
Lab 4: probability distributions, averaging, and

Jensen’s inequality

c©2005 Ben Bolker

September 28, 2005

1 Random distributions in R
R knows about lots of probability distributions. For each, it can generate ran-
dom numbers drawn from the distribution (“deviates”); compute the cumulative
distribution function and the probability distribution function; and compute the
quantile function, which gives the x value such that

∫ x

0
P (x) dx (area under the

curve from 0 to x) is a specified value, such as 0.95 (think about “tail areas”
from standard statistics).

Let’s take the binomial distribution (yet again) as an example.

• rbinom(n,size,p) gives n random draws from the binomial distribution
with parameters size (total number of draws) and p (probability of success
on each draw). You can give different parameters for each draw. For
example:

> rbinom(10, size = 8, p = 0.5)

[1] 3 6 3 4 6 7 4 3 2 2

> rbinom(3, size = 8, p = c(0.2, 0.4, 0.6))

[1] 2 4 7

Figure 2 shows the result of drawing 200 values from a binomial distribu-
tion with N = 12 and p = 0.1 and plotting the results as a factor (with
200 draws we don’t have to worry about any of the 13 possible outcomes
getting missed and excluded from the plot):

> plot(factor(rbinom(200, size = 12, p = 0.1)), xlab = "# of successes",

+ ylab = "# of trials out of 200")

• dbinom(x,size,p) gives the value of the probability distribution function
(pdf) at x (for a continous distribution, the analogous function would
compute the probability density function). Since the binomial is discrete,
x has to be an integer, and the pdf is just the probability of getting that
many successes; if you try dbinom with a non-integer x, you’ll get zero and
a warning.

1

Figure 1: R functions for an arbitrary distribution dist, showing density
function (ddist), cumulative distribution function (pdist), quantile function
(qdist), and random-deviate function (rdist).

Figure 2: Results of rbinom

2

• pbinom(q,size,p) gives the value of the cumulative distribution function
(cdf) at q (e.g. pbinom(7,size=10,prob=0.4));

• qbinom(p,size,prob) gives the quantile function, where p is a number
between 0 and 1 (an area under the pdf, or value of the cdf) and qbinom is
the value such that P (X ≤ p) = q. The quantile function Q is the inverse
of the cumulative distribution function C: if Q(p) = q then C(q) = p.
Example: qbinom(0.95,size=10,prob=0.4).

These four functions exist for each of the distributions R has built in: e.g. for
the normal distribution they’re rnorm(), pnorm(), dnorm(), qnorm(). Each dis-
tribution has its own set of parameters (so e.g. pnorm() is pnorm(x,mean=0,sd=1)).

Exercise 1 : For the binomial distribution with 10 trials and a success
probability of 0.2:

• Pick 8 random values and sort them into increasing order (if you set.seed(1001)
beforehand, you should get X = 0 (twice), X = 2 (5 times), and X = 4
and X = 5 (once each)).

• Calculate the probabilities of getting 3, 4, or 5 successes. Answer:

[1] 0.20132659 0.08808038 0.02642412

• Calculate the probability of getting 5 or more successes. Answer:

[1] 0.0327935

• What tail values would you use to test against the (two-sided) null hy-
pothesis that p = 0.2? (Use qbinom() to get the answer, and use pbi-
nom(0:10,size=10,prob=0.2) and pbinom(0:10,size=10,prob=0.2,lower.tail=FALSE)
to check that your answer makes sense.

You can use the R functions to test your understanding of a distribution
and make sure that random draws match up with the theoretical distributions
as they should. This procedure is particularly valuable when you’re developing
new probability distributions by combining simpler ones, e.g. by zero-inflating
or compounding distributions.

The results of a large number of random draws should have the correct
moments (mean and variance), and a histogram of those random draws (with
freq=FALSE or prob=TRUE) should match up with the theoretical distribution.
For example, draws from a binomial distribution with p = 0.2 and N = 20 should
have a mean of approximately Np = 4 and a variance of Np(1− p) = 3.2:

> set.seed(1001)

> N = 20

> p = 0.2

> x = rbinom(10000, prob = p, size = N)

> c(mean(x), var(x))

[1] 4.001200 3.144913

3

The mean is very close, the variance is a little bit farther off. Just for the
heck of it, we can use the replicate() function to re-do this command many
times and see how close we get:

> var_dist = replicate(1000, var(rbinom(10000, prob = p, size = N)))

(this may take a little while; if it takes too long, lower the number of replicates
to 100).

Looking at the summary statistics and at the 2.5% and 97.5% quantiles of
the distribution of variances:

> summary(var_dist)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.052 3.169 3.199 3.199 3.229 3.340

> quantile(var_dist, c(0.025, 0.975))

2.5% 97.5%
3.114357 3.285333

(Try a histogram too.) Even though there’s some variation (of the variance)
around the theoretical value, we seem to be doing the right thing since the 95%
confidence limits include the theoretical value. (Lab 5 will go into more detail
on running simulations to check the expected variation of different measurement
as a function of parameters and sample size.)

Finally, Figure 3 shows the entire simulated frequency distribution along
with the theoretical values. The steps in R are:

1. pick 10,000 random deviates:

> x = rbinom(10000, prob = p, size = N)

2. Tabulate the values, and divide by the number of samples to get a proba-
bility distribution:

> tx = table(factor(x, levels = 0:12))/10000

(The levels command is necessary in this case because the probability
of x = 12 with p = 0.2 and N = 12 is actually so low (8.7 × 10−5) that
there’s a reasonable chance that a sample of 10,000 won’t include any
samples with 12 successes.)

3. Draw a barplot of the values, extending the y-limits a bit to make room
for the theoretical values and saving the x locations at which the bars are
drawn:

> b1 = barplot(tx, ylim = c(0, 0.23), ylab = "Probability")

4. Add the theoretical values, plotting them at the same x-locations as the
centers of the bars:

4

> points(b1, dbinom(0:12, prob = p, size = N), pch = 16)

(barplot() doesn’t put the bars at x locations corresponding to their
numerical values, so you have to save those values as b1 and re-use them
to make sure the theoretical values end up in the right place.)

A few alternative ways to do this plot would be:

1. > plot(factor(x))

> points(b1, 10000 * dbinom(0:12, prob = p, size = N))

(plots the number of observations without rescaling and scales the proba-
bility distribution to match);

2. > plot(table(x)/10000)

> points(0:12, dbinom(0:12, prob = p, size = N))

Plotting a table does a plot with type="h" (high density), which plots a
vertical line for each value. I think it’s not quite as pretty as the barplot,
but it works. Unlike factors, tables can be scaled numerically, and the
lines end up at the right numerical locations, so we can just use 0:12 as
the x locations for the theoretical values.

3. You could also draw a histogram: since histograms were really designed
continuous data you have to make sure the breaks occur in the right place
(halfway between counts):

> h = hist(x, breaks = seq(-0.5, 12.5, by = 1), col = "gray", prob = TRUE)

> points(0:12, dbinom(0:12, prob = p, size = N))

Doing the equivalent plot for continuous distributions is actually somewhat
easier, since you don’t have to deal with the complications of a discrete dis-
tribution: just use hist(...,prob=TRUE) to show the sampled distribution
(possibly with ylim adjusted for the maximum of the theoretical density dis-
tribution) and ddist(x,[parameters],add=TRUE) to add the theoretical curve
(e.g.: curve(dgamma(x,shape=2,scale=1,add=FALSE))).

Exercise 2 *: Pick 10,000 negative binomial deviates with µ = 2, k = 0.5.
Pick one of the ways above to draw the distribution. Check that the mean
and variance agree reasonably well with the theoretical values. Add points
representing the theoretical distribution to the plot. Now translate the µ and k
parameters into their p and nn equivalents (the coin-flipping derivation of the
negative binomial), and add those points to the plot [use a different plotting
symbol to make sure you can see that they overlap with the theoretical values
based on the µ, k parameterization].

2 Averaging across discrete and continuous distributions
Suppose we have a (tiny) data set; we can organize it in two different ways, in
standard long format or in tabular form:

> dat = c(5, 6, 5, 7, 5, 8)

> dat

5

Figure 3: Checking binomial deviates against theoretical values.

6

[1] 5 6 5 7 5 8

> tabdat = table(dat)

> tabdat

dat
5 6 7 8
3 1 1 1

To get the (sample) probability distribution of the data, just scale by the total
sample size:

> prob = tabdat/length(dat)

> prob

dat
5 6 7 8

0.5000000 0.1666667 0.1666667 0.1666667

(dividing by sum(tabdat) would be equivalent).
In the long format, we can take the mean with mean(dat) or, replicating the

formula
∑

xi/N exactly, sum(dat)/length(dat).
In the tabular format, we can calculate the mean with the formula

∑
P (x)x,

which in R would be sum(prob*5:8) or more generally

> vals = as.numeric(names(prob))

> sum(prob * vals)

[1] 6

(you could also get the values by as.numeric(levels(prob)), or by sort(unique(dat))).
However, mean(prob) or mean(tabdat) is just plain wrong (at least, I can’t

think of a situation where you would want to calculate this value).
Exercise 3 : figure out what it means that mean(tabdat) equals 1.5.
Going back the other way, from a table to raw values, we can use the rep()

function to repeat values an appropriate number of times. In its simplest form,
rep(x,n) just creates a vector repeats x (which may be either a single value
or a vector) n times, but if n is a vector as well then each element of x is
repeated the corresponding number of times: for example,

> rep(c(1, 2, 3), c(2, 1, 5))

[1] 1 1 2 3 3 3 3 3

gives two copies of 1, one copy of 2, and five copies of 3.
Therefore,

7

> rep(vals, tabdat)

[1] 5 5 5 6 7 8

will recover our original data (although not in the original order) by repeating
each element of vals the correct number of times.

2.1 Jensen’s inequality
Looking at Schmitt et al’s data, the recruitment level very nearly fits an expo-
nential distribution with a mean of 24.5 (so λ = 1/24.5). Schmitt et al. also say
that recruitment (R) as a function of settlement (S) is R = aS/(1 + (a/b)S),
with a = 0.696 (initial slope, recruits per 0.1 m2 patch reef per recruit) and
b = 9.79 (asymptote, recruits per 0.1 m2 patch reef).

Let’s see how strong Jensen’s inequality is for this population. We’ll figure
out the average by approximating an integral by a sum:

∫∞
0

f(S)P (S) dS ≈∑
f(Si)P (Si)∆S. We need to set the range big enough to get most of the

probability of the distribution, and the ∆S small enough to get most of the
variation in the distribution; we’ll try 0–200 in steps of 0.1. (If I set the range
too small or the ∆S too big, I’ll miss a piece of the distribution or the function.
If I try to be too precise, I’ll waste time computing.)

In R:

> a = 0.696

> b = 9.79

> dS = 0.1

> S = seq(0, 200, by = dS)

> pS = dexp(S, rate = 1/24.5)

> fS = a * S/(1 + (a/b) * S)

> sum(pS * fS * dS)

[1] 5.008049

R also knows how to integrate functions numerically: it can even approximate
an integral from 0 to ∞. First we have to define a (vectorizable) function:

> tmpf = function(S) {

+ dexp(S, rate = 1/24.5) * a * S/(1 + (a/b) * S)

+ }

Then we can just ask R to integrate it:

> i1 = integrate(tmpf, lower = 0, upper = Inf)

> i1

5.010691 with absolute error < 5.5e-05

8

(Use adapt(), in the adapt package, if you need to do multidimensional inte-
grals.)

This integral shows that we were pretty close with our first approximation.
However, numerical integration will always imply some level of approximation;
be careful with functions with sharp spikes, because it can be easy to miss
important parts of the function.

Now to try out the delta function approximation:

> d1 = D(expression(a * x/(1 + (a/b) * x)), "x")

> d2 = D(d1, "x")

As stated above, the mean value of the distribution is about 24.5. The
variance of the exponential distribution is equal to the mean squared, or 600.25.

> Smean = 24.5

> Svar = Smean^2

> d2_num = eval(d2, list(a = 0.696, b = 9.79, x = Smean))

> mval = a * Smean/(1 + (a/b) * Smean)

> dapprox = mval + 1/2 * Svar * d2_num

> merr = (mval - i1$value)/i1$value

> merr

[1] 0.2412107

> err = (dapprox - i1$value)/i1$value

> err

[1] -0.04637931

The answer from the delta method (f(x̄)+(σ2f ′′(x̄)/2)) is only about 5% below
the true value, as opposed to the naive answer (f(x̄)) which is about 25% high.
(We have to say i1$value to extract the actual value of the integral from the
variable i1; try str(i1) if you want to see all the information that R is storing
about the integral.)

Exercise 4 *: try the above exercise again, but this time with a gamma
distribution instead of an exponential. Keep the mean equal to 24.5 and change
the variance to 100, 25, and 1 (use the information that the mean of the gamma
distribution is shape*scale and the variance is shape*scale^2). Including the
results for the exponential (which is a gamma with shape=1), make a table
showing how the (1) true value of mean recruitment [calculated by numerical
integration in R either using integrate() or summing over small ∆S] (2) value
of recruitment at the mean settlement (3) delta-method approximation (4,5)
proportional error in #2 and #3 change with the variance.

3 The method of moments: reparameterizing distribu-
tions

In the chapter, I showed how to use the method of moments to estimate the
parameters of a distribution by setting the sample mean and variance (x̄, s2)

9

equal to the theoretical mean and variance of a distribution and solving for
the parameters. For the negative binomial, in particular, I found µ = x̄ and
k = (x̄)/(s2/x̄− 1).

You can also define your own functions that use your own parameterizations:
call them my_function rather than just replacing the standard R functions
(which will lead to insanity in the long run).

For example, defining

> my_dnbinom = function(x, mean, var, ...) {

+ mu = mean

+ k = mean/(var/mean - 1)

+ dnbinom(x, mu = mu, size = k, ...)

+ }

> my_rnbinom = function(n, mean, var, ...) {

+ mu = mean

+ k = mean/(var/mean - 1)

+ rnbinom(n, mu = mu, size = k, ...)

+ }

(the ... in the function takes any other arguments you give to my_dnbinom and
just passes them through, unchanged, to dnbinom).

Defining your own functions can be handy if you need to work on a regular
basis with a distribution that uses a different parameterization than the one
built into the standard R function.

You can use the kinds of histograms shown above to test your results (remem-
bering that the method of moments estimates may be slightly biased especially
for small samples — but they shouldn’t cause errors as large as those caused by
typical algebra mistakes).

> x = my_rnbinom(1e+05, mean = 1, var = 4)

> mean(x)

[1] 0.9999

> var(x)

[1] 4.00574

> tx = table(factor(x, levels = 0:max(x)))/1e+05

> b1 = barplot(tx, ylab = "Probability")

> points(b1, my_dnbinom(0:max(x), mean = 1, var = 4), pch = 16)

> abline(v = 1)

10

Exercise 5 *: Morris (1997) gives a definition of the beta function that is
different from the standard statistical parameterization. The standard parame-
terization is

Beta(x|a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1

whereas Morris uses

Beta(x|P, θ) =
Γ(θ)

Γ(θP)Γ(θ(1− P))
xθP−1(1− x)θ(1−P)−1.

Find expressions for P and θ in terms of a and b and vice versa. Explain why
you might prefer Morris’s parameterization. Define a new set of functions that
generate random deviates from the beta distribution (my_rbeta) and calculate
the density function (my_dbeta) in terms of P and θ. Generate a histogram from
this distribution and draw a vertical line showing the mean of the distribution.

4 Creating new distributions
4.1 Zero-inflated distributions
The general formula for the probability distribution of the a zero-inflated dis-
tribution, with an underlying distribution P (x) and a zero-inflation probability
of pz, is:

Prob(0) = pz + (1− pz)P (0)
Prob(x > 0) = (1− pz)P (x)

11

So, for example, we could define a probability distribution for a zero-inflated
negative binomial as follows:

> dzinbinom = function(x, mu, size, zprob) {

+ ifelse(x == 0, zprob + (1 - zprob) * dnbinom(0, mu = mu,

+ size = size), (1 - zprob) * dnbinom(x, mu = mu, size = size))

+ }

(the name, dzinbinom, follows the R convention for a probability distribution
function: a d followed by the abbreviated name of the distribution, in this case
zinbinom for “zero-inflated negative binomial”).

The ifelse() command checks every element of x to see whether it is zero
or not and fills in the appropriate value depending on the answer.

A random deviate generator would look like this:

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))

+ }

The command runif(n) picks n random values between 0 and 1; the ifelse
command compares them with the value of zprob. If an individual value is less
than zprob (which happens with probability zprob=pz), then the corresponding
random number is zero; otherwise it is a value picked out of the appropriate
negative binomial distribution.

Exercise 6 : check graphically that these functions actually work. For an
extra challenge, calculate the mean and variance of the zero-inflated negative bi-
nomial and compare it to the results of rzinbinom(10000,mu=4,size=0.5,zprob=0.2).

5 Compounding distributions
The key to compounding distributions in R is that the functions that generate
random deviates can all take a vector of different parameters rather than a
single parameter. For example, if you were simulating the number of hatchlings
surviving (with individual probability 0.8) from a series of 8 clutches, all of size
10, you would say

> rbinom(8, size = 10, prob = 0.8)

[1] 7 6 9 7 9 9 6 8

but if you had a series of clutches of different sizes, you could still pick all the
random values at the same time:

> clutch_size = c(10, 9, 9, 12, 10, 10, 8, 11)

> rbinom(8, size = clutch_size, prob = 0.8)

[1] 10 7 8 8 6 7 6 8

Taking this a step farther, the clutch size itself could be a random variable:

12

> clutch_size = rpois(8, lambda = 10)

> rbinom(8, size = clutch_size, prob = 0.8)

[1] 7 10 7 11 13 4 5 4

We’ve just generated a Poisson-binomial random deviate . . .
As a second example, I’ll follow Clark et al. in constructing a distribution

that is a compounding of normal distributions, with 1/variance of each sample
drawn from a gamma distribution.

First pick the variances as the reciprocals of 10,000 values from a gamma
distribution with shape 5 (setting the scale equal to 1/5 so the mean will be 1):

> var_vals = 1/rgamma(10000, shape = 5, scale = 1/5)

Take the square root, since dnorm uses the standard deviation and not the
variance as a parameter:

> sd_vals = sqrt(var_vals)

Generate 10,000 normal deviates using this range of standard deviations:

> x = rnorm(10000, mean = 0, sd = sd_vals)

Figure 4 shows a histogram of the following commands:

> hist(x, prob = TRUE, breaks = 100, col = "gray")

> curve(dt(x, df = 11), add = TRUE, lwd = 2)

The superimposed curve is a t distribution with 11 degrees of freedom; it turns
out that if the underlying gamma distribution has shape parameter p, the re-
sulting t distribution has df = 2p + 1. (Figuring out the analytical form of the
compounded probability distribution or density function, or its equivalence to
some existing distribution, is the hard part; for the most part, though, you can
find these answers in the ecological and statistical literature if you search hard
enough.

Exercise 7 *: generate 10,000 values from a gamma-Poisson compounded
distribution with parameters shape=k = 0.5, scale=µ/k = 4/0.5 = 8 and
demonstrate that it’s equivalent to a negative binomial with the appropriate
µ and k parameters.

Extra credit : generate 10,000 values from a lognormal-Poisson distribution
with the same expected mean and variance (the variance of the lognormal should
equal the variance of the gamma distribution you used as a compounding dis-
tribution; you will have to do some algebra to figure out the values of meanlog
and sdlog needed to produce a lognormal with a specified mean and variance.
Plot the distribution and superimpose the theoretical distribution of the nega-
tive binomial with the same mean and variance to see how different the shapes
of the distributions are.

13

> hist(x, prob = TRUE, breaks = 100, col = "gray")

> curve(dt(x, df = 11), add = TRUE, lwd = 2)

Figure 4: Clark model: inverse gamma compounded with normal, equivalent to
the Student t distribution

14

