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spatial dependence

The data contained in habsel.txt represents the number of animals captured ($captures) in 71 permanent
traps located at co-ordinates $x and $y on a small Norwegian island. Also reported is various habitat
variables in the viscinity of each trap. There is a bunch of things measured but we will focus on $lichen (the
cover of lichen), $veg (the total vegetation cover, $heather (the cover of heather), $moss (the cover of moss)
and $stdp (a measure of structural complexity).

> habsel = read.table("habsel.txt", header = TRUE)

> symbols(x = habsel$x, y = habsel$y, circles = habsel$captures, inches = 0.1)
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> fit1 = lm(log(captures + 1) ~ lichen + veg + heather + moss + stdp,

+ data = habsel)

> summary(fit1)

Call:
lm(formula = log(captures + 1) ~ lichen + veg + heather + moss +

stdp, data = habsel)

Residuals:
Min 1Q Median 3Q Max

-1.41327 -0.61763 0.07103 0.54326 1.37054

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.31972 0.73337 0.436 0.66432
lichen -0.48353 0.23575 -2.051 0.04431 *
veg 0.05878 0.02125 2.766 0.00738 **
heather 0.28951 0.16541 1.750 0.08480 .
moss -0.31274 0.14465 -2.162 0.03431 *
stdp 0.12136 0.09234 1.314 0.19338
---
Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.7598 on 65 degrees of freedom
Multiple R-Squared: 0.304, Adjusted R-squared: 0.2505
F-statistic: 5.678 on 5 and 65 DF, p-value: 0.0002098

So it looks like there is some abundance-environment association. HOwever, the issue with these types
of observational data is that there may be strong spatial autocorrelation that may invalidate a simple
regression of abundance against environment. We can do a quick look at this correlation in residuals from an
’independence’ model. (the log-transformation is to make the capture variable a bit more Gaussian-looking):

> require(ncf)

> cres = spline.correlog(x = habsel$x, y = habsel$y, z = resid(fit1), resamp = 0)

> plot(cres)
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So there seems to be some spatial autocorrelation. To do the correct model taking into account the
autocorrelation, we use corr-argument available in mle. First, however, we need to make sure mle understands
that all the data belongs to a single dependence group. And then we fit the model assuming exponential
spatial dependence:

– OTTAR TALK ABOUT PARAMETRIC CORRELATION FUNCTIONS HERE

> require(nlme)

> habsel$grp = rep(1, dim(habsel)[1])

> fit2 = lme(log(captures + 1) ~ lichen + veg + heather + moss + stdp, data = habsel,

+ random = ~1 | grp,

+ corr = corSpatial(form = ~x + y, type ="exponential", nugget = F), method = "ML")

> summary(fit2)

Linear mixed-effects model fit by maximum likelihood
Data: habsel

AIC BIC logLik
169.2112 189.5753 -75.6056

Random effects:
Formula: ~1 | grp

(Intercept) Residual
StdDev: 2.337264e-05 0.7340087
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Correlation Structure: Exponential spatial correlation
Formula: ~x + y | grp
Parameter estimate(s):
range

2.053232
Fixed effects: log(captures + 1) ~ lichen + veg + heather + moss + stdp

Value Std.Error DF t-value p-value
(Intercept) -0.0338972 0.7069316 65 -0.0479497 0.9619
lichen -0.3456476 0.2333066 65 -1.4815165 0.1433
veg 0.0633296 0.0200605 65 3.1569395 0.0024
heather 0.1579573 0.1640640 65 0.9627785 0.3392
moss -0.2814743 0.1362936 65 -2.0652058 0.0429
stdp 0.1803396 0.0864901 65 2.0850892 0.0410
Correlation:

(Intr) lichen veg heathr moss
lichen -0.447
veg -0.761 0.444
heather -0.160 0.132 0.238
moss -0.370 -0.059 0.043 -0.206
stdp -0.485 0.129 0.066 -0.097 -0.142

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.97650808 -0.93407055 -0.02748326 0.68969420 1.83586377

Number of Observations: 71
Number of Groups: 1

Excersize: interpret the results! What does ’range’ mean?
We can test for significant spatial correlation by comparing this model with the mle-model without spatial

dependence:

> fit3 = lme(log(captures + 1) ~ lichen + veg + heather + moss + stdp,

+ data = habsel,

+ random = ~1 | grp, method = "ML")

> anova(fit2, fit3)

Model df AIC BIC logLik Test L.Ratio p-value
fit2 1 9 169.2112 189.5753 -75.60560
fit3 2 8 172.2187 190.3202 -78.10936 1 vs 2 5.007518 0.0252

Excersize: Fit a new model with ’Gaussian’ (not exponential) spatial autorrelation. Which model better
fits the data?

Some other types of dependence

random blocks: maternal effects

The data contained in mouse.txt has the following variables (this is a slightly expanded version of the data
we looked at in the Bayes class).

> mouse <- read.table("mouse.txt", sep = "\t", header = T)

> names(mouse)

[1] "cage" "mweight" "lsize" "code" "ind" "sex" "wt0"
[8] "wt1" "wt2" "wt3" "wt4" "wt5" "wt7" "wt9"
[15] "wt11" "wt13" "wt15" "wt18"
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data$wtX is the weight of offspring at the age of X days; $sex is 1 = male, 2 = female; $code is the indiviudal
tag, $ind is the individual number of the 95 individuals; $cage is the the identifier of the litter (as well as
the identity of the mother); $mweight is the weight of the mother; and $lsize is the litter size. The biological
questions are: (1) Do males and females differ with respect to their average growth. (2) Is there a maternal
effect? Do individuals from the same litter tend to be similar? (3) Do sex effect differ by litter.

let’s remove any individual with missing data:

> mouse = na.omit(mouse)

We might first take an ’empirical’ tack on the question (this is not necessary for the lme modelling, but it is
interesting). Lets fit a model for the weight on day 11, ignoring any interdependence between littermates.
Then look whether there is any signature of dependence in the residuals. First fit the model:

> fit = lm(wt11 ~ as.factor(sex) + mweight + lsize, data = mouse)

To look at autocorrelation recall the definition of correlation: cor(x, y) = (x − µx)(y − µy)/σxσy. The
following bit of R-code will will calculate the autocorrelation-matrix among all residuals:

> scres = (resid(fit) - mean(resid(fit)))/sd(resid(fit))

> rcor = outer(scres, scres)

And here is one way to flag all littermates (with a 1, and all non-littermates or ’self-comparison’ with 0):

> mat = outer(mouse$cage, mouse$cage, "-")

> mat[mat != 0] = -1

> mat = mat + 1

> diag(mat) = 0

With this it is easy to calculate the within-litter autocorrelation:

> mean(rcor[mat == 1])

[1] 0.5170621

There is clearly a substantial interdependence.
Now lets model the interdependence specifically (and using weight at day 5 as a covariate. To do this we

use the lme-function in the nlme-package:

> library(nlme)

> fit = lme(wt11 ~ as.factor(sex) + wt5 + mweight + lsize,

+ random = ~1 | cage, data = mouse)

The above is the random-intercept model.
Excersize: use summary() to look at the fitted model. What is your interpretation? Advanced Q: What’s
up with the degrees-of-freedom for the fixed effects (hint: think of split-plot vs randomized block design)?

Usually we may want to look at whether there is random variability in other parameters. For instance,
we may be interestedin asking: Do mothers who have unusually large female offspring also tend to have
unusually large offspring for the litter size? To do this (and make sure that R manages to converge on good
values), we have to change some control-parameters in the model:

> fit = lme(wt11 ~ as.factor(sex) + wt5 + lsize,

+ random = ~as.factor(sex) + lsize | cage, data = mouse,

+ control = lmeControl(maxIter = 500,

+ msMaxIter = 500, opt = "optim"))

Excersize: use summary() and random.effects() to answer: Do mothers who have unusually large female
offspring also tend to have unusually large offspring for the litter size?

To examine the model fit, we can use:

> plot(fit, wt11 ~ fitted(.) | cage, abline = c(0, 1))
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repeated measures

Of course, the full data-set is really a repeated measures data set (each individual was weighed on many
occations). mle() can help us the full model if we want to (we first reshape the data):

> mouse2 = reshape(mouse, idvar = "ind", varying = list(names(mouse)[7:18]),

+ v.names = "wt", direction = "long", times = c(0,

+ 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18))

> fit = lme(wt ~ as.factor(sex) + time + lsize,

+ random = ~time | cage/ind, data = mouse2,

+ control = lmeControl(maxIter = 500,

+ msMaxIter = 500, opt = "optim"))

Iterpret the result (NB! |cage/ind means that individual is nested within cage). Is most of the random
variation in growth at the maternal level or the individual level?
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