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1 Preamle

In 2002 (Ecological monographs), Grenfell Finkenstadt and myself fit a mechanistic (discrete time) S-I-R-like
model to measles incidence data to obtain the following fit:
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The circles are the data, the top line is the determinsitic forecast (slightly tweaking the unknown initial
coditions), and the bottom (mirrored lines) represents forecast from the stochastic (chain binomial-like)
model.

We were quite chuffed with the ability of the model to forecast the dynamics for essentially 500 pathogen
generations (20+year) from Jan 1, 1944 initial conditions. If anybody is interested, this handout details how
we estimated the parameters.

2 Measles

The biweekly incidence (number of cases for each two-week period) of measles has a long history in the study
of infectious disease dynamics. The data set meas.csv contains the records from London between 1944 and
1966:

> meas = read.table("meas.csv", sep = ",", header = TRUE)

> names(meas)

[1] "year" "week" "time" "London" "B"
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The incidence are accessed as meas$London. In addition, the data set contain columns reporting meas$year,
meas$month, the two combined into meas$time, the incidence (meas$London), and biweekly number of births
(meas$B).

> plot(meas$time, meas$London, type = "b")
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Ideally we should be able to use this data to estimate key epidemiological parameters ... However, we
rarely have detailed information on all state variables (time series of susceptibles AND infecteds). Some
simple tricks have recently been suggested. We will illustrate this using estimation with the so-called TSIR
(time-series S-I-R) model. The model (approximation) is as follows: If we use a discrete time step equal to
the generation time of the pathogen (2 weeks in the case of measles). We can then write (very crudely) the
model (ignoring a latent period) as:

St+1 = St + Bt − It, λt+1 = βStI
α
t , (1)

where St and It are the numbers of susceptibles and infecteds in (pathogen) generation time, t. Bt is the
number of births (into the susceptible class) in the time step, β – of course – is the transmission rate, and the
mysterious α is a fudge exponent that partially accounts for discretizing the underlying contiuous process
(Glass et al.) and partially for certain heterogenietes in mixing (Liu et al.).

The final variable, λt+1 represents the expectation for the new number of infecteds in the next generation.
Evidently, the actual number of infecteds that will appear in generation t + 1 will follow some stochastic
distribution around λt+1. For example It+1 Po(λt+1) (Miramontes and Rohani 1998) or It+1 NegBin(λ, It).
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2.1 inference (hypothetical)

Given time series I and S the candidate for estimation is obvious:

log(It+1) = log(β) + log(St) + αlog(It). (2)

We can estimate the unknown parameters β and α by a regression of log(It+1) on log(It) with log(St) as
an offset (that means the slope for variable is fixed at unity). The intercept of this regression would be the
estimate of log(β) and the slope against log(It) would be the estimate α.

In R:

N = length(meas$London)

Inow = log(meas$London[2:N])

Ilag = log(meas$London[1:(N-1)])

Slag = log(S[1:(N-1)]) #NB! This variable does not exist in the data

#now the regression

glm(Inow ~ Ilag + offset(Slag))

3 inference (the real example)

The challenge is that most real data sets do not contain perfect records on all state variables. For example,
the meas data does not contain information on S, and I is under-reported. However, we do have information
about births. Another challenge is the strong seasonality in transmission rates that result from aggregation
of children during school term.

We clearly need some more elaborate (ad hoc? ) scheme – In this case tailored to the biology and data
on measles....

3.1 susceptible reconstruction

The idea of susceptible reconstruction was layed out Bobashev et al. and Finkenstadt and Grenfell; Consider
the reccursive equation 1 which can be rewritten as:

St = S + D0 +
t∑

k=0

Bk −
t∑

k=0

Ik/ρ, (3)

where S is the mean number of susceptibles, D0 is the unknown deviations around the mean at time 0, and
ρ is the (known or unknown) reporting rate. We can reconstruct the time series Dt of how the susceptible
numbers deviate from the mean value, Dt = St − S, by rewriting (3) as,

t∑

k=0

Bk = S + D0 + 1/ρ

t∑

k=0

Ik + Dt, (4)

from which it is clear that Dt is the residual from the regression of cumulative number of births on the
cumulative number of cases. Note, that this reconstruction still works when D0, S and the reporting rate
ρ is unknown because these are accommodated by the intercept and slope of the cumulative-cumulative
regression. The method does not allow the independent estimation of the mean number of susceptibles.

As it turns out, reporting rates sometimes varies subtly through time so it is good to use a slightly more
flexible regression than linear regression – a smoothing spline (with 2.5 degrees-of-freedom) for example.

In R:

> cum.reg = smooth.spline(cumsum(meas$B), cumsum(meas$London),

+ df = 2.5)
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> D = predict(cum.reg)$y - cumsum(meas$London)

> plot(cumsum(meas$B), cumsum(meas$London), type = "l")

> lines(cum.reg)

> abline(a = 0, b = 1)
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The 1-to-1 line gen-
erated by the abline-command shows that the cumulative number of cases are less than the cumulative
number of births. However, this discrepancy is very informative for measles because we know that more
than 95% of children were infected with measles before the age of 20 (in the pre-vaccination era); The slope
of the cumulative regression, therefore, is an estimate of the under-reporting rate in this system. We can get
these estimated under-reporting rates for each time step. from the cumulative regression as follows:

> ur = predict(cum.reg, deriv = 1)$y

> summary(ur)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4525 0.4620 0.4792 0.4734 0.4833 0.4866

The reporting rate is clearly almost constant across the 20-years at around 52%. As a simple hack, we can
correct the time series data for the under-reporting:

> Ic = meas$London/ur
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3.2 estimation

To estimate parameters we rewrite the model (1) in terms of the data and unknown parameters on a log-scale
as (recall that λt+1 is the expected number of cases in time t + 1):

log(λt+1) = log(βu) + log(Dt + S) + αlog(It)

which obviously is an almost (but not quite) a linear regression with unknown parameters βu, α and S.
Before we are ready to estimate the parameters, however, we need to consider the fact that β varies seasonally
(because of the school year); thus the subset u. The most flexible model is to assume the each of the 26
biweeks of the year has its own transmisson rate. Under that assumption we have 28 parameters to estimate.
Let us define a vector that flags these across the 21 years, and create the three vectors of current and lagged
infecteds and lagged ’residual susceptibles’:

> seas = rep(1:26, 21)[1:545]

> lInew = log(Ic[2:546])

> lIold = log(Ic[1:545])

> Dold = D[1:545]

A simple trick is to realize that given a vaule for S, the models falls neatly within the linear regression
framework (thought had it not, we can alwasy write out the likelihood, and use optim to find the MLEs).
We can therefore use glm to find a profile likelihood estimate of S. We know from serology that the average
proportion of susceptibles in measles is somewhere in the 5%-10% range and – given the size of London at
the time (3.3M) – we can postulate a reasonable range of candidate values:

> Smean = seq(0.01, 0.2, by = 0.001) * 3300000

We then set up a vector to store the log-likelihood values corresponding to each candidate:

> llik = rep(NA, length(Smean))

We then loop over all the values. Note the -1 in the regression formula removes the intercept, so that
as.factor(seas) becomes the estimates of the log-beta’s. Note further that glmfit$deviance holds -2*log
likelihood.

> for (i in 1:length(Smean)) {

+ lSold = log(Smean[i] + Dold)

+ glmfit = glm(lInew ~ -1 + as.factor(seas) + lIold + offset(lSold))

+ llik[i] = glmfit$deviance

+ }

> plot(Smean, llik)

> Smean[which(llik == min(llik))]

[1] 135300
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Our best estimates then is:

> lSold = log(Smean[which(llik == min(llik))] + Dold)

> glmfit = glm(lInew ~ -1 + as.factor(seas) + lIold + offset(lSold))

> summary(glmfit)

Call:
glm(formula = lInew ~ -1 + as.factor(seas) + lIold + offset(lSold))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.060377 -0.142732 -0.003244 0.136641 0.756131

Coefficients:
Estimate Std. Error t value Pr(>|t|)

as.factor(seas)1 -11.574672 0.076903 -150.5 <2e-16 ***
as.factor(seas)2 -11.131830 0.077004 -144.6 <2e-16 ***
as.factor(seas)3 -11.266591 0.079988 -140.9 <2e-16 ***
as.factor(seas)4 -11.387843 0.082013 -138.9 <2e-16 ***
as.factor(seas)5 -11.458274 0.083131 -137.8 <2e-16 ***
as.factor(seas)6 -11.452393 0.083687 -136.8 <2e-16 ***
as.factor(seas)7 -11.524541 0.084211 -136.9 <2e-16 ***
as.factor(seas)8 -11.733467 0.084169 -139.4 <2e-16 ***
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as.factor(seas)9 -11.536306 0.082668 -139.6 <2e-16 ***
as.factor(seas)10 -11.495535 0.082542 -139.3 <2e-16 ***
as.factor(seas)11 -11.537266 0.082690 -139.5 <2e-16 ***
as.factor(seas)12 -11.691471 0.082547 -141.6 <2e-16 ***
as.factor(seas)13 -11.670301 0.081375 -143.4 <2e-16 ***
as.factor(seas)14 -11.702528 0.080404 -145.5 <2e-16 ***
as.factor(seas)15 -11.801345 0.079279 -148.9 <2e-16 ***
as.factor(seas)16 -11.986965 0.077588 -154.5 <2e-16 ***
as.factor(seas)17 -12.074714 0.074840 -161.3 <2e-16 ***
as.factor(seas)18 -11.910984 0.071779 -165.9 <2e-16 ***
as.factor(seas)19 -11.526471 0.069937 -164.8 <2e-16 ***
as.factor(seas)20 -11.340105 0.070469 -160.9 <2e-16 ***
as.factor(seas)21 -11.428370 0.072138 -158.4 <2e-16 ***
as.factor(seas)22 -11.565334 0.073278 -157.8 <2e-16 ***
as.factor(seas)23 -11.468243 0.073575 -155.9 <2e-16 ***
as.factor(seas)24 -11.504891 0.074493 -154.4 <2e-16 ***
as.factor(seas)25 -11.608515 0.075180 -154.4 <2e-16 ***
as.factor(seas)26 -11.222460 0.075546 -148.6 <2e-16 ***
lIold 0.963917 0.008642 111.5 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 0.05598971)

Null deviance: 14858.805 on 545 degrees of freedom
Residual deviance: 29.003 on 518 degrees of freedom
AIC: 3.9412

Number of Fisher Scoring iterations: 2

That is, S is

> Smean[which(llik == min(llik))]

[1] 135300

α is

> glmfit$coef[27]

lIold
0.9639174

and the log − β′s are

> glmfit$coef[1:26]

as.factor(seas)1 as.factor(seas)2 as.factor(seas)3 as.factor(seas)4
-11.57467 -11.13183 -11.26659 -11.38784

as.factor(seas)5 as.factor(seas)6 as.factor(seas)7 as.factor(seas)8
-11.45827 -11.45239 -11.52454 -11.73347

as.factor(seas)9 as.factor(seas)10 as.factor(seas)11 as.factor(seas)12
-11.53631 -11.49554 -11.53727 -11.69147

as.factor(seas)13 as.factor(seas)14 as.factor(seas)15 as.factor(seas)16
-11.67030 -11.70253 -11.80135 -11.98696

as.factor(seas)17 as.factor(seas)18 as.factor(seas)19 as.factor(seas)20
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-12.07471 -11.91098 -11.52647 -11.34011
as.factor(seas)21 as.factor(seas)22 as.factor(seas)23 as.factor(seas)24

-11.42837 -11.56533 -11.46824 -11.50489
as.factor(seas)25 as.factor(seas)26

-11.60851 -11.22246
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