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Summary

This chapter presents the basic concepts and methods you need in order to
estimate parameters, establish confidence limits, and choose among competing
hypotheses and models. It defines likelihood and discusses frequentist, Bayesian,
and information-theoretic inference based on likelihood.

1 Introduction

Previous chapters have introduced all the ingredients you need to define a model
— mathematical functions to describe the deterministic patterns and probability
distributions to describe the stochastic patterns — and shown how to use these
ingredients to simulate simple ecological systems. However, you need to learn
not only how to construct models but also how to estimate parameters from
data, and how to test models against each other. You may be wondering by
now how one actually does this.

In general, to estimate the parameters of a model we have to find the pa-
rameters that make that model fit the data best. To compare among models we
have to figure out which one fits the data best, and decide if one or more models
fit sufficiently much better than the rest that we can declare them the winners.
Our goodness-of-fit metrics will be based on the likelihood, the probability of
seeing the data we actually collected given a particular model — which in this
case will mean both the general form of the model and the specific parameter
values.

2 Parameter estimation: single distributions

Parameter estimation is simplest when we have a a collection of independent
data that are drawn from a distribution (e.g. Poisson, binomial, normal), with
the same parameters for all observations. As an example with discrete data, we
will select one particular case out of Vonesh’s tadpole predation data (p. 77) —
small tadpoles at a density of 10 — and estimate the parameters of a binomial
distribution (each individual’s probability of being eaten by a predator). As an



example with continuous data, we will introduce a new data set on myxomatosis
virus concentration in experimentally infected rabbits (?Myxo in the emdbook
package: Fenner et al., 1956; Dwyer et al., 1990). Although the titer actually
changes systematically over time, we will gloss over that problem for now and
pretend that all the measurements are drawn from the same distribution so
that we can estimate the parameters of a Gamma distribution that describes
the variation in titer among different rabbits.

2.1 Maximum likelihood

We want the mazimum likelihood estimates of the parameters — those parame-
ter values that make the observed data most likely to have happened. Since the
observations are independent, the joint likelihood of the whole data set is the
product of the likelihoods of each individual observation. Since the observations
are identically distributed, we can write the likelihood as a product of similar
terms. For mathematical convenience, we almost always maximize the loga-
rithm of the likelihood (log-likelihood) instead of the likelihood itself. Since the
logarithm is a monotonically increasing function, the maximum log-likelihood
estimate is the same as the maximum likelihood estimate. Actually, it is con-
ventional to minimize the negative log-likelihood rather than maximizing the
log-likelihood. For continuous probability distributions, we compute the proba-
bility density of observing the data rather than the probability itself. Since we
are interested in relative (log)likelihoods, not the absolute probability of observ-
ing the data, we can ignore the distinction between the density (P(z)) and the
probability (which includes a term for the measurement precision: P(z)dx).

2.1.1 Tadpole predation data: binomial likelihood

For a single observation from the binomial distribution (e.g. the number of small
tadpoles killed by predators in a single tank at a density of 10), the likelihood
that k out of N individuals are eaten as a function of the per capita predation
probability p is Prob(k|p, N) = (f)pk(l — p)N=F. If we have n observations,
each with the same total number of tadpoles N, and the number of tadpoles

killed in the ith observation is k;, then the likelihood is
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The log-likelihood is
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In R, this would be sum(dbinom(k,size=N,prob=p,log=TRUE)).



Analytical approach In this simple case, we can actually solve the problem
analytically, by differentiating with respect to p and setting the derivative to
zero. Let p be the maximum likelihood estimate, the value of p that satisfies

dL ay>r, (log (]]CV) + kilogp+ (N — k;) log(1 — p))

Since the derivative of a sum equals the sum of the derivatives,
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The term log (kN ) is a constant with respect to p, so its derivative is zero and
the first term disappears. Since k; and (N — k;) are constant factors they come

out of the derivatives and the equation becomes
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The derivative of log p is 1/p, so the chain rule says the derivative of log(1—p) is
d(log(1 —p))/d(1 —p)-d(1—p)/dp = —1/(1 —p). We will denote the particular
value of p we’re looking for as p. So
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So the maximum-likelihood estimate, p, is just the overall fraction of tadpoles
eaten, lumping all the observations together: a total of Y k; tadpoles were eaten
out of a total of n/N tadpoles exposed in all of the observations.

We seem to have gone to a lot of effort to prove the obvious, that the best
estimate of the per capita predation probability is the observed frequency of
predation. Other simple distributions like the Poisson behave similarly. If we



differentiate the likelihood, or the log-likelihood, and solve for the maximum
likelihood estimate, we get a sensible answer. For the Poisson, the estimate of
the rate parameter \ is equal to the mean number of counts observed per sample.
For the normal distribution, with two parameters 1 and o2, we have to compute
the partial derivatives of the likelihood with respect to both parameters and
solve the two equations simultaneously (OL/0u = OL/do? = 0). The answer
is again obvious in hindsight: i = Z (the estimate of the mean is the observed
mean) and 02 = S (x; — Z)?/n (the estimate of the variance is the variance of
the sample*.).

For some simple distributions like the negative binomial, and for all the
complex problems we will be dealing with hereafter, there is no easy analytical
solution and we have to find the maximum likelihood estimates of the parameters
numerically. The point of the algebra here is just to convince you that maximum
likelihood estimation makes sense in simple cases.

Numerics This chapter presents the basic process of computing and maximiz-
ing likelihoods (or minimizing negative log-likelihoods in R; Chapter ?? will go
into much more detail on the technical details. First, you need to define a func-
tion that calculates the negative log-likelihood for a particular set of parameters.
Here’s the R code for a binomial negative log-likelihood function:

> binomNLL1 = function(p, k, N) {
+ -sum(dbinom(k, prob = p, size = N, log = TRUE))
+ }

The dbinom function calculates the binomial likelihood for a specified data set
(vector of number of successes) k, probability p, and number of trials N; the
log=TRUE option gives the log-probability instead of the probability (more ac-
curately than taking the log of the product of the probabilities); -sum adds the
log-likelihoods and changes the sign to get an overall negative log-likelihood for
the data set.

Load the data and extract the subset we plan to work with:

> data(ReedfrogPred)

> x = subset (ReedfrogPred, pred == "pred" & density ==
+ 10 & size == "small")

> k = x$surv

We can use the optim function to numerically optimize (by default, min-
imizing rather than maximizing) this function. You need to give optim the
objective function — the function you want to minimize (binomNLL1 in this
case) — and a vector of starting parameters. You can also give it other in-
formation, such as a data set, to be passed on to the objective function. The
starting parameters don’t have to be very accurate (if we had accurate estimates
already we wouldn’t need optim), but they do have to be reasonable. That’s

*Maximum likelihood estimation actually gives a biased estimate of the variance, dividing
the sum of squares 3 (x; — Z)? by n instead of n — 1.
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Figure 1: Likelihood curves for a simple distribution: binomial-distributed pre-
dation.

why we spent so much time in Chapters 7?7 and ?? on eyeballing curves and the
method of moments.

> 01 = optim(fn = binomNLL1, par = c(p = 0.5), N = 10,
+ k = k, method = "BFGS")

fn is the argument that specifies the objective function and par specifies
the vector of starting parameters. Using c(p=0.5) names the parameter p —
probably not necessary here but very useful for keeping track when you start
fitting models with more parameters. The rest of the command specifies other
parameters and data and optimization details; Chapter ?? explains why you
should use method="BFGS" for a single-parameter fit.

Check the estimated parameter value and the maximum likelihood — we
need to change sign and exponentiate the minimum negative log-likelihood that
optim returns to get the maximum log-likelihood:

> O1$par

p
0.7499998

> exp(-01$value)
[1] 0.0005150149

The mle2 function in the bbmle package provides a “wrapper” for optim that
gives prettier output and makes standard tasks easier®. Unlike optim, which

*Why mle2? There is an mle function in the stats4 package that comes with R, but I
added some features — and then renamed it to avoid confusion with the original R function.



is designed for general-purpose optimization, mle2 assumes that the objective
function is a negative log-likelihood function. The names of the arguments are
easier to understand: minuslogl instead of fn for the negative log-likelihood
function, start instead of par for the starting parameters, and data for addi-
tional parameters and data.

> library(bbmle)

> ml1 = mle2(minuslogl = binomNLL1, start = list(p = 0.5),
+ data = list(N = 10, k = k))

> ml

Call:
mle2(minuslogl = binomNLL1, start = list(p = 0.5), data = list(N =
k = k))

Coefficients:

p
0.7499998

Log-likelihood: -7.57

The mle2 package has a shortcut for simple likelihood functions. Instead of
writing an R function to compute the negative log-likehood, you can specify a
formula:

> mle2(k ~ dbinom(prob = p, size = 10), start = list(p = 0.5))

gives exactly the same answer as the previous commands. R assumes that the
variable on the left-hand side of the formula is the response variable (k in this
case) and that you want to sum the negative log-likelihood of the expression on
the right-hand side for all values of the response variable.

One final option for finding maximum likelihood estimates for data drawn
from most simple distributions — although not for the binomial distribution —
is the fitdistr command in the MASS package, which will even guess reasonable
starting values for you. However, it only works in the very simple case where
none of the parameters of the distribution depend on other covariates.

The estimated value of the per capita predation probability, 0.75, is very
close to the analytic solution of 0.75. The estimated value of the maximum
likelihood (Figure 1) is quite small (£ =5.150 x 10~%). That is, the probability
of this particular outcome is low*. In general, however, we will only be interested
in the relative likelihoods (or log-likelihoods) of different parameters and models
rather than their absolute likelihoods.

Having fitted a model to the data (even a very simple one), it’s worth plotting
the predictions of the model. In this case the data set is so small (4 points) that
sampling variability dominates the plot (Figure 1b).

*I randomly simulated 1000 samples of four values drawn from the binomial distribution
with p = 0.75, N = 10. The maximum likelihood was smaller than the observed value given
in the text 22% of the time. Thus, although it is small this likelihood is not significantly lower
than would be expected by chance.



2.1.2 Myxomatosis data: Gamma likelihood

As part of the effort to use myxomatosis as a biocontrol agent against intro-
duced European rabbits in Australia, Fenner and co-workers studied the virus
concentrations (titer) in the skin of rabbits that had been infected with different
virus strains (Fenner et al., 1956). We’ll choose a Gamma distribution to model
these continuously distributed, positive datal. For the sake of illustration, we’ll
use just the data for one viral strain (grade 1).

> data(MyxoTiter_sum)
> myxdat = subset(MyxoTiter_sum, grade == 1)

The likelihood equation for Gamma-distributed data is hard to maximize
analytically, so we’ll go straight to a numerical solution. The negative log-
likelihood function looks just very much like the one for binomial data*.

> gammaNLL1 = function(shape, scale) {

+ -sum (dgamma (myxdat$titer, shape = shape, scale = scale,
+ log = TRUE))
+}

It’s harder to find starting parameters for the Gamma distribution. We can use

the method of moments (Chapter ??) to determine reasonable starting values for

the scale (=variance/mean=coefficient of variation [CV]) and shape(=variance/mean?=mean/CV)
parameterSJr .

> gm = mean(myxdat$titer)
> cv = var(myxdat$titer)/mean(myxdat$titer)

Now fit the data:

> m3 = mle2(gammaNLL1, start = list(shape = gm/cv,
+ scale = cv))

> m3

Call:
mle2(minuslogl = gammaNLL1, start = list(shape = 45.8, scale = 0.151))

Coefficients:
shape scale
49.3421124 0.1403326

Log-likelihood: -37.67

TWe could also use a log-normal distribution or (since the minimum values are far from
zero and the distributions are reasonably symmetric) a normal distribution.

*optim insists that you specify all of the parameters packed into a single numeric vector
in your negative log-likelihood function. mle prefers the parameters as a list. mle2 will accept
either a list, or, if you use parnames to specify the parameter names, a numeric vector (p. 16)

TBecause the estimates of the shape and scale are very strongly correlated in this case, I
ended up having to tweak the starting conditions slightly away from the method of moments
estimates, to {45.8,0.151}.
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Figure 2: Likelihood curves for a simple distribution: Gamma-distributed virus
titer. Black contours are spaced 200 log-likelihood units apart; gray contours
are spaced 20 log-likelihood units apart. In the right-hand plot, the gray line
is a kernel density estimate; solid line is the Gamma fit; and dashed line is the
normal fit.

I could also use the formula interface,

> m3 = mle2(myxdat$titer ~ dgamma(shape, scale = scale),
+ start = list(shape = gm/cv, scale = cv))

Since the default parameterization of the Gamma distribution in R uses the
rate parameter instead of the scale parameter, I have to make sure to specify
the scale parameter explicitly. Or I could use fitdistr from the MASS package:

> f1 = fitdistr(myxdat$titer, "gamma")

fitdistr gives slightly different values for the parameters and the likelihood,
but not different enough to worry about. A greater possibility for confusion is
that fitdistr reports the rate (=1/scale) instead of the scale parameter.
Figure 2 shows the negative log-likelihood (now a negative log-likelihood
surface as a function of two parameters, the shape and scale) and the fit of the
model to the data (virus titer for grade 1). Since the “true” distribution of the
data is hard to visualize (all of the distinct values of virus titer are displayed as
jittered values along the bottom axis), I've plotted the nonparametric (kernel)
estimate of the probability density in gray for comparison. The Gamma fit is
very similar, although it takes account of the lowest point (a virus titer of 4.2)
by spreading out slightly rather than allowing the bump in the left-hand tail
that the nonparametric density estimate shows. The large shape parameter of
the best-fit Gamma distribution (shape=49.34) indicates that the distribution
is nearly symmetrical and approaching normality (Chapter ??). Ironically, in
this case the plain old normal distribution actually fits slightly better than the



Gamma distribution, despite the fact that we would have said the Gamma was
a better model on biological grounds (it doesn’t allow virus titer to be negative).
However, according to criteria we will discuss later in the chapter, the models are
not significantly different and you could choose either on the basis of convenience
and appropriateness for the rest of the story you were telling. If we fitted a more
skewed distribution, like the wrasse settlement distribution, the Gamma would
certainly win over the normal.

2.2 Bayesian analysis

Bayesian estimation also uses the likelihood, but it differs in two ways from
maximum likelihood analysis. First, we combine the likelihood with a prior
probability distribution in order to determine a posterior probability distribu-
tion. Second, we often report the mean of the posterior distribution rather than
its mode (which would equal the MLE if we were using a completely uninfor-
mative or “flat” prior). Unlike the mode, which reflects only local information
about the peak of the distribution, the mean incorporates the entire pattern of
the distribution, so it can be harder to compute.

2.2.1 Binomial distribution: conjugate priors

In the particular case when we have so-called conjugate priors for the distribu-
tion of interest, Bayesian estimation is easy. As introduced in Chapter 77, a
conjugate prior is a choice of the prior distribution that matches the likelihood
model so that the posterior distribution has the same form as the prior distri-
bution. Conjugate priors also allow us to interpret the strength of the prior in
simple ways.

For example, the conjugate prior of the binomial likelihood that we used
for the tadpole predation data is the Beta distribution. If we pick a Beta prior
with shape parameters a and b, and if our data include a total of > k “successes”
(predation events) and nN — > k “failures” (surviving tadpoles) out of a total of
nN “trials” (exposed tadpoles), the posterior distribution is a Beta distribution
with shape parameters a + >k and b+ (nIN — > k). If we interpret a — 1
as the total number of previously observed successes and b — 1 as the number
of previously observed failures, then the new distribution just combines the
total number of successes and failures in the complete (prior plus current) data
set. When a = b = 1, the Beta distribution is flat, corresponding to no prior
information (¢ —1 = b—1 = 0). As a and b increase, the prior distribution
gains more information and becomes peaked. We can also see that, as far
as a Bayesian is concerned, it doesn’t matter how we divide our experiments
up. Many small experiments, aggregated with successive uses of Bayes’ Rule,
give the same information as one big experiment (provided of course that there
is no variation in per-trial probability among sets of observations, which we
have assumed in our statistical model for both the likelihood and the Bayesian
analysis).



We can also examine the effect of different priors on our estimate of the
mean (Figure 3). If we have no prior information and choose a flat prior with
a = b = 1, then our final answer is that the per-capita predation probability
is distributed as a Beta distribution with shape parameters a = >k 4+ 1 = 31,
b=nN—->k+1=11. The mode of this Beta distribution occurs at (a —
1)/(a+b—2) = > k/(nN) = 0.75 — exactly the same as the maximum likelihood
estimate of the per-capita predation probability. Its mean is a/(a + b) = 0.738
— very slightly shifted toward 0.5 (the mean of our prior distribution) from
the MLE. If we wanted a distribution whose mean was equal to the maximum
likelihood estimate, we could generate a scaled likelihood by normalizing the
likelihood so that it integrated to 1. However, to create the Beta prior that
would lead to this posterior distribution we would have to take the limit as a
and b go to zero, implying a very peculiar prior distribution with infinite spikes
at 0 and 1.

If we had much more prior data — say a set of experiments with a total
of (nIN)prior = 200 tadpoles, of which } kpjor = 120 were eaten — then the
parameters of prior distribution would be ¢ = 121, b = 81, the posterior mode
would be 0.625, and the posterior mean would be 0.624. Both the posterior mode
and mean are much closer to the prior values than to the maximum likelihood
estimate because the prior information is much stronger than the information
we can obtain from the data.

If our data were Poisson, we could use a conjugate prior Gamma distribution
with shape a and scale s and interpret the parameters as a=total counts in
previous observations and 1/s=number of previous observations. Then if we
observed C' counts in our data, the posterior would be a Gamma distribution
witho/ =a+C, 1/ =1/s+ 1.

The conjugate prior for the mean of a normal distribution, if we know the
variance, is another normal distribution. The posterior mean is an average of the
prior mean and the observed mean, weighted by the precisions — the reciprocals
of the prior and observed variances. The conjugate prior for the precision if we
know the mean is the Gamma distribution.

2.2.2 Gamma distribution: multiparameter distributions and non-
conjugate priors

Unfortunately simple conjugate priors aren’t always available, and we often
have to resort to numerical integration to evaluate Bayes’ Rule. Just plotting
the numerator of Bayes’ Rule, (prior(p) x L(p)), is easy: for anything else, we
need to integrate (or use summation to approximate an integral).

In the absence of much prior information for the myxomatosis parameters a
(shape) and s (scale), I chose a weak, independent prior distribution:

Prior(a) ~ Gamma(shape = 0.01,scale = 100)
Prior(s) ~ Gamma(shape = 0.1,scale = 10)
Prior(a,s) = Prior(a) - Prior(s).

10
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Figure 3: Bayesian priors and posteriors for the tadpole predation data. The
scaled likelihood is the normalized likelihood curve, corresponding to the weakest
prior possible. Prior(1,1) is weak, corresponding to zero prior samples and
leading to a posterior (31,11) that is almost identical to the scaled likelihood
curve. Prior(121,81) is strong, corresponding to a previous sample size of 200
trials and leading to a posterior (151,111) that is much closer to the prior than

to the scaled likelihood.
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Bayesians often use the Gamma as a prior distribution for parameters that must
be positive. Using a small shape parameter gives the distribution a large vari-
ance (corresponding to little prior information) and means that the distribution
will be peaked at small values but is likely to be flat over the range of interest.
Finally, the scale is usually set large enough to make the mean of the param-
eter (= shape - scale) reasonable. Finally, I made the probabilities of a and s
independent, which keeps the form of the prior simple.

As introduced in Chapter 77, the posterior probability is proportional to the
prior times the likelihood. To compute the actual posterior probability, we need
to divide the numerator Prior(p) x L(p) by its integral to make sure the total
area (or volume) under the probability distribution is 1:

. Prior(a, s) X L(a, s)
Post =
0S erlor(a, 5) ff Prior(a, S)L(a7 S) dads

Figure 4 shows the (two-dimensional) posterior distribution for the myxomatosis
data. As is typical for reasonably large data sets, the probability density is
very sharp. The contours shown on the plot illustrate a rapid decrease from a
probability density of 0.01 at the mode down to a probability density of 10719,
and most of the posterior density is even lower than this minimum contour line.

If we want to know the distribution of each parameter individually, we have
to calculate its marginal distribution: that is, what is the probability that a or s
fall within a particular range, independent of the value of the other variable? To
calculate the marginal distribution, we have to integrate (take the expectation)
over all possible values of the other parameter:

Posterior(a) = /Posterior(a,s)s ds
Posterior(s) = /Posterior(a,s)a da

Figure 4 also shows the marginal distributions of a and s.

What if we want to summarize the results still further and give a single
value for each parameter (a point estimate) representing our conclusions about
the virus titer? Bayesians generally prefer to quote the mean of a parameter
(its expected value) rather than the mode (its most probable value). Neither
summary statistic is more correct than the other — they give different informa-
tion about the distribution — but they can lead to radically different inferences
about ecological systems (Ludwig, 1996). The differences will be largest when
the posterior distribution is asymmetric (the only time the mean can differ from
the mode) and when uncertainty is large. In Figure 4, the mean and the mode
are close together.

To compute mean values for the parameters, we need to compute some more
integrals, finding the weighted average of the parameters over the posterior

12



distribution:

a = /Posterior(a) ~ada
5 = /Posterior(s)~sds

(we can also compute these means from the full rather than the marginal dis-
tributions: e.g. @ = [[ Posterior(a, s)adads)*.
R can compute all of these integrals numerically. We can define functions

> prior.as = function(a, s) {

+ dgamma(a, shape = 0.01, scale = 100) * dgamma(s,

+ shape = 0.1, scale = 10)

+ }

> unscaled.posterior = function(a, s) {

+ prior.as(a, s) * exp(-gammaNLL1(shape = a, scale = s))
+

and use integrate (for 1-dimensional integrals) or adapt (in the adapt pack-
age; for multi-dimensional integrals) to do the integration. More crudely, we
can approximate the integral by a sum, calculating values of the integrand for
discrete values, (e.g. s = 0,0.01,...10) and then calculating > P(s)As — this
is how I created Figure 4.

However, integrating probabilities is tricky for two reasons. (1) Prior prob-
abilities and likelihoods are often tiny for some parameter values, leading to
roundoff error; tricks like calculating log-probabilities for the prior and likeli-
hood, adding, and then exponentiating can help. (2) You must pick the number
and range of points at which to evaluate the integral carefully. Too coarse
a grid leads to approximation error, which may be severe if the function has
sharp peaks. Too small a range, or the wrong range, can miss important parts
of the surface. Large, fine grids are very slow. The numerical integration func-
tions built in to R help — you give them a range and they try to evaluate the
number of points at which to evaluate the integral — but they can still miss
peaks in the function if the initial range is set too large so that their initial
grid fails to pick up the peaks. Integrals over more than two dimensions make
these problem even worse, since you have to compute a huge number of points
to cover a reasonably fine grid. This problem is the first appearance of the curse
of dimensionality (Chapter ?77).

In practice, brute-force numerical integration is no longer feasible with mod-
els with more than about two parameters. The only practical alternatives are
Markov chain Monte Carlo approaches, introduced later in this chapter and in
more detail in Chapter ?7.

For the myxomatosis data, the posterior mode is (a = 47, s = 0.15), close to
the maximum likelihood estimate of (a = 49.34,s = 0.14) (the differences are

*The means of the marginal distributions are the same as the mean of the full distribution.
Confusingly, the modes of the marginal distributions are not the same as the mode of the full
distribution.

13
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Figure 4: Bivariate and marginal posterior distributions for the myxomatosis
titer data. Contours are drawn, logarithmically spaced, at probability lev-
els from 0.01 to 1071%. Posterior distributions are weak and independent,
Gamma(shape=0.1, scale=10) for scale and Gamma(shape=0.01, scale=100)
for shape.
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Figure 5: Maximum-likelihood fits to tadpole predation (Holling type II/bino-
mial) and myxomatosis (Ricker/Gamma) models.

probably caused more by round-off error than by the effects of the prior). The
posterior mean is (a = 45.84, s = 0.16).

3 Estimation for more complex functions

So far we’ve estimated the parameters of a single distribution (e.g. X ~
Binomial(p) or X ~ Gamma(a,s)). We can easily extend these techniques to
more interesting ecological models like the ones simulated in Chapter 7?7, where
the mean or variance parameters of the model vary among groups or depend on
covariates.

3.1 Maximum likelihood
3.1.1 Tadpole predation

We can combine deterministic and stochastic functions to calculate likelihoods,
just as we did to simulate ecological processes in Chapter ??. For example,
suppose tadpole predators have a Holling type II functional response (attack
rate = aN/(1 + ahN)), meaning that the per capita predation rate of tadpoles
decreases hyperbolically with density (= a/(1+ ahN)). The distribution of the
actual number eaten is likely to be binomial with this probability. If IV is the
number of tadpoles in a tank,

_ a
~ 1+4+ahN (8)
k ~ Binom(p, N).

p

Since the distribution and density functions in R (such as dbinom) operate

15



on vectors just as do the random-deviate functions (such as rbinom) used in
Chapter 77, I can translate this model definition directly into R, using a numeric
vector p={a, s} for the parameters:

> binomNLL2 = function(p, N, k) {

+ a =pl[1]

+ h = pl[2]

+ predprob = a/(1 + a * h * N)

+ -sum(dbinom(k, prob = predprob, size = N, log = TRUE))
+}

Now we can dig out the data from the functional response experiment of
Vonesh and Bolker (2005), which contains the variables Initial (N) and Killed
(k). Plotting the data (Figure ?7) and eyeballing the initial slope and asymp-
tote gives us crude starting estimates of a (initial slope) at around 0.5 and h
(1/asymptote) at around 1/80 = 0.0125.

> data(ReedfrogFuncresp)

> attach(ReedfrogFuncresp)

> 02 = optim(fn = binomNLL2, par = c(a = 0.5, h = 0.0125),
+ N = Initial, k = Killed)

This optimization gives us parameters (¢ = 0.526, h = 0.017) — so our
starting guesses were pretty good.

In order to use mle2 for this purpose, you would normally have to rewrite
the negative log-likelihood function with the parameters a and h as separate
arguments (i.e. function(a,h,p,N,k)). However, mle2 will let you pass the
parameters inside a vector as long as you use parnames to attach the names of
the parameters to the function.

> parnames (binomNLL2) = c("a", "h")

> m2 = mle2(binomNLL2, start = c(a = 0.5, h = 0.0125),
+ data = 1list(N = Initial, k = Killed))

> m2

Call:
mle2(minuslogl = binomNLL2, start = c(a = 0.5, h = 0.0125), data =
k = Killed), vecpar = TRUE)

Coefficients:
a h
0.52630319 0.01664362

Log-likelihood: -46.72

The answers are very slightly different from the optim results (mle2 uses a
different numerical optimizer by default).
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As always, we should plot the fit to the data to make sure it is sensible.
Figure 5a shows the expected number killed (a Holling type II function) and
uses the gbinom function to plot the 95% confidence intervals of the binomial
distribution*. One point falls outside of the confidence limits: for 16 points, this
isn’t surprising (we would expect one point out of 20 to fall outside the limits
on average), although this point is quite low (5/50, compared to an expectation
of 18.3 — the probability of getting this extreme an outlier is only 2.11 x 10~?).

3.1.2 Myxomatosis virus

When we looked at the myxomatosis titer data before we treated it as though
it all came from a single distribution. In reality, titers typically change consid-
erably as a function of the time since infection. Following Dwyer et al. (1990),
we will fit a Ricker model to the mean titer level. Figure 5 shows the data for
the grade 1 virus: as a function that starts from zero, grows to a peak, and then
declines, the Ricker seems to make sense although for the grade 1 virus we have
only biological common sense, and the evidence from the other virus grades to
say that the titer would eventually decrease. Grade 1 is so virulent that rabbits
die before titer has a chance to drop off. We’ll stick with the Gamma distribu-
tion for the distribution of titer 7" at time ¢, but parameterize it with shape (s)
and mean rather than shape and scale parameters (i.e. scale=mean/shape):

m = ate” %

(9)

T ~ Gamma(shape = s,scale = m/a)
Translating this into R is straightforward:

> gammaNLL2 = function(a, b, shape) {

+ meantiter = a * myxdat$day * exp(-b * myxdat$day)

+ -sum(dgamma (myxdat$titer, shape = shape, scale = meantiter/shape,
+ log = TRUE))

+}

We need initial values, which we can guess knowing from Chapter ?? that
a is the initial slope of the Ricker function and 1/b is the z-location of the
peak. Figure 5 suggests that a ~ 1, 1/b &~ 5. I knew from the previous fit
that the shape parameter is large, so I started with shape=50. When I tried
to fit the model with the default optimization method I got a warning that the
optimization had not converged, so I used an alternative optimization method,
the Nelder-Mead simplex (p. 77).

> m4 = mle2(gammaNLL2, start = list(a = 1, b = 0.2,
+ shape = 50), method = "Nelder-Mead")
> m4

*These confidence limits, sometimes called plug-in estimates, ignore the uncertainty in the
parameters.
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Call:

mle2(minuslogl = gammaNLL2, start = list(a = 1, b = 0.2, shape = 50),

method = "Nelder-Mead")

Coefficients:
a b shape
3.5614933 0.1713346 90.6790545

Log-likelihood: -29.51

We could run the same analysis a bit more compactly, without explicitly defining
a negative log-likelihood function, using mle2’s formula interface:

> mle2(titer ~ dgamma(shape, scale = a * day * exp(-b *
+ day)/shape), start = list(a = 1, b = 0.2, shape = 50),
+ data = myxdat, method = "Nelder-Mead")

Specifying data=myxdat lets us use day and titer in the formula instead of
myxdat$day and myxdat$titer.

3.2 Bayesian analysis

Extending the tools to use a Bayesian approach is straightforward, although
the details are more complicated than maximum likelihood estimation. We
can use the same likelihood models (e.g. (8) for the tadpole predation data or
(9) for myxomatosis). All we have to do to complete the model definition for
Bayesian analysis is specify prior probability distributions for the parameters.
However, defining the model is not the end of the story. For the binomial
model, which has only two parameters, we could proceed more or less as in the
Gamma distribution example above (Figure 4), calculating the posterior density
for many combinations of the parameters and computing integrals to calculate
marginal distributions and means. To evaluate integrals for the three-parameter
myxomatosis model we would have to integrate the posterior distribution over
a three-dimensional grid, which would quickly become impractical.

Markov chain Monte Carlo (MCMC) is a numerical technique that makes
Bayesian analysis of more complicated models feasible. BUGS is a program that
allows you to run MCMC analyses without doing lots of programming. Here is
the BUGS code for the myxomatosis example:

model {
for (i in 1:n) {
mean[i] <- axday[il*exp(-bx*xday[i])
rate[i] <- shape/mean([il]
titer[i] ~ dgamma (shape,ratel[il)
}
## priors
a ~ dgamma(0.1,0.1)
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b ~ dgamma(0.1,0.1)
shape ~ dgamma(0.1,0.01)
}

BUGS’s modeling language is similar but not identical to R. For example, BUGS
requires you to use <- instead of = for assignments.

As you can see, the BUGS model also looks a lot like the likelihood model (eq.
9). Lines 3-5 specify the model (BUGS uses shape and rate parameters to define
the Gamma distribution rather than shape and scale parameters: differences in
parameterization are some of the most important differences between the BUGS
and R languages.) Lines 8-10 give the prior distributions for the parameters,
all Gamma in this case. The BUGS model is more explicit than eq. 9 — in
particular, you have to put in an explicit for loop to calculate the expected
values for each data point — but the broad outlines are the same, even up to
using a tilde (7) to mean “is distributed as”.

You can either run BUGS either as a standalone program, or from within
R, using the R2WinBUGS package as an interface to the WinBUGS program for
running BUGS on Windows*.

> library (R2WinBUGS)

You have to specify the names of the data exactly as they are listed in the BUGS
model (given above, but stored in a separate text file myxol.bug):

> titer = myxdat$titer
> day = myxdat$day
> n = length(titer)

You also have to specify starting points for multiple chains, which should vary
among reasonable values (p. ?7), as a list of lists:

> inits <- list(list(a = 4, b = 0.2, shape = 90), list(a = 1,
+ b = 0.1, shape = 50), list(a = 8, b = 0.4, shape = 150))

(T originally started b at 1.0 for the third chain, but WinBUGS kept giving
me an error saying “cannot bracket slice for node a”. By trial and error — by
eliminating chains and changing parameters — I established that the value of b
in chain 3 was the problem.)

Now you can run the model through WinBUGS:

> myxol.bugs <- bugs(data = list("titer", "day", "n"),

+ inits, parameters.to.save = c("a", "b", "shape"),
+ model.file = "myxol.bug", n.chains = length(inits),
+ n.iter = 3000)

As we will see shortly, you can recover lots of information for a Bayesian anal-
ysis from a WinBUGS run — for now, you can use print (myxol.bugs,digits=4)
to see that the estimates of the means, {a = 3.55,b = 0.17,s = 79.9}, are reas-
suringly close to the maximum-likelihood estimates (p. 18).

*WinBUGS runs on Windows and on Intel machines under Linux or MacOS (using Wine
or Crossover Office). Chapter 7?7 gives more details.

19



4 Likelihood surfaces, profiles, and confidence
intervals

So far, we’ve used R or WinBUGS to find point estimates (maximum likelihood
estimates or posterior means) automatically, without looking very carefully at
the curves and surfaces that describe how the likelihood varies with the param-
eters. This approach gives little insight when things go wrong with the fitting
(as happens all too often). Furthermore, point estimates are useless without
measures of uncertainty. We really want to know the uncertainty associated
with the parameter estimates, both individually (univariate confidence inter-
vals) and together (bi- or multivariate confidence regions). This section will
show how to draw and interpret goodness-of-fit curves (likelihood curves and
profiles, Bayesian posterior joint and marginal distributions) and their connec-
tions to confidence intervals.

4.1 Frequentist analysis: likelihood curves and profiles

The most basic tool for understanding how likelihood depends on one or more
parameters is the likelihood curve or likelihood surface, which is just the likeli-
hood plotted as a function of parameter values (e.g. Figure 1). By convention,
we plot the negative log-likelihood rather than log-likelihood, so the best esti-
mate is a minimum rather than a maximum. (I sometimes call negative log-
likelihood curves badness-of-fit curves, since higher points indicate a poorer fit
to the data.) Figure 6a shows the negative log-likelihood curve (like Figure 1
but upside-down and with a different y axis), indicating the minimum negative
log-likelihood (=maximum likelihood) point, and lines showing the upper and
lower 95% confidence limits (we’ll soon see how these are defined). Every point
on a likelihood curve or surface represents a different fit to the data: Figure 6b
shows the observed distribution of the binomial data along with three separate
curves corresponding to the lower estimate (p = 0.6), best fit (p = 0.75), and
upper estimate (p = 0.87) of the per capita predation probability.

For models with more than one parameter, we draw likelihood surfaces in-
stead of curves. Figure 7 shows the negative log-likelihood surface of the tadpole
predation data as a function of attack rate a and handling time h. The minimum
is where we found it before, at (a = 0.526, h = 0.017). The likelihood contours
are roughly elliptical and are tilted near a 45 degree angle, which means (as we
will see) that the estimates of the parameters are correlated. Remember that
each point on the likelihood surface corresponds to a fit to the data, which we
can (and should) look at in terms of a curve through the actual data values:
Figure 9 shows the fit of several sets of parameters (the ML estimates, and two
other less well-fitting a-h pairs) on the scale of the original data.

If we want to deal with models with more than two parameters, or if we
want to analyze a single parameter at a time, we have to find a way to isolate
the effects of one or more parameters while still accounting for the rest. A
simple, but usually wrong, way of doing this is to calculate a likelihood slice,
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Figure 6: (a) Negative log-likelihood curve and confidence intervals for binomial-
distributed predation of tadpoles. (b) Comparison of fits to data. Gray verti-
cal bars show proportion of trials with different outcomes; lines and symbols
show fits corresponding to different parameters indicated on the negative log-
likelihood curve in (a).

fixing the values of all but one parameter (usually at their maximum likelihood
estimates) and then calculating the likelihood for a range of values of the focal
parameter. The horizontal line in the middle of Figure 7 shows a likelihood slice
for a, with h held constant at its MLE. Figure 8 shows an elevational view, the
negative log-likelihood for each value of a. Slices can be useful for visualizing the
geometry of a many-parameter likelihood surface near its minimum, but they
are statistically misleading because they don’t allow the other parameters to
vary and thus they don’t show the minimum negative log-likelihood achievable
for a particular value of the focal parameter.

Instead, we calculate likelihood profiles, which represent “ridgelines” in pa-
rameter space showing the minimum negative log-likelihoods for particular val-
ues of a single parameter. To calculate a likelihood profile for a focal parameter,
we have to set the focal parameter in turn to a range of values, and for each
value optimize the likelihood with respect to all of the other parameters. The
likelihood profile for a in Figure 7 runs through the contour lines (such as the
confidence regions shown) at the points where the contours run exactly vertical.
Think about looking for the minimum along a fixed-a transect (varying h —
vertical lines in Figure 7); the minimum will occur at a point where the transect
is just touching (tangent to) a contour line. Slices are always steeper than pro-
files, (e.g. Figure 8), because they don’t allow the other parameters to adjust to
changes in the focal parameter. Figure 9 shows that the fit corresponding to a
point on the profile (triangle/dashed line) has a lower value of i (handling time,
corresponding to a higher asymptote) that compensates for its enforced lower
value of a (attack rate/initial slope), while the equivalent point from the slice
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Figure 7: Likelihood surface for tadpole predation data, showing univariate
and bivariate 95% confidence limits and likelihood profiles for a and h. Darker
shades of gray represent higher negative log-likelihoods. Solid line shows the
95% bivariate confidence region. Dotted black and gray lines indicate 95%
univariate confidence regions. Dash-dotted line and dashed line show likelihood
profiles for h and a. Long-dash gray line shows the likelihood slice with varying
a and constant h. The black dot indicates the maximum likelihood estimate; the
star is an alternate fit along the slice with the same handling time; the triangle
is an alternate fit along the likelihood profile for a.
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(star/dotted line) has the same handling time as the MLE fit, and hence fits the
data worse — corresponding to the higher negative log-likelihood in Figure 8.

4.1.1 The Likelihood Ratio Test

On a negative log-likelihood curve or surface, higher points represent worse fits.
The steeper and narrower the valley (i.e. the faster the fit degrades as we move
away from the best fit), the more precisely we can estimate the parameters.
Since the negative log-likelihood for a set of independent observations is the sum
of the individual negative log-likelihoods, adding more data makes likelihood
curves steeper. For example, doubling the number of observations will double
the negative log-likelihood curve across the board — in particular, doubling the
slope of the negative log-likelihood surface*.

It makes sense to determine confidence limits by setting some upper limit on
the negative log-likelihood and declaring that any parameters that fit the data
at least that well are within the confidence limits. The steeper the likelihood
surface, the faster we reach the limit and the narrower are the confidence limits.
Since we only care about the relative fit of different models and parameters,
the limits should be relative to the maximum log-likelihood (minimum negative
log-likelihood).

For example, Edwards (1992) suggested that one could set reasonable con-
fidence regions by including all parameters within 2 log-likelihood units of the
maximum log-likelihood, corresponding to all fits that gave likelihoods within
a factor of ~ 7.4 of the maximum. However, this approach lacks a frequentist
probability interpretation — there is no corresponding p-value. This deficiency
may be an advantage, since it makes dogmatic null-hypothesis testing impossi-
ble.

If you insist on p-values, you can also use differences in log-likelihoods (corre-
sponding to ratios of likelihoods) in a frequentist approach called the Likelihood
Ratio Test (LRT). Take some likelihood function £(p1,p2,...,ps), and find the
overall best (maximum likelihood) value, Ly = L(p1,P2, .- -DPn) (“abs” stands
for “absolute”). Now fix some of the parameters (say p; ...p,) to specific val-
ues (p3,...p!), and maximize with respect to the remaining parameters to get
Lrestr = LD, D5 Drt1y .-, Dn) (“restr” stands for “restricted”, sometimes
also called a reduced or nested model). The Likelihood Ratio Test says that the
distribution of twice the negative log of the likelihood ratio, —210g(Lyestr/Labs)s
called the deviance, is approximately x? (“chi-squared”) distribution with 7 de-

*Doubling the sample size also typically doubles the minimum negative log-likelihood as
well, which may seem odd — why would adding more data worsen the fit of the model?
— until you remember that we’re not really interested in the probability of a particular set
of data, just the relative likelihood of different models and parameters. The probability of
flipping a fair coin (p = 0.5) twice and getting one head and one tail is 0.5. The probability
of flipping the same coin 1000 times and getting 500 heads and 500 tails is only 0.025; that
doesn’t mean that we should reject the hypothesis that the coin is fair.
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Figure 10: Likelihood profiles and LRT confidence intervals for tadpole preda-
tion data.

grees of freedomt?.
The log of the likelihood ratio is the difference in the log-likelihoods, so

2 (_ log Lrestr — (_ log £abs)) ~ X?- (10)

The definition of the LRT echoes the definition of the likelihood profile,
where we fix one parameter and maximize the likelihood /minimize the negative
log-likelihood with respect to all the other parameters: » = 1 in the definition
above. Thus, for univariate confidence limits we cut off the likelihood profile
at (min. neg. log. likelihood + x?(1 — «)/2), where « is our chosen confidence
level (0.95, 0.99, etc.). (The cutoff is a one-tailed test, since we are looking
only at differences in likelihood that are larger than expected under the null
hypothesis.) Figure 10 shows the likelihood profiles for a and h, along with the
95% and 99% confidence intervals: you can see how the confidence intervals on
the parameters are drawn as vertical lines through the intersection points of the
(horizontal) likelihood cutoff levels with the profile.

The 99% confidence intervals have a higher cutoff than the 95% confidence
intervals (x%(0.99)/2 = 3.32 > x%(0.95)/2 = 1.92), and hence the 99% intervals

TYou may associate the x2 distribution with contingency table analysis, chisq.test in R,
but it is a distribution that appears much more broadly in statistics.

THere’s a heuristic explanation: you can prove that the distribution of the maximum
likelihood estimate is asymptotically normally distributed (i.e. with sufficiently large sample
sizes). You can also show, by Taylor expanding, that the log-likelihood surface is quadratic,
with curvature determined by the variances of the parameters. If we are restricting r» param-
eters, then we are moving away from the maximum likelihood of the more complex model in
r directions, by a normally distributed amount 6; in each direction. Since the log-likelihood
surface is quadratic, the drop in the negative log-likelihood is >_;_, 91.2. Since the 6; values
(likelihood estimates of each parameter) are each normally distributed, the sum of squares of
r of them is x? distributed with 7 degrees of freedom. (This explanation is necessarily crude;
for the real derivation, see Kendall and Stuart (1979).)
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are wider.
Here are the numbers:

« @ —L+ @ variable lower upper
0.95 1.92 486 «a 0.40200 0.6820
h 0.00699 0.0264

0.99 3.32 50.0 a 0.37000 0.7390
h 0.00387 0.0296

R can compute profiles and profile confidence limits automatically. Given
an mle2 fit m, profile(m) will compute a likelihood profile and confint (m)
will compute profile confidence limits. plot (profile(m2)) will plot the profile,
square-root transformed so that a quadratic profile will appear V-shaped (or
linear if you specify absVal=FALSE). This transformation makes it easier to see
whether the profile is quadratic, since it’s easier to see whether a line is straight
than it is to see whether it’s quadratic. Computing the profile can be slow, so if
you want to plot the profile and find confidence limits, or find several different
confidence limits, you can save the profile and then use confint on the profile:

> p2 = profile(m2)
> confint(p2)

It’s also useful to know how to calculate profiles and profile confidence limits
yourself, both to understand them better and for the not-so-rare times when the
automatic procedures break down. Because profiling requires many separate op-
timizations, it can fail if your likelihood surface has multiple minima (p. ??) or if
the optimization is otherwise finicky. You can try to tune your optimization pro-
cedures using the techniques discussed in Chapter 7?7, but in difficult cases you
may have to settle for approximate quadratic confidence intervals (Section 5).

To compute profiles by hand, you need to write a new negative log-likelihood
function that holds one of the parameters fixed while minimizing the likelihood
with respect to the rest. For example, to compute the profile for a (minimizing
with respect to h for many values of a), you could use the following reduced
negative log-likelihood function:

> binomNLL2.a = function(p, N, k, a) {

+ h =pl1]

+ p=a/(l +a*h*DN)

+ -sum(dbinom(k, prob = p, size = N, log = TRUE))
+ }

Compute the profile likelihood for a range of a values:

avec = seq(0.3, 0.8, length = 100)
aprof = numeric(100)
for (i in 1:100) {
aprof[i] = optim(binomNLL2.a, par = 0.02, k = ReedfrogFuncresp$Killed,
N = ReedfrogFuncresp$Initial, a = avec[i],

+ + VvV vV
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+ method = "BFGS")$value
+ }

The curve drawn by plot(avec,aprof) would look just like the one in Fig-
ure 10a.

To find the profile confidence limits for a, we have to take one branch of the
profile at a time. Starting with the lower branch, the values below the minimum
negative log-likelihood:

> prof.lower = aprof[1:which.min(aprof)]
> prof.avec = avec[1:which.min(aprof)]

Finally, use the approx function to calculate the a value for which —log L =
—log Lyyin + x3(0.95)/2:

> approx(prof.lower, prof.avec, xout = -logLik(m2) +
+ qchisq(0.95, 1)/2)
$x

'log Lik.' 48.64212 (df=2)

$y
[1] 0.4024598

Now let’s go back and look at the bivariate confidence region in Figure 7.
The 95% bivariate confidence region (solid black line) occurs at negative log-
likelihood equal to —log £ + x2(0.95)/2 = —log £ + 5.991/2. This is about
3 log-likelihood units up from the minimum. I’ve also drawn the univariate
region (log £ + x2(0.95)/2 contour). That region is not really appropriate for
this figure, because it applies to a single parameter at a time, but it illustrates
that univariate intervals are smaller than the bivariate confidence region, and
that the confidence intervals, like the profiles, are tangent to the univariate
confidence region.

The LRT is only correct asymptotically, for large data sets. For small data
sets it is an approximation, although one that people use very freely. The other
limitation of the LRT that frequently arises, although it is often ignored, is that
it only works when the best estimate of the parameter is not on the edge of its
allowable range (Pinheiro and Bates, 2000). For example, if you are fitting an
exponential model y = exp(rz) that must be decreasing, so that r < 0, and your
best estimate of r is equal to 0, then the LRT estimate for the upper bound of
the confidence limit is not technically correct (see p. ?7).

4.2 Bayesian approach: posterior distributions and marginal
distributions

What about the Bayesians? Instead of drawing likelihood curves, Bayesians
draw the posterior distribution (proportional to priorx L, e.g. Figure 4). Instead
of calculating confidence limits using the (frequentist) LRT, they define the

28



5 —
2
©
> 3
s 95%
g 2- credible
a L 2.5% tails interval
O T— T — 1 T T

04 05 06 07 08 09 10
Predation probability
per capita

Figure 11: Bayesian 95% credible interval (gray), and 5% tail areas (hashed),
for the tadpole predation data (weak prior: shape=(1,1)).

credible interval, which is the region in the center of the distribution containing
95% (or some other standard proportion) of the probability of the distribution,
bounded by values on either side that have the same probability (or probability
density). Technically, the credible interval is the interval [zy, 23] such that
P(xz1) = P(x2) and C(x3) — C(x1) =1 — o, where P is the probability density
and C' is the cumulative density. The credible interval is slightly different from
the frequentist confidence interval, which is defined as [z, 2] such that C(z1) =
a/2 and C(x2) = 1 — /2. For empirical samples, use quantile to compute
confidence intervals and HPDinterval (“highest posterior density interval”), in
the coda package, to compute credible intervals. For theoretical distributions,
use the appropriate “q” function (e.g. gnorm) to compute confidence intervals
and tcredint, in the emdbook package, to compute credible intervals.

Figure 11 shows the posterior distribution for the tadpole predation (from
Figure 4), along with the 95% credible interval and the lower and upper 2.5%
tails for comparison. The credible interval is symmetrical in height; the cutoff
value on either end of the distribution has the same posterior probability. The
extreme tails are symmetrical in area; the likelihood of extreme values in either
direction is the same. The credible interval’s height symmetry leads to a uniform
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Figure 12: Bayesian credible intervals (bivariate and marginal) for tadpole pre-
dation analysis.

probability cutoff: we never include a less probable value at the one boundary
than the other. To a Bayesian, this property makes more sense than insisting
(as the frequentists do in defining confidence intervals) that the probabilities of
extremes in either direction are the same.

For multi-parameter models, the likelihood surface is analogous to a bivariate
or multivariate probability distribution (Figure 12). The marginal probability
density is the Bayesian analogue of the likelihood profile. Where frequentists
use likelihood profiles to make inferences about a single parameter while taking
the effects of the other parameters into account, Bayesians use the marginal pos-
terior probability density, the overall probability for a particular value of a focal
parameter integrated over all the other parameters. Figure 12 shows the 95%
credible intervals for the tadpole predation analysis, both bivariate and marginal
(univariate). In this case, when the prior is weak and the posterior distribution is
reasonably symmetrical, there is little difference between the bivariate 95% con-
fidence region and the bivariate 95% credible interval (Figure 12), but Bayesian
and frequentist conclusions will not always be so similar.
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5 Confidence intervals for complex models: quadratic
approximation

The methods I've discussed so far (calculating likelihood profiles or marginal
likelihoods numerically) work fine when you have only two, or maybe three,
parameters, but become impractical for models with many parameters. To
calculate a likelihood profile for n parameters, you have to optimize over n — 1
parameters for every point in a univariate likelihood profile. If you want to look
at the bivariate confidence limits of any two parameters you can’t just compute
a likelihood surface. To compute a 2-D likelihood profile, the analogue of the 1-
D profiles we calculated previously, you would have to take every combination of
the two parameters you're interested in (e.g. a 50 x 50 grid of parameter values)
and maximize with respect to all the other n — 2 parameters for every point
on that surface, and then use the values you’ve calculated to draw contours.
Especially when the likelihood function itself is hard to calculate, this procedure
can be extremely tedious.

A powerful, general, but approximate shortcut is to examine the second
derivative(s) of the log-likelihood as a function of the parameter(s). The second
derivatives provide information about the curvature of the surface, which tells
us how rapidly the log-likelihood gets worse, which allows us to estimate the
confidence intervals. This procedure involves a second level of approximation
(like the LRT, becoming more accurate as the number of data points increases),
but it can be useful when you run into numerical difficulties calculating the
profile confidence limits, when you want to compute bivariate confidence regions
for complex models, or more generally explore correlations in high-dimensional
parameter spaces.

To motivate this procedure, let’s briefly go back to a one-dimensional normal
distribution and compute an analytical expression for the profile confidence lim-
its. The likelihood of a set of independent samples from a normal distribution is
L =11, —2= exp(—(z; —p)?/(20?))*. That means the negative log-likelihood

2mo
as a function of the parameters p and o is

—log L(p,0) = C +nlogo + Z <w> , (11)

202

where we’ve lumped the parameter-independent parts of the likelihood into the
constant C. We could differentiate this expression with respect to p and solve
for ;1 when the derivative is zero to show that i = > z;/n. We could then
substitute p = 7w into (11) to find the minimum negative log-likelihood. Once
we have done this we want to calculate the width of the profile confidence interval
¢ — that is, what is the value of ¢ such that

—log L(ji+c,0) = —log L(ji,0) + x3 () /2 ? (12)

*The symbol [] denotes a product, like > but for multiplication.
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Some slightly nasty algebra leads to:

c=\/x%(a)-% (13)

This expression might look familiar: we’ve just rederived the expression for
the confidence limits of the mean! The term o/+/n is the standard error of the
mean; it turns out that the term \/x?(c) is the same as the a/2 quantile for
the normal distribution®. The test uses the quantile of a normal distribution,
rather than a Student ¢ distribution, because we have assumed the variance is
known.

How does this relate to the second derivative? For the normal distribution,
the second derivative of the negative log-likelihood with respect to p is

P (S w?/20%) _ n
dn? (%)

Dy (14)

So we can rewrite the term o/y/n in (13) as /1/Da; the standard deviation
of the parameter, which determines the width of the confidence interval, is
proportional to the square root of the reciprocal of the curvature (i.e., the second
derivative).

While we have derived these conclusions for the normal distribution, they’re
true for any model if the data set is large enough. In general, for a one-
parameter model with parameter p, the width of our confidence region is

2(lo ~1/2
N (FEE) (15)

where N(«) is the appropriate quantile for the standard normal distribution.
This equation gives us a general recipe for finding the confidence region without
doing any extra computation, if we know the second derivative of the negative
log-likelihood at the maximum likelihood estimate. We can find that second
derivative either by calculating it analytically (sometimes feasible), or by cal-
culating it numerically by finite differences, extending the general rule that the
derivative df (p)/dp is approximately (f(p + Ap) — f(p))/Ap:

&f  J(m+24p) —2f(m + Ap) + f(m)
ap? |, (Ap)?

. (16)

The hessian=TRUE option in optim tells R to calculate the second derivative in
this way; this option is set automatically in mle2.

The same idea works for multi-parameter models, but we have to know a
little bit more about second derivatives to understand it. A multi-parameter

*try sqrt(qchisq(0.95,1)) and gnorm(0.975) in R to test this idea [use 0.975 instead of
0.95 in the second expression because this procedure involves a two-tailed test on the normal
distribution but a one-tailed test on the x? distribution, because the x? is the distribution of
a squared normal deviate]
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likelihood surface has more than one second partial derivative: in fact, we get a
matriz of second partial derivatives, called the Hessian. When calculated for a
likelihood surface, the negative of the expected value of the Hessian is called the
Fisher information; when evaluated at the maximum likelihood estimate, it is
the observed information matrix. The second partial derivatives with respect to
the same variable twice (e.g. 9?L/0u?) represent the curvature of the likelihood
surface along a particular axis; the cross-derivatives, e.g. 9°L/(0uda), describe
how the slope in one direction changes as you move along another direction. For
example, for the log-likelihood L of the normal distribution with parameters p
and o, the Hessian is:

9°L 0°L
ou? opd
o7 Dpor | (17)
oudo Oo?

In the simplest case of a one-parameter model, the Hessian reduces to a
single number (i.e. d?L/dp?), the curvature of the likelihood curve at the MLE,
and the estimated standard deviation of the parameter is just (92L/du?)~1/?
as above.

In simple two-parameter models such as the normal distribution the param-
eters are uncorrelated, and the matrix is diagonal:

62l2/ 0
0,
v ) (18)

The off-diagonal zeros mean that the slope of the surface in one direction doesn’t
change as you move in the other direction, and hence the shape of the likelihood
surface in the p direction and the o direction are unrelated. In this case we
can compute the standard deviations of each parameter independently—they’re
the inverse square roots of the second partial derivative with respect to each
parameter (i.e., (92L/0u?)~'/? and (0?°L/do?)~1/?).

In general, when the off-diagonal elements are different from zero, we have to
invert the matrix numerically, which we can do with solve. For a two-parameter
model with parameters a and b we obtain the variance-covariance matrix

V:< gy Oab >7 (19)

2
Tab gy

where 03 and 02 are the variances of a and b and o, is the covariance between
them; the correlation between the parameters is oqp/(040%).

Comparing the (approximate) 80% and 99.5% confidence ellipse to the profile
confidence regions for the tadpole predation data set, they don’t look too bad.
The profile region is slightly skewed—it includes more points where d and r
are both larger than the maximum likelihood estimate, and fewer where both
are smaller—while the approximate ellipse is symmetric around the maximum
likelihood estimate.

This method extends to more than two parameters, even though it is difficult
to draw the pictures. The information matrix of a p-parameter model is a
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Figure 13: Likelihood ratio and information-matrix confidence limits on the
tadpole predation model parameters.
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p X p matrix. Using solve to invert the information matrix gives the variance-
covariance matrix

2
o7 012 ... O1p
2
0921 g5 -.. 02
v=| 7 T, (20)
g g 0'2
pl P2 e »

where o? is the estimated variance of variable i and where 0;; = o0j; is the
estimated covariance between variables ¢ and j: the correlation between i and
j is 045/(0s0;). For an mle2 fit m, vcov(m) will give the approximate variance-
covariance matrix computed in this way and cov2cor(vcov(m)) will scale the
variance-covariance matrix by the variances to give a correlation matrix with
entries of 1 on the diagonal and parameter correlations for the off-diagonal
elements.

The shape of the likelihood surface contains essentially all of the information
about the model fit and its uncertainty. For example, a large curvature or steep
slope in one direction corresponds to high precision for the estimate of that
parameter or combination of parameters. If the curvature is different in different
directions (leading to ellipses that are longer in one direction than another)
then the data provide unequal amounts of precision for the different estimates.
If the contours are oriented vertically or horizontally, then the estimates of
the parameters are independent, but if they are diagonal then the parameter
estimates are correlated. If the contours are roughly elliptical (at least near the
MLE), then the surface can be described by a quadratic function.

These characteristics also help determine which methods and approximations
will work well (Figure 14). If the parameters are uncorrelated (contours oriented
horizontally /vertically), then you can estimate them separately and still get
the correct confidence intervals: the likelihood slice is the same as the profile
(Figure 14a). If they are correlated, on the other hand, you will need to calculate
a profile (or solve the information matrix) to allow for variation in the other
parameters (Figure 14b,d). If the likelihood contours are elliptical — which
happens when the likelihood surface has a quadratic shape — the information
matrix approximation will work well (Figure 14a,b): otherwise, a full profile
likelihood may be necessary to calculate the confidence intervals accurately.

You can usually handle non-quadratic and correlated surfaces by computing
profiles rather than using the simpler quadratic approximations, but in extreme
cases these characteristics can cause problems for fitting (Chapter ?7). All
other things being equal, smaller confidence regions (i.e., for larger and less
noisy data sets and for higher « levels), are more elliptical. Reparameterizing
functions can sometimes make the likelihood surface closer to quadratic and
decrease correlation between the parameters. For example, one might fit the
asymptote and half-maximum of a Michaelis-Menten function rather than the
asymptote and initial slope, or fit log-transformed parameters.
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tervals, and slice intervals.
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6 Comparing models

The last topic for this chapter, a controversial and important one, is model
comparison or model selection. Model comparison and selection are closely
related to the techniques for estimating confidence regions that we have just
covered.

Dodd and Silvertown did a series of studies on fir (Abies balsamea) in New
York state, exploring the relationships among growth, size, age, competition,
and number of cones produced in a given year (Silvertown and Dodd, 1999;
Dodd and Silvertown, 2000): see ?Fir in the emdbook package. Figure 15 shows
the relationship between size (diameter at breast height, DBH) and the total
fecundity over the study period, contrasting populations that have experienced
wave-like die-offs (“wave”) with those that have not (“nonwave”). A power-
law (allometric) dependence of expected fecundity on size allows for increasing
fecundity with size while preventing the fecundity from being negative for any
parameter values. It also agrees with the general observation in morphology
that different traits increase as a power function of size. A negative binomial
distribution in size around the expected fecundity describes discrete count data
with potentially high variance. The resulting model is

= a-DBH®
SR (21)
Y ~ NegBinom(u, k)
where the subscripts ¢ denote different populations — wave (i = w) or non-wave
(i =n).
We might ask any of these biological /statistical questions:

e Does fir fecundity (total number of cones) change (increase) with size
(DBH)?

¢ Do the confidence intervals (credible intervals) of the slope parameters b;
include zero (no change)? Do they include 1 (isometry)?

o Are the allometric parameters b; significantly different from (greater than)
zero? One?

¢ Does a model incorporating the allometric parameters fit the data sig-
nificantly better than a model without a allometric parameter, or equiv-
alently where the allometric parameter is set to zero (@ = a;) or one
(u = a; - DBH?)

e What is the best model to explain, or predict, fir fecundity? does it include
DBH?

Figure 15 shows very clearly that fecundity does increase with size: while
we might want to know how much it increases (based on the estimation and
confidence-limits procedures discussed above), any statistical test of the null
hypothesis b = 0 would be pro forma. More interesting questions in this case
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Figure 15: Fir fecundity as a function of DBH for wave and non-wave popula-
tions. Lines show estimates of the model y = a - DBH? fitted to the populations
separately and combined.
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ask whether and how the size-fecundity curve differs in wave and non-wave
populations. We can extend the model to allow for differences between the two
populations:

= a; - DBH" (22)
Y; ~ NegBinom(u, k;)

where the subscripts ¢ denote different populations — wave (i = w) or non-wave

(i =mn).

Now our questions become:

o Is fecundity the same for small trees in both populations? (Can we reject
the null hypothesis a, = a,?7 Do the confidence intervals of a, — a,
include zero? Does a model with a,, # a,, fit significantly better?)

e Does fecundity increase with DBH at the same rate in both population?
(Can we reject the null hypothesis b, = b,,? Do the confidence intervals of
b, — by, include zero? Does a model with b,, # by, fit significantly better?)

e Is variability around the mean the same in both populations? (Can we
reject the null hypothesis k,, = k,,7 Do the confidence intervals of k,, — k,,
include zero? Does a model with k,, # k,, fit significantly better?)

We can boil any of these questions down to the same basic statistical ques-
tion: for any one of a, b, and k, does a simpler model (with a single parameter
for both populations rather than separate parameters for each population) fit
adequately? Does adding extra parameters improve the fit sufficiently much to
justify the additional complexity?

As we will see, there are many ways to translate these questions into sta-
tistical hypotheses and tests. While there are stark differences in the assump-
tions and philosophy behind different statistical approaches, and hot debate over
which ones are best, it’s worth remembering that in many cases they will all give
reasonably consistent answers to the underlying ecological questions. The rest
of this introductory section explores some general ideas about model selection.
The following sections describe the basics of different approaches, and the final
section summarizes the pros and cons of various approaches.

If we ask “does fecundity change with size?” or “do two populations differ?”,
we know as ecologists that the answer is “yes” — every ecological factor has
some impact, and all populations differ in some way. The real questions are,
given the data we have, whether we can tell what the differences are, and how
we decide which model best explains the data or predicts new results.

Parsimony (sometimes called “Occam’s razor”) is a general argument for
choosing simpler models even though we know the world is complex. All other
things being equal, we should prefer a simpler model to a more complex one —
especially when the data don’t tell a clear story. Model selection approaches
typically go beyond parsimony to say that a more complex model must be not
just better than, but a specified amount better than, a simpler model. If the
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more complex model doesn’t exceed a threshold of improvement in fit (we will
see below exactly where this threshold comes from), we typically reject it in
favor of the simpler model.

Model complexity also affects our predictive ability. Walters and Lud-
wig (1981) simulated fish population dynamics using a complex age-structured
model and showed that in many cases, when data were realistically sparse and
noisy, they could best predict future (simulated) dynamics using a simpler non-
age-structured model. In other words, even though they knew for sure that
juveniles and adults had different mortality rates (because they simulated the
data from a model with mortality differences), a model that ignored this distinc-
tion gave more accurate predictions. This apparent paradox is an example of the
bias-variance tradeoff introduced in Chapter ?7. As we add more parameters
to a model, we necessarily get an increasingly accurate fit to the particular data
we have observed (the bias of our predictions decreases), but our precision for
predicting future observations decreases as well (the variance of our predictions
increases). Data contain a fixed amount of information; as we estimate more
and more parameters we spread the data thinner and thinner. Eventually the
gain in accuracy from having more details in the model is outweighed by the
loss in precision from estimating the effect of each of those details more poorly.
In Ludwig and Walters’s case, spreading the data out across age classes meant
there was not enough data to estimate each age class’s dynamics accurately.

The left-hand plot of Figure 16 shows a set of simulated data generated from
a generalized Ricker model, Y ~ Normal((a+ bz +cz?)e~%*). I fitted these data
with a constant model (y equal to the mean of data), a Ricker model (y = ae~%%),
and the generalized Ricker model. Despite being the true model that generated
the data, the generalized Ricker model is overly flexible and adjusts the fit to
go through an unusual point at (1.5,0.24). It fits the first data set better than
the Ricker (R? = 0.55 for the generalized Ricker vs. R? = 0.29 for the Ricker).
However, the generalized Ricker has overfitted these data. It does poorly when
we try to fit new data generated from the same underlying model. In the new
set of data shown in Figure 16, the generalized Ricker fit misses the point near
x = 1.5 so badly that it actually fits the data worse than the constant model
and has a negative R?! In 500 new simulations, the Ricker prediction did best
83% of the time, while the generalized Ricker prediction only won 11% of the
time: the rest of the time, the constant model was best.

6.1 Likelihood Ratio test: nested models

How can we tell when we are overfitting real data? We can use the Likelihood
Ratio Test, which we used before to find confidence intervals and regions, to
choose models in certain cases. A simpler model (with fewer parameters) is
nested in another, more complex, model (with more parameters) if the complex
model reduces to the simpler model by setting some parameters to particular
values (often zero). For example, a constant model, y = a, is nested in the linear
model, y = a + bz because setting b = 0 makes the linear model constant. The

linear model is nested in turn in the quadratic model, y = a + bx + cz®. The
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Figure 16: Fits to simulated “data” generated with y = (0.4+0.1-2+2-2%)e™?,
plus normal error with o = 0.35. Models fitted: constant (y = Z), Ricker
(y = ae~b*), and generalized Ricker (y = (a + bz + cx?)e~%). The highlighted
point at & 1.5 drives much of the fit to the original data, and much of the
failure to fit new data sets. Left: original data, right: a new data set.
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linear model is also nested in the Beverton-Holt model, y = az/(1 + (a/b)x),
for b — oco. The Beverton-Holt is in turn nested in the Shepherd model, y =
az/(1+ (a/b)x?), for d = 1. (The nesting of the linear model in the Beverton-
Holt model is clearer if we use the parameterization of the Holling type II model,
y = ax/(1 + ahz). The handling time h is equivalent to 1/b in the Beverton-
Holt. When h = 0 predators handle prey instantaneously and their per capita
consumption rate increases linearly forever as prey densities increase.)

Comparisons among different groups can also be framed as a comparison of
nested models. If the more complex model has the mean of group 1 equal to
a; and the mean of group 2 equal to ag, then the nested model (both groups
equivalent) applies when a; = ag. It is also common to parameterize this model
as ag = aj + d12, where d15 = as — a1, so that the simpler model applies when
612 = 0. This parameterization works better for model comparisons since testing
the hypothesis that the more complex model is better becomes a test of the value
of one parameter (412 = 07) rather than a test of the relationship between two
parameters (a1 = a2?)*.

To prepare to ask these questions with the fir data, we read in the data,
drop NAs, pull out the variables we want, and attach the resulting data frame
so that we can refer to the variables directly:

> data(FirDBHFec)
> X = na.omit (FirDBHFec[, c("TOTCONES", "DBH", "WAVE_NON")])
> X$TOTCONES = round (X$TOTCONES)

Using mle2’s formula interface is the easiest way to estimate the nested series
of models in R. The reduced model (no variation among populations) is

> nbfit.0 = mle2(TOTCONES ~ dnbinom(mu = a * DBH"b,
+ size = k), start = list(a =1, b 1, k=1),
+ data = X)

To fit more complex models, use the parameters argument to specify which pa-

rameters differ among groups. For example, the argument 1ist (a~WAVE_NON,b~WAVE_NON)
would allow a and b to have different values for wave and non-wave populations,
corresponding to the hypothesis that the populations differ in both a and b

but not in variability (a, # @n, by # bn, kw = k,). The statistical model is

Y; ~ NegBinom(a; - DBHbi,k), and the R code is

> start.ab = as.list(coef(nbfit.0))

> nbfit.ab = ml1e2(TOTCONES ~ dnbinom(mu = a * DBH"b,
+ size = k), start = start.ab, data = X, parameters = list(a ~
+ WAVE_NON, b ~ WAVE_NON))

*We can also interpret these parameterizations geometrically. In (a1,a2) parameter space,
we're testing to see whether the best fit falls on the line through the origin a1 = a2; in (a1,
d12) parameter space, we're testing whether the best fit lies on the line §;2 = 0. To explore
further how different parameterizations relate to testing different hypotheses, look for the
topic of contrasts (in Crawley (2002) or Venables and Ripley (2002)).
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Here I have used the best-fit parameters of the simpler model as starting pa-
rameters for the complex model. Using the best available starting parameters
avoids many optimization problems.

mle2’s formula interface automatically expands the starting parameter list
(which only includes a single value for each of a and b) to include the appropriate
number of parameters. mle2 uses default starting parameter values correspond-
ing to equality of all groups, which for this parameterization means that all of
the additional parameters for groups other than the first are set to zero.

The formula interface is convenient, but as with likelihood profiles you often
encounter situations where you have to know how to build the models by hand.
Here’s a negative log-likelihood model for the second model:

> attach(X)

> nbNLL.ab = function(a.w, b.w, a.n, b.n, k) {

+ wcode = as.numeric (WAVE_NON)

a = c(a.n, a.w)[wcode]

b = ¢(b.n, b.w)[wcode]

predcones = a * DBH™b

-sum(dnbinom (TOTCONES, mu = predcones, size = Kk,
log = TRUE))

+ + + + + o+

}

The first three lines of nbNLL.ab turn the factor WAVE_NON into a numeric code
(1 or 2) and use the resulting code as an index to decide which value of a or b
to use in predicting the value for each individual. To make k differ by group as
well, just change k in the argument list to k.n and k.w and add the line

> k = c(k.n, k.w) [wcode]

To simplify the model by making a or b homogeneous, cut down the argument
list and eliminate the line of code that specifies the value of the parameter by
group.

The only difference between this negative log-likelihood function and the
one that mle2 constructs when you use the formula interface is that the mle2-
constructed function uses the parameterization {aq,a; + d12} while our hand-
coded function uses {aj,as} (see p. 42). The former is more convenient for
statistical tests, while the latter is more convenient if you want to know the
parameter values for each group. To tell mle2 to use the latter parameterization,
specify parameters=1ist (a"WAVE_NON-1,b"WAVE_NON-1). The -1 tells mle2 to
fit the model without an intercept, which in this case means that the parameters
for each group are specified relative to 0 rather than relative to the parameter
value for the first group. When mle2 fills in default starting values for this
parameterization, it sets the starting parameters for all groups equal.

The anova function® performs likelihood ratio tests on a series of nested mle2
fits, automatically calculating the difference in numbers of parameters (denoted
by Df for degrees of freedom) and deviance and calculating p values.

*Why anova? The corresponding series of tests for a simple linear model with categorical
predictors is an analysis of variance (Chapter ?7).
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Figure 17: Nested hierarchy of models for the fir data. D, deviance.

> anova(nbfit.0, nbfit.a, nbfit.ab)

Likelihood Ratio Tests
Model 1: nbfit.0, TOTCONES~dnbinom(mu=a*DBH"b,size=k)
Model 2: nbfit.a, TOTCONES~dnbinom(mu=a*DBH"b,size=k):
a“WAVE_NON
Model 3: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH b,size=k):
a"WAVE_NON, b~"WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)

1 3 2272.0
2 4 2271.6 0.4276 1 0.5132
3 5 2271.3 0.2496 1 0.6173

The Likelihood Ratio Test can compare any two nested models, testing
whether the nesting parameters of the more complex model differ significantly
from their null values. Put another way, the LRT tests whether the extra good-
ness of fit to the data is worth the added complexity of the additional parameters.
To use the LRT to compare models, compare the difference in deviances (the
more complex model should always have a smaller deviance — if not, check for
problems with the optimization) to the critical value of the y? distribution, with
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degrees of freedom equal to the additional number of parameters in the more
complex model. If the difference in deviances is greater than x%rnl(l — a),
then the more complex model is significantly better at the p = « level. If not,
then the additional complexity is not justified.

Choosing among statistical distributions can often be reduced to comparing
among nested models As a reminder, Figure ?? (p. ??) shows some of the
relationships among common distributions. The most common use of the LRT
in this context is to see whether we need to use an overdispersed distribution
such as the negative binomial or beta-binomial instead of their lower-variance
counterparts (Poisson or binomial). The Poisson distribution is nested in the
negative binomial distribution when k& — oo. If we fit a model with ¢ and b
varying but using a Poisson distribution instead of a negative binomial, we can
then use the LRT to see if adding the overdispersion parameter is justified:

> poisfit.ab = mle2(TOTCONES ~ dpois(a * DBH"b), start = list(a =
+ b = 1), data = X, parameters = list(a ~ WAVE_NON,
+ b ~ WAVE_NON))

> anova(poisfit.ab, nbfit.ab)

Likelihood Ratio Tests

Model 1: poisfit.ab, TOTCONES~dpois(a*DBH"b): a~WAVE_NON,
b~WAVE_NON

Model 2: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH b,size=k):
a”"WAVE_NON, b~"WAVE_NON

Tot Df Deviance Chisq Df Pr(>Chisq)
1 4 6302.7
2 5 2271.4 4031.4 1 < 2.2e-16 **x

Signif. codes: O “***’ 0.001 ‘*x’> 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

We conclude that negative binomial is clearly justified: the difference in deviance
is greater than 4000, compared to a critical value of 3.84! This analysis ignores
the non-applicability of the LRT on the boundary of the allowable parameter
space (k — oo or 1/k = 0: see p. ??), but the evidence is so overwhelming in
this case that it probably doesn’t matter.

Models with multiple parameters and multiple groups naturally lead to a
web of nested models. Figure 17 shows all of the model comparisons for the fir
data — even for this relatively simple example there are 7 possible models and
9 possible series of nested comparisons. In this case the answer is easy, because
none of the comparisons is significant according to the LRT (i.e., none of the one-
step comparisons differ by more than 3.84). In more complex scenarios it can be
quite hard to decide which set of comparisons to do first. Two simple options are
forward selection (try to add parameters one at a time to the simplest model) and
backward selection (try to subtract parameters from the most complex model).
Either of these approaches will work, but for comparisons that are close to the
edge of statistical significance, or where the effects of the parameters are strongly
correlated, you’ll often find that you get different answers. Similar problems
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arise in multiple regression (in fact, in any complex modeling exercise). With
too large a set of possibilities, this kind of model selection can devolve into data-
dredging. You should: (1) use common sense and ecological knowledge to isolate
the most important comparisons. (2) Draw plots of the best candidate fits to
try to understand why different models fit the data approximately equally well.
(3) Try to rule out differences in variance parameters (k in this case) first. If
you can simplify the model in this way it will be more comparable with classical
models. If not, something interesting may be happening.

6.2 Information criteria

One way to avoid having to make pairwise model comparisons is to select models
based on information criteria, which compare all candidate models at once
and do not require nested alternatives. These relatively recent alternatives to
likelihood ratio tests are based on the expected distance (quantified in a way that
comes from information theory) between a particular model and the “true” model
(Burnham and Anderson, 1998, 2002). In practice, all information-theoretic
methods reduce to the finding the model that minimizes some criterion that
is the sum of a term based on the likelihood (usually twice the negative log-
likelihood) and a penalty term which is different for different information criteria.

The Akaike Information Criterion, or AIC, is the most widespread informa-
tion criterion, and is defined as

AIC = —2L + 2k (23)

where L is the log-likelihood and k is the number of parameters in the model*.
As with all information criteria, small values represent better overall fits; adding
a parameter with a negligible improvement in fit penalizes the AIC by 2 log-
likelihood units. For small sample sizes (n) — such as when n/k < 40 (Burnham
and Anderson, 2004, p. 66) — you should use a finite-size correction and apply
the AIC, (“corrected AIC”) instead:

%k(k + 1)
n—k—1

*Where does the magic penalty term 2k come from? AIC is the expected value of the
Kullback-Leibler distance, [ f(x)log(f(x)/g(x0)) dx, between the true probability of the data,
f(x), and the probability of the data at the best parameter values for a candidate model, g(xo).
The K-L distance measures the log of the ratio of the predictions, (log(f(x)/g(x0))), averaged
over the true distribution of the data. Separating terms and dropping a constant that doesn’t
contain g(xg), we get E[—log g(x0)]. We don’t really know the true MLE xq, only the observed
MLE X%, so we take another expectation: E[E[— log g(x)]]. Taylor expanding — log g(%X) around
X0, the expectation of the second (linear) term drops out (because the likelihood is flat at X)
and we are left with the constant and quadratic terms: E[E[— log g(X)— % (x—%)TV(x—%)]]. V

AIC, = AIC + (24)

is the matrix of second derivatives of the log-likelihood (the information matrix): —V~! ~ X,
the variance-covariance matrix of the parameters. By definition, E[(x—%)T (x—%)] also equals
3. After more math, the expression becomes — log g(X) + trace(X~1X), where the trace is
the sum of the diagonal elements of a matrix. Since a matrix times its inverse is the identity
matrix, this becomes —log g(%x) + k, where k is the number of rows/columns of the matrix
— which is the number of parameters. Doubling the whole expectation so that the first term
is the minimum deviance (—2log £) gives the penalty term 2k. For more information, see
Chapter 7 of Burnham and Anderson (2002).
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As n grows large, the correction term in (24) vanishes and the AIC, matches the
AIC. The AIC, was originally derived on the basis of linear models with normally
distributed errors, so it may apply to a smaller range of models than the AIC —
but this is really an open question. Shono (2000) found using simulation studies
that the AIC, gave accurate answers for typical fisheries data sets, although
Richards (2005) suggests that AIC. might not perform as well for other kinds
of ecological data sets. (I would recommend using AIC, for small samples, but
being careful with the results if they disagree with the results based on large-
sample AIC.)

The second most common information criterion, the Schwarz criterion or
Bayesian information criterion (SC/BIC)*, uses a penalty term of (logn)k.
When n is greater than e ~ 9 observations (so that logn > 2), the BIC is
more conservative than the AIC, insisting on a greater improvement in fit be-
fore it will accept a more complex model.

Information criteria do not allow frequentist significance tests based on the
estimated probability of getting more extreme results in repeated experiments
(some statisticians would say this is an advantage). With ICs, you cannot say
that there is a statistically significant difference between models; a model with
a lower IC is better, but there is no p-value associated with how much better
it is T. Instead, there are commonly used rules of thumb: models with ICs
less than 2 apart (AIC < 2) are more or less equivalent; those with ICs 4-7
apart are clearly distinguishable; and models with ICs more than 10 apart are
definitely different. Richards (2005) concurs with these recommendations, but
cautions that simply dropping models with AAIC > 2 (as some ecologists do)
will probably discard useful models.

One big advantage of IC-based approaches is that they do not require nested
models. You can compare all models to each other, rather than stepping through
a sometimes confusing sequence of pairwise tests. In IC-based approaches, you
simply compute the likelihood and IC for all of the candidate models and rank
them in order of increasing IC. The model with the lowest IC is the best fit to
the data; those models with ICs within 10 units of the minimum IC are worth
considering. As with the LRT, the absolute size of the ICs is unimportant —
only the differences in ICs matter.

The AICtab, AICctab, and BICtab commands in the bbmle package will
compute IC tables from lists of mle fits. Use the options delta=TRUE to get a
list of the AIC values, weights=TRUE to get AIC weights (see below), and nobs
to specify the number of observations for BIC or AIC.. Here are the results for
the fir models:

*While the BIC is derived from a Bayesian argument, it is not inherently a Bayesian
technique. It is also not how most Bayesians would compare models (Section 6.3).

fBurnham and Anderson recommend avoiding the word “significant” in conjunction with
AIC-based model selection (Burnham and Anderson, 2002, p. 84); no matter how care-
fully you phrase your conclusions, some readers will impose a frequentist hypothesis-testing
interpretation.
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model params AAIC AAIC. ABIC

nbfit.0 3 0.00 0.00 0.00
nbfit.a 4 1.57 1.64 5.06
nbfit.b 4 1.48 1.55 4.97
nbfit.k 4 0.62 0.69 4.11
nbfit.ab 5 3.32 3.48  10.30
nbfit.ak 5 2.24 2.39 9.21
nbfit.bk 5 2.24 2.39 9.21
nbfit.abk 6 3.99 4.25  14.46

All three approaches pick the simplest model as the best model (minimum IC).
AIC would keep all models under consideration (AAIC < 4 for all models), while
AIC, might rule out the most complex model (AAIC, = 4.25), and BIC would
definitely rule out complex models where a and b both change (ABIC > 10).

ICs can also be useful to choose among stochastic models, which are often
not nested. For example, the Gamma, log-normal, and negative binomial models
can all describe skewed data, and they all converge to the normal distribution
in some limit (Figure ??), but there is no easy way to nest them. We can fit
the same deterministic model as before (fecundity = a; - DBH?) with different
probability distributions and then use AIC to compare the results.

For each distribution I have to modify the parameters slightly. The log-
normal’s parameters are the mean and standard deviation of the distribution
on the log scale, so I set pijo, = log(a - DBH®) = loga + blogDBH. The
Gamma’s are shape and scale, with the mean equal to shape - scale, so I set
scale = (a-DBH") /shape. I also added 0.001 to TOTCONES for the log-normal and
Gamma fits because zero values are impossible for the log-normal distribution
and for the Gamma distribution with shape > 1, leading to infinite negative log-
likelihoods. This problem warns us that a discrete distribution like the negative
binomial might make more sense, but a better fit to a continuous distribution
might override this concern.

> Inormfit.ab = mle2(TOTCONES + 0.001 ~ dlnorm(meanlog = b *
log(DBH) + log(a), sdlog = sdlog), start = list(a = 1,
b =1, sdlog = 0.1), data = X, parameters = list(a ~
WAVE_NON, b ~ WAVE_NON), method = "Nelder-Mead")

gammafit.ab = mle2(TOTCONES + 0.001 ~ dgamma(scale = a *
DBH"b/shape, shape = shape), start = list(a = 1,
b = 1, shape = 2), data = X, parameters = list(a
WAVE_NON, b ~ WAVE_NON))

+ + + VvV o+ + 4+

AIC df AAIC
Neg. binom. 22814 5 0.0

Gamma 2288.7 5 7.4
Log-normal  2556.3 5 274.9
Poisson 6310.7 4 40294

I conclude that the negative binomial is best after all.
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6.3 Bayesian analyses

Bayesians are on the whole less interested in formal methods of model selection.
Dropping a parameter from a model is often equivalent to testing a null hy-
pothesis that the parameter is exactly zero, and Bayesians consider such point
null hypotheses silly. They would describe a parameter’s distribution as being
concentrated near zero rather than saying its value is exactly zero*.

Nevertheless, Bayesians do have a way to compute the relative probability
of different models, one that implicitly recognizes the bias-variance tradeoff and
penalizes more complex models (Kass and Raftery, 1995). Bayesians prefer to
make inferences based on averages rather than on most-likely values: for exam-
ple, they generally use the posterior mean values of parameters rather than the
posterior mode. This preference extends to model selection. The marginal like-
lihood of a model is the probability of observing the data (likelihood), averaged
over the prior distribution of the parameters:

L= /L(x) - Prior(z) dx, (25)

where x represents a parameter or set of parameters (if a set, then the integral
would be a multiple integral). The marginal likelihood (the average probability
of observing a particular data set ezactly) is often very small, and we are really
interested in the relative probability of different models. If we have two models
with marginal likelihoods Ly and Lg, the Bayes factor is the ratio of the marginal
likelihoods, By = Ll/Lg, or the odds in favor of model 1*. If we want to
compare several different (not necessarily nested) models, we can look at the
pairwise Bayes factors or compute a set of posterior probabilities — assuming
that all the models have the same prior probability — by computing the relative
values of the marginal likelihoods:

Li
Zj:l L;

Marginal likelihoods and Bayes factors incorporate an implicit penalty for
overparameterization. When you add more parameters to a model, it can fit
better — the maximum likelihood and the maximum posterior probability in-
crease — but at the same time the posterior probability distribution spreads
out to cover more less-well-fitting possibilities. Since marginal likelihoods ex-
press the mean and not the maximum posterior probability, they will actually
decrease when the model becomes too complex.

In principle, using Bayes factors to select the better of two models is simple.
If we compare twice the logarithm of the Bayes factors (thus putting them on
the deviance scale), the generally accepted rules of thumb for Bayes factors are

Prob(M;) =

* Although they might consider testing a hypothesis about whether a parameter is small
(i-e., whether its absolute value is below some threshold: Gelman and Tuerlinckx (2000)).

*the Bayes factor is based on assuming equal prior probabilities (p1 = p2 = 0.5) for both
models.
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(Jeffreys, 1961, p. 432):

2log B12 evidence in favor of model 1

0-2 weak
2-6 positive
6-10 strong
> 10 very strong

It is no coincidence that these rules of thumb are similar to those quoted for the
AIC. With fairly strong priors, the Bayes factor converges to the AIC instead
of the BIC (Kass and Raftery, 1995).

In practice, computing Bayes factors for a particular set of models can be
tricky (Congdon, 2003), involving either complicated multidimensional integrals
or some kind of stochastic sampling from the prior distribution. One simple ap-
proximation is to calculate the harmonic mean of the likelihoods returned from
an MCMC run (the harmonic mean is 1/(> (1/L)/n)). Another, the analogue
of the quadratic approximations to the likelihood profile described above, is
the Laplace approzimation which combines the posterior mode (the maximum
value of prior x likelihood) with information on the curvature of the posterior
probability density near the mode*.

Most of these approximations improve as the sample size increases: Kass
and Raftery (1995) suggest that the Laplace approximation requires at least
5 times as many samples as parameters, and that the other approximations
should be reasonable with 20 times as many samples as parameters. How do
these approximations compare for the fir data set, with 242 data points and up
to 6 parameters?

harmonic mean Laplace BIC

null 0.0 0.0 0.0
a, b differ 5.2 8.2 103
a, b, k differ 24.9 9.5 14.5

The different approximations of the Bayes factor do differ considerably, but the
only qualitative difference among them according to the rules of thumb is that
the evidence supporting the null model (all parameters the same) over the model
with different a and b parameters is “positive” according to the harmonic mean
and “strong” according to the Laplace approximation and BIC.

A more recent criterion, conveniently built into WinBUGS, is the DIC or
deviance information criterion, which was designed particularly for models con-
taining random effects where even specifying the number of parameters is con-
fusing (see Chapter ??). To compute DIC, start by calculating D, the average of

*The expression is .
L ~ (2m)¥?|V|*/?Postmax
where d is the number of parameters, |V| is the determinant of the variance-covariance matrix
estimated from the Hessian at the posterior mode, and Postmax is the height of the posterior
mode.
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the deviance (-2 x log-likelihood) over the posterior distribution (as contrasted
with the marginal likelihood, which is the average over the prior distribution),
and lA), which is the deviance calculated at the posterior mean parameters. Then
use these two values to estimate an effective number of parameters pp = D — D;
the more spread out the posterior distribution, the bigger the difference between
the deviance of the mean parameters and the mean deviance, and the larger the
effective number of parameters. Finally, as with AIC and BIC, use this effective
number of parameters as a penalty term on the goodness of fit (defined in this
case as the deviance at the mean parameters D): DIC=D + 2pp. As with all
information criteria, lower values of DIC indicate a better model. The rules of
thumb are similar too: differences in DIC from 5-10 indicate that one model is
clearly better, while models with difference in DIC > 10 probably don’t need to
be considered further (Spiegelhalter et al., 2002).
Two important cautions about the DIC are:

o if the model contains random effects (see chapter 9), the DIC focuses on
the random effects. In the fir tree case, because of a peculiarity of BUGS,
we had to parameterize the negative binomial model by assuming that each
tree’s fecundity is a Poisson variable with a different, Gamma-distributed
rate. Since DIC focuses on random effects, it reports the effective number
of parameters as > 200 (it takes a lot of information to describe the
variation in rates), and the effective number of parameters for the most
complex model is actually slightly smaller than for the simpler model,
because there is slightly less variation in the rates. This drop in effective
model size gives the most complex model the lowest DIC. However, the
range of DICs is very small — from 1709.2 to 1710.9 — so we should just
say that the models can’t be well distinguished.

e DIC is convenient, and so it is likely to become established as the standard
“canned” method of model comparison in Bayesian statistics. It has al-
ready begun to appear in ecological journals (Jonsen et al., 2003; Morales
et al., 2004; McCarthy and Parris, 2004; Okuyama and Bolker, 2005; Par-
ris, 2006; Vesk, 2006), but statisticians continue to debate its exact mean-
ing and appropriateness (both Spiegelhalter et al. (2002) and Celeux et al.
(2006) are accompanied by lively discussions).

The bottom line on Bayesian model selection is that, despite the conceptual
simplicity of the Bayes factor (giving the “average” quality of fit to the data, and
automatically incorporating a penalty for overfitting), it is relatively difficult to
calculate and so is likely to be superseded by the convenient DIC. You should
exercise the same care with DIC as you would with any canned model selection
procedure.

6.4 Model weighting and averaging

Bayesians themselves would say that you should not simply select one model.
Taking the best model and ignoring the rest is equivalent to assigning a proba-
bility of 1.0 to the best and 0.0 to the rest. Model averaging methods take the
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average of the predictions of different models, weighted by the probability of the
models or by some other index.

Bayesian model averaging simply takes the probabilities based on the marginal
likelihoods or the BIC: the posterior probabilities of a set of models, if they all
have equal prior probabilities, are the marginal likelihoods (or BICs) divided
by the sum of the marginal likelihoods (or BICs)*. If a set of models have BIC
values, relative to the best one, of AB; (where AB; = BIC; — min(BIC)), then
the approximate posterior probabilities of the models, assuming all the prior
probabilities are equal, are

e—AB;/2

Pi==n——AB T3 (27)
Z;}ZI e—AB; /2

To make a weighted prediction, use the posterior probabilities to combine the

predictions of the different models (say Cy,Ca,...C):

C= f:pici. (28)
=1

Of course, you can do the same with marginal likelihoods.

Burnham and Anderson have also promoted model averaging, in their case
based on AIC weights: (Burnham and Anderson, 1998, 2002). The AIC weights
are analogous to the probabilities calculated from the relative BIC values, but
with AIC values substituted for BIC values in (27). AIC weights have no prob-
ability interpretation, but they can be used in model averaging .

Even if you don’t do formal model averaging, AIC or BIC weights are a
useful way of getting a feel for the relative goodness-of-fit of different models.

6.5 Model criticism and goodness-of-fit tests

If the best model is a poor fit to the data, then none of the machinery of
model selection and averaging makes sense. You should always check that
your model gives a reasonable fit to the data. Goodness-of-fit testing may re-
mind you of the classical Pearson chi-square statistic, adding up ((expected —
observed)? /expected) for all of your data to test whether there is more variance
than expected around the model predictions. However, the chi-square test only
works for simple count data where the answers fall in discrete groups. If your

*Equal prior probabilities for all the models usually makes sense, although one does face
some of the questions about equal priors raised in Chapter ??: for example, should all of the
models incorporating differences between groups in the fir example be treated as subsets of a
single model?

T Akaike weights are widely and incorrectly presented as “the probability that model i is
the best model for the observed data, given the candidate set of models” (Mazerolle, 2004;
Johnson and Omland, 2004). Burnham and Anderson (2004) are slightly more careful: they
say that the AIC weights “are interpreted as probabilities ...” (emphasis added), but it is
clearly a slippery slope. Taking AIC weights as actual probabilities is trying to have one’s
cake and eat it too; the only rigorous way to get such probabilities of models is to use Bayesian
inference, with its associated complexities (Link and Barker, 2006).
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Figure 18: Predicted vs. actual cones for the fir data, on a logarithmic scale.

data are continuous, or if you are using an overdispersed distribution such as
the negative binomial, then your model contains a parameter describing the
variance and the chi-square test is no longer useful®.

In practice, model criticism (a more generic term than goodness-of-fit test-
ing) is simply common sense. Are the predictions reasonable? Are there consis-
tent deviations from the estimates or unexplained outliers? Start with a simple
graph of the predictions of the model (Figure 15), to see whether the determin-
istic component of the model works well.

A plot of predicted vs. actual data can sometimes be useful (Figure 18). You
have already had to figure out how to calculate the predicted values in order to
write a likelihood function. Take these values and plot them against the corre-
sponding data points, then use abline(a=0,b=1) to add a predicted=actual line
to the plot. However, while the predicted-vs-actual plot can identify outliers,
it really gives a consistency check rather than providing any new information.
Ideally, the scatter around the predicted=actual line will be small — in which

fMuch of the protocol that Burnham and Anderson (2002) have developed for working
with AIC concerns testing and correcting for overdispersion — ¢ in their notation. These
overdispersion corrections are only relevant when your model uses a simple count distribution
such as binomial or Poisson.
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case the deterministic component of the model explains most of the variation in
the data, so that the model is precise as well as accurate (and therefore useful
for prediction). Remember, though, that a reasonable amount of unexplained
variability does not necessarily mean that the model fits badly or is not useful;
it just means it can’t make very precise predictions*. Model criticism is more
concerned with systematic deviations that suggest that the form of the model
itself is wrong.

Examining the goodness of fit of the stochastic part of a model is harder. If
the model contains only discrete groups (factors), you can divide the data into
those groups and overlay the observed distribution (described by a histogram or
density plot) with the predicted distribution. If it contains continuous covariates
you will have to break the data up into discrete subsets in order to compare the
predicted and observed distributions (Figure 19).

6.6 Model selection: comparisons and conclusions

Deciding what models to use and how to use them is fundamentally difficult. In
one form or another, this debate goes all the way back to the early Bayesian/fre-
quentist divide. While statisticians have come a long way in exploring the possi-
ble approaches and (to some extent) in providing practical recipes for applying
them, we still do not have — and never will have — a single best method.

o Hypothesis testing based on the likelihood ratio test is well-established,
widely used, and simple to implement. There are times when we really do
want a yes-or-no answer about whether some ecological factor is affecting
the system in a way that is distinguishable from randomness, and the
LRT is appropriate here. The LRT becomes unwieldy when there are
many possibly interacting factors — one has to choose a path through the
nested hierarchy of factors (Figure 17). Analogous problems in multiple
regression analysis led to stepwise model-building approaches, which are
widely used by researchers but widely dismissed by statisticians because
they encourage data-dredging, and because the results can depend on
the exact thresholds used to include or exclude factors from the model
(Whittingham et al., 2006).

If you do find yourself with seemingly inconsistent results from a LRT
analysis (e.g. if some parameters are only significant when other param-
eters are included in the model: Lindsey (1999) calls these incompatible
results), examine your data carefully to understand how the fit changes
with different sets of parameters. If two parameters explain essentially the
same patterns in the data (e.g. if you are using strongly correlated predic-
tors like soil moisture and precipitation), then whichever enters the model
first will be selected. On the other hand, the effects of nitrogen availability

*People who are familiar with classical statistical approaches would often like to compute
an R? statistic (proportion variance explained) for a model. Unfortunately, “[d]espite various
analogs for categorical response models, no proposed measure is as widely useful as R and
R?” (Agresti, 2002, p. 226).
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Figure 19: Goodness-of-fit checking for the fir model. Panels break data up by
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might only be visible once the effects of soil moisture are accounted for —
in this case, nitrogen would only be significant if soil moisture were in the
model already. These kinds of interactions are challenging, but handled
properly they tell you more about what’s going on in your data.

o Information theoretic (AIC-based) approaches are also well-established
and practical. They neatly avoid the problem of pairwise testing, the
need for nested models, and the philosophical issues associated with null
hypothesis testing — rather than asking about the probability of a more
extreme outcome, they simply try to identify the model with the best
predictive ability. They can be used for model averaging, taking the pre-
dictions of all reasonable models into account, as well as for model testing.
However, AIC-based approaches can also be abused (Guthery et al., 2005).
Precisely because of their popularity and ease of use, they have led some
ecologists down the path of data-dredging and thoughtless model selection
(against the explicit warnings of Burnham and Anderson, AIC’s main pro-
ponents in ecology).

AIC-based analyses make decisions based on rules of thumb about AAIC
values or AIC weights, which are in turn based on extensive simulation
analysis. You can’t interpret your results in terms of outcome probabil-
ities or “statistical significance” (which may be a good thing). In some
theoretical situations (i.e. when sample sizes grow to infinity but the set
of candidate models remains fixed), AIC is known to “overfit” data by
choosing an inappropriately complex model. Researchers hotly debate the
practical relevance of these criteria (Spiegelhalter et al., 2002; Burnham
and Anderson, 2004; Link and Barker, 2006).

e Bayesian (marginal likelihood, BIC, DIC) approaches are philosophically
satisfying since they allow us to state results in terms of posterior proba-
bilities of different models. The selection criteria (posterior probabilities)
depend on the number of the parameters and on the sample size, which
seems sensible. However, Bayesian approaches are also challenging to ap-
ply. Marginal likelihood is hard to calculate in a stable way; BIC is an
approximation to the marginal likelihood that applies when sample sizes
are large and the priors are vague (AIC is similarly an approximation to
a marginal likelihood with a fairly strongly informative prior). For rea-
sonable sample sizes, BIC will be more conservative than AIC; whether
this conservatism is appropriate or not is still a matter of deep contention.
Some researchers feel that a method that gives the wrong answer as more
and more information is available is unacceptable; others say that we
should be more concerned with the performance of the method in the
more realistic, data-limited case *.

*Lindsey (1999) suggests an adjustable penalty term that depends on the sample size and
may fall somewhere between the AIC and BIC criteria, but he gives little practical advice on
deciding what penalty term to use.
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Bayesian approaches are also sensitive to the priors used: one may not be
able to get away with the common practice of setting a vague prior and
forgetting about it. DIC is promising, but continues to be controversial
among statisticians. According to Spiegelhalter et al. (2002, p. 613),
it is “a Bayesian analogue of AIC, with a similar justification but wider
applicability”. It is similar to AIC in its large-sample behavior. DIC is
likely to become increasingly popular among ecologists using WinBUGS
since it is implemented by default.

Should we use formal rules to do model selection (or model averaging) at
all? Many Bayesians would say that all possible model components really ex-
ist in the world, and we ought not throw components away just because they
fall below some arbitrary threshold criterion. Gelman et al. (1996) prefer to
formulate selection problems as estimating a continuous parameter rather than
selecting from discrete choices. Bayesians do recognize the fundamental tradeoff
between bias and variance, but in general they use less formal methods (such
as checking whether the marginal posterior distribution has a peak, indicating
that the model component is not just adding noise to the model) to decide what
components to include.

A second, more intuitive argument usually comes from biologists, who are
unhappy when their favorite bit of biology is dropped from a model even though
they know that mechanism operates in nature. If you want to evaluate the
effects of age structure (or spatial structure, or genetic structure) on population
dynamics, you have to include it in the model even if a formal model selection
procedure tells you to leave it out (Hilborn and Mangel, 1997, p. 261). What
the model selection criterion is warning you, however, is that you may be basing
your conclusions on dangerously little information.

A third argument often comes from conservationists who are concerned that
adding a biologically relevant but statistically insignificant term to the model
changes the predicted dynamics of a species, often for the worse. This is a real
problem, but it is also sometimes used dishonestly. Adding complexity to a
model often makes its dynamics less stable, and if you’re looking to bolster an
argument that a species is in trouble and needs to be protected, you’ll favor
results that show the species is in trouble. How often do we see conservationists
arguing for more realistic biological models that suggest that a species is in no
real danger and needs no protection? (On the flip side, how often do we see
developers arguing that we should sample more thoroughly to make absolutely
sure that there are no endangered species on a tract of land before starting
construction?)

There are rules of thumb and procedures for model selection, but they don’t
settle the fundamental questions of model selection. Is parsimony really the
most important thing? Is it OK to add more complexity to the model if you're
interested in a particular biological mechanism, even if the data don’t appear to
support it? In the end you have to learn all the rules, but also know when to bend
them — and when you do bend them, give a clear justification. The plethora
of available model selection approaches opens a new avenue for data dredging,
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by trying every model selection procedure on your models and choosing the one
that gives you the answers you want.

Conclusion

This chapter has covered an enormous amount of material, starting from the
basic ideas of likelihood and maximum likelihood estimation, discussing various
ways of estimating confidence intervals, and tackling the contentious issue of
hypothesis testing and model selection. The two big ideas to take away are: (1)
The geometry of the likelihood surface or posterior probability distribution —
where it peaks and how the distribution falls off around the peak — contains
essentially all the information you need to estimate parameters and confidence
intervals. (2) Deciding which models best describe a given set of data is neces-
sary, but essentially impossible to do in a completely consistent way.
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