1 Static simulation models

1.1 Simple models

1.1.1 Linear model

The code for the static linear model should (I hope) seem pretty straightforward by now. I defined an \(x \) vector, evenly spaced between 1 and 20; set up parameter values; calculated a deterministic value; and then added 20 random normally distributed values to the deterministic values. I then plotted a scatterplot (\texttt{plot()}) and added both the theoretical value of the line (\texttt{abline} in its slope-intercept form) and the fitted linear regression line (\texttt{lm(y~x)}, as seen in Lab 1).

Pick \(x \) values and set parameters:

\begin{verbatim}
> x = 1:20
> a = 2
> b = 1
\end{verbatim}

Set random-number seed:

\begin{verbatim}
> set.seed(1001)
\end{verbatim}

Calculate the deterministic expectation (\(y_{\text{det}} \)) and then pick 20 normally distributed values with these means and \(\sigma = 2 \):

\begin{verbatim}
> y_det = a + b * x
> y = rnorm(20, mean = y_det, sd = 2)
\end{verbatim}

Plot the simulated values along with the estimated linear regression line and the theoretical values:

\begin{verbatim}
> plot(x, y)
> abline(lm(y ~ x), lty = 2)
> abline(a, b)
\end{verbatim}
would have the same effect as the last statement).

For the hyperbolic simulation: Pick parameters:

```r
> a = 6
> b = 1
```

Pick 50 x values uniformly distributed between 0 and 5:

```r
> x = runif(50, min = 0, max = 5)
```

Calculate the deterministic expectation (y_{det}) and then pick 50 Poisson values with these means:

```r
> y_det = a/(b + x)
> y = rpois(50, y_det)
```

Plot the simulated values and add the theoretical curve (we'll wait until Chapter 6 to see how to estimate the curve):

```r
> plot(x, y)
> curve(a/(b + x), add = TRUE)
```
Exercise 1: Simulate a set of 100 values with
- x values uniformly distributed between 0 and 10;
- mean y values following a Ricker model with a (initial slope) = 1 and b (exponential decay parameter) = 0.5;
- gamma-distributed heterogeneity with shape parameter 3 and mean as above

Plot the simulated values and superimpose the theoretical curve.

2 Intermediate simulations
2.1 Pigweed
> set.seed(1001)
> nparents = 50
> noffspr = 10
> $L = 30$

Pick locations of parents:

> parent_x = runif(nparents, min = 0, max = L)
> parent_y = runif(nparents, min = 0, max = L)

Pick angles and distances of offsets of offspring from parents:
> angle = runif(npairs * noffspr, min = 0, max = 2 * pi)
> dist = rexp(npairs * noffspr, 0.5)

Calculate offspring locations (duplicating each parent’s position noffspr times):

> offspr_x = rep(parent_x, each = noffspr) + cos(angle) * dist
> offspr_y = rep(parent_y, each = noffspr) + sin(angle) * dist

Calculate distances:

> dist = sqrt((outer(offspr_x, offspr_x, "-")) ^ 2 + (outer(offspr_y, offspr_y, "-")) ^ 2)

Calculate neighborhood crowding matrix:

> nbrcrowd = apply(dist < 2, 1, sum) - 1

Plot offspring locations:

> plot(offspr_x, offspr_y, xlab = "", ylab = "")

![Scatter plot showing offspring locations](image)

Plot distribution of neighborhood crowding:

> b1 = barplot(table(factor(nbrcrowd, levels = 0:max(nbrcrowd)))/length(nbrcrowd),
+ xlab = "Number of neighbors", ylab = "Proportion")
Exercise 2: superimpose a negative binomial distribution, with the parameters estimated by the method of moments, on the previous plot.

Calculate crowding index as $3 \times$ neighborhood density:

$$c_i = \text{nbrcrowd} \times 3$$

Take parameter of hyperbolic function and gamma shape parameter from Pacala and Silander:

$$M = 2.3$$
$$\alpha = 0.49$$

Expected value of biomass/α (note that Pacala and Silander estimate the scale parameter as a function of crowding index, not the mean):

$$\text{mass}_\text{det} = \frac{M}{1 + c_i}$$

Pick random deviates:

$$\text{mass} = r\text{gamma(length(mass}_\text{det}), scale = mass}_\text{det}, \text{shape = alpha}\) $$

Plot values and theoretical curve:

```r
> plot(ci, mass, cex = 0.5, xlab = "Competition index", ylab = "Biomass (g)")
> curve(M/(1 + x) * alpha, add = TRUE, from = 0)
```
Parameters for seed set model (slope and overdispersion):

\[b = 271.6 \]
\[k = 0.569 \]

Deterministic model and random values:

\[seed_{det} = b \times mass \]
\[seed = \text{rnbinom(length(seed_{det}), mu = seed_{det}, size = k)} \]

Plot (1+seed set) on a double-logarithmic scale:

\[\text{plot(mass, 1 + seed, log = "xy", xlab = "Mass", ylab = "1+Seed set")} \]
\[\text{curve(b * x + 1, add = TRUE)} \]
Extra stuff: superimpose the 95% confidence limits on the plot (use a logarithmically spaced x vector to calculate them):

```r
> logxvec = seq(-7, 0, length = 100)
> xvec = 10^logxvec
> lower = qnbinom(0.025, mu = b * xvec, size = k)
> upper = qnbinom(0.975, mu = b * xvec, size = k)
> lines(xvec, lower + 1, lty = 2)
> lines(xvec, upper + 1, lty = 2)
```

Exercise 3: superimpose the median of the distribution on the above graph as well: how does it differ from the mean?

Exercise 4: reproduce Figure 3.

or

Exercise 5: reproduce Figure 3, but with a beta-binomial error structure instead of a binomial error structure. Use Morris’s parameterization of the beta-binomial, with \(p \) equal to the hyperbolic per capita recruitment function \((R/S = a/(1 + (a/b)S)) \) and \(\theta = 10 \).
3 Dynamic models

3.1 Discrete time

3.1.1 Linear growth model

Set up parameters: number of time steps, starting value, change in N per unit time (slope), and standard deviations of process and measurement error:

```r
> nt = 20
> N0 = 2
> dN = 1
> sd_process = sqrt(2)
> sd_obs = sqrt(2)
```

The first way to do this problem: marginally less efficient but perhaps easier to understand, save both the true and the observed values.

Set aside space:

```r
> Nobs = numeric(nt)
> N = numeric(nt)
```

Set initial values and pick observation error for first time step:

```r
> N[1] = N0
```

```r
> for (i in 2:nt) {
+     N[i] = N[i - 1] + rnorm(1, mean = dN, sd = sd_process)
+     Nobs[i] = N[i] + rnorm(1, sd = sd_obs)
+ }
```

An alternative, marginally more efficient way to run this simulation is keeping only the current value of N, as follows:

```r
> cur_N = N0
```

```r
> for (i in 2:nt) {
+     cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)
+     Nobs[i] = cur_N + rnorm(1, sd = sd_obs)
+ }
```

If you plan to experiment a lot with such simulations with different parameters, it’s convenient to define a function that will do the whole thing in one command (with default parameters so you can conveniently change one thing at a time):

```r
> linsim = function(nt = 20, N0 = 2, dN = 1, sd_process = sqrt(2),
+                   sd_obs = sqrt(2)) {
+     cur_N = N0
+     for (i in 2:nt) {
+         cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)
+         Nobs[i] = cur_N + rnorm(1, sd = sd_obs)
+     }
+ }
```
+ cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)
+ Nobs[i] = cur_N + rnorm(1, sd = sd_obs)
+ }
+ return(Nobs)
+ }

(make sure that the last statement in your function is either a variable by itself,
or an explicit return() statement)

Run one simulation and fit a linear regression:

```r
> N = linsim(sd_proc = 2)
> tvec = 1:20
> lm1 = lm(N ~ tvec)
```

Plot the points along with the linear regression line and the theoretical values:

```r
> plot(tvec, N, type = "b")
> abline(lm1)
> abline(a = 2, b = 1, lty = 2)
```

Running experiments with many linear simulations:

```r
> nsim = 100
> Nmat = matrix(nrow = 20, ncol = 100)
```
for (i in 1:nsim) {
+ Nmat[, i] = linsim()
+ }

Find the 2.5% quantile:
> lower = apply(Nmat, 1, quantile, 0.025)

(You can find both the 2.5% and the 97.5% quantile at the same time with t(apply(Nmat,1,quantile,c(0.025,0.975))).)

Exercise 6*: Using (among other functions) matplot(), rowMeans(), quantile() (maybe matlines()):

- run 1000 linear simulations with $\sigma_{\text{obs}} = \sigma_{\text{proc}} = 2$.
- Plot all of the individual lines, in gray
- Plot the mean at each time step, in black
- Plot the 95% quantiles at each time step, black, with dashed lines

Do the results match what you expect from the two extreme cases (measurement error only/process error only) shown in the chapter?

3.1.2 Sink population growth model

Here’s another example, a model of a sink population that is maintained by immigration: the number of individuals in the population surviving each year is binomial, with a constant survival probability. A Poisson-distributed number of immigrants arrives every year, with a constant rate.

```
> immigsim = function(nt = 20, N0 = 2, immig, surv) {
+   N = numeric(nt)
+   N[1] = N0
+   for (i in 2:nt) {
+     Nsurv = rbinom(1, size = N[i - 1], prob = surv)
+     N[i] = Nsurv + rpois(1, immig)
+   }
+   return(N)
+ }
```

Running 1000 simulations:
```
> nsim = 1000
> nt = 30
> p = 0.95
> N0 = 2
> immig = 10
> Nmat = matrix(ncol = nsim, nrow = nt)
> for (j in 1:nsim) {
+   Nmat[, j] = immigsim(nt = nt, N0 = N0, surv = p, immig = immig)
+ }
> tvec = 1:nt
```
It turns out that we can also derive the theoretical curve: $E[N_{t+1}] = pN_t + I$.

\[
\begin{align*}
N(t + 1) &= pN(t) + I \\
N(t + 2) &= p(pN_t + I) + I = p^2N_t + pI + I \\
&\quad \vdots
\end{align*}
\]

So in general, by induction,

\[
N(t + n) = p^nN_t + \sum_{j=0}^{n-1} p^j I
\]

or

\[
N(t) = p^{t-1}N_1 + \frac{1 - p^{t-1}}{1 - p} I
\]

(accounting for the fact that we start at $t = 1$ and using the formula for the sum of a geometric series, $\sum_{j=0}^{n-1} p^j = (1 - p^{t-1})/(1 - p)$).

Plotting x and superimposing lines showing the mean value of the simulations:

\[
\begin{align*}
&\text{matplot(tvec, Nmat, type = "l", col = "gray")} \\
&\text{lines(tvec, rowMeans(Nmat), lwd = 2)} \\
&\text{curve(p^(x - 1) * N0 + (1 - p^(x - 1))/(1 - p) * immig, add = TRUE)}
\end{align*}
\]
3.2 Continuous time
Solving the theta-logistic model,

\[
\frac{dN}{dt} = rN \left(1 - \frac{N}{K}\right)^\theta
\]

numerically:

Attach \texttt{odesolve} package:

\[
> \text{library(odesolve)}
\]

Define a function for the derivative. It \textit{must} have arguments (time, state vector, parameters), although they need not be called \texttt{t, y, params}. The only other peculiarity is that instead of returning the derivative (\texttt{dNdt} in this case) by itself you actually have to return a list containing the derivative as its first element and “a vector of global values that are required at each point” (which can usually be \texttt{NULL}).

\[
> \text{derivfun = function(t, y, parms) \{ }
+ r = \text{parms}[1]
+ K = \text{parms}[2]
+ \theta = \text{parms}[3]
+ N = y[1]
+ \text{dNdt = r * N * sign(1 - N/K) * abs((1 - N/K))^\theta}
+ \text{list(dNdt, NULL)}
+ \} }
\]

Once you’ve defined the derivative function, you can use the \texttt{lsoda} function to solve that differential equation for any set of starting values (\texttt{y}), times (\texttt{times}), and parameters (\texttt{parms}) you like.

\[
> \text{tvec = seq(0, 50, by = 0.2)}
> x1 = \text{lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,}
+ \text{K = 10, theta = 1))}
\]

You get back a numeric matrix with a column for the times and columns for all of the state variables (only one in this case):

\[
> \text{head(x1)}
\]

\[
\begin{array}{ll}
\text{time} & N \\
[1,] & 0.0 1.000000 \\
[2,] & 0.2 1.036581 \\
[3,] & 0.4 1.074341 \\
[4,] & 0.6 1.113303 \\
[5,] & 0.8 1.153495 \\
[6,] & 1.0 1.194945 \\
\end{array}
\]

Re-running the solution for different values of \(\theta\):
> x2 = lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,
+ K = 10, theta = 2))
> x3 = lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,
+ K = 10, theta = 0.5))

Putting the results together into a single matrix (both columns of the first
matrix and only the second column of the other two):

> X = cbind(x1, x2[, "N"], x3[, "N"])

Plotting with matplot(), and using curve and the known solution for the
plain old logistic to check the solution when $\theta = 1$:

> matplot(X[, "time"], X[, 2:4], type = "l", col = 1, xlab = "time",
+ ylab = "N")
> r = 0.2
> K = 10
> N0 = 1
> curve(K/((1 + (K/N0 - 1) * exp(-r * x))), type = "p", add = TRUE)
> legend(30, 4, c(expression(theta == 1), expression(theta == 2),
+ expression(theta == 0.5)), lty = 1:3)

(remember you have to use == to get an equals sign in a math expression).
4 Power etc. calculations

This section will first go through a relatively simple example (the source-sink population model presented above), showing the basic steps of a power calculation. I’ll then give a briefer sketch of some of the gory details of doing the Shepherd model power analysis discussed in the chapter.

4.1 Sink population dynamics

The sink population presented above was a recovering sink population: the biological question I will try to answer is: how long do I have to sample the population for to test that it is really recovering? How does this depend on the survival and immigration rates?

First, simulate one set of values and a time vector:

```r
> nt = 20
> sim0 = immigsim(nt = nt, NO = 2, surv = 0.9, immig = 10)
> tvec = 1:nt
```

Run a linear regression and extract the point estimate and confidence limits for the slope:

```r
> lm1 = lm(sim0 ~ tvec)
> slope = coef(lm1)["tvec"]
> ci.slope = confint(lm1)["tvec", ]
```

(look at the output of `confint(lm1)` to see how it’s structured).

Now run the model for a series of lengths of observation time and record the values for each length:

```r
> nvec = c(3, 5, 7, 10, 15, 20)
> nsim = 500
> powsimresults = matrix(nrow = length(nvec) * nsim, ncol = 5)
> colnames(powsimresults) = c("n", "sim", "slope", "slope.lo", "+ "slope.hi")
> ctr = 1
> for (i in 1:length(nvec)) {
+ nt = nvec[i]
+ tvec = 1:nt
+ cat(nt, 
+ for (sim in 1:nsim) {
+ current.sim = immigsim(nt = nt, NO = NO, surv = p, immig = immig)
+ lm1 = lm(current.sim ~ tvec)
+ slope = coef(lm1)["tvec"]
+ ci.slope = confint(lm1)["tvec", ]
+ powsimresults[ctr, ] = c(nt, sim, slope, ci.slope)
+ ctr = ctr + 1
+ }
+ }
```
A couple of R tricks in this code:

- I’m going to keep the output in long format, with each row containing the sample size and simulation number along with the estimate and confidence intervals: this will make it easy to cross-tabulate the results (see below).

- I keep a counter variable `ctr` to track which row of the matrix I’m filling in, and add one to it each time through the loop. (Alternately I could calculate that at the `i`th sample size and `s`th simulation I should be filling in row `(i-1)*nsim+i`.) Make sure to reset `ctr` if you re-run the `for` loops.

- the `cat()` command is just printing results as I go along: on Windows you may have to go to a menu and unselect the “buffered output” option. The "\n" at the end specifies a new line.

- I keep track of simulation number in the loop but the index of the sample size: `i` is (1, 2, 3, …) rather than `i` (3, 5, 7, …). This isn’t totally necessary in this case since we’re using `ctr` to index the rows of the matrix, but it’s generally safer.

Now summarize the results, cross-tabulating by the number of samples.

```r
> nfac = factor(powsimresults[, "n"])

Select the point estimate and calculate its mean (`E[\hat s]`) for each observation length:

```r
define the function slope.mean = tapply(powsimresults[, "slope"], nfac, mean)
```

Calculate the standard deviation:

```r
define the function slope.sd = tapply(powsimresults[, "slope"], nfac, sd)
```

to calculate the variance of the estimate.

Calculating whether the true value fell within the confidence limits in a particular simulation. (The theoretical value of the slope is a little hard here since the expected value of the population is actually to grow to an asymptote. Near the beginning the slope is close to the immigration rate:

```r
> ci.good = (powsimresults[, "slope.hi"] > immig) & (powsimresults[, + "slope.lo"] < immig)
```
Calculating the coverage by cross-tabulating the number of “good” confidence
intervals and dividing by the number of simulations per \( d/s \) sample size combina-
tion:

\[
> \text{nsim} = 500 \\
> \text{slope.cov} = \text{tapply(ci.good, nfac, sum)}/\text{nsim}
\]

(so the “coverage” actually decreases in this case, but this is a bad example —
sorry!)

Calculating whether the null value (zero) did not fall within the confidence
limits:

\[
> \text{null.value} = 0 \\
> \text{reject.null} = (\text{powsimresults[, "slope.hi"] < null.value}) | (\text{powsimresults[,} \\
> + "slope.lo"] > \text{null.value})
\]

Calculating the power by cross-tabulating the number of rejections of the null
hypothesis and dividing by the number of simulations per \( d/s \) sample size combi-
nation:

\[
> \text{slope.pow} = \text{tapply(reject.null, nfac, sum)}/\text{nsim}
\]

In this case it’s very easy to see, very quickly, that the population is recovering
...

Exercise 7 *: redo this example, but with negative binomial growth (with
\( k = 5, k = 1, \) and \( k = 0.5 \)). If you want to be fancy, try to nest an additional for
loop and cross-tabulate your answers with a single command (see code below
under reef fish example): otherwise simply change the variable and re-run the
code three times.

or

Exercise 8 **: in R, you can fit a quadratic function with

\[
> \text{lm.q} = \text{lm(sim0 ~ tvec + I(tvec^2))}
\]

Extract the point estimate for the quadratic term with \( \text{coef(lm.q)}[3] \) and the
confidence intervals with \( \text{confint(lm.q)}[3,] \). For the original model (with
Poisson variability), do a power analysis of your ability to detect the leveling-off
of the curve (as a negative quadratic term in the regression fit) as a function
of number of observation periods. (If you’re really ambitious, combine the two
problems and try this with negative binomial variation.)

4.2 Reef fish dynamics

Regenerating a simulated version of Schmitt et al. data.

(Re)define zero-inflated negative binomial and Shepherd functions:

\[
> \text{rzinbinom} = \text{function(n, mu, size, zprob) \{ \\
+ \text{ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))} \\
+ \}} \\
> \text{shep} = \text{function(x, a = 0.696, b = 9.79, d = 1) \{ \\
+ \text{a/(1 + (a/b) * x^d)} \\
+ \}}
\]
Parameters for distribution of settlers \((\mu, k, p_z)\) and Shepherd function \((a, b, d)\):

\[
\begin{align*}
\mu &= 25.32 \\
k &= 0.932 \\
p_z &= 0.123 \\
a &= 0.696 \\
b &= 9.79 \\
d &= 1.1 \\
n &= 603
\end{align*}
\]

Simulate one set of values:

\[
\begin{align*}
\text{set.seed(1002)} \\
\text{setlers = rzinbinom(n, mu = mu, size = k, p_z = p_z)} \\
\text{recr = rbinom(n, prob = shep(setlers, a, b, d), size = settlers)}
\end{align*}
\]

The nonlinear least-squares function \text{nls()\)} takes a formula and a named set of starting values. Start by fitting the Beverton-Holt, which is easier to fit than the Shepherd. (This is a typical way to fit a complex model: start with a simpler, easier-to-fit model that is a special case of the complex model, then use those fitted parameters as a starting point for the harder estimation problem.) Use the theoretical values of \(a\) and \(b\) as starting parameters for the Beverton-Holt fit:

\[
\begin{align*}
\text{bh.fit = nls(recr ~ a * settlers/(1 + (a/b) * settlers), start = c(a = 0.696, b = 9.79))} \\
\text{bh.fit}
\end{align*}
\]

The function \text{coef(bh)} gives the fitted parameters (coefficients). Use these, plus a starting value of \(d = 1\), to fit the Shepherd function.

\[
\begin{align*}
\text{shep.fit = nls(recr ~ a * settlers/(1 + (a/b) * settlers^d), start = c(coef(bh.fit), d = 1))} \\
\text{shep.fit}
\end{align*}
\]

The function \text{coef(bh)} gives the fitted parameters (coefficients). Use these, plus a starting value of \(d = 1\), to fit the Shepherd function.
Calculate confidence intervals:

```r
> ci = confint(shep.fit)
Waiting for profiling to be done...

> ci
 2.5% 97.5%
a 0.4630841 0.8419771
b 6.2920786 26.0900580
d 0.9846074 1.3152524
```

Extract the estimates for \(d\):

```r
> ci["d",]
 2.5% 97.5%
0.9846074 1.3152524
```

Sometimes the confidence interval fitting runs into trouble and stops with an error like:

```r
Error in prof$getProfile() : step factor 0.000488281 reduced below 'minFactor' of 0.000976562
```

This kind of glitch is fairly rare when doing analyses one at a time, but very common when doing power analyses, which require thousands or tens of thousands of fits. A few R tricks for dealing with this:

- \(x = \text{try(command)}\) “tries” a command to see if it works or not; it it doesn’t work, R doesn’t stop but sets \(x\) equal to the error message. To test whether the command stopped or not, see if \(\text{class}(x) = \text{"try-error"}\)

- \(\text{while}\) and \(\text{if}\) are commands for flow control (like the \(\text{for()}\) command introduced earlier in this lab): \(\text{if}\) executes a set of commands (once) if some condition is true, and \(\text{while}\) loops and executes a set of commands as long as some condition is true

The code below is a slightly simplified version of what I did to generate the values:

```r
> getvals = function(n = 100, d = 1) {
+ OK = FALSE
+ while (!OK) {
+ z = simdata(n, d)
+ bh.fit = try(nls(recr ~ a * settlers/(1 + (a/b) * settlers),
+ start = c(a = 0.696, b = 9.79), data = z))
+ shep.fit = try(nls(recr ~ a * settlers/(1 + (a/b) * settlers^d),
```
Here I loaded the results of a big set of simulations I had run: download it from the web page if you want to actually run these commands.

```r
> load("chap5-batch2.RData")
```

I then used

```r
> faclist = list(factor(resmat[, "d"]), factor(resmat[, "n"]))
```

To define a set of factors to break up the data (i.e., I will want to cross-tabulate by both true parameter value \(d\) and sample size) and then ran

```r
> d.shep.mean = tapply(resmat[, "d.shep"], faclist, mean)
```

to calculate the mean value \(E[d]\) and

```r
> d.shep.sd = tapply(resmat[, "d.shep"], faclist, sd)
```

to calculate the variance of the estimate.

Calculating whether the true value fell within the confidence limits in a particular simulation:

```r
> ci.good = (resmat[, "d.shep.hi"] > resmat[, "d"]) & (resmat[, + "d.shep.lo"] < resmat[, "d"])
```

Calculating the coverage by cross-tabulating the number of “good” confidence intervals and dividing by the number of simulations per \(d\)/sample size combination:

```r
> nsim = 400
> d.shep.cov = tapply(ci.good, faclist, sum)/nsim
```

Calculating whether the null value \textit{did not} fall within the confidence limits:
> null.value = 1
> reject.null = (resmat[, "d.shep.hi"] < null.value) | (resmat[, +
+ "d.shep.lo"] > null.value)

Calculating the power by cross-tabulating the number of null-hypothesis rejections and dividing by the number of simulations per $d$/sample size combination:

> nsim = 400
> d.shep.pow = tapply(reject.null, faclist, sum)/nsim

Randomization tests (to come)