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1 Preliminaries:

1.1 Data types

� presence/absence

� incidence

� prevalence

� mortality

� seroprevalence

� time to mortality/infection/etc. for observed individuals

Other issues:

� misreporting/underreporting

� single value or by category (age, species, etc.)

� time-series, spatial (reporting frequency, spatial sampling design, etc
etc etc.)

1.2 Things to estimate

� R0 (intrinsic reproductive number)

� r (intrinsic rate of increase)

� λ (force of infection)
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� generation time G, infectious period (1/γ), latent period, incubation
period, existence of prodromal period (i.e. infectiousness before sys-
tems)

For the simple SIR, R0 ≈ exp(rG); R0 = βN/G; λ = βN

2 Estimators for scalar data

From [1]:

� R0 ≈ N/S∗ (fraction susceptible): assumes endemic, equilibrium, ho-
mogeneous mixing, etc. e.g. have non-age-specific seroprevalence data
(seroprevalence ≈ 1− S∗/N)

� R0 ≈ L/A where A is average age at infection, L is average lifes-
pan. Also assumes endemic, equilibrium, etc., “sudden death” mortal-
ity schedule

Final size: in principle, the fraction F who remain uninfected in an SIR
epidemic is

F = e−R0(1−F );

for R0 > 2, F ≈ exp(−R0) [12]. (So R0 ≈ − logF .) Not terribly practical
because outcome is highly variable (e.g. [3]), although there’s lots of work
on the distribution.

3 Estimators for age-structured data

The catalytic curve [10] is a simple exponential model for constant exposure
with age. Can also handle reversion (loss of immunity etc.); non-constant
force of infection; non-constant rates of disease-induced mortality with age
[2, 8] — what if force of infection or rate of mortality varies with age?

The basic form of the catalytic curve is P (a) = 1 − e−λa, where P is
the fraction protected/seropositive (i.e. P (a) = 1 − S(a)). We can then
say S = e−λa or logS = −λa, which we can fit with a log-linear regression
without an intercept (in R, lm(y~x-1) fits a regression of y on x with the
intercept forced to 0).

> x = read.table("yellowfever1.dat",header=TRUE)

> a = (x$age1+x$age2)/2 ## average age of category

> plot(prot~age1,data=x,type="s", ## "stair-step" plot

2



+ xlim=c(0,70),ylim=c(0,100),

+ main="Yellow fever protection in Amazonia",

+ sub="Muench 1934",

+ xlab="age",ylab="protection")

> points(prot~a,data=x,pch=16) ## midpoints

> unprot = (100-x$prot)/100 ## unprotected

> fit1 = lm(log(unprot)~a-1,data=x,subset=prot<100) ## fit

> curve(100*(1-exp(coef(fit1)*x)),add=TRUE) ## add the curve
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coef(fit1) and confint(fit1) tell us that λ = 0.038 with confidence
intervals (0.025, 0.051).

More complex examples where pathology or detection occurs on reinfec-
tion — malaria, filariasis, dengue, etc. [11].

“Who acquires infection from whom” (“WAIFW”) matrices – converting
from FOI estimates to contact rates for an age-structured contact model [1].
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4 Epidemic data

4.1 Initial epidemic curves

Estimate r from initial epidemic curve — put can be hard to decide when
to cut off the series. Could try to fit the entire curve (dynamic SIR model),
but epidemics tend to be much simpler at the beginning (heterogeneity less
important, pre-intervention, etc etc)

Converting from r to R0: for the standard SIR (exponential infectious
period, no latency), R0 = exp(rG). More complex with different latent
and infectious periods [13, 14]. Doesn’t work for mortality series (although
maybe well enough for wildlife disease?)

Plot data:

> ndata = read.csv("niamey_weekly.csv")

> plot(tot_cases ~ absweek, data = ndata, log = "y", lwd = 2, type = "l")

> matlines(ndata$absweek, ndata[c("cases_1", "cases_2", "cases_3")],

+ col = 2:4)

> legend("topleft", c("tot", "cases_1", "cases_2", "cases_3"),

+ col = 1:4, lty = c(1, 1:3), lwd = c(2, rep(1, 3)))
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Now fit linear regressions to carefully chosen subsets:

> fit1 = lm(log(tot_cases)~absweek,data=ndata,subset=absweek<=17)

> lmc1 = coef(fit1)

> curve(exp(lmc1[1]+lmc1[2]*x),add=TRUE)

> abline(v=17,lty=2) ## show the cutoff

(Normally we could use abline(fit1) to add the results of a linear regres-
sion to an existing plot, but the log scale on this plot gets R all confused
. . . ) We can get crude confidence intervals on R0 in this case by looking
at summary(fit1) to get confidence intervals on the slope and filling in the
estimate ±2σ in the R0 = exp(rG) formula.

(Producing the actual figure is left as an exercise. summary(fit1) shows
that R2 (no relationship to R0!) is 0.959, and so the picture looks pretty
nice.)

Epidemics in the other two areas (other reporting district in the same
city) are later, and appear to start off faster. I’ll leave calculating their r
and R0 as an exercise too.
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4.2 Complete epidemic curves

The cumulative epidemic curve (i.e. cumulative fraction infected, C(t) =∑t
τ=0 I(τ)/N for an SIR model is logistic, with “carrying capacity” (asymp-

tote) equal to the epidemic final size, and growth rate r. The quick-and-dirty
way to fit this is with a logit transformation, y = log(C)/(log(F −C)) which
linearizes a logistic function — if you can eyeball the final size (or just set
it to the final value), then you can just do linear regression.

> casedata = ndata[c("tot_cases","cases_1","cases_2","cases_3")]

> cumcases = apply(casedata,2,cumsum) ## cumulative sum of each column

> finalsize = cumcases[nrow(cumcases),] ## last row

> cumpropcases = scale(cumcases,center=FALSE,scale=finalsize)

> logitcases = qlogis(cumpropcases)

It does look as though these epidemics have reached their final size . . .

> matplot(ndata$absweek, cumcases)

> abline(h = finalsize, col = 1:4)
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> matplot(ndata$absweek, logitcases, xlab = "Time", ylab = "logit(cum prop cases)")

> logitcase2 = data.frame(absweek = ndata$absweek, logitcases)

> (logitfit1 = lm(tot_cases ~ absweek, data = logitcase2, subset = absweek <=

+ 27))

Call:
lm(formula = tot_cases ~ absweek, data = logitcase2, subset = absweek <= 27)

Coefficients:
(Intercept) absweek

-6.9490 0.3521

> abline(logitfit1)
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I left off the last few weeks because (a) the very last week is infinite
(logit(1.0) =∞) and (b) the last few points look a bit wonky anyway. The
r estimate here (0.352) is at least of the same order of magnitude as the
initial-epidemic fit. Feel free to estimate the size of the error, and the values
for each area.
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Fitting the whole time-series: easiest procedure is assuming continuous-
time deterministic ODE, assuming normally distributed measurement error
only (this is called trajectory matching : e.g. [7]), fitting to the case reporting
data. Often assume other parameters are known from other sources (because
otherwise estimation may be nearly impossible: but see [4]). Relaxing the
assumptions of either all-process or all-measurement error is hairier (ask
Aaron King).

Discrete-time models use the chain binomial ; may use susceptible recon-
struction to try to come up with the number of S at time t. We usually say
something like S(t) = S0 −

∑
I(t) (that is, every case that occurs is sub-

tracted from the number of susceptibles). Then, roughly speaking, we can
say β(t− 1) = I(t)/(S(t− 1) · I(t− 1)). This assumes a closed population,
homogeneous mixing, etc.; one can try to account for births, etc. [5, 6].

Some (not all) of these fits have a likelihood basis, so can be compared
between populations/ extended to vary across space, etc. etc. etc. (although
not necessarily easily!)

5 Exercise

From [9] (via Steve Ellner, probably (??) from http://math.arizona.edu/
~dsl/bbombay.htm):

> bombay = read.csv("bombayplague.csv")

> plot(mort ~ week, data = bombay)

> curve(890/cosh(0.2 * (x - 1) - 3.4)^2, add = TRUE)
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Given that the generation time for pneumonic plague is approx. 3 days
(and for flea-borne is ≈ 7, but this epidemic is more likely to have been
pneumonic), what can you say about these data?
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