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Seasonality and extinction in chaotic metapopulations

B. T. GRENFELL, B. M. BOLKERYt anp A. KLECZKOWSKI#
Zoology Department, Cambridge University, Downing Street, Cambridge CB2 3EJ, U.K.

SUMMARY

A body of recent work has used coupled logistic maps to show that these model metapopulations show a
decrease in global extinction rate in the chaotic region of model behaviour. In fact, many of the main
ecological candidates for low-dimensional chaos are continuous-time host—parasite and predator-prey
systems, driven by strong seasonal ‘forcing’ of one or more population parameters. This paper, therefore,
explores the relation between seasonal forcing and metapopulation extinction for such systems. We base
the analysis on extensive simulations of a stochastic metapopulation model for measles, based on a
standard compartmental model, tracking the density of susceptible, exposed, infectious and recovered
individuals (the seiR model). The results show that, by contrast with coupled logistic maps, the increased
seasonality which causes chaos maintains or increases levels of global extinction of infection, by increasing
the synchrony of sub-population epidemics. The model also illustrates that the population interaction
(here between susceptible and infective hosts) has a significant effect on patterns of synchrony and

extinction.

1. INTRODUCTION

A recurrent theme in ecology has been the role of
spatial heterogeneity in reducing the extinction rate
of populations (Pimentel ¢t al. 1963; Hilborn 1975;
Hassell et al. 1991; Allen et al. 1993; Huffaker 1994).
Recently, Allen et al. (1993) and Ruxton (1994) have
used coupled logistic maps to derive important theor-
etical results about the influence of nonlinear spatial
dynamics on the persistence of metapopulations. They
show that increasing the average population repro-
ductive rate (which generates the well-known tran-
sition from limit cycles to chaos in the logistic map
(May 1976)) decreases local population persistence,
while enhancing the overall persistence of the meta-
population. Allen et al. (who used stochastically
perturbed maps) attribute this increase in global
persistence to the effect of chaos in amplifying local
noise in systems with intermediate coupling. Ruxton
(1994) has since shown that this difference in local and
global persistence is also generated in the deterministic
case; although there is increased local extinction in the
chaotic region, the fluctuations in local populations are
sufficiently out of phase to reduce global extinction.
Many of the main ecological candidates for low
dimensional chaos are continuous-time host—parasite
and predator—prey systems, driven by strong seasonal
‘forcing’ of one or more population parameters (Aron
& Schwartz, 1984 ; Olsen et al. 1988; Olsen & Schaffer,
1990; Hanski et al. 1993). In particular, there is a
large quantity of literature debating the presence or
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absence of chaos in measles dynamics in developed
countries before the vaccination era (Drepper 1988;
Olsen et al. 1988; Pool 1989; Olsen & Schaffer 1990;
Ellner 1991; Rand & Wilson 1991; Nychka et al.
1992). Measles is a particularly good test-bed for
studies in nonlinear dynamics because of the avail-
ability both of relatively long notification time series
(Fine & Clarkson 1982; Anderson et al. 1984 ; Grenfell
& Anderson 1985) and plausible population models
(Hamer 1906; Soper 1929; Bartlett 1957; Bartlett
1960; Black 1966; Schenzle 1984; Anderson & May
1991). Whether measles dynamics are chaotic or not,
the effects of seasonality (which arises from the seasonal
aggregations of children during school terms) certainly
has a strong dynamical impact (Fine & Clarkson 1982;
Schenzle 1984).

Viewing Allen et al. and Ruxton’s results in the
context of measles dynamics gives rise to two general
questions. First, for the forced seir model for measles,
it is increased seasonality that produces chaotic
epidemic patterns (Aron & Schwartz 1984; Olsen &
Schaffer 1990). However, synchronous seasonality
might also be expected to magnify the correlation of
subpopulations; this might then increase metapopu-
lations extinction rates by synchronizing local extinc-
tions. This hypothesis prompts the question: which
of these roles of seasonality predominates i.e. does
increasing seasonality reduce or enhance the extinction
rate of model metapopulations?

The second question concerns the influence of the
underlying ecological interaction on the chaos—
persistence interaction. In particular, the candidates
for seasonally driven chaos (notably measles and
Fennoscandian vole—mustellid cycles) (Hanski et al.
1993) reflect the impact of seasonality on functional
predator—prey interactions (represented by infectious
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and susceptible individuals, respectively, in the case of
measles). In this broad class of systems we therefore
address the question: how does the underlying popu-
lation interaction affect patterns of extinction?.

In this paper we explore these issues by using
simulations of a model for seasonally forced measles
dynamics in a simple host metapopulation. We begin
by introducing the structure of the model, then present
the results of simulations, and finally discuss their
ecological implications.

2. THE MODEL
(a) Model structure

We use a spatial extension of the standard compart-
mental model for measles: the sEiR model. Although
this simple formulation has its shortcomings as a model
for many aspects of measles dynamics (Schenzle 1984;
Grenfell 1992; Bolker & Grenfell 1993), its well-known
transition to chaos with increasing seasonal forcing of
the infection rate (Aron & Schwartz 1984; Olsen &
Schaffer 1990) suits our purpose here. Following Allen
et al. (1993), we divide the constant total host
population, of size into ten equal subpopulations
(N,,j=1,...,10). The deterministic dynamics of in-
fection in subpopulation j are then described by the
following equations.

dS;/(de) = pN;— [+ B(0) (L + 201 1S,
dE/(dl) = f(0) [+v 25y, L] IS — (4 9) K (1)
dl/(df) = o, — (u+vy) L.

S, E;, I, and R, represent the density of susceptible,
exposed, infectious and recovered individuals, respect-
ively, in a constant local population of size
N; = §;+ E;+ [+ R,. Average life expectancy, disease
incubation and infectious periods are 1/u, 1/ and
1/, respectively. The infection rate of susceptibles by
infectious individuals is controlled by the parameter
pB(t), which is assumed to be the same for all
subpopulations. Seasonality is introduced by making

an annually periodic function of time
t: f(t) = by(l+ b, cos (2mt)) ; b, measures the amplitude
of seasonal variations around the baseline 4,. Finally,
cross-infection between sites is controlled by a par-
ameter, v, which can span the range from zero coupling
(v =0) to complete homogeneous mixing (v = 1).

(b) The simulations

Noise is introduced into the model in two ways.
First, we allow for demographic noise by simulating
the model with a fully stochastic Monte Carlo
procedure (Bartlett 1957; Olsen et al. 1988; Olsen &
Schaffer 1990; Bolker & Grenfell 1993). This approach
allows explicitly for the probability of extinction of the
infection in the troughs between epidemics. Second, we
simulate environmental noise by adding multiplicative
gaussian perturbations to the infection parameters
(Rand & Wilson 1991).

Basic model parameters were adapted from Olsen et
al. 1988); b, = 0.010107, o = 45.6, y = 73, u = 0.02.
Unless otherwise stated, we assume a total population
of N, =1 million hosts, equally divided between the
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Figure 1. Level of global fadeout (extinction) of infection
versus seasonal forcing amplitude for the measles meta-
population simulations described in the text. Fadeout is
measured as the proportion of weeks without cases. The
figure shows the results for coupling (v) equal to 0.001
(circles), 0.01 (triangles) and 0.1 (crosses), which probably
spans a realistic range for developed-country urban popu-
lations (B. M. Bolker & B. T. Grenfell, unpublished results).
The corresponding bifurcation diagram for the deterministic
attractor is also shown on the figure (right-hand axis). At
each level of seasonal forcing (4,), the deterministic system
(equations (1)) was simulated for a transient of 1000 years
and then the infective density was sampled annually (at the
start of each year) for 100 years to generate the points shown.
(a) Simulations with demographic noise only. The detailed
pattern of fadeout here depends partly on the structure of the
attractor at each value of seasonality; for example, for
v = 0.001 the simulations at point A (4, = 0.32) fadeout less
than surrounding points. This appears to be partly due to the
fact that, for many starting conditions, the deterministic
attractor shows a tendency for regular (low amplitude)
biennial cycles at this point in phase space; this point is
taken up in the discussion. () Fadeout proportion versus
seasonality for a spatial Monte Carlo model with added noise:
all model parameters are as in (a), but now b, reflects
‘environmental noise’ — random changes affecting epi-
demiological processes — by incorporating 5 9, gaussian noise
(Rand & Wilson 1991). At each Monte Carlo step, a new
random variate g(f) was picked from a standard normal
distribution, and the effective contact rates for that step
became {£(6)*[1+0.5%g(¢)]}.

m = 10 subpopulations (which, therefore, each have
population size 100000). This metapopulation size was
chosen to give significant global extinction of infection
at the minimum level of seasonality used (b, = 0.2).
The above level of b, is appropriate for an isolated
population of size 100000; for a given level of coupling
(v), by is scaled down by a factor of (14 (m—1)v), to
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maintain a comparable average force of infection
between simulations (Grenfell 1992). Simulation out-
put was analysed for 100 years following a 200 year
transient. A Poisson immigration rate of 21 infective
individuals per year (divided equally across the model
metapopulation) was used to reintroduce the infection
following global extinction of the infection (Olsen ef al.
1988; Grenfell 1992). Because these simulations are
numerically very intensive we only show results for
one simulation at each level of seasonality. Further
numerical work (replicating a subset of simulations)
indicates that the results shown below are represen-
tative of model behaviour.

3. RESULTS
(a) Seasonality and fadeout

Figure 1 shows patterns of global extinction from
simulations at a range of seasonal forcing amplitudes
and subpopulation couplings. Simulations with demo-
graphic noise only and demographic plus environ-
mental noise are explored in figures 1a, 6. The figures
also display bifurcation diagrams (Allen ef al. 1993),
showing the transition of the deterministic sEIR model
to chaotic dynamics with increasing seasonality. Over-
all, these results indicate that there is no tendency for
decreased global fade out of infection in the chaotic
region of model behaviour. Indeed, if anything, the
global extinction rate increases with seasonality,
particularly —at  the higher coupling levels
(v =0.01,0.1). Because superimposing environmental
noise (see figure 15) onto the basic demographic
variability (see figure 1a) does not affect this quali-
tative conclusion, we focus on the demographic noise
case only in the rest of the analysis.

Figure 2 analyses these results in terms of the
correlation structure of the metapopulation. It shows
the relation between seasonality, chaos and the
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Figure 2. Cross-correlations versus fadeout proportion. The
figure shows cross-correlations against fade-out proportions
(weeks with zero cases) for each of the simulations shown in
figure 1 (a). Correlations show overall means of 20 year cross-
correlations (Pearson’s r) of weekly numbers of infectives in
each subpopulation. Different symbols show the range of
values of cross-coupling (v = 0.001 (circles), 0.01 (triangles)
and 0.1 (crosses). Lines are least squares regressions between
fadeout (y) and correlation (x), for each level of coupling.
Increased coupling between subpopulation increases average
correlation (the mean position of the lines) by synchronizing
large epidemics.
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Figure 3. Dynamics of total susceptible and infective density
for simulations with demographic noise only (as seen in figure
la, with b, = 0.33); (a), (b) section of simulation with a
period of global fadeout of infection; (a) and (b) are,
respectively, time and phase space plots for susceptibles and
infectives, and the dot size is proportional to the seasonal
swing of infections rate (£(¢)). (¢), (d) As (a), (b), but for a
region of the simulation with no fadeouts.
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Figure 4. Time plots of susceptible (bold dots) and infective (broken line) densities for four of the ten subpopulations,
corresponding to figure 3a. The periodic dotted curve is the critical local density of susceptibles for establishment of

the infection, calculated from equation (2).

correlation of subpopulation for the case of demo-
graphic noise only (corresponding to figure 14). In the
simple deterministic, non-spatial sEIR model, increased
seasonal forcing causes period doubling and eventually
large amplitude chaos (see figure 1a). However, as
shown in figure 2, increased seasonality in the spatial
analogue also causes an increased correlation between
subpopulations. Contrary to the result for the logistic
map (Allen et al. 1993; Ruxton 1994), this increased
correlation offsets any tendency for chaos-amplified
noise to decrease overall population fade out. We stress
that the absence of a negative association between
chaotic dynamics and fade out is not specific to measles
but is likely to be a generic property of forced
predator—prey systems. Figure 2 also indicates that the
slope of the approximately linear relation between
correlation and seasonality increases with the degree of
coupling of the metapopulation. Although this effect is
partly a function of the slight increase in fadeout with
coupling (see figure 1), it derives mainly from the
correlation structure. Specifically, increased coupling
raises the lower limit of correlation between subpopu-
lations (which occurs at the lowest level of seasonality,
see figure 2). For a given level of coupling, increased
seasonality then magnifies correlation and hence
fadeout.

(b) Metapopulation persistence and hosi—parasite dynamics

(1) Dynamics of extinction. Unlike the logistic map
models of Allen et al. (1993) and Ruxton (1994), the

Proc. R. Soc. Lond. B (1995)

above results arise from a population interaction
between infective and susceptible hosts. The effects of
this essentially predator—prey interaction on patterns
of metapopulation persistence are explored in figures 3
and 4. Figure 3 begins with total susceptible (.5) and
infective (/) metapopulation trajectories from a section
of simulation in the chaotic region (b, = 0.33), which
shows significant degrees of fadeout of infection. The
time series (see figure 34) and associated § versus /
phase plot indicate two major epidemics, separated by
an infective trough in which the infection repeatedly
becomes extinct and is reintroduced by the infective
immigration rate. These results clearly illustrate the
impact of the underlying population interaction on
patterns of metapopulation extinction of infection.
First (years 200 and 201) the initial large epidemic
depletes the overall density of susceptibles and the
infection disappears. Infection is then repeatedly
reintroduced by immigration (years 201-202.5). How-
ever, although there are minor epidemics associated
with the seasonal increase in infection rate (the latter
illustrated by point size in figure 3), a major epidemic
(year 203) can only occur when susceptible density has
been increased sufficiently by births. The equivalent
phase portrait (see figure 34), which reflects the
characteristic clockwise loop of predator—prey inter-
actions, illustrates this buildup of susceptibles very
clearly.

These results for the metapopulation aggregate
could, in principle, conceal significant spatial detail in
the dynamics. Figure 4 shows the infective and
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Figure 5. As figure 4, but for the simulation of figure 3¢.

susceptible time series for individual subpopulations,
corresponding with the aggregate results of figures
3a, b. Overall, the subpopulations are well correlated;
the mean correlation of each with the rest of the
aggregate is 0.873, with range 0.43 to 0.96, i.e. most of
the susceptible series reflect the decline and subsequent
approximately linear increase of the aggregate suscep-
tibles (see figure 3a).

Finally, we can explore the timing of epidemics by
calculating the critical local threshold density of
susceptibles above which a reintroduced infection will
become established. From the equilibrium of equations
(1), it is routine to show that the effective reproductive
ratio of infection is greater than unity, and that a
reintroduced infection will therefore spread (Anderson
& May 1991) above the susceptible threshold.

S; = y/{B(8) [1 4 (m—1)v]} (2)

Figure 4 displays this threshold ; it is periodic, dropping
seasonally as infection rates increase. According to
simple theory, epidemics are more likely to establish
when the local susceptible density is above this limit.
Both the subpopulation series (figure 4) and, in
particular, the aggregate data (see figure 34) indicate
that this is a good approximate criterion for the
seasonal sequence of minor epidemics, as well as the
synchronous accumulation of susceptibles before the
major epidemic in year 203.

(i1) Dynamics of metapopulation persistence. For com-
parison with these results, figure 3 also shows a time
series (see figure 3¢) and phase plot (see figure 3d) from
a section of the same simulation with no fadeouts. The
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metapopulation dynamics are dramatically different,
reflecting an annual pattern of epidemics which is of
much lower amplitude than the three-year cycle of
figure 3a. The local dynamics (see figure 5) are even
more distinct; the aggregate annual cycles are formed
from an irregular and out-of-phase mixture of one-,
two- and three-year epidemics at the local level. This
local irregularity is reflected in the generally low
correlation of susceptibles in each subpopulation with
the rest of the aggregate (mean correlation 0.198,
range —0.65 to 0.86) although there is considerable
local fadeout, populations are sufficiently out of phase
to offset global extinction.

In summary, the details of the population interaction
(as well as the pattern of seasonality) have a strong
influence on the timing of metapopulation extinction.
These results also illustrate that high degrees of fadeout
are associated with global synchronization of local
susceptible populations, following large global epi-
demics.

4. DISCUSSION

This paper illustrates that the interaction between
chaos and metapopulation persistence depends
crucially on the origins of the former. By contrast with
coupled discrete maps, simple models of seasonally
forced predator—prey and host—parasite systems (such
as measles) illustrate that strong seasonality tends to
maintain or increase metapopulation extinction rates
in chaotic systems by offsetting the ability of chaos to
generate local differences in dynamics (Allen et al.
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1993; Ruxton 1994). As discussed below, periodic
windows in model behaviour can enhance infection
persistence; however, the predominant effect of high
seasonality is to maintain global extinction rates. This
effect occurs over all the levels of population coupling
examined. It is also not affected by our implicit
assumption that only infected individuals move be-
tween subpopulations. Indeed, the coupling effects of
seasonality would be magnified if susceptible move-
ment were also allowed. Our results, along with those
of Allen et al. and Ruxton, stress the potential
importance of measuring the local correlation of
metapopulations when assessing probabilities of ex-
tinction.

The second point to emerge from this analysis is
that the underlying population interaction also has
a significant impact on patterns of persistence. The
general point here is that the probability of a successful
reintroduction after global extinction depends on the
current state of the system. In the context of our model
measles metapopulation, this translates to the familiar
requirement that there be a sufficient local density of
susceptibles for the epidemic to become established (see
figure 4). A corollary of the large epidemics that
generate global fadeout of the infection is that the
infection dynamics of subpopulations are relatively
synchronized (see figure 4); it is the lack of this
synchronization which prevents extinction (see figure
5). The latter effect is exactly that postulated by Allen
et al. (1993) and Ruxton (1994) to explain the
reduction in extinctions. Our results show that both
periods of persistence and extinction are possible over
a wide range of seasonal forcing amplitudes, given the
complex intermittent dynamics of the seiR model
(Schwartz 1985; Bolker & Grenfell 1993). However,
the synchronized major epidemic behaviour, with
associated global fadeouts, is maintained or increased
with increased seasonality.

As illustrated in figures 3-5, adding spatial het-
erogeneity to the forced SEIR model superimposes
another level of complexity onto an already intricate
dynamical picture. For example, point A in figure la
(the level of fadeout for 4, = 0.32,» = 0.001) indicates
a lower extinction rate of infection than the points
surrounding it (at 4, =0.31,0.33). Extensive
simulations of the deterministic model with random
starting conditions indicates that the attractor for

1 = 0.32 has a propensity for relatively low amplitude
(low fadeout) biennial cycles, compared with b, = 0.31
and 0.33. However, in the spatial stochastic system,
this manifests itself as a comparatively high frequency
of annual metapopulation epidemics, with a significant
component of out-of-phase biennial patterns in the
subpopulations. These results reinforce the point
(Sugihara et al. 1990) that the apparent effect of
dynamic nonlinearities can depend crucially on the
spatial scale on which they are observed. More work
clearly needs to be done to clarify the nonlinear
behaviour of forced spatial epidemic models. An
important first step here has been made by Schwartz
(1992), who analysed pairs of weakly coupled centres.
However, much less work has been done to clarify
spatial chaos in more complex forced systems in the
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presence of noise. We also need to examine further how
stochastic effects, and in particular noise-stabilized
chaos at relatively low forcing amplitudes (Rand &
Wilson 1991), affect patterns of persistence. However,
the present conclusion — that metapopulation extinc-
tion rates generally remain high or increase in forced
chaotic systems — seems robust.

Ideally, any attempt to model patterns of meta-
population extinction should be related to the per-
sistence of equivalent real systems. Measles is par-
ticularly suitable for this purpose because relatively
long records of incidence are available at a range of
spatial scales (Cliff & Haggett 1988). A major problem
with the forced seir model is that it appears unable to
generate realistic patterns of fadeout. The crucial
parameter here is the critical community size, the
average size of urban population to maintain an
endemic infection without fadeout between major
epidemics (Bartlett 1957, 1960; Black 1966). This size
is observed to be significantly less than a million
individuals (probably around 300-500000) whereas
even spatially disaggregated sEIR models seem unable
to persist at populations below several million (B. M.
Bolker & B. T. Grenfell, unpublished results).

The problem probably arises because current
models do not correctly represent the impact of spatial
and other sources of heterogeneity in measles trans-
mission. For example, one possible spatial refinement is
to subdivide our metapopulation more finely. Pre-
liminary analyses indicate that this can reduce the
degree of global extinction of infection. However, it
also tends to generate unrealistic annual cycles (anal-
ogous to those in figure 3¢, d). Our model also implicitly
neglects the effect of distance on mixing of sub-
populations. High ‘local’ mixing could again act to
promote persistence of the infection (Hassell et al.
1991). Preliminary work indicates that demographic
noise and long range mixing in the stochastic sEIrR
system tends to destabilize low-amplitude, low-ex-
tinction patterns arising from local mixing.

Including other heterogeneities, for example, an age
structure, mitigates these problems of fadeout some-
what (Bolker & Grenfell 1993). However, explaining
fully the dynamics of metapopulation persistence in
measles, along with morbilivirus infections of other
mammals (Grenfell et al. 1992, 1994), remains a
challenge for both epidemiologists and ecologists.

We thank the following for financial support: Isaac Newton
Institute for Mathematical Science (B.T.G.), Royal Society
and AFRC (A.K.) and Mellon Foundation (B.M.B.).
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