . . )

Basic definition Need to specify

� distribution (family) (e.g. Poisson=count data, binomial=proportion [count!]
data)

� link function (e.g. log, logit): linearizing transformation (don’t actually
transform data)

� response variable and continuous and categorical predictors (R formulas:
r~x, r~x+y (additive model), r~x*y (interaction))

Model is linear on scale of link function.
Almost all GLMs are logistic regressions.
These data were scraped from Google Scholar hits on the relevant search

terms.
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Google Scholar hits

� logistic regression: logit link (logistic inverse-link)

� Poisson regression: log link (exponential inverse-link)
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2 Logistic regression
2.1 Preliminaries
Binary (or maybe binomial) data. Logit link (others are possible but usually
impossible to distinguish based on data).

Read in the data and look at it:

dat <- read.table("gophertortoise.txt",header=TRUE)

dat2 <- droplevels(subset(dat,Sex %in% c("M","F")))

(gplot1 <- ggplot(dat2,aes(size,status,colour=Sex))+

stat_sum(alpha=0.5))
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Visualizing binary data is tricky — here’s one way:

dat2$sizecat <- cut(dat2$size,breaks=c(seq(200,280,by=20),320))

proptab <- ddply(dat2,c("sizecat","Sex"),

function(x) {

data.frame(n=nrow(x),

size=mean(x$size),

status=mean(x$status))

})

gplot1 + geom_point(data=proptab,aes(size=n),shape=2)

2.2 Picture and basic fit
We can quickly get ggplot to add a GLM fit to the gplot1 graph by adding
geom_smooth(method="glm",family=binomial) (try it!). However, this is only
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convenient for looking at pictures (not for testing hypotheses, finding good pre-
dictive models, etc.).

Try a basic glm fit:

(mod1 <- glm(status~size*Sex,family=binomial,data=dat2))

##

## Call: glm(formula = status ~ size * Sex, family = binomial, data = dat2)

##

## Coefficients:

## (Intercept) size SexM size:SexM

## -10.7490 0.0482 6.6021 -0.0229

##

## Degrees of Freedom: 197 Total (i.e. Null); 194 Residual

## Null Deviance: 158

## Residual Deviance: 142 AIC: 150

2.3 Single-model methods
What does R know how to do with mod1? Try this:

class(mod1)

methods(class="glm")

coef(mod1) ## coefficients

summary(mod1) ## various summary info

coef(summary(mod1)) ## just the coefficient table with p-values

etc.

confint(mod1) ## profile confidence intervals

fitted(mod1) ## fitted values

predict(mod1) ## predictions ON LINEAR PREDICTOR scale

## ... on response scale (probabilities)

predict(mod1,type="response")

pframe <- data.frame(size=250,Sex="M")

predict(mod1,newdata=pframe) ## predictions for new data

## simulated data from the fitted model

simulate(mod1)

residuals(mod1) ## residuals(deviance)

plot(mod1) ## these are terrible!

AIC(mod1)

deviance(mod1) ## -2 log L

logLik(mod1)

## SEQUENTIAL analysis of deviance

anova(mod1,test="Chisq")

drop1(mod1,test="Chisq") ## drop single terms and test

## marginal tests (danger Will Robinson!)

drop1(mod1,test="Chisq",scope=.~.)

Notes and pitfalls:
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� the p-values given by summary etc. are approximate (Wald tests), those
from drop1/anova (likelihood ratio tests) are better (although still ap-
proximate)

� predict gives predictions on the linear predictor (logit) scale by default
(not probabilities): use type="response" for probabilities

� diagnosing lack of fit etc. is hard for binary data. One possibility is to
compare the GLM fit with a non-parametric fit, as follows:

library(scales)

gplot1+geom_smooth(method="glm",family="binomial")+

geom_smooth(linetype=2,fill="purple",alpha=0.1)+

scale_y_continuous(limits=c(-0.05,1.05),oob=squish)
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(The standard goodness-of-fit test for logistic regression, Hosmer-Lemeshow,
has some problems (Hosmer et al., 1997); an improved version is available
by using lrm in the rms package and using resid(f, ’gof’))

� anova actually gives an analysis of deviance, and it is sequential (“type
I” in SAS language)

� drop1(glm_fit,scope=.~.) does a marginal (“type III”) analysis, which
has its own issues when there are interactions in the model (you need to
be very careful interpreting the meaning of the main effects)
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2.4 Interpreting parameters
What do the parameters mean???

People like me are always complaining that researchers should consider ef-
fect size, the biological significance of the parameters, not just the statistical
significance. In order to do this, you need to understand what the parameters
mean.

There are two hard parts of interpreting GLM parameters: (1) contrasts
(how R parameterizes the differences between groups) (this issue is general to all
modeling in R) and (2) the log-odds scale (this is specific to logistic regression).

coef(mod1)

## (Intercept) size SexM size:SexM

## -10.74901 0.04820 6.60211 -0.02289

intercept (≈ −10): the logit probability (log-odds) of seropositivity for a fe-
male with size= 0 (i.e., log-odds in the baseline condition)

size (≈ 0.05): increase in log-odds per unit (mm) of size, for females (baseline)

SexM (≈ 6.6): difference between females and males at size 0

size:sexM (≈ −0.02): difference between male and female slope, on the log-
odds scale

## probability of infection of a female, size=0

plogis(-10.7)

## [1] 2.254e-05

## probability of infection of a female, size=100

plogis(-10.7+0.048*100)

## [1] 0.002732

## probability of infection of a male, size=0

plogis(-10.7+6.6)

## [1] 0.0163

## probability of infection of a male, size=100

plogis(-10.7+6.6+(0.048-0.023)*100)

## [1] 0.168

dat2$csize <- dat2$size-250

mod1c <- update(mod1,.~csize*Sex)

Exercise: Confirm for yourself that the Intercept and SexM terms have
changed, but not the slopes.

Sometimes it’s more useful to scale the continuous predictors as well; one
easy procedure is to center (subtract the mean) and divide by the standard
deviation of the predictor, which puts all of the predictors on a similar scale
(Schielzeth, 2010). (The scale function in R also does this, but with some side
effects we don’t want.)
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dat2$scsize <- with(dat2,(size-mean(size))/sd(size))

mod1sc <- update(mod1,.~scsize*Sex)

Which of the following plots is more useful?

library(coefplot2)

par(mfrow=c(1,2))

coefplot2(mod1)

coefplot2(mod1sc)
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Exercise: . Change the baseline level from females to males (the default is
alphabetical) by using

dat2$Sex <- relevel(dat2$Sex,"M")

Refit either the scaled or the unscaled model and convince yourself that you
understand how the parameters have changed (and that the overall meaning of
the model has not changed).

2.5 Comparing models
Most GLM inference etc. is based on comparing multiple models rather than a
single model (the likelihood ratio test. Allow for the interaction of age × sex:

mod2sc <- update(mod1sc,.~.-scsize:Sex)

mod3sc <- update(mod1sc,.~scsize)

mod4sc <- update(mod1sc,.~Sex)

mod5sc <- update(mod1sc,.~1)

anova(mod1sc,mod2sc,mod3sc,mod5sc,test="Chisq")

## Analysis of Deviance Table

##

## Model 1: status ~ scsize + Sex + scsize:Sex

## Model 2: status ~ scsize + Sex

## Model 3: status ~ scsize

## Model 4: status ~ 1

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 194 142

## 2 195 143 -1 -0.81 0.3686
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## 3 196 148 -1 -4.77 0.0290 *

## 4 197 158 -1 -10.11 0.0015 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(the p-values are the tests of each model against the next, i.e. significance
tests of the parameters that are being dropped)

Or:

library(bbmle)

AICtab(mod1sc,mod2sc,mod3sc,mod4sc,weights=TRUE)

## dAIC df weight

## mod2sc 0.0 3 0.55374

## mod1sc 1.2 4 0.30517

## mod3sc 2.8 2 0.13885

## mod4sc 11.0 2 0.00224

Or:

coefplot2(list(mod1sc,mod2sc,mod3sc,mod4sc),

legend=TRUE,legend.x="topright",

col=c(1,2,4,5))

Regression estimates
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(I should probably have named these models more informatively!)
Model comparison:
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Exercise: : convince yourself that the overall fit of the model (based on
logLik) and the likelihood ratio test of the full model (comparing the full model
with the null/constant model) do not change when you change the parameteri-
zation (either by scaling size, or by changing the baseline level).

The logit/log-odds scale is initially hard to understand, but it has really
useful properties for estimating changes in risk. The hardest part is that the
effects of changes in a predictor on probability depending on the baseline risk.

If you need to, you can use the dredge function from the MuMIn package to
fit all subsets of a model . . .

Some rules of thumb:

� When the starting probability is very low, the logistic curve is approx-
imately exponential, so parameters approximately describe proportional
changes (e.g. parameter of 0.1 ≈ 10% (relative) increase in probability
per unit change)

� when the starting probability is intermediate (say 0.3-0.7), the absolute
change in probability per unit change is r/4 (→ parameter of 0.1 implies
0.025 increase in probability per unit change)

� when the starting probability is high the change in complementary risk
(probability of the event not happening) changes proportionally

2.6 Binomial regression
If you have N > 1 per category, you can either specify the results

� as (k,N−k) (e.g. cbind(num_dead,num_alive)~x+y+z); you would often
compute this on the fly, as cbind(num_dead,num_total-num_dead)~x+y+z).

� with the weights specification, e.g. prop~x+y+z,weights=num_total or
num_dead/num_tot~x+y+z,weights=num_total

Exercise: : aggregate the data by size class.

9

http://cran.r-project.org/web/packages/MuMIn


library(plyr)

sizetab <- ddply(dat2,c("size","Sex"),

function(x) c(tot=nrow(x),pos=sum(x$status)))

sizetab$prop <- sizetab$pos/sizetab$tot

use sizetab to run the analysis above as a binomial model. The parameters
should stay the same, and the differences in log-likelihood, deviance, and AIC
among models should be the same, but the baseline values of log-likelihood etc.
will differ.

3 Poisson/negative binomial regression
Gopher tortoise shell data.

load("gopherdat2.RData")

head(Gdat)

## Site year shells type Area density prev

## 2 BS 2004 0 Fresh 15.2 4.8 1.0

## 4 BS 2005 0 Fresh 15.2 4.8 1.0

## 6 BS 2006 0 Fresh 15.2 4.8 1.0

## 9 CB 2004 1 Fresh 16.0 2.8 4.3

## 11 CB 2005 0 Fresh 16.0 2.8 8.0

## 13 CB 2006 1 Fresh 16.0 2.8 17.6

ggplot(Gdat,aes(x=prev,y=shells/(Area*density),

colour=factor(year),group=Site))+

geom_text(aes(label=Site))+geom_line(colour="gray")
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Fit a Poisson model (log link), with an offset of area times density. An
offset adds a term to the linear predictor, without fitting the parameters: if
P=prevalence, a=area, d=density

log(λ) = β0 + β1P + log(ad)

log(λ)− log(ad) = β0 + β1P

log

(
λ

ad

)
= β0 + β1P

m_pois_prev <-

glm(shells~prev+offset(log(Area*density)),data=Gdat)

A Poisson model assumes variance=mean, which is usually wrong. There is
often overdispersion: we can test for it by looking at the sum of squared Pearson
residuals (

∑
(expectedi − obsi)

2/vari, where vari is the expected variance of
point i based on the model), which should be (approximately) ∼ χ2

n−p if the
data are really Poisson:

devsq <- sum(residuals(m_pois_prev,type="pearson")^2)

devsq/m_pois_prev$df.resid ## ratio should be approx. 1

## [1] 3.438

pchisq(devsq,df=m_pois_prev$df.resid,lower.tail=FALSE)

## [1] 2.032e-09

There are (at least) two ways to account for the overdispersion, by fitting a
quasi-likelihood model

library(MASS)

m_quasi_prev <- update(m_pois_prev,family="quasipoisson")

m_nb_prev <-

glm.nb(shells~prev+offset(log(Area*density)),data=Gdat)

Exercise: compare these three models (Poisson, quasi-Poisson, negative bi-
nomial) looking at coef(summary(fit)) and at coefplot2(list(model1,model2,model3),
xlim=c(-0.01,0.08)). What do you conclude about the coefficient estimates?

The aod package incorporates a wider spectrum of methods and tests for
dealing with overdispersion (which, oddly, is more widely recognized in Poisson
than in binomial models).

4 Intermediate topics
4.1 Offsets
Offsets add known components to the model (as shown above). They’re most
commonly used to account for unequal sampling areas/times, in cases where we
expect results to be strictly proportional to the offset (time, area sampled). This
is often a way to handle ratios (e.g. sibling negotiations per chick in a study of
begging behavior by owlets) without losing the discrete nature of the response.

Can also be used in tricky ways, e.g. to fit the Ricker model.
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Suppose we think N(t+ 1) = aN(t)e−bN(t). On the log scale this is

logN(t+ 1) = log a+ logN(t)− bN(t)

This is a linear equation in N(t) plus an offset of logN(t). In other words,
if we use a log link then we can fit N ~ Nprev + offset(log(Nprev)) (The
intercept term log a and the slope −b are implicit in the R formula.) Exercise:
What model would we fitting if we included logN as a variable rather than an
offset?

4.2 Alternative link functions
Don’t have to use the standard link functions. We could try to use them to get
a slightly better fit to the shape of the nonlinearity, but I use them more often
as a slightly tricky way to fit more mechanistic models (see e.g. Strong et al.
(1999)).

Warning: you’re more likely to run into convergence problems, be asked to
specify starting values, etc. when using non-standard link functions.

� Holling type II functional response via the inverse link: if number eaten is
Ne = aN/(1+ahN), then risk of being eaten is p = Ne/N = a/(1+ahN).
If we use the inverse link then we are fitting (1/p) = 1/a + (1/h) · N —
this linear in N . . . (we can even fit Holling type III responses by doing a
bit more algebra and including 1/N as a predictor)

� Chain binomial: suppose the probability of infection if p = 1− exp(−βIt).
Then 1 − p = exp(−βIt), or in other words the log of the probability of
not being infected is −βIt. If we have chain-binomial data, then, we can
fit

glm(prob_not_inf ~ previous_inf-1, weights=previous_susc,

family=binomial(link="log"))

load("cbsim.RData")

cbsim$Sprev <- c(NA,cbsim$S[-nrow(cbsim)])

cbsim$Iprev <- c(NA,cbsim$I[-nrow(cbsim)])

cbsim$pnotinf <- cbsim$S/cbsim$Sprev

cbplot <- ggplot(cbsim,aes(pnotinf,Iprev))+geom_point()

fit1 <- glm(pnotinf ~ Iprev -1 , family=binomial(link="log"),

weights=Sprev,data=cbsim)

confint(fit1)

## 2.5 % 97.5 %

## -0.0010641 -0.0009653

##

cbplot+geom_smooth(method="glm",family=binomial(link="log"),
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## formula=~x-1)

pp <- profile(fit1)

likdat <-

data.frame(likdev=pp$Iprev$z^2,Iprev=pp$Iprev$par.vals[,"Iprev"])

ggplot(likdat,aes(x=Iprev,y=likdev))+geom_line()
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## chain-binomial data from Becker:

cbdat <-

data.frame(chains=c(1,11,111,12,1111,112,121,13,11111,

1112,1121,113,1211,122,131,14),

n=c(423,131,36,24,14,8,11,3,4,2,2,2,3,1,0,0)) ## total 664

## Greenwood, no slope; Reed-Frost, no intercept

## log(m_{ij} q_{ij})= log(m_{ij})+alpha_i+beta_i j
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This is discussed by Becker (1989); you can see some of it on Google books
at http://tinyurl.com/chainbinom

� Another useful case is the complementary log-log (cloglog) link with bi-
nomial data. Suppose we measure the amount of mortality over differing
exposure periods of length ∆t. If we use the cloglog link with an offset
of log(∆t) we get the right behavior.

The cloglog function is C(x) = log(− log(1−µ)), its inverse is C−1(x) =
1−exp(− exp(x)). Thus if we expect mortality µ over a period ∆t = 1 and
the linear predictor η = C−1(µ) then C−1(η+log ∆t) = (1−exp(− exp(η)·
∆t)), which is what we want.

4.3 Bias-reduced GLM
Separation of variables refers to the situation where some threshold value of
predictor(s) can perfectly separate the 0 and 1 responses — in this case the
maximum likelihood solution doesn’t exist and glm breaks.

The brglm (bias-reduced GLM) and logistf (Firth logistic) packages im-
plement a specific solution to this problem; more generally, it tends to provide
more reliable results for very small data sets (people tend to forget that GLM
relies, more heavily than regular linear models, on asymptotic assumptions) —
but it currently works only for binomial models.

Another option is to use Bayesian GLMs (e.g. bayesglm from the arm pack-
age); adding even a weak Bayesian prior can stabilize the fit.

4.4 Generalized linear mixed models
This can be a fairly hairy topic in general (see Bolker et al. (2009), and http:

//glmm.wikidot.com/faq, but at root the concepts are fairly simple: here we
add a random effect of tortoise ID to the model.

What is a random effect? There are actually several possible, overlapping
answers:

� Effects that are drawn (randomly?) from a larger population of possible
effects

� Effects where we are interested in the distribution of the levels (variance
among levels), rather than the values of specific levels

� Effects that are “nuisance” aspects of the experimental design

� Effects that we want to estimate with shrinkage, i.e. pulling poorly esti-
mated values toward the population average

In general fitting as random effects works best when we have many levels with
small and uneven amounts of data per level; it works very poorly when there
are fewer than 4–6 levels. Typical examples: experimental blocks (spatial or
temporal); genotypes or individuals within populations; taxa (species, genera)
within higher-level taxa (genera, families). The interactions of fixed and random
effects get treated as random; for example, among-pond variation in trends over
time (around the population-level average trend).
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library(lme4)

(mod1mix <-

glmer(status~scsize*Sex+(1|TortID),family=binomial,data=dat2))

## Generalized linear mixed model fit by the Laplace approximation

## Formula: status ~ scsize * Sex + (1 | TortID)

## Data: dat2

## AIC BIC logLik deviance

## 120 137 -55.2 110

## Random effects:

## Groups Name Variance Std.Dev.

## TortID (Intercept) 288 17

## Number of obs: 198, groups: TortID, 123

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 8.53 4.67 1.82 0.068 .

## scsize 7.75 3.38 2.29 0.022 *

## SexM 1.45 7.43 0.20 0.845

## scsize:SexM -7.39 5.26 -1.40 0.161

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Correlation of Fixed Effects:

## (Intr) scsize SexM

## scsize 0.285

## SexM -0.629 -0.179

## scsize:SexM -0.183 -0.643 0.381

library(glmmML)

(mod1mixB <-

glmmML(status~scsize*Sex,cluster=TortID,family=binomial,data=dat2,

method="ghq"))

##

## Call: glmmML(formula = status ~ scsize * Sex, family = binomial, data = dat2, cluster = TortID, method = "ghq")

##

##

## coef se(coef) z Pr(>|z|)

## (Intercept) 2.617 0.894 2.926 0.0034

## scsize 1.629 0.690 2.360 0.0180

## SexM 1.684 1.064 1.583 0.1100

## scsize:SexM -0.578 0.889 -0.651 0.5200

##

## Scale parameter in mixing distribution: 2.72 gaussian

## Std. Error: 1.07

##
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## LR p-value for H_0: sigma = 0: 0.00173

##

## Residual deviance: 133 on 193 degrees of freedom AIC: 143

coefplot2(list(GLM=mod1sc,GLMM=mod1mix,GLMM_AGQ=mod1mixB),

legend=TRUE,legend.x="topright",

col=c(1,2,4))
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Things to keep in mind:

� getting reliable p values etc. is hard, unless you have so many groups in
your random effect (> 40) that the finite-size correction doesn’t matter

� it’s easy to put make a model that’s too complex to fit reliably. In the
example above we have to use the more

� there are a variety of packages that can fit GLMMs, with overlapping
capabilities (lme4, glmmML, glmmADMB, MCMCglmm) — if possible, it’s good
to fit difficult models with more than one package, to cross-check

5 Top 10 GLM mistakes
� applying discrete models (Poisson, binomial) to non-discrete data

� ignoring overdispersion

� equating negative binomial with binomial rather than Poisson

� using GLMs where linear models will do (i.e. glm instead of lm) (harmless
but annoying)

� ignoring blocking factors (failing to use GLMMs where necessary)

� confusion in interpreting effects

� worrying about marginal rather than conditional distributions of data∗

16

http://cran.r-project.org/web/packages/lme4
http://cran.r-project.org/web/packages/glmmML
https://r-forge.r-project.org/projects/glmmADMB/
http://cran.r-project.org/web/packages/MCMCglmm


� applying ± standard errors

� using (k,N) rather than (k,N − k) in binomial models

� getting confused by predictions on the linear predictor scale

6 Topics left out
� Zero-inflated/hurdle models (pscl, tweedie, glmmADMB);

� generalized additive models (mgcv);

� penalized regressions and shrinkage methods (glmnet, penalized);

� polytomous/ordinal data;

� spatial/temporal/phylogenetic correlations;

� GLMs on big data (biglm) . . .

See also slides at http://www.slideshare.net/bbolker/, in particular http:
//www.slideshare.net/bbolker/glms-and-extensions-in-r, http://www.
slideshare.net/bbolker/trondheim-glmm, http://www.slideshare.net/bbolker/
opensource-glmm-tools-7562082
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