
Whirlwind R notes for STRANGE

Ben Bolker

May 16, 2005

1 why R?

The standard list:

• it’s an advanced stats package — comparable to SAS etc., you are very
unlikely ever to find a statistical procedure you can’t do in R

• complete programming language

• good graphics (although not easy)

• free, both “as in beer” ($) and philosophically (open source)

• cross-platform

• encourages repeatable and automated data manipulation, analysis, plotting

Disadvantages: speed (vs. C/Java/FORTRAN/MATLAB?); user-friendliness
(vs. JMP, Excel, SPSS); handling enormous data sets (vs. SAS; but use
database backend); particular problems (vs. MARK, DISTANCE).

2 Getting in and getting out

Lebanese proverb: “when entering, always look for the exit”
Use q() to quit (not q, which will list the function for you! Say “yes” to

saving the workspace if you want to continue on the same problem later.
The Escape (ESC) key will stop a running computation or print-out.

3 Interactive calculations

When R is launched it opens the console window This has a few basic menus
at the top; check them out on your own. The console window is also where
you enter commands for R to execute interactively, meaning that the command
is executed and the result is displayed as soon as you hit the Enter key. For
example, at the command prompt >, type in 2+2 and hit Enter; you will see

1

> 2 + 2

[1] 4

To do anything complicated, you have to assign the results from calculations
to a variable, e.g.

> a = 2 + 2

The variable a is automatically created and the result (4) is stored in it, but
nothing is printed. This may seem strange, but the default is to not to print
results so large lists won’t fill the screen. To print the value of a variable, just
type the variable name by itself

> a

[1] 4

In this case a is a numeric vector (of length 1), which acts just like a number:
we’ll talk about data types more shortly.

You can break lines anywhere that R can tell you haven’t finished
your command and R will give you a “continuation” prompt (+) to let you
know that it doesn’t thinks you’re finished yet: try typing

a=3*(4+
5)

to see what happens (this often happens e.g. if you forget to close parentheses).
Variable names in R must begin with a letter, followed by alphanumeric char-

acters. Long names can be broken up using a period, as in very.long.variable.number.3,
but (beware!) you cannot use blank spaces in variable names. R is case sen-
sitive: Abc and abc are not the same variable. Make names long enough to
remember, short enough to type. Avoid: c, l, q, t, C, D, F, I, T, which are all
built-in functions or hard to distinguish.

Calculations are done with variables as if they were numbers. R uses +, -, *, /, and ^ for
addition, subtraction, multiplication, division and exponentiation, respectively.
For example:

> x = 5

> y = 2

> z1 = x * y

> z2 = x/y

> z3 = x^y

> z2

[1] 2.5

2

> z3

[1] 25

Even though the values of x and y were not displayed, R remembers that
values have been assigned to them. Type x or y to display the values.

You can edit commands to correct or modify them. The ↑ key (or Control-P)
recalls previous commands to the prompt. For example, you can bring back the
third-from-last command and edit it to

> z3 = 2 * x^y

(experiment with the ↓, →, ←, Home and End keys).
You can combine several operations in one calculation:

> A = 3

> C = (A + 2 * sqrt(A))/(A + 5 * sqrt(A))

> C

[1] 0.5543706

R also has many built-in mathematical functions: log() and exp() (and
log10()), sin() and cos(), etc..

Exercise: the equation for the standard normal distribution is 1√
2π

e−x2/2.
Compute the value for x = 1 and x = 2.

Logical operators produce TRUE or FALSE as answers: == (double-equals),
> and < compare two values, | (or), & (and), and ! (not) modify other logical
values.

> A == 3

[1] TRUE

> A > 2

[1] TRUE

> (A > 2) & (A < 2)

[1] FALSE

> (A > 2) | (A < 4)

[1] TRUE

3

> !(A > 2)

[1] FALSE

Exercise: convince yourself that !(a & b) is equivalent to !a | !b, no
matter what the values of a and b are.

4 Data types and structures

4.1 vectors

Lists of values, all the same type or class (numeric, logical, character). As
mentioned above, a number is just a vector of length 1. Some functions create
vectors: you can also create/assign vectors by, e.g.

> x = c(1, 2, 7, 8, 9)

Typing 1,2,7,8,9 without c() gives an error. Vector elements can be named:

> x = c(first = 1, second = 1.2, third = 1.5)

Refer to elements in vectors s

• by position: x[1] or (multiple elements) x[c(1,2)]

• by name: x["first"]

• by exclusion: x[-1] drops the first element

• with logical vectors: x[c(TRUE,TRUE,FALSE)] gives the first two elements;
more usefully, x[x>1.1] first computes a logical vector [TRUE, FALSE,
FALSE] and then uses it to select the first element only.

Most of R’s functions are vectorized : give them vectors and they automati-
cally do the right thing. Functions of two vectors (c(1,3,5,7) + c(2,4)) will
automatically replicate the shorter vector until it is as long as the longer one,
giving a warning message the longer is not an even multiple of the shorter.

> x = c(1, 3, 5, 7)

> 2 * x

[1] 2 6 10 14

> x + c(2, 5)

[1] 3 8 7 12

> x + c(1, 2, 4)

4

[1] 2 5 9 8

Warning message:
longer object length

is not a multiple of shorter object length in: x + c(1, 2, 4)

Other functions in R are inherently vector functions: mean(), var(), sum()
. . .

4.2 Matrices

Matrices are tables of data, all of the same type (numeric, character, logical).
Retrieve elements from matrices, selecting rows, columns, or both, by plac-

ing commas appropriately. Rows come first (before the comma) and columns
second. p[1,] (row 1), p[,2:5] (columns 2 through 5), p[3,4].

Create a matrix with matrix(): by default R orders matrices column-first :

> matrix(c(1, 3, 4, 5), nrow = 2)

[,1] [,2]
[1,] 1 4
[2,] 3 5

> matrix(c(1, 3, 4, 5), nrow = 2, byrow = TRUE)

[,1] [,2]
[1,] 1 3
[2,] 4 5

Matrices act like vectors when appropriate:

> log(matrix(c(1, 3, 4, 5), nrow = 2))

[,1] [,2]
[1,] 0.000000 1.386294
[2,] 1.098612 1.609438

4.3 Lists

Lists are collections of anything : vectors and matrices of different sizes and
types, results of statistical analyses, etc.. Use $ to pull out the elements of a
list by name, and [[]] to pull out elements by number.

> x = list(x = c(1, 2, 3), y = c("a", "b"))

> x[[2]]

5

[1] "a" "b"

> x$y

[1] "a" "b"

4.4 Data frames

Data frames are a confusing but useful cross between lists and matrices: lists of
equal-length columns, which can be different types, and which are treated like
either matrices or lists depending on the context. You can access their elements
either like a list (x$x, x[[1]]) or like a matrix (x[2,4]).

5 rep() and seq()

These two functions are very useful for generating vectors: seq() (and its abbre-
vation, :) generates different kinds of regular sequences, while rep() replicates
existing vectors.

> rep(1:4, 3)

[1] 1 2 3 4 1 2 3 4 1 2 3 4

> rep(1:4, each = 3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4

> rep(1:4, c(1, 2, 3, 4))

[1] 1 2 2 3 3 3 4 4 4 4

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> seq(1, 10)

[1] 1 2 3 4 5 6 7 8 9 10

> seq(1, 10, by = 2)

[1] 1 3 5 7 9

> seq(0, 2, length = 7)

[1] 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333 1.6666667 2.0000000

6

6 Getting help

• Typing ? followed by the name of a function (e.g. ?mean) will pop up a
window with information on the function (only useful if you already know
its name (!) and it is part of a package that has been loaded

• help(package=packagename) lists and gives brief descriptions of all of
the functions in a package

• help.search("word") looks through all documentation, including installed
but unloaded packages, whose name or short description includes word.
Does not do full-text search, nor have R functions been extensively cross-
indexed, so you have to be close or get lucky.

• help.start() (with parentheses) pops up a browser window: go to Pack-
ages (probably base, stats, or graphics to find info on functions

• RSiteSearch("word or phrase") (new!) goes to the R web site and does
a query

• example("function") runs the examples given in the help page for the
function

Ask an instructor!

7 Getting stuff in and out of R

7.1 Data

Basic input functions are read.table() and read.csv() — see other notes.
Save objects in R format with save("x","y","z",file="savefile.RData").

Write data out to a file with write.data("mydata",file="mydata.txt").

7.2 Code

Your own code, written in a text file: source("myfuns.R"). Pre-existing code
that has been compiled in a package and installed on your system (including
functions found by help.start()): library(packagename). Installing new
packages on your system: install.package(packagename).

For smaller pieces of code, you can simply cut and paste from Notepad or
Wordpad, Tinn-R, or another text editor such as emacs. Do not use Microsoft
Word to edit R code, it will screw things up.

Save code by cutting and pasting (also possibly save() or dump()).

7

8 Plotting

> t = seq(0, 20, length = 50)

> x = rnorm(50)

> y = rnorm(50)

I will explain par(mfrow=c(2,2)) in a bit: it makes a 2 × 2 array of plots
on the page. plot array:

> par(mfrow = c(2, 2))

> plot(x, y)

> plot(t, x)

> plot(t, x, type = "l")

> matplot(t, cbind(x, y), type = "l")

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

−1.5 −0.5 0.5 1.5

−
1.

0
0.

0
1.

0
2.

0

x

y ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●
●●

●

●

●

●

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

t

x

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

t

x

0 5 10 15 20

−
2

−
1

0
1

2

t

cb
in

d(
x,

 y
)

plot() is a generic function that may do the right thing if you just give it
a data object, for example a factor (a categorical variable):

Sample at random (with replacement)

> f <- factor(sample(c("healthy", "sick", "dead"), size = 50, replace = TRUE))

> table(f)

f
dead healthy sick

8

23 14 13

> plot(f)

dead healthy sick

0
5

10
15

20

> g <- factor(sample(c("AA", "Aa", "aa"), size = 50, replace = TRUE))

> table(f, g)

g
f AA Aa aa
dead 10 6 7
healthy 5 3 6
sick 5 6 2

> plot(f, g)

9

dead healthy sick

aa
Aa
AA

0
5

10
15

20

> par(mfrow = c(2, 2))

> boxplot(x)

> boxplot(x ~ f)

> boxplot(x ~ f + g)

> barplot(c(5, 7, 8, 9))

10

−
1.

5
−

0.
5

0.
5

1.
5

dead healthy sick

−
1.

5
−

0.
5

0.
5

1.
5

●

●

dead.AA healthy.Aa sick.aa

−
1.

5
−

0.
5

0.
5

1.
5

0
2

4
6

8

There are many many options for changing axes, labels, adding legends,
colors, line types, line widths. The help page for the par() command (?par)
is voluminous, but you can search within it for the stuff you want to find. In
general, par("name") queries the current setting of graphics parameter name,
while par(name=value) sets the value of the parameter (you can set several at
once: par(name1=value1,name2=value2)). par() shows all the parameters at
once.

9 Flow control

• if (condition) { } else { } (braces around chunks of code)

• elseif(x,y,z) returns y if condition x is true, otherwise (else) returns z:
e.g. ifelse(x<0,0,x) (this particular example is equivalent to pmax(0,x)
where pmax() is “parallel (vectorized) maximum”)

• for (i in x) { }: works through the elements of x, setting i to each
one in turn. Most common is for (i in 1:n). If working through a non-
integer vector (e.g. of parameters; beta=seq(1,10,by=0.1), still probably
want to do for i in 1:length(x) so that you can use i as an index for
saving the results . . .

• while () {}

11

10 Functions

Many many built-in functions. Arguments are sometimes obvious, e.g. sin(x).
More complex functions can have many different arguments (e.g. matrix); these
can be specified by name or by position:

matrix(data=1:12,nrow=2,ncol=3,byrow=TRUE)

is the same as

matrix(1:12,2,3,TRUE)

but the first is obviously easier to understand. Most complicated functions also
have defaults for most of their arguments, so you can specify just the ones you
want to be different from the defaults. Named arguments can be in any order,
so matrix(1:12,ncol=3,byrow=TRUE) is also equivalent to the variants above.

You can (and should) easily define your own functions: a very simple example
is

square <- function(x) {
x^2

}

The last statement in the function is its return value; you can also use the
return() function to specify what the sfunction returns. It’s a common mistake
to forget this:

myfun <- function(x) {
if (x<0) {

y=x^2
} else {
y=x^3

}
}

returns nothing : it should be

myfun <- function(x) {
if (x<0) {

y=x^2
} else {
y=x^3

}
y

}

An equivalent solution:

12

myfun <- function(x) {
if (x<0) {

return(x^2)
} else {
return(x^3)

}
}

Scope: inside functions, variables are local, insulated from the “calling en-
vironment”. You can re-use variables inside a function that you use outside a
function, without changing the value once the function is done. This means you
can’t use a function to change the value of a variable.

Calling the following function

squarex <- function(x) {
x=x^2
return(x)

}

will not change the value of x. You need to say x = squarex(x). If you abso-
lutely must you can use the global assignment operator <<-, but you probably
shouldn’t.

11 Maximization and fitting

Give optim() a function (that takes a vector of parameters and returns a single
number, e.g. a goodness-of-fit value), and a vector of parameter starting values,
and it will try to find the parameter values that minimize the function.

12 Probability distributions

R knows about most distributions you would ever care about. For each, there are
four associated functions that give the probability density function, cumulative
distribution function, quantile (inverse CDF) function, and a random-deviate
generator. Each has standard parameters for its type and the parameters of the
distribution.

13 Standard statistics

• Linear regression, ANOVA, ANCOVA: lm()

• Generalized linear models (logistic regression, Poisson regression, etc.):
glm()

• Survival analysis: package surv

13

• Others: t.test(), chisq.test(), pairwise.t.test(), binom.test()
(difference in proportions, binomial samples), cor.test() (correlations),
wilcox.test() (Wilcoxon/Mann-Whitney nonparametric), kruskal.test()
(Kruskal-Wallis), ks.test() (Kolmogorov-Smirnov), . . .

14

