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1 Introduction/basic code

Using the Gillespie algorithm, which assumes that all the possible events that
can occur (death of an individual, birth, infection, etc.) occur independently
and (given the current state of the system — number of infectives, susceptibles,
etc.) with constant probability per unit time. Given that this is true, we can pick
an exponential deviate (using R’s rexp() function) that tells us how long it is
until the next event occurs, and then pick from among the possible transitions
with probabilities proportional to their individual rates (sample()).

Set the random-number seed so that results are reproducible every time we
run this code (you can really use any integer you want here).

> set.seed(1001)

An R function that implements the Gillespie algorithm. The user must
specify

• start: starting values

• ratefun: a function of the current state variables, parameters, and time
that returns a numeric vector of the rates (probabilities per unit time) at
which each kind of event is occurring

• trans: a matrix indicating the changes in each state variable (column)
that occur when a particular event (row) takes place

• pars: a (named) numeric vector of parametesr

• times: a vector of times at which to report output

2 Simple SIR

Defining the appropriate inputs for a simple SIR model with no vital dynamics
(nor any other complications).

Defining names for the state variables and transitions isn’t absolutely nec-
essary, but will make your code much easier to read later on:n
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> statenames.SIR <- c("S", "I", "R")

> transnames.SIR <- c("infection", "death", "recovery")

Define the matrix of transitions (not the same as the transition matrix of a
Markov chain) and the function :

The transition matrix ends up looking like this:

> trans.SIR

S I R
infection -1 1 0
death 0 -1 0
recovery 0 -1 1

Define parameters (numeric vector with names):

> pars.SIR <- c(beta = 0.1, alpha = 1, gamma = 1)

(R0 in this case is equal to βN/(α + γ); if N = 100 then R0 = 5).
Run stochastic simulation:

> G.SIR <- gillesp(start = c(S = 97, I = 3, R = 0), times = seq(0,

+ 5, by = 0.05), ratefun = ratefun.SIR, trans = trans.SIR,

+ pars = pars.SIR)

Plot it (matplot plots the columns of a matrix as separate lines against
a single x variable. type="l" specifies lines, lty=1 specifies solid lines, xlab
and ylab specify x- and y-axis labels. G.SIR[,"times"] picks out the column
labeled times, G.SIR[,-1] picks out all but the first column).

> matplot(x = G.SIR[, "times"], y = G.SIR[, -1], type = "l", lty = 1,

+ xlab = "Time", ylab = "Number")
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Fancy: use replicate run 100 stochastic simulations, using [,"I"] to save
just the number of infectives . . .

> G.SIR.mult <- replicate(100, gillesp(start = c(S = 100, I = 3,

+ R = 0), times = seq(0, 5, by = 0.05), ratefun = ratefun.SIR,

+ trans = trans.SIR, pars = pars.SIR)[, "I"])

Plot it, adding a line for the mean (lines adds a line to the existing plot,
lwd=2 sets the line width to 2):

> matplot(G.SIR[, "times"], G.SIR.mult, type = "l", col = "gray",

+ lty = 1, xlab = "Time", ylab = "Number infective")

> lines(G.SIR[, "times"], rowMeans(G.SIR.mult), lwd = 2)
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3 SIR with vital dynamics (constant population
size)

> ratefun.vSIR <- function(X, pars, time) {

+ vals <- c(as.list(pars), as.list(X))

+ rates <- with(vals, c(birth = mu * K, infection = beta *

+ S * I, Sdeath = (mu * S), Ideath = (alpha + mu) * I,

+ Rdeath = (mu * R), recovery = gamma * I))

+ }

> statenames.vSIR <- statenames.SIR

> transnames.vSIR <- c("birth", "infection", "Sdeath", "Ideath",

+ "Rdeath", "recovery")

> trans.vSIR <- matrix(c(1, 0, 0, -1, 1, 0, -1, 0, 0, 0, -1, 0,

+ 0, 0, -1, 0, -1, 1), byrow = TRUE, ncol = 3, dimnames = list(transnames.vSIR,

+ statenames.vSIR))

Here I’m going to make β quite a bit larger (R0 = βN/(α+γ+µ) = 150/2.2 =
68) (!), in order to avoid having the epidemic go extinct during the crash after
the first epidemic peak. There is a general epidemiological puzzle here about
how new epidemics get started from low numbers without going extinct in the
first epidemic trough . . .
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> pars.vSIR <- c(beta = 1.5, alpha = 1, gamma = 1, mu = 0.2, K = 100)

Run it:

> G.vSIR <- gillesp(start = c(S = 100, I = 3, R = 0), times = seq(0,

+ 50, by = 0.05), ratefun = ratefun.vSIR, trans = trans.vSIR,

+ pars = pars.vSIR)

Plot it:

> matplot(G.vSIR[, "times"], G.vSIR[, -1], type = "l", lty = 1,

+ xlab = "Time", ylab = "Number")
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4 Extensions

• vertical transmission: split birth into Sbirth and Ibirth

• vaccination: e.g.

> rates <- c(Sbirth = ifelse(time < vaccstart, b * N, (1 - vaccrate) *

+ b * N), Rbirth = ifelse(time < vaccstart, 0, vaccrate * b *

+ N))

• waning immunity

5



• multiple infected classes to simulate gamma/non-exponential infectious
periods

• exposed class

• density-dependent birth/death rates

• density-dependent disease-induced mortality???

• seasonal variation in rates: e.g. sinusoidal

> beta.seas <- beta.0 * (1 + beta.ampl * cos(2 * pi * time))

or step-function:

> beta <- ifelse(time%%1 < seas.frac, beta.0, 0)

• multiple classes of individuals with differential mixing/susceptibility/etc.
(S1,I1,R1,S2,I2,R2, etc., although this can get tedious)

5 Other challenges

• Write odesolve/lsoda code to check against these results . . .
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