
FITTING MECHANISTIC MODELS TO EPIDEMIC CURVES VIA
TRAJECTORY MATCHING

AARON A. KING

1. Likelihood: recapitulation

1. We focus on the random process that (putatively, hypothetically) generated the data
2. A model is just an explicit, mathematical description of this random process
3. The likelihood is (essentially) the probability that the data were produced given the

model and the model’s parameters
4. The likelihood quantifies (in some sense optimally) the model goodness of fit

Date: 21 May 2012.
The material in this document has been developed over the years with contributions from

John M. Drake, Ben Bolker, Ottar Bjørnstad, Matt Ferrari, Helen Wearing, and David L. Smith.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/ Please share and remix
noncommercially, mentioning its origin .



2 A. A. KING

0

50

100

150

200

250

300

5 10
day

flu

Figure 1. Daily number of schoolboys confined to bed by influenza during
an outbreak in a British boarding school (Anonymous, 1978).

In this lecture, we’ll take this point of view in an analysis of an epidemic curve (Fig. 1).
That is, the data will be reported incidence through time. This is a specific sort of data,
and, since we must model how the data were generated, we have to have a specific sort
of model. However, the lecture will demonstrate the maximum likelihood approach to
statistical inference, which is of great generality.

Load the data with

baseURL <- "http://www.math.mcmaster.ca/bolker/eeid/data"

flu <- read.csv(url(paste(baseURL,"boarding_school_flu.csv",sep="/")))

or

flu <- read.csv("boarding_school_flu.csv")

Plot it using

require(ggplot2)

ggplot(data=flu,mapping=aes(x=day,y=flu))+geom_point(size=2)+geom_line()



TRAJECTORY MATCHING 3

S I B R-λ -γ -δ

Figure 2. The SIR model of the spread of an immunizing infection
through a population. All individuals within a box are assumed to be
absolutely identical.

The SIR model. We’ll first formalize an hypothesis about how the data were gener-
ated. That’s another way of saying that we’ll write a mathematical model of the process
responsible for producing the data. Since the data were generated by an outbreak of an
immunizing infection in a closed population, the closed SIR model is the simplest process
capable of generating such an outbreak.

The data are numbers of kids confined to bed. These kids were presumably clinically
infectious but effective not very infections, since their rate of contact with other kids was
minimal. To capture this, we need to complicate the model a little bit by adding a class
for kids confined to bed.

Fig. 2 shows a diagram of this SIBR model. The host population is divided into
four classes according to their infection status: S, susceptible hosts; I, infected (and
circulating) hosts; B, kids confined to bed; R, recovered and immune hosts. The S→I
rate, λ, called the force of infection, depends on the number of infectious individuals
according to λ(t) = β I/N . The I→B rate is γ; the B→R rate is δ.

The diagram above can be interpreted in numerous ways, both as a deterministic
system and as a stochastic process. When viewed deterministically, the SIR model is a
system of ordinary differential equations:

dS

dt
= −λ(I, t)S

dI

dt
= λ(I, t)S − γ I

dB

dt
= γ I − δ B

dR

dt
= δ B

Here, S, I, B, and R are the numbers of individuals in each class. The so-called force of
infection, λ, depends on the number of infectives, I. In particular, we’ll assume that

λ(I, t) = β
I

N
where β is the transmission rate and N is the total population size, so that the risk
of infection a susceptible faces is proportional to the prevalence (the fraction of the
population that is infected). We know that kids were confined to bed on average 3 da,
so that δ ≈ 1/3 da−1. We don’t know the transmission rate β, or γ, which corresponds
to the amount of time individuals were infectious before being confined to bed. There is
additionally some uncertainty regarding the initial number of infectives.



4 A. A. KING

2. Solving ODEs in R

Like almost all epidemiological models, one can’t solve these equations analytically.
However, we can compute the trajectories of a continuous-time model such as this one by
integrating the equations numerically. Doing this accurately involves a lot of calculation,
and there are smart ways and not-so-smart ways of going about it. This very common
problem has been very thoroughly studied by numerical analysts for generations so that,
when the equations are smooth, well-behaved functions, excellent numerical integration
algorithms are readily available to compute approximate solutions to high precision. In
particular, R has several sophisticated ODE solvers which (for many problems) will give
highly accurate solutions. These algorithms are flexible, automatically perform checks,
and give informative errors and warnings. To use the numerical differential equation
solver package, we load the deSolve package

require(deSolve)

The ODE solver we’ll use is called ode. (We can do ?ode to learn about its many
options.) ode needs to know the initial values of the state variables (y), the times at
which we want solutions, the right-hand side of the ODE, func. The latter can optionally
depend on some parameters (parms).

Let’s encode the SIR model equations in a form suitable for use as the func argument
to ode. To do this, we’ll need to write a function:

sibr.model <- function (t, x, params) {

## first extract the state variables

S <- x[1]

I <- x[2]

B <- x[3]

## now extract the parameters

beta <- params["beta"]

gamma <- params["gamma"]

delta <- params["delta"]

N <- 763

## now code the model equations

dS.dt <- -beta*S*I/N

dI.dt <- beta*S*I/N-gamma*I

dB.dt <- gamma*I-delta*B

## combine results into a single vector

dxdt <- c(dS.dt,dI.dt,dB.dt)

## return result as a list!

list(dxdt)

}

Note that the order and type of the arguments and output of this function must
exactly match ode’s expectations. Thus, for instance, the time variable t must be the
first argument even if, as is the case here, nothing in the function depends on time. [When



TRAJECTORY MATCHING 5

the RHS of the ODE are independent of time, we say the ODE are autonomous.] Note
also, that ode expects the values of the ODE RHS to be the first element of a list.

Now we can call ode to compute trajectories of the model. To do this, we’ll need some
values of the parameters:

params <- c(beta=2,gamma=1/3,delta=1/3)

Note that we’ve set the death and birth rates to zero, because we’re looking at a closed
epidemic. [Q: What is the infectious period of this disease? Q: What is R0 in this case?]

We now state the times at which we want solutions and specify the initial conditions,
i.e., the starting values of the state variables S, I, and B:

times <- seq(from=0,to=15,by=1/4) ## returns a sequence

xstart <- c(S=762,I=1,B=0) ## initial conditions

Next, we compute a model trajectory with the ode command:

out <- ode(

func=sibr.model,

y=xstart,

times=times,

parms=params

)

class(out)

## [1] "deSolve" "matrix"

head(out)

## time S I B

## [1,] 0.00 762.0 1.000 0.00000

## [2,] 0.25 761.4 1.516 0.09943

## [3,] 0.50 760.4 2.296 0.24215

## [4,] 0.75 759.0 3.475 0.45093

## [5,] 1.00 756.9 5.255 0.76003

## [6,] 1.25 753.7 7.931 1.22065

It’s convenient to store the results in a data-frame:

out <- as.data.frame(

ode(

func=sibr.model,

y=xstart,

times=times,

parms=params

)

)

We plot the results using the commands:



6 A. A. KING

0

100

200

300

400

0 5 10 15
time

va
lu

e

variable

I

B

Figure 3. An SIBR outbreak in a closed population.

require(ggplot2)

require(reshape)

out <- subset(out,select=c(I,B,time))

ggplot(data=melt(out,id.var="time"),

mapping=aes(x=time,y=value,group=variable,color=variable))+

geom_line()

Fig. 3 shows the result.

Exercise 1. Plot the trajectories of SIBR outbreaks for different values of the parameters
β and γ.

Exercise 2. Reformulate the model to use R0 = β/γ and γ as parameters. Simulate to
check that your code works as intended.



TRAJECTORY MATCHING 7

3. Estimating parameters using maximum likelihood

I’ve asserted that the SIBR model is the simplest model for this situation, and it is
extremely simple. By itself, however, it’s just too simple to be an explanation of any
dataset. In particular, it is deterministic, which means that, if I know the states S(t),
I(t), B(t), at any time t, along with the parameters β, γ, and δ, then I know everything
there is to know about the future of the system. Moreover, SIBR model predicts that
epidemics will be smooth. Real data doesn’t look like that. Put another way, if we’re
to view the SIR model as having generated the data, we need to add something to it to
account for the deviations that exist between model predictions and the data.

Process noise vs. measurement error. Yesterday, we saw that there are two major
categories of randomness in dynamic processes. Stochasticity in the process itself (e.g.,
due to variation in process rates, heterogeneity among individuals, random differences
in the timing of discrete events, etc.) we term process noise. Yesterday, we saw how
the chain binomial model can be used to capture this sort of stochasticity at a degree
of model complexity comparable to that of the SIBR model above. On the other hand,
measurement error reflects random errors made in the observation process itself (due to
sampling, errors in recording, etc.). The feature that distinguishes these two sources of
stochasticity is that measurement error has no effect on the real process (though obviously
it degrades our inference), while process noise does. That is, a random perturbation to
the process state at one time will alter the future trajectories of all the state variables.

Statistical inference using maximum likelihood is fairly straightforward as long as we
consider models that have either process noise or measurement error, but not both.
Dealing with the general situation requires considerably more careful treatment and is
an active area of statistical research. I’ll briefly indicate some recent directions forward
for statistical inference on time series data when both measurement error and process
noise are present later this afternoon.

Measurement error in the epidemic. Here, we’ll explore the measurement-error-only
assumption. In particular, we’ll assume that the true process is entirely deterministic, and
that an observation error at one time is independent of errors at other times. Maximum
likelihood in this context is called trajectory matching.

Again, to use likelihood, we need a model that is capable of generating the data. In
this case, the SIR equations predict the time evolution of the variables S, I, and R; we
need to explicitly model the error to complete the model.

Let’s assume that the errors are due to under-reporting. In particular, we might most
naturally assume that reports Ct are binomially distributed:

Ct ∼ binomial(B(t), p)

i.e, the size is the number of infectives at time t and p is the reporting probability. For
various reasons, it’s often better to consider a measurement model with more dispersion.
In particular, the negative binomial model is often a better choice:

Ct ∼ negbin(pB(t), k)



8 A. A. KING

Here, the two parameters of the negative binomial distribution are the mean and the
so-called “size”. With these parameters, we have

Var [Ct] = pB(t) +
1

k
(pB(t))2 = B(t) p (1 +

1

k
pB(t))

as compared with

Var [Ct] = B(t) p (1− p)
under the binomial model.

To implement this in R, we can use the nbinom family of functions. The following
codes simulate the full model:

times <- seq(from=0,to=14,by=1)

params <- c(beta=2,gamma=1/3,delta=1/3,N=763,p=0.3,k=1000)

out <- as.data.frame(

ode(

func=sibr.model,

y=xstart,

times=times,

parms=params

)

)

within(

out,

C <- rnbinom(n=length(B),mu=params["p"]*B,size=params["k"])

) -> out

ggplot(data=out,mapping=aes(x=time,y=C))+geom_point()+geom_line()

0

20

40

60

80

0 5 10
time

C

Exercise 3. Generate several simulated data sets for each of several different values of
p and k.



TRAJECTORY MATCHING 9

The above codes simulate our model; to do statistical inference, we need to be able to
compute the likelihood of the data given the model and some parameters. The following
codes implement the negative log likelihood as a function of the model’s parameters.

sibr.nll <- function (beta, gamma, delta, I.0, p, k) {

times <- c(flu$day[1]-1,flu$day)

ode.params <- c(beta=beta,gamma=gamma,delta=delta)

xstart <- c(S=763-I.0,I=I.0,B=0)

out <- ode(

func=sibr.model,

y=xstart,

times=times,

parms=ode.params

)

## 'out' is a matrix

ll <- dnbinom(x=flu$flu,size=params["k"],mu=p*out[-1,"B"],log=TRUE)

-sum(ll)

}

We can use optim to find the parameter values that maximize the likelihood (actually,
we’ll equivalently be finding the parameters that minimize the negative log likelihood).
Let’s start small by estimating the single parameter β. The following codes plot the
negative log likelihood as a function of β:

nll <- function (par) {

sibr.nll(beta=par[1],gamma=1/3,delta=1/3,

I.0=1,p=0.5,k=100)

}

betacurve <- data.frame(beta=seq(1/3,10,length=100))

within(betacurve,nll <- sapply(beta,nll)) -> betacurve

ggplot(data=betacurve,mapping=aes(x=beta,y=nll))+geom_line()



10 A. A. KING

0

2000

4000

6000

8000

0 2 4 6 8 10
beta

nl
l

To find the exact value of the MLE for β, conditional on the assumptions we’ve made
about the other parameters, we can use optim:

fit <- optim(fn=nll,par=2,method="Brent",lower=1.5,upper=3)

fit

## $par

## [1] 2.643

##

## $value

## [1] 298.8

##

## $counts

## function gradient

## NA NA

##

## $convergence

## [1] 0

##

## $message

## NULL

##

We can use the likelihood-ratio theory we discussed yesterday to obtain a confidence
interval for β (again, conditional on the assumed values of the other parameters):



TRAJECTORY MATCHING 11

crit.lr <- pchisq(q=0.05,df=1,lower.tail=FALSE)

betacurve <- data.frame(beta=seq(2,3,length=100))

betacurve <- within(betacurve,nll <- sapply(beta,nll))

ggplot(data=betacurve,mapping=aes(x=beta,y=nll))+geom_line()+

ylim(fit$value+c(0,10))+

geom_vline(xintercept=fit$par,color='red')+
geom_hline(yintercept=fit$value+crit.lr,color='blue')

300

302

304

306

308

2.0 2.2 2.4 2.6 2.8 3.0
beta

nl
l

Now let’s try and estimate more than one parameter.

nll <- function (par) {

sibr.nll(beta=par[1],gamma=par[2],delta=1/3,

I.0=1,p=0.5,k=100)

}

fit <- optim(fn=nll,par=c(2.6,1/3),method="Nelder-Mead")

fit

## $par

## [1] 2.522 0.725

##

## $value

## [1] 217.7

##

## $counts

## function gradient



12 A. A. KING

## 53 NA

##

## $convergence

## [1] 0

##

## $message

## NULL

##

This gives us the MLE, but for quantifying the uncertainty in more than one parameter,
we’ll need to do more than just compute the likelihood on slices through the parameter
space. The bbmle package provides the useful mle2 command, which can isolate the MLE
and compute profile likelihoods as well.

require(bbmle)

fit <- mle2(sibr.nll,start=list(beta=2.5,gamma=0.7),

method="Nelder-Mead",

fixed=list(delta=1/3,k=100,p=0.5,I.0=1))

coef(fit)

## beta gamma delta I.0 p k

## 2.5217 0.7251 0.3333 1.0000 0.5000 100.0000

pfit <- profile(fit)

plot(pfit)

confint(pfit)

## 2.5 % 97.5 %

## beta 2.4485 2.5985

## gamma 0.6444 0.8139



TRAJECTORY MATCHING 13

2.45 2.55

0.
0

1.
0

2.
0

Likelihood profile: beta

beta

z

99%

95%
90%
80%

50%

0.65 0.75 0.85

0.
0

1.
0

2.
0

Likelihood profile: gamma

gamma

z

99%

95%
90%
80%

50%

require(bbmle)

fit <- mle2(sibr.nll,

start=list(beta=1.5,gamma=1/3,p=0.5),

method="L-BFGS-B",

lower=c(0,0,0),

upper=c(Inf,Inf,1),

fixed=list(delta=1/3,k=100,I.0=1))

coef(fit)

## beta gamma delta I.0 p k

## 2.8139 1.4124 0.3333 1.0000 0.8896 100.0000

pfit <- profile(fit)

plot(pfit)

confint(pfit)

## 2.5 % 97.5 %

## beta 2.6163 3.081

## gamma 1.1048 1.787

## p 0.7956 NA



14 A. A. KING

2.6 2.8 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: beta

beta

z

99%

95%

90%

80%

50%

1.0 1.2 1.4 1.6 1.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: gamma

gamma

z

99%

95%

90%

80%

50%

0.80 0.90 1.00

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: p

p

z

99%

95%

90%

80%

50%

Let’s check how well the model works by simulating from it at the MLE parameters.

mle <- coef(fit)



TRAJECTORY MATCHING 15

times <- seq(from=0,to=14,by=1)

xstart <- c(S=763-mle["I.0"],I=mle["I.0"],B=0)

out <- as.data.frame(

ode(

func=sibr.model,

y=xstart,

times=times,

parms=mle

)

)

within(

subset(out,time>0),

C <- rnbinom(n=length(B),mu=mle["p"]*B,size=mle["k"])

) -> out

ggplot(data=out,mapping=aes(x=time,y=C))+geom_line()+

geom_point(data=flu,mapping=aes(x=day,y=flu))

0

50

100

150

200

250

300

5 10
time

C

Exercise 4. Try fitting additional parameters. The overdispersion parameter, k, and
the initial number of infectives, I(0), seem the most interesting choices.

Exercise 5. Try formulating a model for the Bombay plague mortality data:



16 A. A. KING

plague <- read.csv(url(paste(baseURL,"bombay_plague.csv",sep="/")))

## Error: cannot open the connection

Estimate parameters using trajectory matching.

References

Anonymous. 1978. Influenza in a boarding school. British Medical Journal, 1:587.

A. A. King, Departments of Ecology & Evolutionary Biology and Mathematics, Uni-
versity of Michigan, Ann Arbor, Michigan 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http://kinglab.eeb.lsa.umich.edu


	1. Likelihood: recapitulation
	The SIR model

	2. Solving ODEs in R
	3. Estimating parameters using maximum likelihood
	Process noise vs. measurement error
	Measurement error in the epidemic

	References

