
Epidemics in Space

David L. Smith

May 17, 2005

Here, I’m going to introduce spatial models and show you some tricks for writing deterministic spatial
models in R.

Two Patches, Two Ways

The basic ideas for spatial models can be illustrated for an epidemic in populations that occupy two patches.
Obviously, understanding spatial patterns requires models that are closer to more familiar spaces, but this
is particularly useful.

Movement

The first method assumes that hosts move back and forth between the two patches. The characteristic
residence time in the ith patch is 1/mi:

Ṡ1 = −β1S1I1 −m1S1 + m2S2

İ1 = β1S1I1 −νI1 −m1I1 + m2I2

Ṙ1 = νI1 −m1R1 + m2R2

Ṡ2 = −β2S2I2 −m2S2 + m1S1

İ2 = β2S2I2 −νI2 −m2I2 + m1I1

Ṙ2 = νI2 −m2R2 + m1R1

(1)

We are implicitly assuming that the system is closed and that local population sizes remains constant, so
m1N1 = m2N2.

Analysis of these models is similar to the SIR model in a single patch, but with a slight twist. We define
a quantity called the single-visit reproductive number, the expected number of new infections generated by
an infected host during a single visit to the ith patch, denoted Si,0:

Si,0 =
βiNi

ν + mi

.

If Si,0 > 1, then the parasite can invade the ith patch, so R0 > 1. It is possible that Si,0 < 1 in both
patches, but the parasite can still invade. For example, if the residence times in each patch 1/mi are much
shorter than the infectious period, 1/ν, then a typical infected host can visit each patch more than once
before clearing the infection. Conceptually, R0 is the sum of all those visits for a typical host.

The tricky part is to define a typical host. One way to proceed is to construct the next-generation matrix,
a matrix that describes the number of new infectious hosts in each patch produced by infectious hosts from
each patch in each generation of the parasite 1. Now, the generation is redefined to be the average time spent
infectious in each patch, 1/(nu+mi), so the faster the swtiching, the shorter the generation. The number of
each hosts produced by infected hosts in their own patch is Si,0. The number produced in the other patch

1Diekmann O, Heesterbeek JAP, Metz JAJ. 1990. On the definition and the computation of the basic reproduction ratio R0

in models for infectious diseases in heterogeneous populations. J Math Biol. 28365-382

1

is miNi/(nu + mi). Thus, the next-generation matrix is:





β1N1

ν + m1

m1N1

nu + m2

m2N2

nu + m2

β2N2

ν + m2



 (2)

R0 is the lead eigenvalue of this matrix.
To simulate the two-patch epidemic, consider the simple SIR epidemic on the closed population dis-

tributed in two patches:

> twopatch = function(t, x, pars) {

+ S = x[c(1, 2)]

+ I = x[c(3, 4)]

+ R = x[c(5, 6)]

+ with(as.list(pars), {

+ dS = -beta * I * S - m * S + m * Psi %*% S

+ dI = beta * I * S - gamma * I - m * I + m * Psi %*% I

+ dR = gamma * I - m * R + m * Psi %*% R

+ res = c(dS, dI, dR)

+ list(res)

+ })

+ }

This code introduces two tricks that will come in handy later. First, we pass the variables as a vector
< S1, S2, I1, I2, R1, R2 >, then read them back so that S is now the vector < S1, S2 >. The ode solver
computes the derivatives, but it operates on vectors, so no looping is required and the program runs faster.
Second, to deal with emigration, we use matrix multiplication, with the symbol %*%. The matrix Ψ is defined
to be:

> Psi = matrix(c(0, 1, 1, 0), 2, 2)

Now, Psi %*% S returns the vector < S2, S1 >, so mS2 is added to the derivative for S1 and mS1 is
added to the derivative for S2. This is a trick we’ll extend when we simulate epidemics on more complicated
spaces.

Now, we need to set up the parameter values and run the equation:

> require(odesolve)

Loading required package: odesolve

[1] TRUE

> times = seq(0, 10, by = 1/40)

> inits = c(S = c(100, 100), I = c(1, 0), R = c(0, 0))

> params = c(beta = 2/1000, gamma = 1/20, m = 1/5)

> odeup = lsoda(inits, times, twopatch, params)

> I.1 = odeup[, 4]

> I.2 = odeup[, 5]

Note that the two I variables are the 4th and 5th columns of odeup – ode puts time in the first column.
In this example, the single-visit reproductive number is 0.8, but the disease invades because of the cases

generated in the other patches.

> I = I.1 + I.2

> plot(times, I, type = "l", ylim = c(0, max(I)))

> lines(times, I.1, lty = "dashed")

> lines(times, I.2, lty = "dotted")

2

0 2 4 6 8 10

0
1

2
3

4

times

I

Transmission Kernel

The second method assumes that hosts stay in a patch but infectious hosts can infect susceptible hosts in
other patches. In a two-patch system we let βi,j denote the contact parameter for a susceptible host in patch
i and an infectious host in patch j:

Ṡ1 = − (β1,1I1 + β1,2I2) S1

İ1 = (β1,1I1 + β1,2I2) S1 −νI1

Ṙ1 = νI1

Ṡ2 = − (β2,1I1 + β2,2I2) S2

İ2 = (β2,1I1 + β2,2I2) S2 −νI2

Ṙ2 = νI2

(3)

Here a transmission kernel describes contact between infectious and susceptible hosts separated by some
distance. In a two-patch model, the concept of distance is fairly simple, but a kernel can be extended to any
complex space defined by any distance metric.

These equations can be simulated in R; the transmission is written a matrix, rather than the migration
rates.

3

100 200 300 400 500 600 700

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Filipendulum Infections: 1994−95

Y

X

U,U
I,I
U,I
I,U

Figure 1: Populations that were infected in 1994 and 1995 are colored red (I,I). Populations that were not
infected in either year are grey (U,U). Populations that became infected are colored blue (U,I).Populations
that lost infections are colored orange (I,U).

Kernel Estimation Methods

To illustrate, I’ll fit a kernel to one pair of years from a long-term study of a plant and its specialist fungal,
foliar pathogen.

For background, the populations are found on the shoreline of an island archipelago in Sweden. Every
year, the harsh winters kill the above-ground plant tissue. The fungus over-winters in the dead plant material,
then re-infects the new plant tissue as it grows up through the debris. Infected plant debris can also be blown
around, or wash up onto populations as flotsam. Finally, in living tissue, the fungus produces spores that
are wind-dispersed to other plants.

Thus, every spring, every plant must be re-infected from one of last year’s infected plants. A plant is
considered to be either infected or not, so infection can be modelled as a Bernouli random variable.

Here, we fit a very simple kernel, φe−λdi,j . First, we read in the data and create a distance matrix:

> y94 = read.table("y94.txt", header = T)

> dst = as.matrix(dist(y94[, c(3, 4)]))

> N = dim(y94)[1]

Here’s the function that computes the log-likelihood, for particular values of φ and λ:

4

> kernel.loglik = function(x) {

+ lambda = x[1]

+ phi = x[2]

+ P = rep(0, N)

+ idx = which(y94$now == 1)

+ for (i in 1:N) {

+ P[i] = 1 - prod(1 - phi * exp(-lambda * dst[i, idx]))

+ }

+ loglik = log(P * y94$nxt + (1 - P) * (1 - y94$nxt))

+ -sum(loglik)

+ }

The minimization is a simple call to the nlm package, for non-linear minimization. Since we are miminizing,
the function returns the negative log-likelihood.

> A = nlm(kernel.loglik, p = c(0.1, 0.5))

Finally, A$est will give us the estimated parameters:

> lambda = A$est[1]

> phi = A$est[2]

> distance = seq(0, 50, by = 0.1)

> plot(distance, phi * exp(-lambda * distance), type = "l", xlab = "Meters",

+ ylab = "Probability of Infection")

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Meters

Pr
ob

ab
ilit

y
of

 In
fe

ct
io

n

5

More Complicated Spaces

We want to develop some tools for dealing with more complicated spaces. Sometimes, the space is naturally
defined. At other times, we make continuous space more computationally and operationally managable by
chopping it up into a set of patches. Complicated spaces can be dealt with using the same tricks as the
two-patch–we simply need an easy way to index patches and write the adjacency matrix Ψ. Conceptually,
Ψ is a matrix where the i, jth entry describes the weight of the connection between the ith and jth patches.

Here, I’ll develop some methods for defining the nearest-neighbor matrix on four common spaces: arrays,
rectangular grids, hexagonal grids, and arbitrary sets of points.

Arrays

The adjacency matrix for an array is relatively simple. The patches are indexed in the natural way, so that
the ith patches neighbors are indexed i ± 1. The adjacency matrix has positive entries on the off-diagonals.
For example, the adjacency matrix for an array of 5 patches has the form:













0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0













(4)

One small detail was swept under the rug. We assumed that the patches at the edge of the array did not
have any neighbors. There are several ways to deal with edges. If the linear space is the shoreline of an
island, the patches with the highest and lowest index are each other’s neighbors, so the adjacency matrix is
the following:













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













(5)

What happens at the edges? Do the emigrants stay put, as if there were a barrier there? Is the rate of
emigration at the edge lower? These are questions to be considered carefully in real problems.

0.1 Tesselations of the plane

A tesselation is simply a subdivision of the plane into small regions, called tiles. To deal with the other
three examples, we’ll use an R package called deldir that does the Delaunay triangulation and the Dirichlet
tesselation. We’ll illustrate the algorithm for a random set of points:

> L = 20

> x = runif(L, 0, 1)

> y = runif(L, 0, 1)

> require(deldir)

Loading required package: deldir

deldir

version: 0.0-2

[1] TRUE

> dd = deldir(x, y)

> plot.deldir(dd)

6

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

For 20 random points in the unit square. The algorithm subdivides space into a set of tiles such that
every point inside the tile is closest to one of the finite set of specified points. The dotted lines show the
boundaries of the tiles. The solid lines show the nearest neighbors.

The last two columns of dd$delsgs are the indices of the adjacent pairs, so we can use these to construct
the adjacency matrix:

> Psi = matrix(0, L, L)

> i = dd$delsgs[, 5]

> j = dd$delsgs[, 6]

> Psi[i, j] = 1

> Psi[j, i] = 1

Note that each pair is ordered and listed once, so we have to worry about Ψ[i, j] and Ψ[j, i]. To create
the adjacency matrix for a grid, we need only specify the distribution of points and deldir will do the work
for us. The specify the squares on a chessboard, we use the very useful function:

> xy = expand.grid(1:8, 1:8)

A hexagonal grid is only slightly more difficult, but we only need supply the centers. The following set
of points does the trick:

> x1 = c(1:L)

> y1 = c(1:L) * sqrt(3)

> x2 = x1 + 1/2

> y2 = y1 + sqrt(3)/2

7

> xy1 = expand.grid(x1, y1)

> xy2 = expand.grid(x2, y2)

> xy = rbind(xy1, xy2)

Travelling Waves

Having an algorithm in hand, we can now simulate an epidemic on an array, and visualize a travelling wave
on an array:

> spatial.sir = function(t, x, pars) {

+ idx = c(1:L)

+ S = x[idx]

+ I = x[L + idx]

+ R = x[2 * L + idx]

+ with(as.list(pars), {

+ dS = -beta * I * S - m * mig * S + m * Psi %*% S

+ dI = beta * I * S - gamma * I - m * mig * I + m * Psi %*%

+ I

+ dR = gamma * I - m * mig * R + m * Psi %*% R

+ res = c(dS, dI, dR)

+ list(res)

+ })

+ }

> L = 100

> Psi = matrix(0, L, L)

> i = c(2:L)

> j = i - 1

> idx = cbind(c(i, j), c(j, i))

> Psi[idx] = 1

> ones = rep(1, L)

> mig = Psi %*% ones

> Pop = 100

> params = c(gamma = 0.2, beta = 3/Pop * 0.2, m = 0.003, mig = mig,

+ Psi = Psi)

> S.init = rep(Pop, L)

> I.init = rep(0, L)

> R.init = rep(0, L)

> S.init[1] = Pop - 1

> I.init[1] = 1

> inits = c(S.init, I.init, R.init)

> times = seq(0, 1000, by = 1)

> lng = length(times)

> odeup = lsoda(inits, times, spatial.sir, params)

> plotit = function(i, odeup) {

+ idx = c(1:L)

+ S = odeup[i, idx + 1]

+ I = odeup[i, idx + L + 1]

+ R = odeup[i, idx + 2 * L + 1]

+ plot(idx, S, type = "l", col = "blue", ylim = c(0, Pop))

+ lines(idx, I, col = "red")

+ lines(idx, R, col = grey(0.5))

+ }

> movie = function() {

+ for (i in 1:lng) {

8

+ plotit(i, odeup)

+ Sys.sleep(0.01)

+ }

+ }

> plotit(round(lng/2), odeup)

0 20 40 60 80 100

0
20

40
60

80
10

0

idx

S

9

