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1 One-parameter likelihood model: binomial

Examples of looking at likelihoods: we’ll start with a basic binomial model
of a single population — say that k, the number of susceptibles infected in
a specified time period, out of a total of S susceptible individuals. We’ll
suppose that (1) all susceptible individuals have the same per-individual
probability of infection p, and (2) all individuals are infected (or not in-
fected) independently. Then the distribution of the number infected will be
binomial:

k ∼ Binomial(p, S) (1)

or

Prob(k|p, S) =
(

S

n

)
pk(1− p)S−k. (2)

Since the joint probability of independent events equals the product of their
probabilities, you can think of this as (probability of k independent “suc-
cesses” (infections), each with probability p) × (probability of S − k inde-
pendent “failures” (non-infections), each with probability 1 − p) — times a
complicated bit at the beginning which accounts for the order of events and
makes the probabilities of any possible k add up to 1.0 as they should.

For concreteness, let’s say that N = 100 and k = 20. To calculate the
probability of this outcome for a particular infection probability p, use dbi-
nom(20,size=100,prob=p); for example, dbinom(20,size=100,prob=0) is
0 (there is no chance of getting 20 successes if the per-trial probability is
zero), while dbinom(20,size=100,prob=0.2) is 0.099.

There are two important ways to use dbinom() to look at the distribu-
tion. In the first, we can generate a distribution of possible outcomes (from
0 to 100 in this case) and see what their probabilities are, for a fixed p:

1



> kvec = 0:100

> plot(kvec, dbinom(kvec, size = 100, prob = 0.2))

> abline(v = 20)

Note that while k = 20 is the most likely outcome (with a probability of
0.099, getting 19 infections is almost equally likely (0.098).

Extreme outcomes (say, k < 5 or k > 40) are very unlikely indeed. We
can see just how extreme by plotting the log-probability:

> plot(kvec, dbinom(kvec, size = 100, prob = 0.2, log = TRUE))

> abline(v = 20)

(This is almost the same as plot(kvec,log(dbinom(kvec,size=100,prob=0.2))),
but slightly more accurate for small probabilities. R uses natural logarithms
by default: use log10 to get base-10 logarithms.) Alternatively, we could

> plot(kvec, dbinom(kvec, size = 100, prob = 0.2), log = "y")

which plots the probabilities on a logarithmic y scale rather than calculating
the log-probabilities. There is at least some probability of getting 100%
infection with these parameters, even if it is on the order of 10−72 . . .

Most maximum likelihood procedures search for the minimum negative
log-likelihood, rather than the maximum log-likelihood.

> plot(kvec, -dbinom(kvec, size = 100, prob = 0.2, log = TRUE))

> abline(v = 20)

Now turn things around and suppose we have data (i.e. k = 20), and
want to calculate the likelihood curve — the probability of a fixed k for
different values of p. p must be between 0 and 1:

> pvec = seq(0, 1, by = 0.01)

> plot(pvec, dbinom(20, size = 100, prob = pvec))

> abline(v = 0.2)

Now the peak is at p̂ = 0.2 (i.e., the maximum likelihood estimate is equal to
the observed proportion of successes), but once again the likelihood (prob-
ability of the data) is almost as high with nearby values (0.096 for p = 0.19
or 0.096 for p = 0.21. Note also that the maximum likelihood is still pretty
low: the probability of getting exactly the expected number of success (20
out of 100) is only 0.099 — precisely because you might easily get a value
just below or above the expected value.

You can also take a bit of a shortcut and try

2



> curve(dbinom(20, size = 100, prob = x), from = 0, to = 1)

to save the trouble of setting up the vector of probabilities. (curve() is a
“magic” function — you must use x to denote the x variable. It doesn’t work
very well for functions like dbinom(x,100,0.2) which only make sense for
integer values of x.)

Exercises. 1. Try increasing or decreasing the number of trials (say
N = 10 or N = 1000) and see what happens to the shapes of the proba-
bility density for a fixed p (dbinom(x,prob=0.2,N)) or the likelihood curve
(dbinom(20,prob=x,N)). Can you explain the results?

2. rbinom(n,prob,size) will pick n binomial random numbers, and
table() will tabulate the number of outcomes of each k. Use these two
functions to generate a plot of outcomes for 10,000 binomial samples each
with p = 0.2, N = 100, and compare the results to the expected distribu-
tion. (Hint: you will either have to scale the results of your “experiment”
from frequencies to proportions of the outcome, or multiply the probability
density by the number of samples to get frequencies.) (In general, sampling
random numbers is a good way to familiarize yourself with the properties of
distributions.)

Finding maximum likelihood estimates automatically, with mle2:

> minuslogl = function(p, N, k) {

+ -dbinom(k, prob = p, size = N, log = TRUE)

+ }

> library(bbmle)

> fit1 = mle2(minuslogl, start = list(p = 0.9), data = list(N = 100,

+ k = 20))

This leads to warnings, but the answer seems OK. To get rid of the warnings,
you could use method="L-BFGS-B":

> mle2(minuslogl, start = list(p = 0.9), method = "L-BFGS-B", lower = 0.001,

+ upper = 0.999, data = list(N = 100, k = 20))

Call:
mle2(minuslogl = minuslogl, start = list(p = 0.9), method = "L-BFGS-B",

data = list(N = 100, k = 20), lower = 0.001, upper = 0.999)

Coefficients:
p

0.2000012

3



Log-likelihood: -2.31

(I have to set the limits slightly in from 0 and 1, because R tries to evaluate
the function at the limits and fails.)

Exercise: convince yourself that in this case, starting value is irrelevant
(as long as it’s between 0 and 1).

Exercise: try finding the quadratic and profile confidence limits (using
confint() or confint(...,method="quad")).

Challenge: Use as.data.frame(profile(fit1)) to extract a data frame
from the profile (you may need to get the latest version of bbmle from the de-
velopment site: install.packages("bbmle",repos="http://r-forge.r-
project.org")). Then draw a graph to compare the quadratic approxi-
mation to the actual profile. (The z value in the data frame is the signed
square root of the difference from the minimum deviance; to get the negative
log-likelihood, you will need to calculate z2/2.)

2 Two-parameter likelihood model: binomial

Now let’s make things slightly more complicated and suppose that we have
multiple binomial samples (all with N = 50) along a transect. The x vari-
ables range from 0 to 1, and the y values (numbers of infected individuals?)
range from 0 to 50.

> bdat <- data.frame(x = c(0.006, 0.056, 0.081, 0.138, 0.182, 0.267,

+ 0.289, 0.363, 0.413, 0.419, 0.427, 0.43, 0.44, 0.443, 0.765,

+ 0.775, 0.862, 0.881, 0.888, 0.986), y = c(0, 0, 1, 0, 0,

+ 1, 1, 0, 4, 1, 2, 5, 5, 2, 31, 32, 42, 38, 38, 48))

> plot(y ~ x, data = bdat)

We’ll use a logistic function to describe the trend in the infection proba-
bility — p = 1/(1+eb∗(x−a)). You can code this directly in R (1/(1+exp(b*(x-
a)))), or you can use plogis(b*(x-a)). (A slightly more standard param-
eterization would be plogis(a+b*x), but our version is easier because it
separates the slope and intercept terms — we can change the rate at which
the probability goes from 0 to 1 (b) and the point at which it equals 0.5 (a)
independently.

A basic likelihood function:

> minuslogl2 = function(a, b, N, y, x) {

+ -sum(dbinom(y, prob = plogis(b * (x - a)), size = N, log = TRUE))

+ }
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Since we have multiple value we have to use sum() to combine the like-
lihoods (assuming as usual that they’re all independent).

We need starting values for a and b. We can just see that the half-
maximum is somewhere around 0.6 (a ≈ 0.6). How about the slope? We
could use

> plot(qlogis(y/50) ~ x, data = bdat)

to get a rough idea of the slope (qlogis is the logit transform, the inverse
of the logistic function: on this scale, qlogis(y/50) should equal b(x− a),
or

> plot(log(y/50) ~ x, data = bdat)

and look at the initial slope (log(p) ∝ bx for small x), or look at the doubling
time:

T1/2 = log(1/2)/b ≈ 0.7/b→ b ≈ 0.7/T1/2 (3)

The doubling time is approximately ∆x = 0.2, so we’ll use b = 3.5 to start.

> fit2 = mle2(minuslogl2, start = list(a = 0.6, b = 3.5), data = c(list(N = 50),

+ bdat))

We use c() to combine the N value with the x and y data.

> confint(fit2)

2.5 % 97.5 %
a 0.6968835 0.7466484
b 8.2910295 10.5198601

> plot(y ~ x, data = bdat)

> curve(50 * plogis(coef(fit2)["b"] * (x - coef(fit2)["a"])), add = TRUE)

Pretty nice fit!

> library(emdbook)

> c1 = curve3d(minuslogl2(a = x, b = y, N = 50, x = bdat$x, y = bdat$y),

+ from = c(0.65, 7), to = c(0.8, 12), sys3d = "image", col = gray((50:0)/50),

+ xlab = "a", ylab = "b")

> contour(c1$x, c1$y, c1$z, add = TRUE)

> contour(c1$x, c1$y, c1$z, level = -logLik(fit2) + qchisq(0.95,

+ 2)/2, add = TRUE, col = 2, labels = "95%")
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> library(ellipse)

> lines(ellipse(vcov(fit2), centre = coef(fit2)), col = "blue")

> points(coef(fit2)["a"], coef(fit2)["b"], pch = 16)

> points(0.75, 10)

I’ve added the true values of the parameters for which I simulated the
data (a = 0.75, b = 10). They lie just outside the 95% confidence limits —
this does happen sometimes.

Since we have a fairly large data set and have set up the model so that
the parameters are nearly independent, the picture is very nice and elliptical.

Exercise: redraw the surface with the lower a limit at 0.65 instead of 0.5:
on this scale, the outer contours are slightly avocado-shaped (to continue the
fruit & vegetable analogies), but not nearly as “banana-like” as the chain
binomial example (analyzed elsewhere).

Challenge: add the 99.9% confidence region and (using the level com-
mand to the ellipse function) the quadratic approximation for it to the
graph. Also try to the 50% confidence region. How does the accuracy of the
quadratic approximation change?
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