
ggplot2: elegant graphics for data analysis

Hadley Wickham

February 24, 2009

Contents

1. Preface 1
1.1. Introduction . 1
1.2. Other resources . 2
1.3. What is the grammar of graphics? . 2
1.4. How does ggplot2 fit in with other R graphics? 3
1.5. About this book . 4
1.6. Installation . 5
1.7. Acknowledgements . 6

2. Getting started with qplot 7
2.1. Introduction . 7
2.2. Data sets . 7
2.3. Basic use . 8
2.4. Colour, size, shape and other aesthetic attributes 10
2.5. Plot geoms . 11

2.5.1. Adding a smoother to a plot . 12
2.5.2. Boxplots and jittered points . 15
2.5.3. Histogram and density plots . 16
2.5.4. Bar charts . 17
2.5.5. Time series with line and path plots 18

2.6. Faceting . 20
2.7. Other options . 22
2.8. Differences from plot . 23

3. Mastering the grammar 25
3.1. Introduction . 25
3.2. Fuel economy data . 26
3.3. Building a scatterplot . 26
3.4. A more complex plot . 31
3.5. Components of the layered grammar . 33

3.5.1. Layers . 35
3.5.2. Scales . 35
3.5.3. Coordinate system . 36
3.5.4. Faceting . 36

3.6. Data structures . 36

i

Contents Contents

4. Build a plot layer by layer 39
4.1. Introduction . 39
4.2. Creating a plot . 40
4.3. Layers . 40
4.4. Data . 43
4.5. Aesthetic mappings . 43

4.5.1. Plots and layers . 44
4.5.2. Setting vs. mapping . 45
4.5.3. Grouping . 46
4.5.4. Matching aesthetics to graphic objects 51

4.6. Geoms . 53
4.7. Stat . 56
4.8. Position adjustments . 57
4.9. Pulling it all together . 58

4.9.1. Combining geoms and stats . 59
4.9.2. Displaying precomputed statistics 60
4.9.3. Varying aesthetics and data . 60

5. Toolbox 63
5.1. Introduction . 63
5.2. Overall layering strategy . 64
5.3. Basic plot types . 64
5.4. Displaying distributions . 66
5.5. Dealing with overplotting . 69
5.6. Surface plots . 74
5.7. Drawing maps . 75
5.8. Revealing uncertainty . 78
5.9. Statistical summaries . 81

5.9.1. Individual summary functions . 81
5.9.2. Single summary function . 82

5.10. Annotating a plot . 83
5.11. Weighted data . 86

6. Scales, axes and legends 89
6.1. Introduction . 89
6.2. How scales work . 90
6.3. Usage . 91
6.4. Scale details . 92

6.4.1. Common arguments . 94
6.4.2. Position scales . 95
6.4.3. Colour . 100
6.4.4. The manual discrete scale . 104
6.4.5. The identity scale . 107

6.5. Legends and axes . 107
6.6. More resources . 110

ii February 24, 2009

Contents Contents

7. Positioning 111
7.1. Introduction . 111
7.2. Faceting . 111

7.2.1. Facet grid . 112
7.2.2. Facet wrap . 116
7.2.3. Controlling scales . 117
7.2.4. Missing faceting variables . 119
7.2.5. Grouping vs. faceting . 119
7.2.6. Dodging vs faceting . 122
7.2.7. Continuous variables . 123

7.3. Coordinate systems . 125
7.3.1. Transformation . 126
7.3.2. Statistics . 127
7.3.3. Cartesian coordinate systems . 127
7.3.4. Non-Cartesian coordinate systems 130

8. Polishing your plots for publication 133
8.1. Themes . 133

8.1.1. Built-in themes . 134
8.1.2. Theme elements and element functions 136

8.2. Customising scales and geoms . 140
8.2.1. Scales . 140
8.2.2. Geoms and stats . 142

8.3. Saving your output . 143
8.4. Multiple plots on the same page . 144

8.4.1. Subplots . 145
8.4.2. Rectangular grids . 146

9. Manipulating data 149
9.1. An introduction to plyr . 149

9.1.1. Fitting multiple models . 153
9.2. Converting data from wide to long . 156

9.2.1. Multiple time series . 157
9.2.2. Parallel coordinates plot . 158

9.3. ggplot() methods . 160
9.3.1. Linear models . 162
9.3.2. Writing your own . 166

10.Reducing duplication 167
10.1. Introduction . 167
10.2. Iteration . 167
10.3. Plot templates . 168
10.4. Plot functions . 171

February 24, 2009 iii

Contents Contents

Appendices 175

A. Translating between different syntaxes 175
A.1. Introduction . 175
A.2. Translating between qplot and ggplot . 175

A.2.1. Aesthetics . 175
A.2.2. Layers . 176
A.2.3. Scales and axes . 176
A.2.4. Plot options . 177

A.3. Base graphics . 177
A.3.1. High-level plotting commands . 177
A.3.2. Low-level drawing . 179
A.3.3. Legends, axes and grid lines . 179
A.3.4. Colour palettes . 180
A.3.5. Graphical parameters . 180
A.3.6. Specialised graphics . 180

A.4. Lattice graphics . 180
A.5. GPL . 182

B. Aesthetic specifications 185
B.1. Colour . 185
B.2. Line type . 185
B.3. Shape . 186
B.4. Size . 186
B.5. Justification . 186
B.6. Fonts . 186

C. Manipulating plot rendering with grid 189
C.1. Introduction . 189
C.2. Plot viewports . 189
C.3. Plot grobs . 191
C.4. Saving your work . 191

References 193

iv February 24, 2009

Chapter 1

Preface

1.1. Introduction

ggplot2 is an R package for producing statistical, or data, graphics, but it is unlike most
other graphics packages because it has a deep underlying grammar. This grammar, based
on the Grammar of Graphics (Wilkinson, 2005), is composed of a set of independent
components that can be composed in many different ways. This makes ggplot2 very
powerful, because you are not limited to a set of pre-specified graphics, but you can create
new graphics that are precisely tailored for your problem. This may sound overwhelming,
but because there are simple set of core principles and very few special cases, ggplot2 is
also easy to learn (although it may take a little time to forget your preconceptions from
other graphics tools).

Practically, ggplot2 provides beautiful, hassle-free plots, that take care of fiddly details
like drawing legends. The plots can be built up iteratively and edited later. A carefully
chosen set of defaults means that most of the time you can toss-off a publication-quality
graphic in seconds, but you if do have special formatting requirements, a comprehensive
theming system makes it easy to do what you want. Instead of spending time making your
graph look pretty, you can focus on creating a graph that bests reveals the messages in
your data.
ggplot2 is designed to work in a layered fashion, starting with a layer showing the raw

data then adding layers of annotations and statistical summaries. It allows you to produce
graphics using the same structured thinking that you uses to design an analysis, reducing
the distance between a plot in your head and one on the page. It is especially helpful for
students who have not yet developed the structured approach to analysis used by experts.

Learning the grammar will help you not only create graphics that you know about now,
but will also help you to think about new graphics that would be even better. Without
the grammar, there is no underlying theory and existing graphics packages are just a
big collection of special cases. For example, in base R, if you design a new graphic, it’s
composed of raw plot elements like points and lines, and it’s hard to design new components
that combine with existing plots. In ggplot2, the expressions used to create a new graphic
are composed of higher-level elements like representations of the raw data and statistical
transformations, and can easily be combined with new datasets and other plots.

This book provides a hands-on introduction to ggplot2 with lots of example code and
graphics. It also explains the grammar on which ggplot2 is based. Like other formal

1

1.2. Other resources Preface

systems, ggplot2 is useful even when you don’t understand the underlying model. However,
the more you learn about the it, the more effectively you’ll be able to use ggplot2. This
book assumes basic some familiarity with R, to the level described in the first chapter of
Dalgaard’s “Introductory Statistics with R”. You should know how to get your data into R
and how to do basic data manipulations. If you don’t, you might want to get a copy of
Phil Spector’s “Data manipulation with R”.

This book will introduce you to ggplot2 as a novice, unfamiliar with the grammar; teach
you the basics so that you can recreate plots you are already familiar with; show you how
the to use grammar to create new types of graphics; and even turn you into an expert who
can build new components to extend the grammar.

1.2. Other resources

This book teaches you the elements of ggplot2’s grammar and how they fit together, but it
does not document every function in complete detail. Furthermore, ggplot2 will almost
certainly continue to evolve. For these reasons, you will need additional documentation as
your use of ggplot2 becomes more complex and varied.

The best resource for low-level details will always be the built-in documentation. This
is accessible online, http://had.co.nz/ggplot2, and from within R using the usual help
syntax. The advantage of the online documentation is that you can see all the example
plots and navigate between topics more easily.

The website also lists talks and papers related to ggplot2 and training opportunities
if you’d like some hands-on practice. The cran website, http://cran.r-project.org/
web/packages/ggplot2/, is another useful resource. This page links to what is new and
different in each release. If you use ggplot2 regularly, it’s a good idea to sign up for the
ggplot2 mailing list. The list has relatively low traffic and is very friendly to new users.

Finally, the book website, http://had.co.nz/ggplot2/book, provides updates to this
book, as well as pdfs containing all graphics used in the book, with the code and data
needed to reproduce them.

1.3. What is the grammar of graphics?

Wilkinson (2005) created the grammar of graphics to describe the deep features that underlie
all statistical graphics. The grammar of graphics is an answer to a question: what is a
statistical graphic? The layered grammar of graphics (Wickham, Tentatively accepted)
builds on Wilkinson’s grammar, focussing on the primacy of layers and adapting it for
embedding within R. In brief, the grammar tells us that a statistical graphic is a mapping
from data to aesthetic attributes (colour, shape, size) of geometric objects (points, lines,
bars). The plot may also contain statistical transformations of the data and is drawn on a
specific coordinate system. Faceting can be used to generate the same plot for different
subsets of the dataset. It is the combination of these independent components that make
up a graphic.

As the book progresses, the formal grammar will be explained in increasing detail. The
first description of the components follows below. It introduces some of the terminology that
will be used throughout the book and outlines the basic responsibilities of each component.

2 February 24, 2009

http://had.co.nz/ggplot2
http://cran.r-project.org/web/packages/ggplot2/
http://cran.r-project.org/web/packages/ggplot2/
http://had.co.nz/ggplot2/book

1.3. What is the grammar of graphics? Preface

Don’t worry if it doesn’t all make sense right away: you will have many more opportunities
to learn about al of the pieces and how they fit together.

• The data that you want to visualise and a set of aesthetic mappings describing how
variables in the data are mapped to aesthetic attributes that you can perceive.

• Geometric objects, geoms for short, represent what you actually see on the plot:
points, lines, polygons, etc.

• Statistical transformations, stats for short, summarise data in many useful ways. For
example, binning and counting observations to create a histogram, or summarising a
2d relationship with a linear model. Stats are optional, but very useful.

• The scales map values in the data space to values in an aesthetic space, whether it
be colour, or size, or shape. Scales draw a legend or axes, which provide an inverse
mapping to make it possible to read the original data values from the graph.

• A coordinate system (coord for short) describes how data coordinates are mapped
to the plane of the graphic. It also provides axes and gridlines to make it possible to
read the graph. We normally use a Cartesian coordinate system, but a number of
others are available, including polar coordinates and map projections.

• A faceting specification describes how to break up the data into subsets and how
to display those subsets as small multiples. This is also known as conditioning or
latticing/trellising.

It is also important to talk about what the grammar doesn’t do:

• It doesn’t suggest what graphics you should use to answer the questions you are
interested in. While this book endeavours to promote a sensible process for producing
plots of data, the focus of the book is on how to produce the plots you want, not
knowing what plots to produce. For more advice on this topic, you may want to
consult Chambers et al. (1983); Cleveland (1993a); Robbins (2004); Tukey (1977).

• Ironically, the grammar doesn’t specify what a graphic should look like. The finer
points of display, for example, font size or background colour, are not specified by
the grammar. In practice, a useful plotting system will need to describe these, as
ggplot2 does with its theming system. Similarly, the grammar does not specify how
to make an attractive graphic and while the defaults in ggplot2 have been chosen
with care, you may need to consult other references to create an attractive plot: Tufte
(1990, 1997, 2001, 2006).

• It does not describe interaction: the grammar of graphics describes only static graphics
and there is essentially no benefit to displaying on a computer screen as opposed to
on a piece of paper. ggplot2 can only create static graphics, so for dynamic and
interactive graphics you will have to look elsewhere. Cook and Swayne (2007) provides
an excellent introductions the interactive graphics package GGobi. GGobi can be
connected to R with the rggobi package (?).

February 24, 2009 3

1.4. How does ggplot2 fit in with other R graphics? Preface

1.4. How does ggplot2 fit in with other R graphics?

There are a number of other graphics systems available in R: base graphics, grid graphics
and trellis/lattice graphics. How does ggplot2 differ from them?

• Base graphics were written by Ross Ihaka based on experience implementing S graphics
driver and partly looking at Chambers et al. (1983). Base graphics has a pen on paper
model: you can only draw on top of the plot, you can not modify or delete existing
content. There is no (user accessible) representation of the graphics, apart from their
appearance on the screen. Base graphics includes both tools for drawing primitives
and entire plots. Base graphics functions are generally fast, but have limited scope.
When you’ve created a single scatterplot, or histogram, or a set of boxplots in the
past, you’ve probably used base graphics.

• The development of grid graphics, a much richer system of graphical primitives,
started in 2000. Grid is developed by Paul Murrell, growing out of his PhD work
(Murrell, 1998). Grid grobs (graphical objects) can be represented independently of
the plot and modified later. A system of viewports (each containing its own coordinate
system) makes it easier to layout complex graphics. Grid provides drawing primitives,
but no tools for producing statistical graphics.

• The lattice package (Sarkar, 2008a), developed by Deepayan Sarkar, uses grid
graphics to implement the trellis graphics system of Cleveland (1993a, 1985) and is a
considerable improvement over base graphics. You can easily produce conditioned
plots and some plotting details (e.g. legends) are taken care of automatically. However,
lattice graphics lacks a formal model, which can make it hard to extend. Lattice
graphics are explained in depth in (Sarkar, 2008b).

• ggplot2, started in 2005, is an attempt to take the good things about base and
lattice graphics and improve on them with a strong underlying model which supports
the production of any kind of statistical graphic, based on principles outlined above.
The solid underlying model of ggplot2 makes it easy to describe a wide range of
graphics with a compact syntax and independent components make extension easy.
Like lattice, ggplot2 uses grid to draw the graphics, which means you can exercise
much low level control over the appearance of the plot

Many other R packages, such as vcd (Meyer et al., 2006), plotrix (Lemon et al., 2008)
and gplots (source code and/or documentation contributed by Ben Bolker and Lumley,
2007), implement specialist graphics, but no others provide a framework for producing
statistical graphics. A comprehensive resource listing all graphics functionality available
in other contributed packages is the graphics task view at http://cran.r-project.org/
web/views/Graphics.html.

1.5. About this book

Chapter 2 describes how to quickly get started using qplot to make graphics, just like
you can using plot. This chapter introduces several important ggplot2 concepts: geoms,
aesthetic mappings and faceting.

4 February 24, 2009

http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Graphics.html

1.6. Installation Preface

While qplot is a quick way to get started, you are not using the full power of the
grammar. Chapter 3 describes the layered grammar of graphics which underlies ggplot2.
The theory is illustrated in Chapter 4 which demonstrates how to add additional layers to
your plot, exercising full control over the geoms and stats used within them. Chapter 5
describes how assemble and combine geoms and stats ggplot2 to solve particular plotting
problems.

Understanding how scales works is crucial for fine tuning the perceptual properties of
your plot. Customising scales gives fine control over the exact appearance of the plot and
helps to support the story that you are telling. Chapter 6 will show you what scales are
available, how to adjust their parameters, and how to control the appearance of axes and
legends.

Coordinate systems and faceting control the position of elements of the plot. These are
described in Chapter 7. Faceting is a very powerful graphical tool as it allows you to rapidly
compare different subsets of your data. Different coordinate systems are less commonly
needed, but are very important for certain types of data.

To fine tune your plots for publication, you will need to learn about the tools described
in Chapter 8. There you will learn about how to control the theming system of ggplot2,
how to change the defaults for geoms, stats and scales, how to save plots to disk, and how
to lay out multiple plots on a page.

The book concludes with two chapters that discuss high-level concerns about data
structure and code duplication. Chapter 1 discusses some techniques that will enable you
to get your data into the form required for ggplot2, and tools that enable to perform more
advanced aggregation and manipulation than is available in the plotting code. You will
also learn about the ggplot2 philosophy behind visualising other types of objects, and how
you can extend ggplot2 with your own methods.

Duplicated code is a big inhibitor of flexibility and reduces your ability to respond to
changes in requirements. Chapter 10 covers three useful techniques for reducing duplication
in your code: iteration, plot templates and plot functions.

Three appendices provide additional useful information. Appendix B describes how
colours, shapes, line types and sizes can be specified by hand. Appendix A shows how to
translate the syntax of base graphics, lattice graphics, and Wilkinson’s gpl to ggplot2
syntax. Appendix C describes the high-level organisation of grid objects and viewports
used to draw a ggplot2 plot. This will be useful if you are familiar with grid, and want to
make changes to the underlying objects used to draw the plots.

1.6. Installation

To use ggplot2, you must first install it. Make sure you have a recent version of R (at
least version 2.8) from http://r-project.org and then run the following line of code to
download and install the ggplot2 package.

install.packages("ggplot2")

ggplot2 isn’t perfect, so from time to time you may encounter something that doesn’t
work the way it should. If this happens, please email me at hadley@rice.edu with a

February 24, 2009 5

http://r-project.org
mailto:hadley@rice.edu

1.7. Acknowledgements Preface

reproducible example of your problem, as well as a description of what you think should
have happened. The more information you provide, the easier it is for me to help you.

1.7. Acknowledgements

Many people have contributed to this book with high-level structural insights, spelling and
grammar corrections and bug reports. In particular, I would to thank: Leland Wilkinson,
for discussions and comments that cemented my understanding of the grammar; Gabor
Grothendieck, for early helpful comments; Heike Hofmann and Di Cook, for being great
major professors; Charlotte Wickham; the students of stat480 and stat503 at ISU, for trying
it out when it was very young; Debby Swayne, for masses of helpful feedback and advice;
Bob Muenchen, Reinhold Kliegl, Philipp Pagel, Richard Stahlhut, and the many others
who have read draft versions of the book and given me feedback; and last, but not least the
members of R-help and the ggplot2 mailing list, for providing the many interesting and
challenging graphics problems that have helped motivate this book.

6 February 24, 2009

Chapter 2

Getting started with qplot

2.1. Introduction

In this chapter, you will learn to make a wide variety of plots with your first ggplot function,
qplot(), short for quick plot. qplot makes it easy to produce complex plots, often requiring
several lines of code using other plotting systems, in one line. qplot() can do this because
it’s based on the grammar of graphics, which allows you to create a simple, yet expressive,
description of the plot. In later chapters you’ll learn to use all of the expressive power of
the grammar, but here we’ll start simple so you can work your way up. You will also start
to learn some of the ggplot terminology that will be used throughout the book.
qplot has been designed be very similar to plot, which should make it easy if you’re

already familiar with plotting in R. Remember, during an R session you can get a summary
of all the arguments to qplot with R help, ?qplot.

In this chapter you’ll learn:

• The basic use of qplot—If you’re already familiar with plot, this will be particularly
easy, § 2.3.

• How to map variables to aesthetic attributes, like colour, size and shape, § 2.4.

• How to create many different types of plots by specifying different geoms, and how to
combine multiple types in a single plot. Page § 2.5.

• The use of faceting, also known as trellising or conditioning, to break apart subsets of
your data, § 7.2.

• How to tune the appearance of the plot by specifying some basic options, § 2.7.

• A few important differences between plot() and qplot(), § 2.8

2.2. Data sets

In this chapter we’ll just use one data source, so you can get familiar with the plotting
details rather than having to familiarise yourself with different datasets. The diamonds
dataset consists of prices and quality information about 54,000 diamonds, and is included
in the ggplot2 package. The data contains the four C’s of diamond quality, carat, cut,

7

2.3. Basic use Getting started with qplot

colour and clarity; and five physical measurements, depth, table, x, y and z, as described in
Figure 2.1. The first few rows of the data are shown in Table 2.1.

carat cut color clarity depth table price x y z

0.2 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
0.2 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
0.2 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
0.3 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
0.3 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
0.2 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48

Table 2.1.: diamonds dataset. The variables depth, table, x, y and z refer to the dimensions of the
diamond as shown in Figure 2.1

z

table width
x

x

y

z
depth

depth = z depth / z * 100
table = table width / x * 100

Figure 2.1.: How the variables x, y, z, table and depth are measured.

The dataset has not been well cleaned, so as well as demonstrating interesting relationships
about diamonds, it also demonstrates some data quality problems. We’ll also use another
dataset, dsmall, which is a random sample of 100 diamonds. We’ll use this data for plots
that are more appropriate for smaller datasets.

> set.set(1410) # Make the sample reproducible
ERROR: could not find function "set.set"
> dsmall <- diamonds[sample(nrow(diamonds), 100),]

2.3. Basic use

As with plot, the first two arguments to qplot() are x and y, giving the x- and y-
coordinates for the objects on the plot. There is also an optional data argument. If this
is specified, qplot() will look inside that data frame before looking for objects in your
workspace. Using the data argument is recommended: it’s a good idea to keep related data

8 February 24, 2009

2.3. Basic use Getting started with qplot

in a single data frame. If you don’t specify one, qplot() will try to build one up for you
and may look in the wrong place.

Here is a simple example of the use of qplot(). It produces a scatterplot showing the
relationship between the price and carats (weight) of a diamond.

> qplot(carat, price, data = diamonds)

The plot shows a strong correlation with notable outliers and some interesting vertical
striation. The relationship looks exponential, though, so the first thing we’d like to do is to
transform the variables. Because qplot() accepts functions of variables as arguments, we
plot log(price) vs. log(carat):

> qplot(log(carat), log(price), data = diamonds)

The relationship now looks linear. With this much overplotting, though, we need to be
cautious about drawing firm conclusions.

Arguments can also be combinations of existing variables, so, if we are curious about
the relationship between the volume of the diamond (approximated by x× y × z) and its
weight, we could do the following:

> qplot(carat, x * y * z, data = diamonds)

February 24, 2009 9

2.4. Colour, size, shape and other aesthetic attributes Getting started with qplot

We would expect the density (weight/volume) of diamonds to be constant, and thus to
see a linear relationship between volume and weight. The majority of diamonds do seem to
fall along a line, but there are some large outliers.

2.4. Colour, size, shape and other aesthetic attributes

The first big difference when using qplot instead of plot comes when you want to assign
colours—or sizes or shapes—to the points on your plot. With plot, it’s your responsibility
to convert a categorical variable in your data (e.g., “apples”, “bananas”, “pears”) into
something that plot knows how to use (e.g., “red”, “yellow”, “green”). qplot can do this
for you automatically, and it will automatically provide a legend that maps the displayed
attributes to the data values. This makes it easy to include additional data on the plot.

In the next example, we augment the plot of carat and price with information about
diamond colour and cut. The results are shown in Figure 2.2

qplot(carat, price, data = dsmall, colour = color)
qplot(carat, price, data = dsmall, shape = cut)

carat

pr
ic

e

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0

color

● I

● G

● E

● F

● D

● J

● H

carat

pr
ic

e

●

●

●

●

●

●

●

●

●

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0

cut

● Good

Premium

Very Good

Ideal

Fair

Figure 2.2.: Mapping point colour (left), size (middle) and shape (right) of cut quality.

Colour, size and shape are all examples of aesthetic attributes, visual properties that
affect the way observations are displayed. For every aesthetic attribute, there is a function,
called a scale, which maps data values to valid values for that aesthetic. It is this scale that
controls how the appearance of the points and associated legend. For example, in the above

10 February 24, 2009

2.5. Plot geoms Getting started with qplot

plots, the colour scale maps J to purple and F to green. (Note that while I use British
spelling throughout this book, the software also accepts American spellings.)

You can also manually set the aesthetics using I(). For example, colour = I("red") or
size = I(2). This is different to mapping and is explained in more detail in Section 4.5.2.
For large data sets, like the diamonds data, semi-transparent points are often useful
to alleviate some of the overplotting. To make a semi-transparent colour you can use
alpha(colour, transparency), where colour is an R colour (described in Appendix B)
and transparency is a value between 0 (completely transparent) and 1 (complete opaque).
It’s often useful to specify the transparency as a fraction, e.g. 1/10 or 1/20, as the
denominator specifies the number of points that must overplot to get a completely opaque
colour.

qplot(carat, price, data = diamonds, colour = I(alpha("black", 1/10)))
qplot(carat, price, data = diamonds, colour = I(alpha("black", 1/100)))
qplot(carat, price, data = diamonds, colour = I(alpha("black", 1/200)))

Figure 2.3.: Reducing the alpha value from 1/10 (left), to 1/100 (middle) to 1/200 (right) makes it
easier to see where the bulk of the points lie.

Different types of aesthetic attributes work better with different types of variables. For
example, colour and shape work well with categorical variables, while size works better with
continuous variables. The amount of data also makes a difference: if there is a lot of data,
like in the plots above, it can be hard to distinguish the different groups. An alternative
solution is to use faceting, which will be introduced in Section 7.2.

2.5. Plot geoms

qplot is not limited to scatterplots, but can produce almost any kind of plot by varying
the geom. Geom, short for geometric object, describes the type of object that is used to
display the data. Some geoms have an associated statistical transformation, for example, a
histogram is a binning statistic plus a bar geom. These different components are described
in the next chapter. Here we’ll introduce you to the most common and useful geoms,
organised up by the dimensionality of data that they work with. The following geoms
enable you to investigate two-dimensional relationships:

February 24, 2009 11

2.5. Plot geoms Getting started with qplot

• geom = "point" draws points to produce a scatterplot. This is the default when you
supply both x and y arguments to qplot().

• geom = "smooth" fits a smoother to the data and displays the smooth and its standard
error, § 2.5.1.

• geom = "boxplot" produces a box and whisker plot to summarise the distribution
of a set of points, § 2.5.2

• geom = "path" and geom = "line" draw lines between the data points. Traditionally
these are used to explore relationships between time and another variable, but lines
may be used to join observations connected in some other way. A line plot is
constrained to produce lines that travel from left to right, while paths can go in any
direction. § 2.5.5.

For 1d distributions, your choice of geoms is guided by the variable type:

• For continuous variables, geom = "histogram" draws a histogram, geom = "freqpoly"
a frequency polygon, and geom = "density" creates a density plot, § 2.5.3. The his-
togram geom is the default when you only supply an x value to qplot().

• For discrete variables, geom = "bar" makes a barchart, § 2.5.4.

2.5.1. Adding a smoother to a plot

If you have a scatterplot with many data points, it can be hard to see exactly what trend is
shown by the data. In this case you may want to add a smoothed line to the plot. This is
easily done using the smooth geom as shown in Figure 2.4. Notice that we have combined
multiple geoms by supplying a vector of geom names created with c(). The geoms will be
overlaid in the order in which they appear.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"))
qplot(carat, price, data = diamonds, geom = c("point", "smooth"))

Figure 2.4.: Smooth curves add to scatterplots of carat vs price. The dsmall dataset (left) and the
full dataset (right).

12 February 24, 2009

2.5. Plot geoms Getting started with qplot

Despite overplotting, our impression of a exponential relationship between price and
carat was correct. There are few diamonds bigger than three carats, and our uncertainty in
the form of the relationship increases as illustrated by the point-wise confidence interval
shown in grey. If you want to turn the confidence interval off, use se = FALSE.

There are many different smoothers you can choose between by using the method argu-
ment:

• method = "loess", the default for small n, uses a smooth local regression. More
details about the algorithm used can be found in ?loess. The wiggliness of the line
is controlled by the span parameter, which ranges from 0 (exceeding wiggly) to 1 (not
so wiggly), as shown in Figure 2.5.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
span = 0.2)

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
span = 1)

Figure 2.5.: The effect of the span parameter. (Left) span = 0.2, and (right) span = 1

Loess does not work well for large datasets (it’s O(n2) in memory), and so an
alternative smoothing algorithm is use when n is greater than 1,000.

• You could also load the mgcv library and use method = "gam", formula = y ∼
s(x) to fit a generalised additive model. This is similar to using a spline with lm, but
the degree of smoothness is estimated from the data. For large data, use the formula
y ~ s(x, bs="cs"). This is used by default when there are more than 1,000 points.

library(mgcv)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

method="gam", formula= y ~ s(x))
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

method="gam", formula= y ~ s(x, bs = "cs"))

February 24, 2009 13

2.5. Plot geoms Getting started with qplot

Figure 2.6.: The effect of the formula parameter, using a generalised additive model as a smoother.
(Left) formula = y ~ s(x), the default; (Right) formula = y ~ s(x, bs = "cs")

• method = "lm" fits a linear model. The default will fit a straight line to your data,
or you can specify formula = y ~ poly(x, 2) to specify a degree 2 polynomial, or
better, load the splines package and use a natural spline: formula = y ~ ns(x,
2). The second parameter is the degrees of freedom: a higher number will create
a wigglier curve. You are free to specify any formula involving x and y. Figure 2.7
shows two examples created with the following code.

library(splines)
qplot(carat, price, data = dsmall, geom=c("point", "smooth"),

method = "lm")
qplot(carat, price, data = dsmall, geom=c("point", "smooth"),

method = "lm", formula=y ~ ns(x,3))

Figure 2.7.: The effect of the formula parameter, using a linear model as a smoother. (Left)
formula = y ~ x, the default; (Right) formula = y ~ ns(x, 3)

• method = "rlm" works like lm, but uses a robust fitting algorithm so that outliers
don’t affect the fit as much. It’s part of the MASS package, so remember to load that
first.

14 February 24, 2009

2.5. Plot geoms Getting started with qplot

2.5.2. Boxplots and jittered points

When a set of data includes a categorical variable and one or more continuous variables,
you will probably be interested to know how the values of the continuous variables vary
with the levels of the categorical variable. Box plots and jittered points offer two ways to
do this. Figure 2.8 explores how the distribution of price per carat varies with the colour of
the diamond using jittering (geom = "jitter", left) and box and whisker plots (geom =
"boxplot", right).

Figure 2.8.: Using jittering (left) and boxplots (right) to investigate the distribution of price per
carat conditional on colour. As the colour improves (from left to right) the spread of
values decreases, but there is little change in the centre of the distribution.

Each method has its strengths and weaknesses. Boxplots summarise the bulk of the
distribution with only five numbers, while jittered plots show every point but can suffer
from overplotting. In the example here, both plots show the dependency of the spread of
price per carat on diamond colour, but the boxplots are more informative, indicating that
there is very little change in the median and adjacent quartiles.

The overplotting seen in the plot of jittered values can be alleviated somewhat by using
semi-transparent points using the colour argument. Figure 2.9 illustrates three different
levels of transparency, which make it easier to see where the bulk of the points lie. The
plots are produced with the following code.

qplot(color, price / carat, data = diamonds, geom = "jitter",
colour = I(alpha("black", 1 / 5)))

qplot(color, price / carat, data = diamonds, geom = "jitter",
colour = I(alpha("black", 1 / 50)))

qplot(color, price / carat, data = diamonds, geom = "jitter",
colour = I(alpha("black", 1 / 200)))

This technique can’t show the positions of the quantiles as well as a boxplot can, but it
may reveal other features of the distribution that a boxplot can not.

For jittered points, qplot offers the same control over aesthetics as it does for a normal
scatterplot: size, colour, and shape. For boxplots you can control the outline colour,
the internal fill colour and the size of the lines.

Another way to look at conditional distributions is to use faceting to plot a separate

February 24, 2009 15

2.5. Plot geoms Getting started with qplot

Figure 2.9.: Varying the alpha level. From left to right: 1/5, 1/50, 1/200. As the opacity decreases
we begin to see where the bulk of the data lies. However, the boxplot still does much
better.

histogram or density plot for each value of the categorical variable. This is demonstrated
in Section 7.2.

2.5.3. Histogram and density plots

Histogram and density plots show the distribution of a single variable. They provide more
information about the distribution of a single group than boxplots do, but it is harder to
compare many groups (although we will look at one way to do so). Figure 2.10 shows the
distribution of carats with a histogram and a density plot.

qplot(carat, data = diamonds, geom = "histogram")
qplot(carat, data = diamonds, geom = "density")

carat

co
un

t

0

2000

4000

6000

8000

1 2 3 4 5
carat

de
ns

ity

0.0

0.5

1.0

1.5

1 2 3 4 5

Figure 2.10.: Displaying the distribution of diamonds. (Left) geom = "histogram" and (right)
geom = "density"

For the density plot, the adjust argument controls the degree of smoothness (high values
of adjust produce smoother plots). For the histogram, the binwidth argument controls

16 February 24, 2009

2.5. Plot geoms Getting started with qplot

the amount of smoothing by setting the bin size. (Break points can also be specified
explicitly, using the breaks argument.) It is very important to experiment with the level
of smoothing. With a histogram you should try many bin widths: You may find that gross
features of the data show up well at a large bin width, while finer features require a very
narrow width.

In Figure 2.11, we experiment with three values of binwidth: 1.0, 0.1, and 0.01. It is
only in the plot with the smallest bin width (right), that we see the striations we noted in
an earlier scatterplot, most at “nice” numbers of carats. The full code is:

qplot(carat, data = diamonds, geom = "histogram", binwidth = 1,
xlim=c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.1,
xlim=c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.01,
xlim=c(0,3))

carat

co
un

t

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un

t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un

t
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.11.: Varying the bin width on a histogram of carat reveals interesting patterns. Binwidths
from left to right: 1, 0.1, and 0.01 carats. Only diamonds between 0 and 3 carats
shown.

To compare the distributions of different subgroups, just add an aesthetic mapping, as in
the following code.

qplot(carat, data = diamonds, geom = "density", colour = color)
qplot(carat, data = diamonds, geom = "histogram", fill = color)

Mapping a categorical variable to an aesthetic will automatically split up the geom by that
variable, so these commands instruct qplot() to draw a density plot and histogram for
each level of diamond colour. The results are shown in Figure 2.12.

The density plot is more appealing at first because it seems easy to read and compare
the various curves. However, it is more difficult to understand exactly what a density plot
is showing. In addition, the density plot makes some assumptions that may not be true for
our data; i.e. that it is unbounded, continuous and smooth.

2.5.4. Bar charts

The discrete analogue of histogram is the bar chart, geom = "bar". The bar geom counts
the number of instances of each class so that you don’t need to tabulate your values

February 24, 2009 17

2.5. Plot geoms Getting started with qplot

carat

de
ns

ity

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5

color

D

E

F

G

H

I

J

carat

co
un

t

0

2000

4000

6000

8000

1 2 3 4 5

color

D

E

F

G

H

I

J

Figure 2.12.: Mapping a categorical variable to an aesthetic will automatically split up the geom by
that variable. (Left) Density plots are overlaid and (right) histograms are stacked.

beforehand, as with barchart in base R. If the data has already been tabulated or if you’d
like to tabulate class members in some other way, such as by summing up a continuous
variable, you can use the weight geom. This is illustrated in Figure 2.13. The first plot
is a simple bar chart of diamond colour, and the second is a bar chart of diamond colour
weighted by carat.

qplot(color, data = diamonds, geom = "bar")
qplot(color, data = diamonds, geom = "bar", weight = carat) +
scale_y_continuous("carat")

color

co
un

t

0

2000

4000

6000

8000

10000

E I J H F G D
color

ca
ra

t

0

2000

4000

6000

8000

E I J H F G D

Figure 2.13.: Bar charts of diamond colour. The left plot shows counts and the right plot is weighted
by weight = carat to show the total weight of diamonds of each colour.

2.5.5. Time series with line and path plots

Line and path plots are typically used for time series data. Line plots join the points from
left to right, while path plots join them in the order that they appear in the data set (a
line plot is just a path plot of the data sorted by x value). Line plots usually have time on
the x-axis, showing how a single variable has changed over time. Path plots show how two

18 February 24, 2009

2.5. Plot geoms Getting started with qplot

variables have simultaneously changed over time, with time encoded in the way that the
points are joined together.

Because there is no time variable in the diamonds data, we use the economics dataset,
which contains economic data on the US measured over the last 40 years. Figure 2.14
shows two plots of unemployment over time, both produced using geom = "line". The
first shows an unemployment rate and the second shows the median number of weeks
unemployed. We can already see some differences in these two variables, particularly in the
last peak, where the unemployment percentage is lower than it was in the preceding peaks,
but the length of unemployment is high.

qplot(date, unemploy / pop, data = economics, geom = "line")
qplot(date, uempmed, data = economics, geom = "line")

date

un
em

pl
oy

/p
op

0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

1967 1972 1977 1982 1987 1992 1997 2002 2007
date

ue
m

pm
ed

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007

Figure 2.14.: Two time series measuring amount of unemployment. (left) Percent of population
that is unemployed and (right) median number of weeks unemployed. Plots created
with geom="line".

To examine this relationship in greater detail, we would like to draw both time series on the
same plot. We could draw a scatterplot of unemployment rate vs. length of unemployment,
but then we could no longer see the evolution over time. The solution is to join points
adjacent in time with line segments, forming a path plot.

Below we plot unemployment rate vs. length of unemployment and join the individual
observations with a path. Because of the many line crossings, the direction in which time
flows isn’t easy to see in the first plot. In the second plot, we apply the colour aesthetic
to the line to make it easier to see the direction of time.

year <- function(x) as.POSIXlt(x)$year + 1900
qplot(unemploy / pop, uempmed, data = economics, geom = c("point", "path"))
qplot(unemploy / pop, uempmed, data = economics, geom = "path",

colour = year(date)) + scale_area()

We can see that percent unemployed and length of unemployment is highly correlated,
although in recent years the length of unemployment has been increasing relative to the
unemployment rate.

With longitudinal data, you often want to display multiple time series on each plot,
each series representing one individual. To do this with qplot(), you need to map the

February 24, 2009 19

2.6. Faceting Getting started with qplot

unemploy/pop

ue
m

pm
ed

●●●
●●●

●

●
●

●●●●●
●●●●●
●

●●●
●●●

●●
●● ● ●●

●

●●●
●●●

●
●

●●●
●●

●
●●

●

●●●●
●●●●

●

●●
●●●

●
●
●
●
●●●

●
●
●●
●
●

●●●●●

●
●

●
●● ●

●

●

● ●

●

●

●●

●●

●

●
●●

●
●
●●
●●●●●

●
●

●
●●●

●

●

●●
●●
●●

●●
●●

●
● ●●●

●
●●
●●●
●●●

●

●

●●●
●

●
●● ● ●

●

●
●●●●● ●

●●
●

●
●

●●
● ● ● ●●

●●
●
●

●

●●

● ●
●●

●

●

●
●

●

●

●

●●●●

●
●

●●●

●

● ●●
●
●●●
●

●●●●
●
●●●●●●● ●●●●

●●●
●

●●●●
●●

●
●●●●

●
●●●●

●●
●●●
●●●●●

●
●●● ●●●●

●●●●●
●●●
●
●● ● ●●● ●●●

●
●● ●
●●
●
●
●
●

●
●●●
●

● ●●●●
●●
●

●●●●
●●●●●●

●●
●

●●●●●●●
●

●

●
●

●●● ●

●

●

●●
●

●●
●●

●
●
●●

●●●●●

●●●
●●

●
●●
●
●
●

●●●●
●●●

●

●●●●

●

●●
●●●

●
●●

●

●
●●●

●●
●●●

●●
●
●

●

●●● ●
●
●

●
●

●

● ●
● ●

●
●●●●

●

●

●

●●
●●●

●●●●
●
●

●

●●●
●●●●●●

●
●

●

●
●
●●●●●
●●●●●●●

●●●●●
●

●●●

●

●●●●●

●

●●
●●

4

6

8

10

12

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
unemploy/pop

ue
m

pm
ed

4

6

8

10

12

0.0150.0200.0250.0300.0350.0400.0450.050

year(date)

1970

1980

1990

2000

Figure 2.15.: Path plots illustrating the relationship between percent of people unemployed and
median length of unemployment. (Left) scatterplot with overlaid path. (Right) pure
path plot coloured by year.

group aesthetic to a variable encoding the group membership of each observation. This is
explained in more depth in Section 4.5.3.

2.6. Faceting

We have already discussed using aesthetics (colour and shape) to compare subgroups,
drawing all groups on the same plot. Faceting takes an alternative approach: It creates
tables of graphics by splitting the data into subsets and displaying the same graph for
each subset in an arrangement that facilitates comparison. Section 7.2 discusses faceting in
details, including a discussion of the advantages and disadvantages of using faceting instead
of aesthetics in Section 7.2.5.

The default faceting method in qplot() creates plots arranged on a grid specified by a
faceting formula which looks like row var ∼ col var. You can specify as many row and
column variables as you like, keeping in mind that using more than two variables will often
produce a plot so large that it is difficult to see on screen. To facet on only one of columns
or rows, use . as a place holder. For example, row var ∼ . will create a single column
with multiple rows.

Figure 2.16 illustrates this technique with two plots, sets of histograms showing the
distribution of carat conditional on colour. The second set of histograms shows proportions,
making it easier to compare distributions regardless of the relative abundance of diamonds
of each colour. The ..density.. syntax is new. The y-axis of the histogram does not come
from the original data, but from the statistical transformation that counts the number
of observations in each bin. Using ..density.. tells ggplot2 to map the density to the
y-axis instead of the default use of count.

qplot(carat, data = diamonds, facets = color ~ ., geom = "histogram",
binwidth = 0.1, xlim = c(0, 3))

qplot(carat, ..density.., data = diamonds, facets = color ~ .,
geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

20 February 24, 2009

2.6. Faceting Getting started with qplot

carat

co
un

t

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

D
E

F
G

H
I

J

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

de
ns

ity

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

D
E

F
G

H
I

J

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.16.: Histograms showing the distribution of carat conditional on colour. (Left) bars show
counts and (right) bars show densities (proportions of the whole). The density plot
makes it easier to compare distributions ignoring the relative abundance of diamonds
within each colour. High-quality diamonds (colour D) are skewed towards small sizes,
and as quality declines the distribution becomes more flat.

February 24, 2009 21

2.7. Other options Getting started with qplot

2.7. Other options

These are a few other qplot options to control the graphic’s appearance. These all have
the same effect as their plot equivalents:

• xlim, ylim: set limits for the x- and y-axes, each a numeric vector of length two, e.g.
xlim=c(0, 20) or ylim=c(-0.9, -0.5).

• log: a character vector indicating which (if any) axes should be logged. For example,
log="x" will log the x-axis, log="xy" will log both.

• main: main title for the plot, centered in large text at the top of the plot. This can be a
string (eg. main="plot title") or an expression (eg. main = expression(beta[1]
== 1)). See ?plotmath for more examples of using mathematical formulae.

• xlab, ylab: labels for the x- and y-axes. As with the plot title, these can be character
strings or mathematical expressions.

The following examples show the options in action.

> qplot(
+ carat, price, data = dsmall,
+ xlab = "Price ($)", ylab = "Weight (carats)",
+ main = "Price-weight relationship"
+)

Price−weight relationship

Price ($)

W
ei

gh
t (

ca
ra

ts
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0

> qplot(
+ carat, price/carat, data = dsmall,
+ ylab = expression(frac(price,carat)),
+ xlab = "Weight (carats)",
+ main="Small diamonds",
+ xlim = c(.2,1)

22 February 24, 2009

2.8. Differences from plot Getting started with qplot

+)
WARNING: Removed 34 rows containing missing values (geom_point).

Small diamonds

Weight (carats)

pr
ic

e

ca
ra

t

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

2000

4000

6000

8000

10000

0.2 0.4 0.6 0.8 1.0

> qplot(carat, price, data = dsmall, log = "xy")

carat

pr
ic

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

102.8

103

103.2

103.4

103.6

103.8

104

10−0.6 10−0.4 10−0.2 100 100.2

2.8. Differences from plot

There are a few important differences between plot and qplot:

• qplot is not generic: you can not pass any type of R object to qplot and expect to get
some kind of default plot. Note, however, that ggplot() is generic, and may provide
a starting point for producing visualisations of arbitrary R objects. See Chapter 1 for
more details.

• Usually you will supply a variable to the aesthetic attribute you’re interested in. This

February 24, 2009 23

2.8. Differences from plot Getting started with qplot

is then scaled and displayed with a legend. If you want to set the value, e.g. to
make red points, use I(): colour = I("red"). This is explained in more detail in
Section 4.5.2 mapping, Page 45.

• While you can continue to use the base R aesthetic names (col, pch, cex, etc.), it’s a
good idea to switch to the more descriptive ggplot2 aesthetic names (colour, shape,
and size). They’re much easier to remember!

• To add further graphic elements to a plot produced in base graphics, you can use
points(), lines() and text(). With ggplot2, you need to add additional layers
to the existing plot, described in the next chapter.

24 February 24, 2009

Chapter 3

Mastering the grammar

3.1. Introduction

You can choose to use just qplot(), without any understanding of the underlying grammar,
but if you do but you will never be able to unlock the full power of ggplot2. By learning
more about the grammar and its components, you will be able to create a wider range of
plots, as well as being able to combine multiple sources of data, and customise to your
heart’s content. You may want to skip this chapter in a first reading of the book, returning
when you want a deeper understanding of how all the pieces fit together.

This chapter describes the theoretical basis of ggplot2: the layered grammar of graphics.
The layered grammar is based on Wilkinson’s grammar of graphics (Wilkinson, 2005),
but adds a number of enhancements that help it to be more expressive and fit seamlessly
into the R environment. The differences between the layered grammar and Wilkinson’s
grammar are described fully in (Wickham, 2008), and a guide for converting between gpl
(the encoding of the grammar used in spss) and ggplot2 is included in Appendix A. In
this chapter you will learn a little bit about each component of the grammar and how they
all fit together. The next chapters discuss the components in more detail, and provide more
examples of how you can use them in practice.

The grammar is useful for you both as a user and a potential developer of statistical
graphics. As a user, it makes it easier for you to iteratively update a plot, changing a
single feature at a time. The grammar is also useful because it suggests the high level
aspects of a plot that can be changed, giving you a framework to think about graphics,
and hopefully shortening the distance from mind to paper. It also encourages the use of
graphics customised to a particular problem, rather than relying on generic named graphics.

As a developer, the grammar makes it much easier to add new capabilities to ggplot2.
You only need to add the one component that you need, and you can continue to use
the all of the other existing components. For example, you can add a new statistical
transformation, and continue to use the existing scales and geoms. It is also useful for
discovering new types of graphics, as the grammar effectively defines the parameter space
of statistical graphics.

This chapter begins by describing in detail the process of drawing a simple plot. Section 3.3
start with a simple scatterplot, then Section 3.4 makes it more complex by adding a smooth
line and faceting. While working through these examples you will be introduced to all six
components of the grammar, which are then defined more precisely in Section 3.5. The

25

3.2. Fuel economy data Mastering the grammar

manufacturer model disp year cyl cty hwy class

audi a4 1.8 1999 4 18 29 compact
audi a4 1.8 1999 4 21 29 compact
audi a4 2.0 2008 4 20 31 compact
audi a4 2.0 2008 4 21 30 compact
audi a4 2.8 1999 6 16 26 compact
audi a4 2.8 1999 6 18 26 compact
audi a4 3.1 2008 6 18 27 compact
audi a4 quattro 1.8 1999 4 18 26 compact
audi a4 quattro 1.8 1999 4 16 25 compact
audi a4 quattro 2.0 2008 4 20 28 compact

Table 3.1.: The first 10 cars in the mpg data set, included in the ggplot2 package. cty and hwy
record miles per gallon (mpg) for city and highway driving respectively, and displ is
the engine displacement in litres.

chapter concludes with Section 3.6, which describes how the various components map to
data structures in R.

3.2. Fuel economy data

Consider the fuel economy dataset illustrated in Table 3.1. It records make, model, class,
engine size, transmission and fuel economy for a selection of US cars in 1999 and 2008. It
contains the 38 models were updated every year, an indicator that the car was a popular
model. These models include popular cars like the Audi A4, Honda Civic, Hyundai Sonata,
Nissan Maxima, Toyota Camry and Volkswagen Jetta. This data comes from the EPA fuel
economy website, http://fueleconomy.gov.

This dataset suggests many interesting questions. How are engine size and fuel economy
related? Do certain manufacturers car more about economy than others? Has fuel economy
improved in the last ten years? We will try to answer the first question and in the process
learn more detail about how the scatterplot is created.

3.3. Building a scatterplot

Consider Figure 3.1, one attempt to answer this question. It is a scatterplot of two
continuous variables (engine displacement and highway mpg), with points coloured by a
third variable (number of cylinders). From your experience in the previous chapter, you
should have a pretty good feel for how to create this plot with qplot(). But what is going
on underneath the surface? How does ggplot2 draw this plot?

qplot(displ, hwy, data = mpg, colour = factor(cyl))

26 February 24, 2009

http://fueleconomy.gov

3.3. Building a scatterplot Mastering the grammar

displ

hw
y

●●

●
●

●
●

●
● ●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●● ●●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●
● ●●

●
●

●●
●

●● ●●
●

●
●

●

●

●

●●

●●

●

●
●

● ●

●
●

●●● ●

●

●

●

●●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●
●●

● ●

●●

●

● ●
●
●

●

●

●

●●

●

●●
●

●

●
●

●

●
●
●

●● ●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

● ●
●

●

●
●●
●

●

●

●
●
●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

15

20

25

30

35

40

2 3 4 5 6 7

factor(cyl)

● 4

● 6

● 8

● 5

Figure 3.1.: A scatterplot of engine displacement in litres (displ) vs average highway miles per gallon
(hwy). Points are coloured according to number of cylinders. This plot summarises the
most important factor governing fuel economy: engine size

Mapping aesthetics to data

What precisely is a scatterplot? You have seen many before and have probably even drawn
some by hand. A scatterplot represents each observation as a point (•), positioned according
the value of two variables. As well as a horizontal and vertical position, each point also has
a size, a colour and a shape. These attributes are called called aesthetics, and are the
properties that can perceived on the graphic. Each aesthetic can be mapped to a variable,
or set to a constant value. In Figure 3.1 displ is mapped to horizontal position, hwy to
vertical position and cyl to colour. Size and shape are not mapped to variables, but remain
at their (constant) default values.

Once we have these mappings we can create a new dataset that records this information.
Table 3.2 shows the first 10 rows of the data behind Figure 3.1. This new dataset is a result
of applying the aesthetic mappings to the original data. We can create many different types
of plots using this data. The scatterplot uses points, but we were instead to draw lines
we would get a line plot. If we used bars, we’d get a bar plot. Neither of those examples
make sense for this data, but we could still draw them, as in Figure 3.2. In ggplot2 we can
produce many plots that don’t make sense, yet are grammatically valid. This is no different
to English, where we can created senseless but grammatical sentences like the angry rock
barked like a comma.

Points, lines and bars are all examples of geometric objects, or geoms. Geoms determine
the “type” of the plot. Plots that use a single geom are often given a special name, a few
of which are listed in Table 3.3. More complex plots with combinations of multiple geoms
don’t have a special name, and we have to describe them by hand. For example, Figure 3.3
overlays a per group regression line on the existing plot. What would you call this plot?

February 24, 2009 27

3.3. Building a scatterplot Mastering the grammar

x y colour

1.8 29 4
1.8 29 4
2.0 31 4
2.0 30 4
2.8 26 6
2.8 26 6
3.1 27 6
1.8 26 4
1.8 25 4
2.0 28 4

Table 3.2.: First 10 rows from mpg rearranged into the format required for a scatterplot. This is
data frame contains all the data to be displayed on the plot.

displ

hw
y

15

20

25

30

35

40

2 3 4 5 6 7
displ

hw
y

0

10

20

30

40

2 3 4 5 6 7

Figure 3.2.: Instead of using points to represent the data, we could use other geoms like lines (left)
or bars (right). Neither of these geoms make sense for this data, but they are still
grammatically valid.

Once you’ve mastered the grammar, you’ll find that many of the plots that you produce
are uniquely tailored to your problems and will no longer have special names.

Scaling

The values in Table 3.2 have no meaning to the computer. We need to convert them from
data units (e.g. litres, miles per gallon and number of cylinders) to physical units (e.g. pixels
and colours) that the computer can display. This conversion process is called scaling and
performed by scales. Now that these value are meaningful to the computer, they may not

28 February 24, 2009

3.3. Building a scatterplot Mastering the grammar

Named plot Geom Other features

scatterplot point
bubblechart point size mapped to a variable
barchart bar
box and whiskers plot boxplot
line chart line

Table 3.3.: A selection of named plots and the geoms that they correspond to.

displ

hw
y

●●

●
●

●
●

●
● ●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●● ●●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●
● ●●

●
●

●●
●

●● ●●
●

●
●

●

●

●

●●

●●

●

●
●

● ●

●
●

●●● ●

●

●

●

●●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●
●●

● ●

●●

●

● ●
●
●

●

●

●

●●

●

●●
●

●

●
●

●

●
●
●

●● ●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

● ●
●

●

●
●●
●

●

●

●
●
●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

15

20

25

30

35

40

2 3 4 5 6 7

factor(cyl)

● 4

● 6

● 8

● 5

Figure 3.3.: More complicated plots don’t have their own names. This plot takes Figure 3.1 and
adds a regression line to each group. What would you call this plot?

be meaningful to us: colours are represented by a six-letter hexadecimal string, sizes by a
number and shapes by an integer. These aesthetic specifications that are meaningful to R
are described in Appendix B.

In this example, we have three aesthetics that need to be scaled: horizontal position (x),
vertical position (y) and colour. Scaling position is easy in this example because we are
using the default linear scales. We need only a linear mapping from the range of the data
to [0, 1]. We use [0, 1] instead of exact pixels because the drawing system that ggplot2
uses, grid, takes care of that final conversion for us. A final step determines how the two
positions (x and y) are combine to form the final location on the plot. This is done by the
coordinate system, or coord. In most cases this will be Cartesian coordinates, but it might
be polar coordinates, or a spherical projection used for a map.

The process for mapping the colour is a little more complicated, as we have a non-
numeric result: colours. However, colours can be thought of as having three components,
corresponding to the three types of colour detecting cells in the human eye. These three
cell types give rise to a three dimensional colour space. Scaling then involves mapping the

February 24, 2009 29

3.3. Building a scatterplot Mastering the grammar

data values to points in this space. There are many ways to do this, but here since cyl is a
categorical variable we map values to evenly spaced hues on the colour wheel, as shown in
Figure 3.4. A different mapping is used when the variable is continuous.

Figure 3.4.: A colour wheel illustrating the choice of five equally spaced colours. This is the default
scale for discrete variables.

The result of these conversions is Table 3.4, which contains values that have meaning to
the computer. As well as aesthetics that have been mapped to variable, we also include
aesthetics that are constant. We need these so that the aesthetics for each point are
completely specified and R can draw the plot.

x y colour size shape

0.037 0.531 #FF6C91 1 19
0.037 0.531 #FF6C91 1 19
0.074 0.594 #FF6C91 1 19
0.074 0.562 #FF6C91 1 19
0.222 0.438 #00C1A9 1 19
0.222 0.438 #00C1A9 1 19
0.278 0.469 #00C1A9 1 19
0.037 0.438 #FF6C91 1 19
0.037 0.406 #FF6C91 1 19
0.074 0.500 #FF6C91 1 19

Table 3.4.: Simple dataset with variables mapped into aesthetic space. The description of colours
is intimidating, but this is the form that R uses internally. Default values for other
aesthetics are filled in: the points will be filled circles (shape 19 in R) with a 1mm
diameter.

30 February 24, 2009

3.4. A more complex plot Mastering the grammar

Finally, we need to render this data to create the graphical objects that are displayed
on the screen. To create a complete plot we need to combine graphical objects from three
sources: the data, represented by the point geom; the scales and coordinate system, which
generate axes and legends so that we can read values from the graph; and plot annotations,
such as the background and plot title. Figure 3.5 separates the contribution of the data
from the contributions of the scales and plot annotations.

hw
y

15

20

25

30

35

40

displ
2 3 4 5 6 7

factor(cyl)
● 8
● 6
● 5
● 4

Figure 3.5.: Contributions from the scales, the axes and legend and grid lines, and the plot back-
ground. Contributions from the data, the point geom, have been removed.

3.4. A more complex plot

With a simple example under our belts, lets now turn to look at the slightly more complicated
plot in Figure 3.6. This plot adds three new components to the mix: facets, multiple layers
and statistics. The facets and layers expand the data structure described above: each facet
panel in each layer has its own dataset. You can think of this as a 3d array: the panels of
the facets form a 2d grid, and the layers extend upwards in the 3rd dimension. In this case
the data in the layers is the same, but in general we can plot different datasets on different
layers. Table 3.5 shows the first few rows of the data in each facet.

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

The smooth layer to the point layer because it doesn’t display the raw data, but a
statistical transformation of the data, here fitting a smooth line through the middle of
the data. This requires an additional step in the process described above: after mapping
the data to aesthetics, the data is passed to a statistical transformation, or stat, which
manipulates the data in some useful way. In this example, the stat fits the data to a loess
smoother, and then returns predictions from evenly spaced points within the range of the
data. Other useful stats include 1 and 2d binning, group means, quantile regression and
contouring.

As well as adding an additional step to summarise the data, we also need some extra
steps when we get to the scales. This is because we now have multiple datasets (for the

February 24, 2009 31

3.4. A more complex plot Mastering the grammar

displ

hw
y ●●

●●●
● ●●

●

●

●

●

●

●

●
●

● ●

●● ●
●

●● ●

●

●
●

●●
●

●

● ●●

●

● ●●●
●●

●

●
●

●
●

●
●●

●

●

●
●

●●●

●

●

●

● ●

●
●

● ●

●

●
●
●

●●

● ●
●

●
●

●● ●●

●●
●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●
●
●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●●
●

●

●
●

● ●

● ●

●

●
●
●

●

●

●●

●
●
●

●●
●

●●●

●

●

●

●
●

●

● ● ●
● ●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●● ●●
●
●

●
●

●

15

20

25

30

35

40

2 3 4 5 6 7 2 3 4 5 6 7

1999 2008

Figure 3.6.: A more complex plot with facets and multiple layers.

x y colour x y colour

1.8 29 4 2.0 31 4
1.8 29 4 2.0 30 4
2.8 26 6 3.1 27 6
2.8 26 6 2.0 28 4
1.8 26 4 2.0 27 4
1.8 25 4 3.1 25 6
2.8 25 6 3.1 25 6
2.8 25 6 3.1 25 6
2.8 24 6 4.2 23 8
5.7 17 8 5.3 20 8

Table 3.5.: A 1× 2 grid of data frames used for faceting. In general, this structure also has a third
dimension for layers, but in this example the data for each layer is the same.

32 February 24, 2009

3.5. Components of the layered grammar Mastering the grammar

different facets and layers) and we need to make sure that the scales are the same across all
of them. This ensures that panels are layers are consistent. Scaling actually occurs in three
parts: transforming, training and mapping. We haven’t mentioned transformation before,
but you have probably seen it before in log-log plots. In a log-log plot, the data values are
not linearly mapped to position on the plot, but are first log-transformed.

• Scale transformation occurs before statistical transformation so that statistics are
computed on the scale-transformed data. This ensures that a plot of log(x) vs log(y)
on linear scales looks the same as x vs y on log scales. There are many different
transformations that can be used, including taking square roots, logarithms and
reciprocals. See Section 6.4.2 for more details.

• After the statistics are computed, each scale is trained on every dataset from all
the layers and facets. The training operation combines the ranges of the individual
datasets to get the range of the complete data. Without this step, scales could only
make sense locally and we wouldn’t be able to overlay different layers because their
positions wouldn’t line up. Sometimes we do want to vary position scales across facets
(but never across layers), and this is described more fully in Section 7.2.3.

• Finally the scales map the data values into aesthetic values. This is a local operation:
the variables in each dataset are mapped to their aesthetic values producing a new
dataset that can then be rendered by the geoms.

Figure 3.7 illustrates the complete process schematically.

3.5. Components of the layered grammar

In the examples above, we have seen some of the components that make up a plot, data
and aesthetic mappings, geometric objects (geoms), statistical transformations (stats),
scales and faceting. We have also touched on the coordinate system. One thing we didn’t
mention is the position adjustment, which deals with overlapping graphic objects. Together,
the data, mappings, stat, geom and position adjustment form a layer. A plot may have
multiple layers, as in the example where we overlaid a smoothed line on scatterplot. All
together, the layered grammar defines a plot as the combination of:

• A default dataset and set of mappings from variables to aesthetics.

• One or more layers, each composed of a geometric object, a statistical transformation,
and a position adjustment, and optionally, a dataset and aesthetic mappings.

• One scale for each aesthetic mapping.

• A coordinate system.

• The faceting specification.

The following sections describe each of the higher level components more precisely, and
point you to the parts of the book where they are documented.

February 24, 2009 33

3.5. Components of the layered grammar Mastering the grammar

Map variables to aesthetics

Facet datasets

Transform scales

Train scales

Map scales

Render geoms

Compute aesthetics

Figure 3.7.: Schematic description of the plot generation process. Each square represents a layer,
and this schematic represents a plot with three layers and three panels. All steps work
by transforming individual data frames, except for training scales which doesn’t affect
the data frame and operates across all datasets simultaneously.

34 February 24, 2009

3.5. Components of the layered grammar Mastering the grammar

3.5.1. Layers

Layers are responsible for creating the objects that we perceive on the plot. A layer is
composed of four parts:

• data and aesthetic mapping,

• a statistical transformation (stat),

• a geometric object (geom)

• and a position adjustment.

The properties of a layer are described in Chapter 4 and how they can be used to visualise
data in Chapter 5.

3.5.2. Scales

A scale controls the mapping from data to aesthetic attributes, and we need a scale for
every aesthetic used on a plot. Each scale operates across all the data in the plot, ensure a
consistent mapping from data to aesthetics. Some scales are illustrated in Figure 3.8.

x
● 2

● 4

● 6

● 8

● 10

x

● 2

● 4

● 6

● 8

● 10

y

● a

b

c

d

e

y

● a

● b

● c

● d

● e

Figure 3.8.: Examples of legends from four different scales. From left to right: continuous variable
mapped to size, and to colour, discrete variable mapped to shape, and to colour. The
ordering of scales seems upside-down, but this matches the labelling of the y-axis: small
values occur at the bottom.

A scale is a function, and its inverse, along with a set of parameters. For example, the
colour gradient scale maps a segment of the real line to a path through a colour space. The
parameters of the function define whether the path is linear or curved, which colour space
to use (eg. LUV or RGB), and the colours at the start and end.

The inverse function is used to draw a guide so that you can read values from the graph.
Guides are either axes (for position scales) or legends (for everything else). Most mappings
have a unique inverse (i.e. the mapping function is one-to-one), but many do not. A unique
inverse makes it possible to recover the original data, but this is not always desirable if we
want to focus attention on a single aspect.

Chapter 6 describes scales in detail.

February 24, 2009 35

3.6. Data structures Mastering the grammar

3.5.3. Coordinate system

A coordinate system, or coord for short, maps the position of objects onto the plane of the
plot. Position is often specified by two coordinates (x, y), but potential could be three or
more (although this is not yet implemented in ggplot2). The Cartesian coordinate system
is the most common coordinate system for two dimensions, while polar coordinates and
various map projections are used less frequently.

Coordinate systems affect all position variables simultaneously and differ from scales
in that they also change the appearance of the geometric objects. For example, in polar
coordinates, bar geoms look like segments of a circle. Additionally, scaling is performed
before statistical transformation, while coordinate transformations occur afterward. The
consequences of this are shown in Section 7.3.1.

Coordinate systems control how the axes and grid lines are drawn. Figure 3.9 illustrates
three different types of coordinate systems. Very little advice is available for drawing these
for non-Cartesian coordinate systems, so a lot of work needs to be done to produce polished
output. Coordinate systems are described in Chapter 7.

1

2

3

4

5

2 4 6 8 10

1

2

3

4

5

2 4 6 8 10

2

4

6

8

10

1

2

3

4

5

Figure 3.9.: Examples of axes and grid lines for three coordinate systems: Cartesian, semi-log
and polar. The polar coordinate system illustrates the difficulties associated with
non-Cartesian coordinates: it is hard to draw the axes well.

3.5.4. Faceting

There is also another thing that turns out to be sufficiently useful that we should include it
in our general framework: faceting, a general case of the conditioned or trellised plots. This
makes it easy to create small multiples each showing a different subsets of the whole dataset.
This is a powerful tool when investigating whether patterns hold across all conditions. The
faceting specification describes which variables should be used to split up the data, and
whether position scales should be free or constrained. Faceting is described in Chapter 7.

3.6. Data structures

This grammar is encoded into R data structures in a fairly straightforward way. A plot
object is a list with components data, mapping (the default aesthetic mappings), layers,
scales, coordinates and facet. The plot object has one other component we haven’t

36 February 24, 2009

3.6. Data structures Mastering the grammar

discussed yet: options. This is used to store the plot-specific theme options described in
Chapter 8.

Plots can be created in two ways: all at once with qplot(), as shown in the previous
chapter, or piece-by-piece with ggplot() and layer functions, as described in the next
chapter. Once you have a plot object, there are few things you can do with it:

• Render it on screen, with print(). This happens automatically when running
interactively, but inside a loop or function, you’ll need to print() it yourself.

• Render it to disk, with ggsave(), described in Section 8.3.

• Briefly describe its structure with summary().

• Save it a cache copy of it to disk, with save(). This saves a complete copy of the
plot object, so you can easily recreate that exact plot with load(). Note that data
stored inside the plot, so that if you change the data outside of the plot, and then
redraw a saved plot, it will not be updated.

The following code illustrates some of these tools.

> p <- qplot(displ, hwy, data = mpg, colour = factor(cyl))
> summary(p)
data: manufacturer, model, displ, year, cyl, trans, drv, cty, hwy, fl, class [234x11]
mapping: colour = factor(cyl), x = displ, y = hwy
scales: colour, x, y
faceting: facet_grid(. ~ ., FALSE)

geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

> # Save plot object to disk
> save(p, file = "plot.rdata")
> # Load from disk
> load("plot.rdata")
> # Save png to disk
> ggsave("plot.png", width = 5, height = 5)

February 24, 2009 37

Chapter 4

Build a plot layer by layer

4.1. Introduction

Layering is the mechanism by which additional data elements are added to a plot. Each
layer can come from a different dataset and have a different aesthetic mapping, allowing
us to create plots that could not be generated using qplot(), which permits only a single
dataset and a single set of aesthetic mappings.

This chapter is mainly a technical description of how layers, geoms, statistics and position
adjustments work: how you call and customise them. The next chapter, the “toolbox”,
describes how you can use different geoms and stats to solve particular visualisation problems.
These two chapters are companions, with this chapter explaining the theory and the next
chapter explaining the practical aspects of using layers to achieve your graphical goals.

Section 4.2 will teach you how to initialise a plot object by hand, a task that qplot()
performs for us. The plot is not ready to be displayed until at least one layer is added,
as described in Section 4.3. This section first describes the complete layer specification,
which helps you see exactly how the components of the grammar are realised in R code,
and then shows you the shortcuts that will save you a lot of time. As you have learned in
the previous chapter, there are five components of a layer:

• The data, § 4.4, which must be an R data frame, and can be changed after the plot is
created.

• A set of aesthetic mappings, § 4.5, which describe how variables in the data are
mapped to aesthetic properties of the layer. This section includes a description of how
layer settings override the plot defaults, the difference between setting and mapping,
and the important group aesthetic.

• The geom, § 4.6, which describes the geometric used to draw the layer. The geom
defines the set of available aesthetic properties.

• The stat, § 4.7, which takes the raw data and transforms it in some useful way. The
stat returns a data frame with new variables that can also be mapped to aesthetics
with a special syntax.

• The position adjustment, § 4.8, which adjusts elements to avoid overplotting.

39

4.2. Creating a plot Build a plot layer by layer

To conclude, Section 4.9 shows you some plotting techniques that pull together everything
you have learned in this chapter to create novel visualisations and to visualise model
information along with your data.

4.2. Creating a plot

When we used qplot(), it did a lot of things for us: it created a plot object, added layers,
and displayed the result, using many default values along the way. To create the plot
object ourselves, we use ggplot(). This has two arguments: data and aesthetic mapping.
These arguments set up defaults for the plot and can be omitted if you specify data and
aesthetics when adding each layer. The data argument needs little explanation: It’s the
data frame that you want to visualise. You are already familiar with aesthetic mappings
from qplot(), and the syntax here is quite similar, although you need to wrap the pairs of
aesthetic attribute and variable name in the aes() function. aes() is described more fully
in Section 4.5, but its not very tricky, the following example specifies a default mapping of
x to carat, y to price and colour to cut.

p <- ggplot(diamonds, aes(carat, price, colour = cut))

This plot object can not be display until we add a layer: there is nothing to see!

4.3. Layers

A minimal layer may do nothing more than specify a geom, a way of visually representing
the data. If we add a point geom to the plot we just created, we create a scatterplot, which
can then be rendered.

p <- p + layer(geom = "point")

Note how we use + to add the layer to the plot. This layer uses the plot defaults for data
and aesthetic mapping and it uses default values for two optional arguments: the statistical
transformation (the stat) and the position adjustment. A more fully specified layer can
take any or all of these arguments:

layer(geom, geom_params, stat, stat_params, data, mapping, position)

Here is what a more complicated call looks like. It produces a histogram (a combination of
bars and binning) coloured “steelblue” with a bin width of 2:

p <- ggplot(diamonds, aes(x = carat))
p <- p + layer(
geom = "bar",
geom_params = list(fill = "steelblue"),
stat = "bin",
stat_params = list(binwidth = 2)

)
p

40 February 24, 2009

4.3. Layers Build a plot layer by layer

This layer specification is precise but verbose. We can simplify it by using shortcuts that
rely on the fact that every geom is associated with a default statistic and position, and
every statistic with a default geom. This means that you only need to specify one of stat
or geom to get a completely specified layer, with parameters passed on to the geom or stat
as appropriate. This expression generates the same layer as the full layer command above:

geom_histogram(binwidth = 2, fill = "steelblue")

All the shortcut functions have the same basic form, beginning with geom_ or stat_:

geom_XXX(mapping, data, ..., geom, position)
stat_XXX(mapping, data, ..., stat, position)

Their common parameters define the components of the layer:

• mapping (optional): A set of aesthetic mappings, specified using the aes() function
and combined with the plot defaults as described in Section 4.5.

• data (optional): A data set which overrides the default plot data set. It is most
commonly omitted, in which case the layer will use the default plot data. See 4.4.

• ...: Parameters for the geom or stat, such as bin width in the histogram or bandwidth
for a loess smoother. You can also use aesthetic properties as parameters. When you
do this you set the property to a fixed value, not map it to a variable in the dataset.
The example above showed setting the fill colour of the histogram to “steelblue”. See
Section 4.5.2 for more examples.

• geom or stat (optional): You can override the default stat for a geom, or the default
geom for a stat. This is a text string containing the name of the geom to use. Using
the default will give you a standard plot; overriding the default allows you to achieve
something more exotic, as shown in Section 4.9.1.

• position (optional): Choose a method for adjusting overlapping objects, as described
in Section 4.8.

Note that the order of data and mapping arguments is switched between ggplot() and
the layer functions. This is because you almost always specify data for the plot, and almost
always specify aesthetics—but not data—for the layers. We suggest explicitly naming all
other arguments rather than relying on positional matching. This makes the code more
readable and is the style followed in this book.

Layers can be added to plots created with ggplot() or qplot(). Remember, behind the
scenes, qplot() is doing exactly the same thing: it creates a plot object and then adds
layers. The following example shows the equivalence between these two ways of making
plots.

ggplot(msleep, aes(sleep_rem / sleep_total, awake)) + geom_point()
which is equivalent to
qplot(sleep_rem / sleep_total, awake, data = msleep)

February 24, 2009 41

4.3. Layers Build a plot layer by layer

You can add layers to qplot too:
qplot(sleep_rem / sleep_total, awake, data = msleep) + geom_smooth()
This is equivalent to
qplot(sleep_rem / sleep_total, awake, data = msleep,
geom=c("point", "smooth"))

and
ggplot(msleep, aes(sleep_rem / sleep_total, awake)) +
geom_point() + geom_smooth()

You’ve seen that plot objects can be stored as variables. The summary function can be
helpful for inspecting the structure of a plot without plotting it, as seen in the following
example. The summary shows information about the plot defaults, and then each layer.
You will learn about scales and faceting in Chapters 6 and 7.

> p <- ggplot(msleep, aes(sleep_rem / sleep_total, awake))
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem, sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
scales: x, y
faceting: facet_grid(. ~ ., FALSE)
>
> p <- p + geom_point()
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem, sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
scales: x, y
faceting: facet_grid(. ~ ., FALSE)

geom_point: na.rm = FALSE
stat_identity:
position_identity: (width = NULL, height = NULL)

Layers are regular R objects and so can stored as variables, making it easy to write clean
code that reduces duplication. For example, a set of plots can be initialised using different
data then enhanced with the same layer. If you later decide to change that layer, you only
need to do so in one place. The following shows a simple example, where we create a layer
that displays a translucent thick blue line of best fit.

bestfit <- geom_smooth(method = "lm", se = F,
colour = alpha("steelblue", 0.5), size = 2)

qplot(sleep_rem, sleep_total, data = msleep) + bestfit
qplot(awake, brainwt, data = msleep, log = "y") + bestfit
qplot(bodywt, brainwt, data = msleep, log = "xy") + bestfit

The following sections describe data and mappings in more detail, then go on to describe
the available geoms, stats and position adjustments.

42 February 24, 2009

4.4. Data Build a plot layer by layer

4.4. Data

The restriction on the data is simple: it must be a data frame. This is restrictive, and
unlike other graphics packages in R. Lattice functions can take an optional data frame or
use vectors directly from the global environment. Base methods often work with vectors,
data frames or other R objects. However, there are good reasons for this restriction. Your
data is very important, and it’s better to be explicit about exactly what is done with it.
It also allows a cleaner separation of concerns so that ggplot2 deals only with plotting
data, not wrangling it into different forms, for which you might find the plyr or reshape
packages helpful. A single data frame is also easier to save than a multitude of vectors,
which means it’s easier to reproduce your results or send your data to someone else.

This restriction also makes it very easy to produce the same plot for different data:
you just change the data frame. You can replace the old dataset with %+%, as shown
in the following example. (You might expect that this would use + like all the other
components, but unfortunately due to a restriction in R this is not possible.) Swapping out
the data makes it easy to experiment with imputation schemes or model fits, as shown in
Section 4.9.3.

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point()
p
mtcars <- transform(mtcars, mpg = mpg ^ 2)
p %+% mtcars

Any change of values or dimensions is legitimate. However, if a variable changes from
discrete to continuous (or vice versa), you will need to change the default scales, as described
in Section 6.3.

It is not necessary to specify a default dataset except when using faceting; faceting is
a global operation (i.e., it works on all layers) and it needs to have a base dataset which
defines the set of facets for all datasets. See Section 7.2.4 for more details. If the default
dataset is omitted, every layer must supply its own data.

The data is stored in the plot object as a copy, not a reference. This has two important
consequences: if your data changes, the plot will not; and ggplot2 objects are entirely
self-contained so that they can be save()d to disk and later load()ed and plotted without
needing anything else from that session.

4.5. Aesthetic mappings

To describe the way that variables in the data are mapped to things that we can perceive
on the plot (the “aesthetics”), we use the aes function. The aes function takes a list of
aesthetic-variable pairs like these:

aes(x = weight, y = height, colour = age)

Here we are mapping x-position to weight, y-position to height and colour to age. The
first two arguments can be left without names, in which case they correspond to the x and
y variables. This matches the way that qplot() is normally used. You should never refer

February 24, 2009 43

4.5. Aesthetic mappings Build a plot layer by layer

to variables outside of the dataset (e.g. with diamonds$carat), as this makes it impossible
to encapsulate all of the data needed for plotting in a single object.

aes(weight, height, colour = sqrt(age))

Note that functions of variables can be used.
Any variable in an aes() specification must be contained inside the plot or layer data.

This is one of the ways in which ggplot2 objects are guaranteed to be entirely self-contained,
so that they can be stored and re-used.

4.5.1. Plots and layers

The default aesthetic mappings can be set when the plot is initialised or modified later
using +, as in this example:

> p <- ggplot(mtcars)
> summary(p)
data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
faceting: facet_grid(. ~ ., FALSE)
>
> p <- p + aes(wt, hp)
> summary(p)
data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
mapping: x = wt, y = hp
scales: list(), list()
faceting: facet_grid(. ~ ., FALSE)

One reason you might want to do this is shown in Section 4.9.3. We have seen several
examples of using the default mapping when adding a layer to a plot:

> p <- ggplot(mtcars, aes(x = mpg, y = wt))
> p + geom_point()

mpg

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

15 20 25 30

44 February 24, 2009

4.5. Aesthetic mappings Build a plot layer by layer

As these two examples show, the default mappings in the plot p can be extended or
overridden in added layers:

> p + geom_point(aes(colour = factor(cyl)))

mpg

w
t

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●
●

● ●

●

●

2

3

4

5

15 20 25 30

factor(cyl)

● 6

● 4

● 8

> p + geom_point(aes(y = disp))

mpg

w
t

●●

●

●

●

●

●

●
●

●●

● ●●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

100

200

300

400

15 20 25 30

The rules are summarised in Table 4.1. Aesthetic mappings specified in a layer, affect only
that layer. For that reason, unless you modify the default scales, axis labels and legend
titles will be based on the plot defaults. The way to change these is described in Section 6.5.

4.5.2. Setting vs. mapping

Instead of mapping an aesthetic property to a variable, you can set it to a single value
by specifying it in the layer parameters. Aesthetics can vary for each observation being

February 24, 2009 45

4.5. Aesthetic mappings Build a plot layer by layer

Operation Layer aesthetics Result

Add aes(colour = cyl) aes(mpg, wt, colour = cyl)
Override aes(y = disp) aes(mpg, disp)
Remove aes(y = NULL) aes(mpg)

Table 4.1.: Rules for combining layer mappings with the default mapping of aes(mpg, wt). Layer
aesthetics can add to, override, and remove the default mappings.

plotted, while parameters do not. We map an aesthetic to a variable (e.g. (aes(colour =
cut))) or set it to a constant (e.g. colour = "red"). For example, the following layer sets
the colour of the points, using the colour parameter of the layer:

p <- ggplot(mtcars, aes(mpg, wt))
p + geom_point(colour = "darkblue")

This sets the point colour to be dark blue instead of black. This is quite different to

p + geom_point(aes(colour = "darkblue"))

This maps (not sets) the colour to the value “darkblue”. This effectively creates a new
variable containing only the value “darkblue” and then maps colour to that new variable.
Because this value is discrete, the default colour scale uses evenly spaced colours on the
colour wheel, and since there is only one value this colour is pinkish. The difference between
setting and mapping is illustrated in Figure 4.1.

With qplot, you can do the same thing by putting the value inside of I(), e.g.,
colour = I("darkblue"). Chapter B describes how values should be specified for the
various aesthetics.

4.5.3. Grouping

In ggplot2, geoms can be roughly divided into individual and collective geoms. An
individual geom has a distinctive graphical object for each row in the data frame. For
example, the point geom has a single point for each observation. On the other hand,
collective geoms represent multiple observations. This maybe a result of a statistical
summary, or may be fundamental to the display of the geom, as with polygons. Lines and
paths fall somewhere in between: each overall line is composed of a set of straight segments,
but each segment represents two points. How do we control which observations go in which
individual graphical element? This is the job of the group aesthetic.

By default, the group is set to the interaction of all discrete variables in the plot. This
often partitions the data correctly, but when it does not, or when no discrete variable is
used in the plot, you will need to explicitly define the grouping structure, by mapping
group to a variable that has a different value for each group. The interaction() function
is useful if a single pre-existing variable doesn’t cleanly separate groups, but a combination
does.

46 February 24, 2009

4.5. Aesthetic mappings Build a plot layer by layer

mpg

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

15 20 25 30
mpg

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

15 20 25 30

"darkblue"

● darkblue

Figure 4.1.: The difference between, left, setting colour to "darkblue" and, right, mapping colour
to "darkblue". When "darkblue" is mapped to colour, it is treated as a regular value
and scaled with the default colour scale. This results in pinkish points and a legend.

There are three common cases where the default is not enough, and we will consider each
one below. In the following examples, we will use a simple longitudinal data set, Oxboys,
from the nlme package. It records the heights (height) and centered ages (age) of 26 boys
(Subject), measured on nine occasions (Occasion).

Multiple groups, one aesthetic. In many situations, you want to separate your data
into groups, but render them in the same way. When looking at the data in aggregate you
want to be able to distinguish individual subjects, but not identify them. This is common
in longitudinal studies with many subjects, where the plots are often descriptively called
spaghetti plots.

The first plot in Figure 4.2 shows a set of time series plots, one for each boy. You can see
the separate growth trajectories for each boy, but there is no way to see which boy belongs
to which trajectory. This plot was generated with:

p <- ggplot(Oxboys, aes(age, height, group = Subject)) +
geom_line()

We specified the Subject as the grouping variable to get a line for each boy. The second plot
in the figure shows the result of leaving this out: we get a single line which passes through
every point. This is not very useful! Line plots with an incorrect grouping specification
typically have this characteristic appearance.

Different groups on different layers. Sometimes we want to plot summaries based
on different levels of aggregation. Different layers might have different group aesthetics, so
that some display individual level data while others display summaries of larger groups.

February 24, 2009 47

4.5. Aesthetic mappings Build a plot layer by layer

age

he
ig

ht

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0
age

he
ig

ht

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

Figure 4.2.: Left, correctly specifying group = Subject produces one line per subject. Right, a
single line connects all observations. This pattern is characteristic of an incorrect
grouping aesthetic, and is what we see if the group aesthetic is omitted, which in this
case is equivalent to group = 1.

Building on the previous example, suppose we want to add a single smooth line to the
plot just created, based on the ages and heights of all the boys. If we use the same grouping
for the smooth that we used for the line, we get the first plot in Figure 4.3.

p + geom_smooth(aes(group = Subject), method="lm", se = F)

This is not what we wanted; we have inadvertently added a smoothed line for each boy.
This new layer needs a different group aesthetic, group = 1, so that the new line will be
based on all the data, as shown in the second plot in the figure. The modified layer looks
like this:

p + geom_smooth(aes(group = 1), method="lm", size = 2, se = F)

Note how we stored the first plot in the variable p, so we could experiment with the code
to generate the second layer without having to re-enter any of the code for the first layer.
This is a useful time-saving technique, and is expanded upon in Chapter 10.

Overiding the default grouping. The plot has a discrete scale but you want to draw
lines that connect across groups. This is the strategy used in interaction plots, profile plots,
and parallel coordinate plots, among others. For example, we draw boxplots of height at
each measurement occasion, as shown in the first figure in Figure 4.4:

boysbox <- ggplot(Oxboys, aes(Occasion, height)) + geom_boxplot()

48 February 24, 2009

4.5. Aesthetic mappings Build a plot layer by layer

age

he
ig

ht

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0
age

he
ig

ht

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

Figure 4.3.: Adding smooths to the Oxboys data. Left using the same grouping as the lines results
in a line of best fit for each boy. Right using aes(group = 1) in the smooth layer fits a
single line of best fit across all boys.

There is no need to specify the group aesthetic here; the default grouping works because
occasion is a discrete variable. To overlay individual trajectories we again need to override
the default grouping for that layer with aes(group = Subject), as shown in the second
plot in the figure.

boysbox + geom_line(aes(group = Subject), colour = "#3366FF")

We change the line colour in the second layer to make them distinct from the boxes.
This is another example of setting an aesthetic to a fixed value. The colour is a rendering
attribute, which has no corresponding variable in the data.

> qplot(cut, data = diamonds, geom = "bar")

February 24, 2009 49

4.5. Aesthetic mappings Build a plot layer by layer

Occasion

he
ig

ht

●
● ●

●

●

●

●

●

130

140

150

160

170

1 2 3 4 5 6 7 8 9
Occasion

he
ig

ht

●
● ●

●

●

●

●

●

130

140

150

160

170

1 2 3 4 5 6 7 8 9

Figure 4.4.: Left if boxplots are used to look at the distribution of heights at each occasion (a discrete
variable), the default grouping works correctly. Right if trajectories of individual boys
are overlaid with geom line() then aes(group = Subject) if needed for the new layer.

cut

co
un

t

0

5000

10000

15000

20000

Ideal Premium Good Very Good Fair

> qplot(cut, ..density.., data = diamonds, geom = "bar")

50 February 24, 2009

4.5. Aesthetic mappings Build a plot layer by layer

cut

de
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

Ideal Premium Good Very Good Fair

> qplot(cut, ..density.., data = diamonds, geom = "bar", group = 1)

cut

de
ns

ity

0.0

0.1

0.2

0.3

0.4

Ideal Premium Good Very Good Fair

4.5.4. Matching aesthetics to graphic objects

Another important issue with collective geom is how the aesthetics of the individual
observations are mapped to the aesthetics of the complete entity. For individual geoms,
this isn’t a problem, because each observation is represented by a single graphical element.
However, high data densities can make it difficult (or impossible) to distinguish between
individual points and in some sense the point geom becomes a collective geom, a single
blob of points.

Lines and paths operate on an off by one principle: there is one more observation than
line segment, and so the aesthetic for the first observation is used for the first segment, the
second observation for the second segment and so on. This means that the aesthetic for the

February 24, 2009 51

4.5. Aesthetic mappings Build a plot layer by layer

last observation is not used, as shown in Figure 4.5. An additional limitation for paths and
lines is that that line type must be constant over each individual line, in R there is no way
to draw a joined up line which has varying line type.

x

y

●

●

●

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

factor(colour)

● 1

● 3

● 5

x

y

●

●

●

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

colour

● 1

● 2

● 3

● 4

● 5

Figure 4.5.: For lines and paths, the aesthetics of the line segment are determined by the aesthetic
of the beginning observation. Left, if colour is categorical, there is no meaningful way
to interpolate between adjacent colours. For continuous variables, right, there is, but
this is not done by default.

You could imagine a more complicated system where segments smoothly blend from one
aesthetic to another. This would work for continuous variables like size or colour, but not
for line type, and is not used in ggplot2. If this is the behaviour you want, you’ll can
perform the linear interpolation yourself, as shown below.

> xgrid <- with(df, seq(min(x), max(x), length = 50))
> interp <- data.frame(
+ x = xgrid,
+ y = approx(dfx, dfy, xout = xgrid)$y,
+ colour = approx(dfx, dfcolour, xout = xgrid)$y
+)
> qplot(x, y, data = df, colour = colour, size = I(5)) +
+ geom_line(data = interp, size = 2)

x

y

●

●

●

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

colour

● 1

● 2

● 3

● 4

● 5

52 February 24, 2009

4.6. Geoms Build a plot layer by layer

For all other collective geoms, like polygons, the aesthetics from the individual components
are only used if they are all the same, otherwise the default value is used. This makes sense
for fill as it is a property of the entire object: it doesn’t make sense to think about having
a different fill colour for each point on the border of the polygon.

These issues are most relevant when mapping aesthetics to continuous variable, because,
as described above, when you introduce a mapping to a discrete variable, it will by default
split apart collective geoms into smaller pieces. This works particularly well for bar and
area plots, because stacking the individual pieces produces the same shape as the original
ungrouped data. This is illustrated in Figure 4.6

color

co
un

t

0

2000

4000

6000

8000

10000

E I J H F G D
color

co
un

t

0

2000

4000

6000

8000

10000

E I J H F G D

cut

Fair

Good

Very Good

Premium

Ideal

Figure 4.6.: Splitting apart an bar chart, left, produces a plot, right that has the same outline as
the original.

4.6. Geoms

Geometric objects, or geoms for short, perform the actual rendering of the layer, control
the type of plot that you create. For example, using a point geom will create a scatterplot,
while using a line geom will create a line plot. Table 4.2 lists all of the geoms available in
ggplot2.

Each geom has a set of aesthetics that it understands, and a set that are required for
drawing. For example, a point requires x and y position, and understands colour, size and
shape aesthetics. A bar requires height (ymax), and understands width, border colour, and
fill colour. These are listed for all geoms in Table 4.3.

Some geoms differ primarily in the way that they are parameterised. For example, the
tile geom specified in terms the location of its centre and its height and width, while rect
geom is parameterised in terms of its top (ymax), bottom (ymin), left (xmin) and right
(right) positions. Internally, geom rect is described as a polygon, and it’s parameters are

February 24, 2009 53

4.6. Geoms Build a plot layer by layer

Name Description

abline Line, specified by slope and intercept
area Area plots
bar Bars, rectangles with bases on y-axis
blank Blank, draws nothing
boxplot Box and whiskers plot
contour Display contours of a 3d surface in 2d
crossbar Hollow bar with middle indicated by horizontal

line
density Display a smooth density estimate
density 2d Contours from a 2d density estimate
errorbar Error bars
histogram Histogram
hline Line, horizontal
interval Base for all interval (range) geoms
jitter Points, jittered to reduce overplotting
line Connect observations, in ordered by x value
linerange An interval represented by a vertical line
path Connect observations, in original order
point Points, as for a scatterplot
pointrange An interval represented by a vertical line, with

a point in the middle
polygon Polygon, a filled path
quantile Add quantile lines from a quantile regression
ribbon Ribbons, y range with continuous x values
rug Marginal rug plots
segment Single line segments
smooth Add a smoothed condition mean.
step Connect observations by stairs
text Textual annotations
tile Tile plot as densely as possible, assuming that

every tile is the same size.
vline Line, vertical

Table 4.2.: Geoms in ggplot2

the locations of the four corners. This is useful when for non-Cartesian coordinate systems,
as you will learn in Chapter 7.

Every geom has a default statistic, and every statistic a default geom. For example, the
bin statistic defaults to using the bar geom to produce a histogram. These defaults are
listed in Table 4.3. Over-riding these defaults will still produce valid plots, but they may
violate graphical conventions. See examples in Section 4.9.1.

54 February 24, 2009

4.6. Geoms Build a plot layer by layer

Name Default stat Aesthetics

abline abline colour, linetype, size
area identity colour, fill, linetype, size, x, y
bar bin colour, fill, linetype, size, weight, x
bin2d bin2d colour, fill, linetype, size, weight, xmax,

xmin, ymax, ymin
blank identity
boxplot boxplot colour, fill, lower, middle, size, upper,

weight, x, ymax, ymin
contour contour colour, linetype, size, weight, x, y
crossbar identity colour, fill, linetype, size, x, y, ymax, ymin
density density colour, fill, linetype, size, weight, x, y
density2d density2d colour, linetype, size, weight, x, y
errorbar identity colour, linetype, size, width, x, ymax, ymin
freqpoly bin colour, linetype, size
hex binhex colour, fill, size, x, y
histogram bin colour, fill, linetype, size, weight, x
hline hline colour, linetype, size
jitter identity colour, fill, shape, size, x, y
line identity colour, linetype, size, x, y
linerange identity colour, linetype, size, x, ymax, ymin
path identity colour, linetype, size, x, y
point identity colour, fill, shape, size, x, y
pointrange identity colour, fill, linetype, shape, size, x, y, ymax,

ymin
polygon identity colour, fill, linetype, size, x, y
quantile quantile colour, linetype, size, weight, x, y
rect identity colour, fill, linetype, size, xmax, xmin,

ymax, ymin
ribbon identity colour, fill, linetype, size, x, ymax, ymin
rug identity colour, linetype, size
segment identity colour, linetype, size, x, xend, y, yend
smooth smooth alpha, colour, fill, linetype, size, weight, x, y
step identity colour, linetype, size, x, y
text identity angle, colour, hjust, label, size, vjust, x, y
tile identity colour, fill, linetype, size, x, y
vline vline colour, linetype, size

Table 4.3.: Default statistics and aesthetics. Emboldened aesthetics are required.

February 24, 2009 55

4.7. Stat Build a plot layer by layer

Name Description

bin Bin data
boxplot Calculate components of box and whisker plot
contour Contours of 3d data
density Density estimation, 1D
density 2d Density estimation, 2D
function Superimpose a function
identity Don’t transform data
qq Calculation for quantile-quantile plot
quantile Continuous quantiles
smooth Add a smoother
spoke Convert angle and radius to xend and yend
step Create stair steps
sum Sum unique values. Useful for overplotting on

scatterplots
summary Summarise y values at every unique x
unique Remove duplicates

Table 4.4.: Stats in ggplot2

4.7. Stat

A statistical transformation, or stat, transforms the data, typically by summarising it in
some manner. For example, a useful stat is the smoother, which calculates the mean of
y, conditional on x, subject to some restriction that ensures smoothness. All currently
available stats are listed in Table 4.4. To make sense in a graphic context a stat must be
location-scale invariant: f(x + a) = f(x) + a and f(b · x) = b · f(x). This ensures that the
transformation stays the same when you change the scales of the plot.

A stat takes a dataset as input and returns a dataset as output, and so a stat can add new
variables to the original dataset. It is possible to map aesthetics to these new variables. For
example, stat_bin, the statistic used to make histograms, produces the following variables:

• count, the number of observations in each bin

• density, the density of observations in each bin (percentage of total / bar width)

• x, the centre of the bin

These generated variables can be used instead of the variables present in the original
data set. For example, the default histogram geom assigns the height of the bars to the
number of observations (count), but if you’d prefer a more traditional histogram, you can
use the density (density). The following example shows a density histogram of carat from
the diamonds dataset.

> ggplot(diamonds, aes(carat)) +

56 February 24, 2009

4.8. Position adjustments Build a plot layer by layer

Adjustment Description

dodge Adjust position by dodging overlaps to the side
fill Stack overlapping objects and standardise have equal height
identity Don’t adjust position
jitter Jitter points to avoid overplotting
stack Stack overlapping objects on top of one another

Table 4.5.: The five position adjustments.

+ geom_histogram(aes(y = ..density..), binwidth = 0.1)

carat

de
ns

ity

0.0

0.5

1.0

1.5

1 2 3 4 5

The names of generated variables must be surrounded with .. when used. This prevents
confusion in case the original data set includes a variable with the same name as a generated
variable, and it makes it clear to any later reader of the code that this variable was generated
by a stat. Each statistic lists the variables that it creates in its documentation.

The syntax to produce this plot with qplot() is very similar:

qplot(carat, ..density.., data = diamonds, geom="histogram", binwidth = 0.1)

4.8. Position adjustments

Position adjustments apply minor tweaks to the position of elements within a layer. Fig-
ure 4.5 lists all of the position adjustments available within ggplot2. Position adjustments
are normally used with discrete data. Continuous data typically doesn’t overlap exactly,
and when it does (because of high data density) minor adjustments, like jittering, are
usually insufficient to fix the problem.

The different types of adjustment are best illustrated with a bar chart. Figure 4.7 shows
stacking, filling and dodging. Stacking puts bars on the same x on top of one another;

February 24, 2009 57

4.9. Pulling it all together Build a plot layer by layer

filling does the same, but normalises height to 1; and dodging places the bars side-by-side.
Dodging is rather similar similar to faceting, and the advantages and disadvantages of each
method are described in Section 7.2.6. For these operations to work, each bar must have
the same width and not overlap with any others. The identity adjustment (i.e. do nothing)
doesn’t make much sense for bars, but is shown in Figure 4.8 along with a line plot of the
same data for reference.

clarity

co
un

t

0

2000

4000

6000

8000

10000

12000

SI2SI1VS1VS2VVS2VVS1I1 IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

SI2 SI1VS1VS2VVS2VVS1I1 IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

co
un

t

0

1000

2000

3000

4000

5000

SI2SI1VS1VS2VVS2VVS1I1 IF

cut

Fair

Good

Very Good

Premium

Ideal

Figure 4.7.: Three position adjustments applied to a bar chart. From left to right, stacking, filling
and dodging.

clarity

co
un

t

0

1000

2000

3000

4000

5000

SI2SI1VS1VS2VVS2VVS1I1 IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

co
un

t

1000

2000

3000

4000

5000

SI2 SI1VS1VS2VVS2VVS1I1 IF

cut

Fair

Good

Very Good

Premium

Ideal

Figure 4.8.: The identity positon adjustment is not useful for bars, left, because each bar obscures
the bars behind. It useful for lines, however because lines do not have the same problem.

4.9. Pulling it all together

Once you have become comfortable with combining layers, you will be able to create
graphics that are both intricate and useful. The following examples demonstrate some of

58 February 24, 2009

4.9. Pulling it all together Build a plot layer by layer

the ways to use the capabilities of layers that have been introduced in this chapter. These
are just to get you started. You are limited only by your imagination!

4.9.1. Combining geoms and stats

By connecting geoms with different statistics, you can easily create new graphics. Figure 4.9
shows three variations on a histogram. They all use the same statistical transformation
underlying a histogram (the bin stat), but use different geoms to display the results: the
area geom, the point geom and the tile geom.

d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)
d + stat_bin(aes(ymax = ..count..), binwidth = 0.1, geom = "area")
d + stat_bin(

aes(size = ..density..), binwidth = 0.1,
geom = "point", position="identity"

)
d + stat_bin(

aes(y = 1, fill = ..count..), binwidth = 0.1,
geom = "tile", position="identity"

)

(The use of xlim in ggplot will be discussed in Section 6.4.2, in the presentation of the
use of scales and axes, but you can already guess that it is used here to set the limits of the
horizontal axis.)

carat

co
un

t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un

t

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ● ● ● ● ● ●0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

density
● 0.0

● 0.5

● 1.0

● 1.5

carat

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

count

0

2000

4000

6000

8000

10000

Figure 4.9.: Three variations on the histogram. Left a frequency polygon; middle a scatterplot with
both size and height mapped to frequency; right an heatmap representing frequency
with colour.

A number of the geoms available in ggplot2 were derived from other geoms in a process
like the one just described, starting with an existing geom and making a few changes in the
default aesthetics or stat. For example, the jitter geom is simply the point geom with the
default position adjustment set to jitter. Once it becomes clear that a particular variant is
going to be used a lot or used in a very different context, it makes sense to create a new
geom. Table 4.6 lists these “aliased” geoms.

February 24, 2009 59

4.9. Pulling it all together Build a plot layer by layer

Aliased geom Base geom Changes in default

area ribbon aes(min = 0, max = y), position = "stack"
density area stat = "density"
freqpoly line stat = "bin"
histogram bar stat = "bin"
jitter point position = "jitter"
quantile line stat = "quantile"
smooth ribbon stat = "smooth"

Table 4.6.: Geoms that were created by modifying the defaults of another geom.

4.9.2. Displaying precomputed statistics

If you have data which has already been summarised, and you just want to use it, you’ll need
to use stat_identity(), which leaves the data unchanged, and then map the appropriate
variables to the appropriate aesthetics.

Examples: bar chart, box plot, smooth.

4.9.3. Varying aesthetics and data

One of the more powerful capabilities of ggplot2 is the ability to plot different data sets
on different layers. This may seem strange: Why would you want to plot different data on
the same plot? In practice, you often have related data sets that should be shown together.
A very common example is supplementing the data with predictions from a model. While
the smooth geom can add a wide range of different smooths to your plot, it is no substitute
for a external quantitative model that summarises your understanding of the data.

Let’s look again at the Oxboys dataset which was used in Section 4.5.3. In Figure 4.3,
we showed linear fits for individual boys (left) and for the whole group (right). Neither
model is particularly appropriate: The group model ignores the within–subject correlation
and the individual model doesn’t use information about the typical growth pattern to more
accurately predict individuals. In practice we might use a mixed model to do better. This
section explores how we can combine the output from this more sophisticated model with
the original data to gain more insight into both the data and the model.

First we’ll load the nlme package, and fit a model with varying intercepts and slopes.
(Exploring the fit of individual models shows that this is a reasonable first pass.) We’ll also
create a plot to use as a template. This regenerates the first plot in Figure 4.1, but we’re
not going to render it until we’ve added data from the model.

> require(nlme, quiet = TRUE, warn.conflicts = FALSE)
> model <- lme(height ~ age, data = Oxboys, random = ~ 1 + age | Subject)
> oplot <- ggplot(Oxboys, aes(age, height, group = Subject)) +
+ geom_line()

Next we’ll compare the predicted trajectories to the actual trajectories. We do this by
building up a grid that contains all combinations of ages and subjects. This is overkill for

60 February 24, 2009

4.9. Pulling it all together Build a plot layer by layer

this simple linear case, where we only need two values of age to draw the predicted straight
line, but we show it here because it is necessary when the model is more complex. Next we
add the predictions from the model back into this dataset, as a variable called height.

> age_grid <- seq(-1, 1, length = 10)
> subjects <- unique(Oxboys$Subject)
>
> preds <- expand.grid(age = age_grid, Subject = subjects)
> preds$height <- predict(model, preds)

Once we have the predictions we can display them along with the original data. Because
we have used the same variable names as the original Oxboys dataset, and we want the
same group aesthetic, we don’t need to specify any aesthetics; we only need to override the
default dataset. We also set two aesthetic parameters to make it a bit easier to compare
the predictions to the actual values.

> oplot + geom_line(data = preds, colour = "#3366FF", size= 0.4)

age

he
ig

ht

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

It seems that the model does a good job of capturing the high-level structure of the
data, but it’s hard to see the details – plots of longitudinal data are often called spaghetti
plots, and with good reason. Another way to compare the model to the data is to look
at residuals, so let’s do that. We add the predictions from the model to the original data
(fitted), calculate residuals (resid), and add the residuals as well. The next plot is a little
more complicated: We update the plot dataset (recall the use of %+% to update the default
data), change the default y aesthetic to resid, and add a smooth line for all observations.

> Oxboys$fitted <- predict(model)
> Oxboys$resid <- with(Oxboys, fitted - height)
>
> oplot %+% Oxboys + aes(y = resid) + geom_smooth(aes(group=1))

February 24, 2009 61

4.9. Pulling it all together Build a plot layer by layer

age

re
si

d

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

The smooth line makes it evident that the residuals are not random, showing a deficiency
in the model. We add a quadratic term, refit the model, recalculate predictions and
residuals, and re-plot. There now less evidence of model inadequacy.

> model2 <- update(model, height ~ age + I(age ^ 2))
> Oxboys$fitted2 <- predict(model2)
> Oxboys$resid2 <- with(Oxboys, fitted2 - height)
>
> oplot %+% Oxboys + aes(y = resid2) + geom_smooth(aes(group=1))

age

re
si

d2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Notice how easily we were able to modify the plot object. We updated the data and
re-plotted twice without needing to reinitialise oplot. Layering in ggplot2 is designed to
work well with the iterative process of fitting and evaluating models.

62 February 24, 2009

Chapter 5

Toolbox

5.1. Introduction

The layered structure of ggplot2 encourages you to design and construct graphics in a
structured manner. You have learned what a layer is and how to add one to your graphic,
but not what geoms and statistics are available to help you build revealing plots. This
chapter lists some of the many geoms and stats included in ggplot2, broken down by
their purpose. This chapter will provide a good overview of the available options, but it
does not describe each geom and stat in detail. For more information about individual
geoms, along with many more examples illustrating their use, see the online and electronic
documentation. You may also want to consult the documentation to learn more about the
datasets used in this chapter.

This chapter is broken up into the following sections, each of which deals with a particular
graphical challenge. This is not an exhaustive or exclusive categorisation, and there are
many other possible ways to break up graphics into different categories. Each geoms can be
used for many different purposes, especially if you are creative. However, this breakdown
should cover many common tasks and help you learn about some of the possibilities.

• Basic plot types, § 5.3, to produce common, “named” graphics like scatterplots and
line charts..

• Displaying distributions, § 5.4, continuous and discrete, 1d and 2d, joint and condi-
tional.

• Dealing with overplotting in scatterplots, § 5.5, a challenge with large datasets.

• Surface plots, § 5.6, display 3d surfaces in 2d.

• Statistical summaries, § 5.9, display informative data summaries.

• Drawing maps, § 5.7.

• Revealing uncertainty and error, § 5.8, with various 1d and 2d intervals.

• Annotating a plot, § 5.10, to label, describe and explain with supplemental information.

• Weighted data, § 5.11.

63

5.2. Overall layering strategy Toolbox

The examples in this section use a mixture of ggplot() and qplot() calls, reflecting
real life use. If you need a reminder on how to translate between the two, see Appendix A.2.
The examples do not go into much depth, but hopefully if you flick through this chapter,
you’ll be able to see a plot that looks like the one you’re trying to create.

5.2. Overall layering strategy

It is useful to think about the purpose of each layer before it is added. In general, there are
three purposes for a layer:

• To display the data. We plot the raw data for many reasons, relying on our skills
at pattern detection to spot gross structure, local structure, and outliers. This layer
appears on virtually every graphic. In the earliest stages of data exploration, it is
often the only layer.

• To display a statistical summary of the data. As we develop and explore models
of the data, it is useful to display model predictions in the context of the data. We
learn from the data summaries and we evaluate the model. Showing the data helps
us improve the model, and showing the model helps reveal subtleties of the data that
we might otherwise miss. Summarises are usually drawn on top of the data.

If you review the examples in the preceding chapter, you’ll see many examples of
plots of data with an added layer displaying a statistical summary.

• To add additional metadata, context and annotations. A metadata layer displays
background context or annotations that help to give meaning to the raw data.
Metadata can be useful in the background and foreground.

A map is often used as a background layer with spatial data. Background metadata
should be rendered so that it doesn’t interfere with your perception of the data,
so is usually displayed underneath the data and formatted so that it is minimally
perceptible. That is, if you concentrate on it, you can see it with ease, but it doesn’t
jump out at you when you are casually browsing the plot.

Other metadata is used to highlight important features of the data. If you have added
explanatory labels to a couple of inflection points or outliers, then you want to render
them so that they pop out at the viewer. In that case, you want this to be the very
last layer drawn.

5.3. Basic plot types

These geoms are the fundamental building blocks of ggplot2. They are useful in their own
right, but also to construct more complex geoms. are the basic geoms used to build up
many of the other geoms. Most of these geoms are associated with a named plot: when
that geom is used by itself in a plot, that plot has a special name.

Each of these geoms is two dimensional and requires both x and y aesthetics. All
understand colour and size aesthetics, and the filled geoms (bar, tile and polygon)
also understand fill. The point geom uses shape and line and path geoms understand

64 February 24, 2009

5.3. Basic plot types Toolbox

linetype. The geoms are used for displaying data, summaries computed elsewhere, and
metadata.

• geom_area() draws an area plot, which is a line plot filled to the y-axis (filled lines).
Multiple groups will be stacked on top of each other.

• geom_bar(stat = "identity")() makes a barchart. We need stat="identity"
because the default stat automatically counts values (so is essentially a 1d geom, see
§ 5.4). The identity stat leaves the data unchanged.

By default, multiple bars in the same location will be stacked on top of one another.

• geom_line() makes a line plot. The group aesthetic determine which observations
are connected, see Section 4.5.3 for more details. geom_path is similar to a geom_line,
but lines are connected in the order they appear in the data, not from left to right.

• geom_point() produces a scatterplot.

• geom_polygon() draws polygons, which are filled paths. Each vertex of the polygon
requires a separate row in the data. It is often useful to merge a data frame of polygon
coordinates with the data just prior to plotting. Section 5.7 illustrates this concept in
more detail for map data.

• geom_text() adds labels at the specified points. This is the only geom in this group
that requires another aesthetic: label. It also has optional aesthetics hjust and
vjust that control the horizontal and vertical position of the text; and angle which
controls the rotation of the text. See Appendex B for more details.

• geom_tile() makes a image plot or level plot. The tiles form a regular tessellation
of the plane and are typically have the fill aesthetic mapped to another variable.

Each of these geoms is illustrated in Figure 5.1, created with the code below.

df <- data.frame(x = c(3, 1, 5), y = c(2, 4, 6), label = c("a","b","c"))
p <- ggplot(df, aes(x, y, label = label)) + xlab(NULL) + ylab(NULL)
p + geom_point() + opts(title = "geom_point")
p + geom_bar(stat="identity") +

opts(title = "geom_bar(stat=\"identity\")")
p + geom_line() + opts(title = "geom_line")
p + geom_area() + opts(title = "geom_area")
p + geom_path() + opts(title = "geom_path")
p + geom_text() + opts(title = "geom_text")
p + geom_tile() + opts(title = "geom_tile")
p + geom_polygon() + opts(title = "geom_polygon")

February 24, 2009 65

5.4. Displaying distributions Toolbox

geom_point

●

●

●

2

3

4

5

6

1 2 3 4 5

geom_bar(stat="identity")

0

1

2

3

4

5

6

1 2 3 4 5

geom_line

2

3

4

5

6

1 2 3 4 5

geom_area

0

1

2

3

4

5

6

1 2 3 4 5

geom_path

2

3

4

5

6

1 2 3 4 5

geom_text

a

b

c

2

3

4

5

6

1 2 3 4 5

geom_tile

1

2

3

4

5

6

7

0 1 2 3 4 5 6

geom_polygon

2

3

4

5

6

1 2 3 4 5

Figure 5.1.: The basic geoms applied to the same data. Many give rise to to named plots (from
top-left to bottom-right): scatterplot, barchart, line chart, area chart, path plot, labelled
scatterplot, image/level plot and polygon plot. Observe the different axis ranges for the
bar, area and tile plots: these geoms take up space outside the range of the data, and
so push the axes out.

5.4. Displaying distributions

There are a number of geoms can be used to display distributions, depending on the
dimensionality of the distribution, whether it is continuous or discrete, and whether you
are interested in conditional or joint distribution.

For 1d continuous distributions the most important geom is the histogram. Figure 5.2 uses
the histogram to display the distribution of diamond depth. It is important to experiment
with bin placement to find a revealing view. You can change the binwidth, or specify the
exact location of the breaks.

If you want to compare the distribution between groups, you have a few options: create
small multiples of the histogram, facets = . ~ var; use a frequency polygon, geom =
"freqpoly"; or create a conditional density plot, position = "fill". These options are
illustrated in Figure 5.3, created with the code below.

depth_dist <- ggplot(diamonds, aes(depth)) + xlim(58, 68)
depth_dist +
geom_histogram(aes(y = ..density..), binwidth = 0.1) +
facet_grid(cut ~ .)

depth_dist +
geom_histogram(aes(fill = cut), binwidth = 0.1, position = "fill")

depth_dist +
geom_freqpoly(aes(y = ..density.., colour = cut), binwidth = 0.1)

Both the histogram and frequency polygon geom use stat_bin. This statistic produces two

66 February 24, 2009

5.4. Displaying distributions Toolbox

depth

co
un

t

0

5000

10000

15000

20000

45 50 55 60 65 70 75
depth

co
un

t

0

500

1000

1500

2000

56 58 60 62 64 66 68 70

Figure 5.2.: Left, never rely on the default parameters to get a revealing view of the distribution.
Right, zooming in on the x axis, xlim = c(55, 70), and selecting a smaller bin width,
binwidth = 0.1, reveals far more detail. We can see that the distribution is slightly
skew-right. Don’t forget to include information about important parameters (like bin
width) in the caption.

output variables count and density. The count is the default as it is most interpretable.
The density is basically the count divided by the total count, and is useful when you want
to compare the shape of the distributions, not the overall size. You will often prefer this
when comparing the distribution of subsets that different sizes.

Many of the distribution related geoms come in geom/stat pairs. Most of these geoms
are aliases: a basic geom is combined with a stat to produce the desired plot. The boxplot
may appear to be an exception to this rule, but behind the scenes geom_boxplot uses a
combination of the basic bars, lines and points.

• geom_boxplot = stat_boxplot + geom_boxplot: box and whisker plot, for a contin-
uous variable conditioned by a categorical variable. This is a useful display when the
categorical variable has many distinct values. When there few values, the techniques
described above give a better view of the shape of the distribution. This technique
can also be used for continuous variables, if they are first finely binned. Figure 5.4
shows boxplots conditioned on both categorical and continuous variables.

qplot(cut, depth, data=diamonds, geom="boxplot")
qplot(carat, depth, data=diamonds, geom="boxplot",

group = round_any(carat, 0.1, floor), xlim = c(0, 3))

• geom_jitter = position_jitter + geom_point: a crude way of looking at discrete
distributions by adding random noise to the the discrete values so that they don’t
overplot. An example is shown in Figure 5.5 created with the code below.

February 24, 2009 67

5.4. Displaying distributions Toolbox

depth

de
ns

ity

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

F
air

G
oodV

ery G
oodPrem

ium
Ideal

58 60 62 64 66 68

depth

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

58 60 62 64 66 68

cut

Fair

Good

Very Good

Premium

Ideal

depth

de
ns

ity

0.0

0.2

0.4

0.6

0.8

58 60 62 64 66 68

..density..

Fair

Good

Very Good

Premium

Ideal

Figure 5.3.: Three views of the distribution of depth and cut. From top to bottom: facetted
histogram, a conditional density plot, and frequency polygons. All show an interesting
pattern: as quality increases, the distribution shifts to the left and becomes more
symmetric.

68 February 24, 2009

5.5. Dealing with overplotting Toolbox

cut

de
pt

h

●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●●
●●●●●●

●

●

●
●●
●

●●●
●●●
●●

●

●●●●●●●
●●●
●
●
●

●
●
●

●●●●
●●
●●
●

●
●●●●
●

●
●
●
●●●●

●

●●

●

●●●
●
●●●
●
●●
●●
●

●

●
●
●●
●
●

●●●
●
●●●●●
●
●
●
●●

●

●●
●

●●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●●●●●●

●●

●●
●
●●

●
●●
●

●●●●●

●

●

●

●
●

●

●
●●●

●

●
●

●●

●

●

●●

●
●
●

●●●●●

●

●●●●●●●
●●

●
●
●

●● ●●●●●
●●●

●

●

●

●
●●●●
●
●●

●

●●
●

●●

●

●●●●

●
●●
●
●

●

●●
●
●●
●●

●

●
●●●●
●●
●

●

●●

●●●

●
●

●

●●●●
●
●
●●●
●●●
●●
●●

●

●

●

●●
●●●●●

●●●●●
●●
●
●
●●●
●●

●

●

●

●
●
●

●

●

●

●

●

●●●●●

●

●●●
●

●●

●

●

●●●

●

●●

●

●
●
●

●

●

●

●●●●●
●

●
●

●

●●●●●●

●
●●
●●

●

●●●

●

●

●●●●●
●
●
●●

●

●●
●●

●

●
●
●
●

●

●●

●

●●●

●

●

●

●

●
●●

●

●
●●●

●

●
●●●
●●
●●●
●●●●●
●●●●
●
●
●●●

●

●●

●
●●●●●
●

●

●

●●

●
●
●●●●●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●●●●
●●●
●
●●

●
●
●●

●
●
●

●
●●
●●

●
●
●
●●●●
●
●●●

●

●
●●
●
●●●
●

●●
●●●
●●
●●

●

●●

●
●
●
●
●●●●
●
●

●

●
●
●●●
●

●

●●

●●●
●
●●●

●
●
●

●●
●●●●

●

●

●

●●

●
●

●●

●

●●
●

●●●●●

●●
●
●●●●●●

●●●
●
●●●●
●●●

●
●

●

●

●
●

●●

●

●

●●

●●●●●

●

●●●●●●
●

●

●
●
●●●●
●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●●●
●●●●●

45

50

55

60

65

70

75

Ideal Premium Good Very Good Fair
carat

de
pt

h

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●●

●

●

●●

●●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●●●●

●

●

●

●

●
●
●

●

●

●●●●●
●

●

●●●
●
●●
●●●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●●●
●
● ●

●

●

●●
●●

●
●

●●●●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●
●●●

●
●
●●●●●
●
●
●

●●●●●

●
●

●

●●

●

●

●●●●●

●

●

●

●●

●●

●

●●●●●●●●
●

●
●

●●

●

●●●
●
●●

●●

●

●●●

●

●
●●

●●
●

●
●●
●

●

●

●●

●
●●
●

●

●
●●
●
●
●
●

●

●

●
●●●●
●●

●

●●
●

●

●

●

●

●

●

●●
●
●
●

●●●●
●
●
●
●

●

●●

●

●●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●●●

●

●●●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●
●●

●

●●●
●

●

●

●

●

●●

●

●

●

●●●●●

●●

●

●
●●●

●

●

●

●

●●
●

●

●●●

●

●●●●●

●
●●●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●
●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●●●●
●

●

●

●

●

●

●

●●●●
●
●●

●

●
●

●

●

●
●
●
●

●

●

●●
●

●●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●
●
●
●

●
●

●

●
●●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●●
●
●●
●
●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●● ●●●

●●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●●
●
●●
●

●●
●
●
●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●●●●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●
●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●●

●

●●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●
●
●●●●

●

●
●
●

●●

●●
●
●
●●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●
●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●●

●

●
●
●
●
●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●
●●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●●
●

●

●●●
●●
●
●

●

●●
●
●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●●
●

●●

●
●●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●●
●

●●

● ●

●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●●●●
●
●

●●●

●

●

●

●
●

●

●

●
●●●

●

●●

●
●

●●

●
●

●●●

●

●

●●

●

●
●●

●
●

●

●

●
●
●

●●
●

●

●
●●●
●
●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

45

50

55

60

65

70

75

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.4.: The boxplot geom can be use to see the distribution of a continuous variable conditional
on a discrete varable like cut, left, or continuous variable like carat, right. For continuous
variables, the group aesthetic must be set to get multiple boxplots. Here group =
round any(carat, 0.1, floor) is used to get a boxplot for each 0.1 carat bin.

qplot(class, cty, data=mpg, geom="jitter")
qplot(class, drv, data=mpg, geom="jitter")

• geom_density = stat_density + geom_area: a smoothed version of the frequency
polygon based on kernel smoothers. Also described in Section 2.5.3. Use a density plot
when you know that the underlying density is smooth, continuous and unbounded.
You can use the adjust parameter to make the density more or less smooth. An
example is shown in Figure 5.6 created with the code below.

qplot(depth, data=diamonds, geom="density", xlim = c(54, 70))
qplot(depth, data=diamonds, geom="density", xlim = c(54, 70),

fill = cut) + scale_fill_hue(alpha = 0.2)

Visualising a joint 2d continuous distribution is described in the next section.

5.5. Dealing with overplotting

The scatterplot is a very important tool for assessing the relationship between a two
continuous variables. However, when the data is large, often points will be plotted on top
of each other, obscuring the true relationship. In extreme cases, you will only be able to see
the extent of the data, and any conclusions drawn from the graphic will be suspect. This
problem is called overplotting and there are a number of ways to deal with it:

February 24, 2009 69

5.5. Dealing with overplotting Toolbox

class

ct
y

●

●
●

● ●

●

● ●
●

●

● ●●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●
●

●●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

● ●

●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
● ●

● ●
●

●

●
●

●

●

●

●

●
●

●●

● ●

●

●●

● ●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●●● ●
●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●
●

●

●

●
●

●●

● ●
●

●●

●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●
● ●

●

●

●

●

10

15

20

25

30

35

compact midsize suv 2seater minivan pickup subcompact

class

dr
v

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

f

4

r

compact midsize suv 2seater minivan pickup subcompact

Figure 5.5.: The jitter geom can be used to give a crude visualisation of 2d distributions with a
discrete component. Generally this works better for smaller datasets. Car class vs
continuous variable city mpg (left) and discrete variable drive train (right).

• Small amounts of overplotting can sometimes be alleviated by making the points
smaller, or using hollow glyphs, as shown in Figure 5.7. The data is 2000 points
sampled from two independent normal distributions, and the code to produce the
graphic is shown below.

df <- data.frame(x = rnorm(2000), y = rnorm(2000))
norm <- ggplot(df, aes(x, y))
norm + geom_point()
norm + geom_point(shape = 1)
norm + geom_point(shape = ".") # Pixel sized

• For larger datasets with more overplotting, you can use alpha blending (transparency)
to make the points transparent. If you specify alpha as a ratio, the denominator gives
the number of points that must be overplotted to give a solid colour. In R, the lowest

70 February 24, 2009

5.5. Dealing with overplotting Toolbox

depth

de
ns

ity

0.0

0.1

0.2

0.3

55 60 65 70
depth

de
ns

ity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

55 60 65 70

cut

Fair

Good

Very Good

Premium

Ideal

Figure 5.6.: The density plot is a smoothed version of the histogram. It has desirable theoretical
properties, but is more difficult to relate back to the data. A density plot of depth
(left), coloured by cut (right).

Figure 5.7.: Modifying the glyph used can help with mild to moderate overplotting. From left to
right: the default shape, shape = 1 (hollow points), and shape= "." (pixel points).

February 24, 2009 71

5.5. Dealing with overplotting Toolbox

amount of transparency you can use is 1/256, so it will not be effective for heavily
overplotting. Figure 5.8 demonstrates some of these options with the following code.

norm + geom_point(colour = alpha("black", 1/2))
norm + geom_point(colour = alpha("black", 1/5))
norm + geom_point(colour = alpha("black", 1/10))

Figure 5.8.: Using alpha blending to alleviate overplotting in sample data from a bivariate normal.
Alpha values from left to right: 1/2, 1/5, 1/10.

• If there is some discreteness in the data, you can randomly jitter the points to
alleviate some overlaps. This is particularly useful in conjunction with transparency.
By default, the amount of jitter added is 40% of the resolution of the data, which
leaves a small gap between adjacent regions. In Figure 5.9, table is recorded to the
nearest integers, so we set a jitter width of half of that. The complete code is shown
below.

td <- ggplot(diamonds, aes(table, depth)) + xlim(50, 70) + ylim(50, 70)
td + geom_point()
td + geom_jitter()
jit <- position_jitter(width = 0.5)
td + geom_jitter(position = jit)
td + geom_jitter(position = jit, colour = alpha("black", 1/10))
td + geom_jitter(position = jit, colour = alpha("black", 1/50))
td + geom_jitter(position = jit, colour = alpha("black", 1/200))

Alternatively, we can think overplotting as a 2d density estimation problem, which gives
rise to two more approaches:

• Bin the points and count the number in each bin, then visualise that count in some
way (the 2d generalisation of the histogram). Breaking the plot into many small
squares can produce distracting visual artefacts. Carr et al. (1987) suggests using
hexagons instead, and this is implemented with geom_hexagon, using the capabilities

72 February 24, 2009

5.5. Dealing with overplotting Toolbox

Figure 5.9.: A plot of table vs depth from the diamonds data, showing the use of jitter and alpha
blending to alleviate overplotting in discrete data. From left to right: geom point, geom
jitter with default jitter, geom jitter with horizontal jitter of 0.5 (half the gap between
bands) alpha of 1/10, alpha of 1/50, alpha of 1/200.

of the hexbin package (Carr et al., 2008). Figure 5.10 compares square and hexagonal
bins, using parameters bins and binwidth to control the number and size of the bins.
The complete code is shown below.

d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3) +
opts(legend.position = "none")

d + stat_bin2d()
d + stat_bin2d(bins = 10)
d + stat_bin2d(binwidth=c(0.02, 200))
d + stat_binhex()
d + stat_binhex(bins = 10)
d + stat_binhex(binwidth=c(0.02, 200))

• Estimate the 2d density with stat_density2d, and overlay contours from this distri-
bution on the scatterplot, or display the density by itself as coloured tiles, or points
with size proportional to density. Figure 5.11 shows a few of these options with the
code below.

d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3) +

February 24, 2009 73

5.6. Surface plots Toolbox

Figure 5.10.: Binning with, top row, square bins, and bottom row, hexagonal bins. Left column
uses default parameters, middle column bins = 10, and right column binwidth =
c(0.02, 200). Legends have been omitted to save space.

opts(legend.position = "none")
d + geom_point() + geom_density2d()
d +

stat_density2d(geom = "point", aes(size = ..density..), contour = F) +
scale_area(to = c(0.2, 1.5))

d + stat_density2d(geom="tile", aes(fill = ..density..), contour = F)
last_plot() + scale_fill_gradient(limits=c(1e-5,8e-4))

• If you are interested in the conditional distribution of y given x, then the techniques
of Section 2.5.3 will also be useful.

Another approach to dealing with overplotting is to add data summaries to help guide
the eye to the true shape of the pattern within the data. For example, you could add a
smooth line showing the centre of the data with geom_smooth. Sections 5.9 has more ideas.

5.6. Surface plots

ggplot2 currently does not support true 3d surfaces. However, it does support the common
tools for representing 3d surfaces in 2d: contours, coloured tiles, and bubble plots. These

74 February 24, 2009

5.7. Drawing maps Toolbox

Figure 5.11.: Using density estimation to model and visualise point densities. Top, image displays
of the density; bottom, point and contour based displays.

were used to illustrated the 2d density surfaces in the previous section. You may also want
to look at RGL, http://rgl.neoscientists.org/about.shtml, for interactive 3d plots,
including true 3d surfaces.

5.7. Drawing maps

ggplot2 provides some tools to make it easy to combine maps from the maps package with
other ggplot2 graphics. Table 5.1 lists the available maps, which are unfortunately rather
US centric. There are two basic reasons you might want to use map data: to add reference
outlines to a plot of spatial data, or to construct a choropleth map by filling regions with
colour.

Adding map border is performed by the borders() function. The first two arguments
select the map and region within the map to display. The remaining arguments control the
appearance of the borders: their colour and size. If you’d prefer filled polygons instead
of just borders, you can set the fill colour. The following code uses borders() to display
the spatial data shown in Figure 5.12.

February 24, 2009 75

http://rgl.neoscientists.org/about.shtml

5.7. Drawing maps Toolbox

Country Map name

France france
Italy italy
New Zealand nz
USA at county level county
USA at state level state
USA borders usa
Entire world world

Table 5.1.: Maps available in the maps package

data(us.cities)
big_cities <- subset(us.cities, pop > 500000)
qplot(long, lat, data = big_cities) + borders("state", size = 0.5)

tx_cities <- subset(us.cities, country.etc == "TX")
ggplot(tx_cities, aes(long, lat)) +
borders("county", "texas", colour = "grey70") +
geom_point(colour = alpha("black", 0.5))

WARNING: data set ’us.cities’ not found
ERROR: object ”us.cities” not found
ERROR: object ”bigcities”notfound
ERROR: object ”us.cities” not found
ERROR: object ”txcities”notfound

Figure 5.12.: Example using the borders function. Left, all cities with population (as at January
2006) of greater than half a million, and right, cities in Texas.

Choropleth maps are a little trickier and a lot less automated because it is be challenging
to match the identifiers in your data to the identifiers in the map data. The following
example shows how to use map_data() to convert a map into a data frame, which can
then be merge()d with your data to produce a choropleth map. The results are shown in
Figure ??. The details for your data will probably be different, but the key is to have a
column in your data and a column in the map data that can be match.

library(maps)
states <- map_data("state")
arrests <- USArrests
names(arrests) <- tolower(names(arrests))
arrests$region <- tolower(rownames(USArrests))

choro <- merge(states, arrests, by = "region")
Reorder the rows because order matters when drawing polygons

76 February 24, 2009

5.7. Drawing maps Toolbox

and merge destroys the original ordering
choro <- choro[order(choro$order),]
qplot(long, lat, data = choro, group = group, fill = assault,

geom="polygon")
qplot(long, lat, data = choro, group = group, fill = assault / murder,

geom="polygon")

long

la
t

30

35

40

45

−120 −110 −100 −90 −80 −70

assault

50

100

150

200

250

300

long

la
t

30

35

40

45

−120 −110 −100 −90 −80 −70

assault/murder

20

30

40

50

Figure 5.13.: Two choropleth maps showing number of assaults (left) and the ratio of assaults to
murders (right).

The map_data() function is also useful if you’d like to process the map data in some way.
In the following example we compute the (approximate) centre of each county in Iowa and
then use those centres to label the map.

> ia <- map_data("county", "iowa")
> mid_range <- function(x) mean(range(x, na.rm = TRUE))
> centres <- ddply(ia, .(subregion), colwise(mid_range, .(lat, long)))
> ggplot(ia, aes(long, lat)) +
+ geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
+ geom_text(aes(label = subregion), data = centres, size = 2, angle = 45)

February 24, 2009 77

5.8. Revealing uncertainty Toolbox

X variable Range Range plus centre

Continuous geom_ribbon geom_smooth(stat="identity")
Discrete geom_errorbar

geom_linerange
geom_crossbar
geom_pointrange

Table 5.2.: Geoms that display intervals, useful for visualising uncertainty.

long

la
t

ad
air

ad
am

s

all
am

ak
ee

ap
pa

no
os

e

au
du

bo
n

be
nt

on

bla
ck

 h
aw

k

bo
on

e

br
em

er

bu
ch

an
anbu

en
a

vis
ta

bu
tle

r

ca
lho

un

ca
rro

ll

ca
ss

ce
da

r

ce
rro

 g
or

do

ch
er

ok
ee

ch
ick

as
aw

cla
rk

e

cla
y

cla
yto

n

cli
nt

oncr
aw

fo
rd

da
lla

s

da
vis

de
ca

tu
r

de
law

ar
e

de
s m

oin
es

dic
kin

so
n

du
bu

qu
e

em
m

et

fa
ye

tte
flo

yd

fra
nk

lin

fre
m

on
t

gr
ee

ne

gr
un

dy

gu
th

rie

ha
m

ilto
n

ha
nc

oc
k

ha
rd

in

ha
rri

so
n

he
nr

y

ho
war

d

hu
m

bo
ldt

ida

iow
a

jac
ks

on

jas
pe

r

jef
fe

rs
on

joh
ns

on

jon
es

ke
ok

uk

ko
ss

ut
h

lee

lin
n

lou
isa

luc
as

lyo
n

m
ad

iso
n

m
ah

as
ka

m
ar

ion

m
ar

sh
all

m
ills

m
itc

he
ll

m
on

on
a

m
on

ro
e

m
on

tg
om

er
y

m
us

ca
tin

e

ob
rie

n

os
ce

ola

pa
ge

pa
lo

alt
o

ply
m

ou
th

po
ca

ho
nt

as

po
lk

po
tta

wat
ta

m
ie

po
wes

hie
k

rin
gg

old

sa
c

sc
ot

t
sh

elb
y

sio
ux

sto
ry ta

m
a

ta
ylo

r

un
ion

va
n

bu
re

n
wap

ell
o

war
re

n

was
hin

gt
on

way
ne

web
ste

r

winn
eb

ag
o

winn
es

hie
k

woo
db

ur
y

wor
th

wrig
ht

40.5

41.0

41.5

42.0

42.5

43.0

43.5

−96 −95 −94 −93 −92 −91

5.8. Revealing uncertainty

If you have information about the uncertainty present in your data, whether it be from a
model or from distributional assumptions, it is often important to display it. There are
four basic families of geoms that can be used for this job, depending on whether the x
values are discrete or continuous, and whether or not you want to display the middle of the
interval, or just the extent. These geoms are listed in Table 5.2. These geoms assume that
you are interested in the distribution of y conditional on x and use the aesthetics ymin and
ymax to determine the range of the y values. If you want the opposite, see coord_flip,
Section 7.3.3.

Because there are so many different ways to calculate standard errors, the calculation
is up to you. For very simple cases, ggplot2 provide some tools in the form of summary
functions described in Section 5.9, otherwise you will have to do it yourself. The effects
package (Fox, 2008) is particularly useful for extracting these values from linear models.
The following example fits a two-way model with interaction, and shows how to extract and
visualise marginal and conditional effects. Figure 5.15 focuses on the categorical variable
colour, and Figure 5.16 focuses on the continuous variable carat.

> d <- subset(diamonds, carat < 2.5 & rbinom(nrow(diamonds), 1, 0.2) == 1)
> d$lcarat <- log10(d$carat)

78 February 24, 2009

5.8. Revealing uncertainty Toolbox

> d$lprice <- log10(d$price)
>
> # Remove overall linear trend
> detrend <- lm(lprice ~ lcarat, data = d)
> d$lprice2 <- resid(detrend)
>
> mod <- lm(lprice2 ~ lcarat * color, data = d)
>
> library(effects)
Loading required package: nnet

> effectdf <- function(...) {
+ suppressWarnings(as.data.frame(effect(...)))
+ }
> color <- effectdf("color", mod)
> both1 <- effectdf("lcarat:color", mod)
>
> carat <- effectdf("lcarat", mod, default.levels = 50)
> both2 <- effectdf("lcarat:color", mod, default.levels = 3)

Figure 5.14.: Data transformed to remove most obvious effects. Left, both x and y axes are log10
transformed to remove non-linearity. Right, the major linear trend is removed.

Note, when captioning such figures, you need to carefully describe the nature of the
confidence intervals, and whether or not it is meaningful to look at the overlap. That
is, are the standard errors for the means or for the differences between means? The
packages multcomp and multcompView are useful calculating and displaying these errors
while correctly adjusting for multiple comparisons.

February 24, 2009 79

5.8. Revealing uncertainty Toolbox

color

●

●
●

●

●

●

●

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

D E F G H I J
color

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

D E F G H I J

lcarat

−0.6

−0.4

−0.2

0

0.2

Figure 5.15.: Displaying uncertaintly in model estimates for colour. Left, marginal effect of colour,
and right, conditional effects of colour for different levels of carat. Error bars show
95% pointwise confidence intervals.

lcarat

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.6 −0.4 −0.2 0.0 0.2
lcarat

D

EFG

H
I

J

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.6 −0.4 −0.2 0.0 0.2 0.4

Figure 5.16.: Displaying uncertaintly in model estimates for carat. Left, marginal effect of carat,
and right, conditional effects of carat for different levels of colour. Bands show 95%
point-wise confidence intervals

80 February 24, 2009

5.9. Statistical summaries Toolbox

5.9. Statistical summaries

It’s often useful to be able to summarise the y values for each unique x value. In ggplot2,
this role is played by stat_summary(), which provides a flexible way of summarising the
conditional distribution of y with the aesthetics ymin, y and ymax. Figure 5.17 shows some
of the variety of summaries that can be achieved with this tool.

When using stat_summary() you can either supply these the summary functions indi-
vidually or altogether. These alternatives are described below.

year

ra
tin

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000
year

ra
tin

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000
year

ra
tin

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000
year

ra
tin

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

round(rating)

lo
g1

0(
vo

te
s)

●

●
● ● ●

●
●

●

●

●1

2

3

4

5

2 4 6 8 10
round(rating)

lo
g1

0(
vo

te
s)

1

2

3

4

5

2 4 6 8 10
round(rating)

lo
g1

0(
vo

te
s)

●

●

● ● ●
●

●

●

●
●

1

2

3

4

5

2 4 6 8 10
round(rating)

lo
g1

0(
vo

te
s)

1

2

3

4

5

2 4 6 8 10

Figure 5.17.: Examples of stat_summary in use. Top, continuous x with, from left to right, me-
dian and line, median_hilow() and smooth, mean and line, and mean_cl_boot()
and smooth. Bottom, discrete x, with, from left to right, mean() and
point, mean_cl_normal() and error bar, median_hilow() and point range, and
median_hilow() and crossbar. Note that ggplot2 displays the full range of the
data, not just the range of the summary statistics.

5.9.1. Individual summary functions

The arguments fun.y, fun.ymin and fun.ymax accept simple numeric summary functions.
You can use any summary function that takes a vector of numbers and returns a single
numeric value: mean(), median(), min(), max().

> midm <- function(x) mean(x, trim = 0.5)
> m2 +
+ stat_summary(aes(colour = "trimmed"), fun.y = midm, geom = "point") +
+ stat_summary(aes(colour = "raw"), fun.y = mean, geom = "point") +
+ scale_colour_hue("Mean")

February 24, 2009 81

5.9. Statistical summaries Toolbox

round(rating)

lo
g1

0(
vo

te
s)

●

●

● ● ●
●

●

●

●
●

●

●
● ● ●

●
●

●

●

●1

2

3

4

5

2 4 6 8 10

Mean

●● trimmed

●● raw

5.9.2. Single summary function

fun.data can be used with more complex summary functions such as one of the summary
functions from the Hmisc package (?) described in Table 5.3. You can also write your own
summary function. This summary function should return a named vector as output, as
shown in the following example.

> iqr <- function(x, ...) {
+ qs <- quantile(as.numeric(x), c(0.25, 0.75), na.rm = T)
+ names(qs) <- c("ymin", "ymax")
+ qs
+ }
> m + stat_summary(fun.data = "iqr", geom="ribbon")

year

ra
tin

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

82 February 24, 2009

5.10. Annotating a plot Toolbox

Function Hmisc original Middle Range

mean_cl_normal() smean.cl.boot() Mean Standard error from normal ap-
proximation

mean_cl_boot() smean.cl.boot() Mean Standard error from bootstrap
mean_sdl() smean.sdl() Mean Multiple of standard deviation
median_hilow() smedian.hilow() Median Outer quantiles with equal tail

areas

Table 5.3.: Summary functions from the Hmisc package that have special wrappers to make them
easy to use with stat_summary().

5.10. Annotating a plot

When annotating your plot with additional labels, the important thing to remember is that
these annotations are just extra data. There are two basic ways to add annotations: one at
a time, or many at once.

Adding one at a time works best for small numbers of annotations with varying aesthetics.
You just set all the values to the give the desired properties. If you have multiple annotations
with similar properties, it may make sense to put them all in a data frame and add them
at once. The example below demonstrates both approaches by adding information about
presidents to economic data.

> (unemp <- qplot(date, unemploy, data=economics, geom="line"))

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

>
> load("~/documents/data/08-presidents/presidents.rdata")
> presidents <- presidents[-(1:3),]
>
> yrng <- range(economics$unemploy)
> xrng <- range(economics$date)
> unemp + geom_vline(aes(intercept = as.numeric(start)), data = presidents)

February 24, 2009 83

5.10. Annotating a plot Toolbox

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

> unemp + geom_rect(aes(xmin = start, xmax = end, y = NULL, x = NULL,
+ fill = party), ymin = yrng[1], ymax = yrng[2], data=presidents) +
+ scale_fill_manual(values = alpha(c("blue", "red"), 0.2))

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

party

Republican

Democratic

> last_plot() + geom_text(aes(x = start, y = yrng[1], label = name),
+ data = presidents, size = 3, hjust = 0, vjust = 0)

date

un
em

pl
oy

Nixon Ford Carter Reagan Bush Clinton Bush

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

party

Republican

Democratic

> caption <- paste(strwrap("Unemployment rates in the US have varied a
+ lot over the years", 40), collapse="\n")
> unemp + geom_text(aes(x = xrng[2], y = yrng[2], label = caption),
+ data=data.frame(), hjust = 1, vjust = 1, size = 4)

84 February 24, 2009

5.10. Annotating a plot Toolbox

date

un
em

pl
oy

Unemployment rates in the US have

varied a lot over the years

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

>
> highest <- subset(economics, unemploy == max(unemploy))
> unemp + geom_point(colour = alpha("red", 0.5), data = highest, size = 3)

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

• geom_text for adding text descriptions or labelling points. Most plots will not benefit
from adding text to every single observation on the plot. However, pulling out just a
few observations (using subset) can be very useful. Typically you will want to label
outliers or other important points.

• geom_vline, geom_hline: add vertical or horizontal lines to a plot

• geom_abline: add lines with arbitrary slope and intercept to a plot

• geom_rect for highlighting interesting rectangular regions of the plot. geom_rect
has aesthetics xmin, xmax, ymin and ymax.

• geom_line, geom_path and geom_segment for adding lines. All these geoms have an
arrow parameter, which allows you to place an arrow head on the line. You create
arrowheads with the arrow() function, which has arguments angle, length, ends
and type.

February 24, 2009 85

5.11. Weighted data Toolbox

5.11. Weighted data

When you have aggregated data where each row in the dataset represents multiple ob-
servations, you need some way to take into account the weighting variable. We will use
some data collected on Midwest states in the 2000 US census. The data consists mainly of
percentages (eg. percent white, percent below poverty line, percentage with college degree)
and some information for each county (area, total population, population density).

There are few different things we might want to weight by:

• nothing, to look at numbers of counties

• total population, to work with absolute numbers

• area, to investigate geographic effects

The choice of a weighting variable profoundly effects what we are looking at in the plot
and the conclusions that we will draw. There are two aesthetic attributes that can be used
to adjust for weights. Firstly, for simple geoms like lines and points, you can make the size
of the grob proportional to the number of points, using the size aesthetic, as with the
following code, whose results are shown in Figure 5.18.

qplot(percwhite, percbelowpoverty, data = midwest)
qplot(percwhite, percbelowpoverty, data = midwest, size = poptotal / 1e6) +
scale_area("Population\n(millions)", breaks = c(0.5, 1, 2, 4))

qplot(percwhite, percbelowpoverty, data = midwest, size = area) +
scale_area()

percwhite

pe
rc

be
lo

w
po

ve
rt

y

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
10

20

30

40

20 40 60 80
percwhite

pe
rc

be
lo

w
po

ve
rt

y

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●
●

●●
●
●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
10

20

30

40

20 40 60 80

Population
(millions)

● 0.5

● 1.0

● 2.0

● 4.0

percwhite

pe
rc

be
lo

w
po

ve
rt

y

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●● ●
●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●

●●
●

●

●

●

●●

●

●

●
●

●●

●●●●

● ●

●
●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●
● ●●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●●
●●

●

●

●●
●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●
10

20

30

40

20 40 60 80

area
● 0.0100

● 0.0225

● 0.0400

● 0.0625

● 0.0900

Figure 5.18.: Using size to display weights. No weighting (left), weighting by population (centre)
and by area (right).

For more complicated grobs which involve some statistical transformation, we specify
weights with the weight aesthetic. These weights will be passed on to the statistical
summary function. Weights are supported for every case where it makes sense: smoothers,
quantile regressions, box plots, histograms, and density plots. You can’t see this weighting
variable directly, and it doesn’t produce a legend, but it will change the results of the
statistical summary. Figure 5.19 shows how weighting by population density affects the
relationship between percent white and percent below the poverty line.

86 February 24, 2009

5.11. Weighted data Toolbox

lm_smooth <- geom_smooth(method = lm, size = 1)
qplot(percwhite, percbelowpoverty, data = midwest) + lm_smooth
qplot(percwhite, percbelowpoverty, data = midwest,

weight = popdensity, size = popdensity) + lm_smooth

percwhite

pe
rc

be
lo

w
po

ve
rt

y

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
10

20

30

40

20 40 60 80
percwhite

pe
rc

be
lo

w
po

ve
rt

y

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
10

20

30

40

20 40 60 80

popdensity

● 20000

● 40000

● 60000

● 80000

Figure 5.19.: A unweighted line of best fit (left) and weighted by population size (right).

When we weight a histogram or density plot by total population, we change from looking
at the distribution of the number of counties, to the distribution of the number of people.
Figure 5.20 shows the difference this makes for a histogram of the percentage below the
poverty line.

qplot(percbelowpoverty, data = midwest, binwidth = 1)
qplot(percbelowpoverty, data = midwest, weight = poptotal, binwidth = 1) +

ylab("population")

February 24, 2009 87

5.11. Weighted data Toolbox

percbelowpoverty

co
un

t

0

10

20

30

40

10 20 30 40
percbelowpoverty

co
un

t

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

10 20 30 40

Figure 5.20.: The different between a unweighted (left) and weighted (right) histogram. The
unweighted histogram shows number of counties, while the weighted histogram shows
population. The weighting considerably changes the interpretation!

88 February 24, 2009

Chapter 6

Scales, axes and legends

6.1. Introduction

Scales control the mapping from data to aesthetics. They take your data and turn it into
something that you can perceive visually: e.g. size, colour, position, or shape. Scales also
provide the tools you use to read the plot: the axes and legends (collectively known as
guides). Formally, each scale is a function from a region in data space (the domain of the
scale) to a region in aesthetic space (the range of the range). The domain of each scale
corresponds to the range of the variable supplied to the scale, and can be continuous or
discrete, ordered or unordered. The range consists of the concrete aesthetics that you can
perceive and that R can understand: position, colour, shape, size, and line type. If you
blinked when you read that scales map data both to position and colour, you are not alone.
The notion that the same kind of object is used to map data to positions and symbols
strikes some people as unintuitive. However, you will see the logic and power of this notion
as you read further in the chapter.

The process of scaling takes place in three steps, transformation, training, and mapping,
and is described in Section 6.2. Without a scale, there is no way to go from the data to
aesthetics, so a scale is required for every aesthetic used on the plot. It would be tedious to
manually add a scale every time you used a new aesthetic, so whenever a scale is needed
ggplot2 will add a default. You can generate many plots without knowing how scales work,
but understanding scales and learning how to manipulate them will give you much more
control. Default scales and how to override them are described in Section 6.3.

Scales can be roughly divided into four categories: position scales, colour scales, the
manual discrete scale and the identity scale. The common options and most important uses
are described in Section 6.4. The section focusses on giving you a high-level overview of the
options available, rather than expanding on every detail in depth. Details about individual
parameters are included in the online documentation.

The other important role of the each scale is to produce a guide that allows the viewer
to perform the inverse mapping, from aesthetic space to data space, and read values off the
plot. For position aesthetics, the axes are the guides; for all other aesthetics, legends do
the job. Unlike other plotting systems, you have little direct control over the axis or legend:
there is no gglegend() or ggaxis() to call to modify legends or axes. Instead, all aspects
of the guides are controlled by parameters of the scale. Axes and legends are discussed in
Section 6.5.

89

6.2. How scales work Scales, axes and legends

Section 6.6 concludes the chapter with pointers to other academic work that discusses
some of the things you need to keep in mind when assigning variables to aesthetics.

6.2. How scales work

To describe how scales work, we will first describe the domain (the data space) and the
range (the aesthetic space), and then outline the process by which one is mapped to the
other.

Since an input variable is either discrete or continuous, the domain is either a set of
values (stored as a factor, character vector, or logical vector) or an interval on the real
line (stored as a numeric vector of length 2). For example, in the mammals sleep dataset,
the domain of the discrete variable vore is {carni, herbi, omni}, and the domain of the
continuous variable bodywt is [0.005, 6654]. We often think of these as data ranges, but
here we are focussing on their nature as input to to the scale, i.e. as a domain of a function.

The range can also be discrete or continuous. For discrete scales, it is a vector of aesthetic
values corresponding to the input values. For continuous scales, it is a 1d path through
some more complicated space. For example, a colour gradient interpolates linearly from
one colour to another. The range is either specified by the user when the scale is created,
or by the scale itself.

The process of mapping the domain to the range includes the following stages:

• transformation: (for continuous domain only). It is often useful to display a
transformation of the data, such as a logarithm or square root. Transformations are
described in more depth in Section 6.4.2.

After any transformations have been applied, the statistical summaries for each layer
are computed based on the transformed data. This ensures that a plot of log(x) vs.
log(y) on linear scales looks the same as x vs. y on log scales.

• training: During this key stage, the domain of the scale is learned. Sometimes
learning the domain of a scale is extremely straightforward: In a plot with only
one layer, representing only raw data, it consists of determining the minimum and
maximum values of a continuous variable (after transformation), or listing the unique
levels of a categorical variable. However, often the domain must reflect multiple layers
across multiple datasets in multiple panels. For example, imagine a scale that will be
used to create an axis; the minimum and maxiumum values of the raw data in the
first layer and the statistical summary in the second layer are likely to be different,
but they must all eventually be drawn on the same plot.

The domain can also be specified directly, overriding the training process, by manually
setting the domain of the scale with the limits argument, as described in Section 6.3.
Any values outside of the domain of the scale will be mapped to NA.

• mapping: we now know the domain and we already knew the range before we started
this process, so the last thing to do is to apply the scaling function that maps data
values to aesthetic values.

90 February 24, 2009

6.3. Usage Scales, axes and legends

We have left a few stages out of this description of the process for simplicity. For example,
we haven’t discussed the role faceting plays in training, and we have also ignored position
adjustments. Nevertheless this description is accurate, and you should come back to it if
you are confused about what scales are doing in your plot.

6.3. Usage

Every aesthetic has a default scale that is added to the plot whenever you use that
aesthetic. These are listed in Table 6.1. The scale depends on the variable type: continuous
(numeric) or discrete (factor, logical, character). If you want to change the default scales
see set_default_scale(), described in Section 8.2.1.

Default scales are added when you initialise the plot and when you add new layers. This
means it is possible to get a mismatch between the variable type and the scale type if you
later modify the underlying data or aesthetic mappings. When this happens you need to
add the correct scale yourself. The following example illustrates the problem and solution.

plot <- qplot(cty, hwy, data = mpg)
plot

This doesn’t work because there is a mismatch between the
variable type and the default scale
plot + aes(x = drv)

Correcting the default manually resolves the problem.
plot + aes(x = drv) + scale_x_discrete()

To add a different scale or to modify some features of the default scale, you must construct
a new scale and then add it to the plot using +. All scale constructors have a common
naming scheme. They start with scale_, followed by the name of the aesthetic (e.g.,
colour_, shape_, or x_), and finally by the name of the scale (e.g., gradient, hue, or
manual). For example, the name of the default scale for the colour aesthetic based on
discrete data is scale colour hue(), and the name of the Brewer colour scale for fill colour
is scale fill brewer().

The following code illustrates this process. We start with a plot that uses the default
colour scale, and then modify it to adjust the appearance of the legend, and then use a
different colour scale. The results are shown in Figure 6.1.

p <- qplot(sleep_total, sleep_cycle, data = msleep, colour = vore)
p
Explicitly add the default scale
p + scale_colour_hue()

Adjust parameters of the default, here changing the appearance
of the legend
p + scale_colour_hue("What does\nit eat?",

breaks = c("herbi", "carni", "omni", NA),

February 24, 2009 91

6.4. Scale details Scales, axes and legends

Aesthetic Discrete Continuous

Colour and fill brewer
grey
hue
identity
manual

gradient
gradient2
gradientn

Position (x, y) discrete continuous
date

Shape shape
identity
manual

Line type linetype
identity
manual

Size identity
manual

size

Table 6.1.: Scales, by aesthetic and variable type. Default scales are emboldened. The default scale
varies depending on whether the variable is continuous or discrete. Shape and line type
do not not have a default continuous scale; size does not have a default discrete scale.

labels = c("plants", "meat", "both", "don’t know"))

Use a different scale
p + scale_colour_brewer(pal = "Set1")

6.4. Scale details

Scales can be divided roughly into four separate groups:

• Position scales, used to map continuous, discrete and date-time variables onto the
plotting region and to construct the corresponding axes.

• Colour scales, used to map continuous and discrete variables to colours.

• Manual scales, used to map discrete variables to your choice of symbol size, line type,
shape or colour, and to create the corresponding legend.

• The identity scale, used to plot variable values directly to the aesthetic rather than
mapping them. For example, if the variable you want to map to symbol colour is itself
a vector of colours, you want to render those values directly rather than mapping
them to some other colours.

92 February 24, 2009

6.4. Scale details Scales, axes and legends

sleep_total

sl
ee

p_
cy

cl
e

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●0.2

0.4

0.6

0.8

1.0

1.2

1.4

5 10 15

vore

● carni

● omni

● herbi

● NA

● insecti

sleep_total

sl
ee

p_
cy

cl
e

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●0.2

0.4

0.6

0.8

1.0

1.2

1.4

5 10 15

vore

● carni

● omni

● herbi

● NA

● insecti

sleep_total

sl
ee

p_
cy

cl
e

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●0.2

0.4

0.6

0.8

1.0

1.2

1.4

5 10 15

What does
it eat?

● plants

● meat

● both

● don't know

sleep_total

sl
ee

p_
cy

cl
e

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●0.2

0.4

0.6

0.8

1.0

1.2

1.4

5 10 15

vore

● carni

● omni

● herbi

● NA

● insecti

Figure 6.1.: Adjusting the default parameters of a scale. (Top-left) the plot with default scale.
(Top-right) adding the default scale by hand doesn’t change the appearance of the plot.
(Bottom-left) adjusting the parameters of the scale to tweak the legend. (Bottom-right)
using a different colour scale: Set1 from the ColorBrewer colours.

February 24, 2009 93

6.4. Scale details Scales, axes and legends

This section describes each group in more detail. Precise details about individual scales
can be found in the documentation, within R (e.g. ?scale brewer), or online at http:
//had.co.nz/ggplot2.

6.4.1. Common arguments

The following arguments are common to all scales.

• name: sets the label which will appear on the axis or legend. You can supply
text strings (using \n for line breaks) or mathematical expressions (as described by
?plotmath). Because tweaking these labels is such a common task, there are three
helper functions to save you some typing: xlab(), ylab() and labs(). Their use is
demonstrated in the code below and results are shown in Figure 6.2.

p <- qplot(cty, hwy, data = mpg, colour = displ)
p
p + scale_x_continuous("City mpg")
p + xlab("City mpg")
p + ylab("Highway mpg")
p + labs(x = "City mpg", y = "Highway", colour = "Displacement")
p + xlab(expression(frac(miles, gallon)))

• limits: fixes the domain of the scale. Continuous scales take a numeric vector of
length two; discrete scales take a character vector. If limits are set, no training of the
data will be performed. See Section 6.4.2 for shortcuts.

Limits are useful for removing data you don’t want displayed in a plot (i.e., setting
limits that are smaller than the full range of data), and for ensuring that limits are
consistent across multiple plots intended to be compared (i.e., setting limits that are
larger or smaller than some of the default ranges).

Any value not in the domain of the scale is discarded: for an observation to be included
in the plot, each aesthetic must be in the domain of each scale. This discarding occurs
before statistics are calculated.

• breaks and labels: breaks controls which values appear on the axis or legend,
i.e., what values tick marks should appear on an axis or how a continuous scale
is segmented in a legend. labels specifies the labels that should appear at the
breakpoints. If labels is set, you must also specify breaks, so that the two can be
matched up correctly.

To distinguish breaks from limits, remember that breaks affect what appears on the
axes and legends, while limits affect what appears on the plot. See by Figure 6.3 for
an illustration. The first column uses the default settings for both breaks and limits,
which are limits = c(4, 8) and breaks = 4:8. In the middle column, the breaks
have been reset: the plotted region is the same, but the tick positions and labels have
shifted. In the right column, it is the limits which have been redefined, so much of
the data now falls outside the plotting region.

94 February 24, 2009

http://had.co.nz/ggplot2
http://had.co.nz/ggplot2

6.4. Scale details Scales, axes and legends

cty

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

cty

H
ig

hw
ay

 m
pg

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

H
ig

hw
ay ● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

Displacement

● 2

● 3

● 4

● 5

● 6

● 7

miles

gallon

hw
y ● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

Figure 6.2.: Legends with names given by (from left to right): "Tip rate", "The amount of the
tip\ndivided by the total bill" and expression(frac(tip, total bill)

p <- qplot(cyl, wt, data = mtcars)
p
p + scale_x_continuous(breaks = c(5.5, 6.5))
p + scale_x_continuous(limits = c(5.5, 6.5))
p <- qplot(wt, cyl, data = mtcars, colour = cyl)
p
p + scale_colour_gradient(breaks = c(5.5, 6.5))
p + scale_colour_gradient(limits = c(5.5, 6.5))

• formatter: if no labels are specified the formatter will be called on each break to
produce the label. Useful formatters for continuous scales are comma, percent, dollar
and scientific, and for discrete scales is abbreviate.

6.4.2. Position scales

Every plot must have two position scales, one for the horizontal positional (the x scale)
and one for vertical position (the y scale). ggplot2 comes with continuous, discrete (for
factor, character and logical vectors), and date scales. Each of these transform the data in
a slightly different way, and generate a slightly different type of axis. The following sections
describe each type in more detail.

February 24, 2009 95

6.4. Scale details Scales, axes and legends

cyl

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

2

3

4

5

4 5 6 7 8
cyl

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

2

3

4

5

5.5 6.5
cyl

w
t

●

●

●

●●●

●

2

3

4

5

5.6 5.8 6.0 6.2 6.4

wt

cy
l ● ●

●

●

●

●

●

●●

●●

●●● ● ●●

●● ● ●

●● ●●

● ●●

●

●

●

●4

5

6

7

8

2 3 4 5

cyl

● 4

● 5

● 6

● 7

● 8

wt

cy
l ● ●

●

●

●

●

●

●●

●●

●●● ● ●●

●● ● ●

●● ●●

● ●●

●

●

●

●4

5

6

7

8

2 3 4 5

cyl

● 5.5

● 6.5

wt

cy
l ● ● ● ●●●●

4

5

6

7

8

2 3 4 5

cyl

● 5.6

● 5.8

● 6

● 6.2

● 6.4

Figure 6.3.: The difference between breaks and limits. (Left) default plot with limits = c(4, 8),
breaks = 4:8, (middle) breaks = c(5.5,6.5) and (right) limits = c(5.5,6.5).
The effect on the x axis (top) and colour legend (bottom)

A common task for all position axes is changing the axis limits. Because this is such
a common task, ggplot2 provides a couple of helper functions to save you some typing:
xlim() and ylim(). These functions inspect their input and then create the appropriate
scale, as follows:

• xlim(10, 20): a continuous scale from 10 to 20

• ylim(20, 10): a reversed continuous scale from 20 to 10

• xlim("a", "b", "c"): a discrete scale

• xlim(as.Date(c("2008-05-01", "2008-08-01"))): a date scale from May 1 to
August 1 2008.

These limits do not work in the same way as xlim and ylim in base or lattice graphics.
In ggplot2, to be consistent with the other scales, any data outside the limits is not plotted
and not included in the statistical transformation. This means that setting the limits is
not the same as visually zooming in to a region of the plot. To do that, you need to use
the xlim and ylim arguments to coord_cartesian(), described in Section 7.3.3. This
performs purely visual zooming and does not affect the underlying data.

96 February 24, 2009

6.4. Scale details Scales, axes and legends

Name Function f(x) Inverse f−1(y)

asn tanh−1(x) tanh(y)
exp ex log(y)
identity x y
log log(x) ey

log10 log10(x) 10y

log2 log2(x) 2y

logit log(x
1−x) 1

1+e(y)

pow10 10x log10(y)
probit Φ(x) Φ−1(y)
recip x−1 y−1

reverse −x −y

sqrt x1/2 y2

Table 6.2.: List of built-in transformers.

By default, the limits of position scales extend a little past the range of the data. This
ensures that the data does not overlap the axes. You can control the amount of expansion
with the expand argument. This parameter should be a numeric vector of length two. The
first element gives the multiplicative expansion, and the second the additive expansion. If
you don’t want any extra space, use expand = c(0, 0).

Continuous

The most common continuous position scales are scale x continuous and scale y continuous,
which map data to the x and y axis. The most interesting variations are produced using
transformations. Every continuous scale takes a trans argument, allowing the specification
of a variety of transformations, both linear and non-linear. The transformation is carried
out by a “transformer,” which describes the transformation, its inverse, and how to draw
the labels. Table 6.2 lists some of the more common transformers.

Transformations are most often used to modify position scales, so there are shortcuts for x,
y, and z scales: scale_x_log10() is equivalent to scale_x_continuous(trans = "log10").
The trans argument works for any continuous scale, including the colour gradients described
below, but the shortcuts only exist for position scales.

Of course, you can also perform the transformation yourself. For example instead of using
scale_x_log(), you could plot log10(x). That produces an identical result inside the
plotting region, but the the axis and tick labels won’t be the same. If you use a transformed
scale, the axes will be labelled in the original data space. In both cases, the transformation
occurs before the statistical summary. Figure 6.4 illustrates this difference with following
code.

qplot(log10(carat), log10(price), data = diamonds)
qplot(carat, price, data = diamonds) +

scale_x_log10() + scale_y_log10()

February 24, 2009 97

6.4. Scale details Scales, axes and legends

Figure 6.4.: A scatterplot of diamond price vs. carat illustrating the difference between log trans-
forming the scale (left) and log transforming the data (right). The plots are identical,
but the axis labels are different.

Transformers are also used in coord_trans(), where the transformation occurs after the
statistic has been calculated, and affects the shape of the graphical object drawn on the
plot. coord_trans() is described in more detail in Section7.3.3.

Date and time

Date and times are basically continuous values, but with have special ways of labelling
the axes. Currently, only dates of class date and times of class POSIXct are supported.
If your dates are in a different format you will need to convert them with as.Date() or
as.POSIXct().

There are three arguments that control the appearance and location of the ticks for date
axes: major, minor and format. Generally, the scale does a pretty good job of choosing
the defaults, but if you need to tweak them the details are as follows:

• The major and minor arguments specify the position of major and minor breaks in
terms of date units, years, months, weeks, days, hours, minutes and seconds, and
can be combined with a multiplier. For example, major = "2 weeks" will place a
major tick mark every two weeks. If not specified, the date scale has some reasonable
default for choosing them automatically.

• The format argument specifies how the tick labels should be formatted. Table 6.3
lists the special characters used to display components of a date. For example, if you
wanted to display dates of the form 14/10/1979, you would use the string "%d/%m/%y".

The code below generates the plots in Figure 6.5, illustrating some of these parameters.

plot <- qplot(date, psavert, data = economics, geom = "line") +
ylab("Personal savings rate") +
geom_hline(xintercept = 0, colour = "grey50")

plot
plot + scale_x_date(major = "10 years")

98 February 24, 2009

6.4. Scale details Scales, axes and legends

Code Meaning

%S second (00-59)
%M minute (00-59)
%l hour, in 12-hour clock (1-12)
%I hour, in 12-hour clock (01-12)
%H hour, in 24-hour clock (00-23)
%a day of the week, abbreviated (Mon-Sun)
%A day of the week, full (Monday-Sunday)
%e day of the month (1-31)
%d day of the month (01-31)
%m month, numeric (01-12)
%b month, abbreviated (Jan-Dec)
%B month, full (January-December)
%y year, without century (00-99)
%Y year, with century (0000-9999)

Table 6.3.: Common data formatting codes, adapted from the documentation of strptime. Listed
from shortest to longest duration.

plot + scale_x_date(
limits = as.Date(c("2004-01-01", "2005-01-01")),
format = "%Y-%m-%d"

)

date

P
er

so
na

l s
av

in
gs

 r
at

e

0

5

10

1967 1972 1977 1982 1987 1992 1997 2002 2007
date

P
er

so
na

l s
av

in
gs

 r
at

e

0

5

10

1967 1977 1987 1997 2007
date

P
er

so
na

l s
av

in
gs

 r
at

e

0

5

10

2004−01−012004−04−012004−07−012004−10−012005−01−01

Figure 6.5.: A time series of personal savings rate. (Left) the default apperance, (middle) breaks every
10 years, and (right) scale restricted to 2004, with YMD date format. Measurements
are recorded at the end of each month.

Discrete

Discrete position scales map the unique values of their input to integers. The order of the
result can be controlled by the breaks argument, and levels can be dropped with limits

February 24, 2009 99

6.4. Scale details Scales, axes and legends

argument (or by using xlim() or ylim()). Because it is often useful to place labels and
other annotations on intermediate positions on the plot, discrete position scales also accept
continuous values. If you have not adjusted the breaks or limits, the numerical position
of a factor level can be calculated with as.numeric(): the values are placed on integers
starting at 1.

6.4.3. Colour

After position, probably the most commonly used aesthetic is colour. There are quite a
few different ways of mapping values to colours: three different gradient based methods for
continuous values, and two methods for mapping discrete values. But before we look at
the details of the different methods, it’s useful to learn a little bit of colour theory. Colour
theory is complex because the underlying biology of the eye and brain is complex, and
this introduction will only touch on some of the more important issues. An excellent more
detailed exposition is available online at http://tinyurl.com/clrdtls.

At the physical level, colour is produced by a mixture of wavelengths of lights. To know
a colour completely we need to know the complete mixture of wavelengths, but fortunately
for us the human eye only has three different colour receptors, and so we can summarise any
colour with just three numbers. You may be familiar with the rgb encoding of colour space,
which defines a colour by the intensities of red, green and blue light needed to produce it.
One problem with this space is that it is not perceptually uniform: the two colours that are
one unit apart may look similar or very different depending on where in the colour space
they. This makes it difficult to create a mapping from a continuous variable to a set of
colours. There have been many attempts to come up with colours spaces that are more
perceptually uniform. We’ll use a modern attempt called the hcl colour space, which has
three components of hue, chroma and luminance:

• Hue is an number between 0 and 360 (an angle) which gives the “colour” of the colour:
like blue, red, orange etc.

• Luminance is the lightness of the colour. A luminance of 0 produces a black, and
luminance of one produces white.

• Chroma is the purity of a colour. A chroma of 0 is grey, and the maximum value of
chroma varies with luminance.

The combination of these three components does not produce a simple geometric shape.
Figure 6.6 attempts to show the 3d shape of the space. Each slice is a constant luminance
(brightness) with hue mapped to angle and chroma to radius. You can see the centre of
each slice is gray and the colours get more intense as they get closer to the edge.

An additional complication is that many people (∼10% of men) do not possess the normal
complement of colour receptors and so can distinguish fewer colours than usual. In brief,
it’s best to avoid red-green contrasts, and to check your plots with systems that simulate
colour blindness. Visicheck is one online solution. Another alternative is the dichromat
package (Lumley, 2007) which provides tools for simulating colour blindness, and a set of
colour schemes known to work well for colour blind people. You can also help people with

100 February 24, 2009

http://tinyurl.com/clrdtls

6.4. Scale details Scales, axes and legends

Figure 6.6.: The shape of the hcl colour space. Hue is mapped to angle, chroma to radius and each
slice shows a different luminance. The hcl space is a pretty odd shape, but you can see
that colours near the centre of each slice are gray, and as you move towards the edges
they become more intense. Slices for luminance 0 and 100 are omitted because they
would, respectively, be a single black point and a single white point.

colour blindness in the same way that you can help people with black and white printers:
by providing redundant mappings to other aesthetics like size, line type or shape.

All of the scales discussed in the following sections work with border (colour) and fill
(fill) colour aesthetics.

Continuous

There are three types of continuous colour gradients, based on the number of colours in the
gradient:

• scale_colour_gradient() and scale_fill_gradient(): a two–colour gradient,
low–high. Arguments low and high control the colours at either end of the gradient.

• scale_colour_gradient2() and scale_fill_gradient2(): a three–colour gradient,
low–med–high. As well as low and high colours, these scales also have a mid colour
for the colour of the midpoint. The midpoint defaults to 0, but can be set to any
value with the midpoint argument. This is particularly useful for creating diverging
colour schemes.

February 24, 2009 101

6.4. Scale details Scales, axes and legends

• scale_colour_gradientn() and scale_fill_gradientn(): a custom n–colour gra-
dient. This scale requires a vector colours in the colours argument. Without further
arguments these colours will be evenly spaced along the range of the data. If you
want the values to be unequally spaced, use the values argument, which should be
between 0 and 1 if rescale is true (the default), or within the range of the data is
rescale is false.

Colour gradients are often used to show the height of a 2d surface. In the following
example we’ll use the surface of a 2d density estimate of the faithful dataset (Azzalini
and Bowman, 1990), which records the waiting time between eruptions and during of each
eruption for the Old Faithful geyser in Yellowstone Park. Figure 6.7 shows three gradients
applied to this data, created with the following code. Note the use of limits: this parameter
is common to all scales.

f2d <- with(faithful, MASS::kde2d(eruptions, waiting, h = c(1, 10), n = 50))
df <- with(f2d, cbind(expand.grid(x, y), as.vector(z)))
names(df) <- c("eruptions", "waiting", "density")
erupt <- ggplot(df, aes(waiting, eruptions, fill = density)) +
geom_tile() +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))

erupt + scale_fill_gradient(limits = c(0, 0.04))
erupt + scale_fill_gradient(limits = c(0, 0.04), low="white", high="black")
erupt + scale_fill_gradient2(limits = c(-0.04, 0.04),
midpoint = mean(df$density))

Figure 6.7.: Density of eruptions with three colour schemes. (Left) default gradient colour scheme,
(mid) customised gradient from white to black and (right) 3 point gradient with midpoint
set to the mean density.

To create your own custom gradient, use scale_colour_gradientn(). This is useful if
you have colours that are meaningful for your data (e.g. black body colours or standard
terrain colours), or you’d like to use a palette produced by another package. The following
code and Figure 6.8 shows show palettes generates from routines in the vcd package. (Zeileis

102 February 24, 2009

6.4. Scale details Scales, axes and legends

et al., 2008) describes the philosophy behind these palettes and provides a good introduction
to some of the complexities of creating good colour scales.

library(vcd)
fill_gradn <- function(pal) {

scale_fill_gradientn(colours = pal(7), limits = c(0, 0.04))
}
erupt + fill_gradn(rainbow_hcl)
erupt + fill_gradn(diverge_hcl)
erupt + fill_gradn(heat_hcl)

Loading required package: MASS

Figure 6.8.: Gradient colour scales using perceptually well-formed palettes produced by the vcd
package. From left to right: sequential, diverging and heat hcl palettes. Each scale
is produced with scale_fill_gradientn with colours set to sequential_hcl(7),
diverge_hcl(7) and heat_hcl(7).

Discrete

There are two colour scales for discrete data, one which chooses colours in an automated
way, and another which makes it easy to select from hand-picked sets.

The default colour scheme, scale_colour_hue(), picks evenly spaced hues around the
hcl colour wheel. This works well for up to about eight colours, but after that it becomes
hard to tell the different colours apart. Another disadvantage of the default colour scheme
is that because the colours all have the same luminance and chroma, when you print them
in black and white, they all appear as an identical shade of grey.

An alternative to this algorithmic scheme is to use the ColorBrewer colours, http:
//colorbrewer.org. These colours have been hand picked to work well in a wide variety
of situations, although the focus is on maps and so the colours tend to work better when
displayed in large areas. For categorical data, the palettes most of interest are “Set1”
and “Dark2” for points and “Set2”, “Pastel1”, “Pastel2” and “Accent” for areas. Use
RColorBrewer::display.brewer.all to list all palettes. Figure 6.9 shows three of these
palettes applied to points and bars, created with the following code.

February 24, 2009 103

http://colorbrewer.org
http://colorbrewer.org

6.4. Scale details Scales, axes and legends

point <- qplot(brainwt, bodywt, data = msleep, log="xy", colour = vore)
area <- qplot(log10(brainwt), data = msleep, fill = vore, binwidth=1)

point + scale_colour_brewer(pal = "Set1")
point + scale_colour_brewer(pal = "Set2")
point + scale_colour_brewer(pal = "Pastel1")
area + scale_fill_brewer(pal = "Set1")
area + scale_fill_brewer(pal = "Set2")
area + scale_fill_brewer(pal = "Pastel1")

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

vore

● carni

● omni

● herbi

● NA

● insecti

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

vore

● carni

● omni

● herbi

● NA

● insecti

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

vore

● carni

● omni

● herbi

● NA

● insecti

log10(brainwt)

co
un

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

log10(brainwt)

co
un

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

log10(brainwt)

co
un

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

Figure 6.9.: Three colorbrewer palettes, Set1 (left), Set2 (middle) and Pastel1 (right), applied
to points (top) and bars (bottom). Bright colours work well for points, but are
overwhelming on bars. Subtle colours work well for bars, but are hard to see on points.

If you have your own discrete colour scale, you can use scale_colour_manual(), as
described below.

6.4.4. The manual discrete scale

The discrete scales, scale_linetype(), scale_shape() and scale_size_discrete() ba-
sically have no options (although for the shape scale you can choose whether points should
be filled or solid). These scales are just a list of valid values that are mapped to each factor
levels in turn.

104 February 24, 2009

6.4. Scale details Scales, axes and legends

If you want to customise these scales, you need to create your own new scale with the man-
ual scale: scale_shape_manual(), scale_linetype_manual(), scale_colour_manual()
etc. The manual scale has one important argument, values, where you specify the values
that the scale should produce. If this vector is named, it will match the values of the output
to the values of the input, otherwise it will match in order of the levels of the discrete
variable. You will need some knowledge of the valid aesthetic values, which are described
in Appendix B. The following code demonstrates the use of scale_manual(), with results
shown in Figure 6.10

plot <- qplot(brainwt, bodywt, data = msleep, log="xy")
plot + aes(colour = vore) +

scale_colour_manual(value = c("red", "orange", "yellow", "green", "blue"))
colours <- c(carni = "red", "NA" = "orange", insecti = "yellow",

herbi = "green", omni = "blue")
plot + aes(colour = vore) + scale_colour_manual(value = colours)
plot + aes(shape = vore) +

scale_shape_manual(value = c(1, 2, 6, 0, 23))

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

● carni

● omni

● herbi

● NA

● insecti

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

● carni

● NA

● insecti

● herbi

● omni

brainwt

bo
dy

w
t ●

● ●

●

●

●

●

●
●

10−2

10−1

100

101

102

103

10−3 10−2 10−1 100

● carni

omni

herbi

NA

insecti

Figure 6.10.: Scale manual used to create custom colour (left and middle) and shape (right) scales.

The following example shows a creative use scale_colour_manual(), when you want
to display multiple variables on the same plot, and show a useful legend. In most other
plotting systems, you’d just colour the lines as below, and then add a legend that describes
which colour corresponds to which variable. That doesn’t work in ggplot2 because it’s the
scales that are responsible for drawing legends, and the scale doesn’t know how the lines
should be labelled.

> huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
> ggplot(huron, aes(year)) +
+ geom_line(aes(y = level - 5), colour = "blue") +
+ geom_line(aes(y = level + 5), colour = "red")

February 24, 2009 105

6.4. Scale details Scales, axes and legends

year

le
ve

l −
 5

575

580

585

1880 1900 1920 1940 1960

What you need to do is tell the colour the scale about the two different lines by creating
a mapping from the data to the colour aesthetic. There’s no variable present in the data,
so you’ll have to create one:

> ggplot(huron, aes(year)) +
+ geom_line(aes(y = level - 5, colour = "below")) +
+ geom_line(aes(y = level + 5, colour = "above"))

year

le
ve

l −
 5

575

580

585

1880 1900 1920 1940 1960

"below"

below

above

This gets us basically what we want, but the legend isn’t labelled correctly, and has the
wrong colours. That can be fixed with scale_colour_manual:

> ggplot(huron, aes(year)) +
+ geom_line(aes(y = level - 5, colour = "below")) +
+ geom_line(aes(y = level + 5, colour = "above")) +
+ scale_colour_manual("Direction",
+ c("below" = "blue", "above" = "red"))

106 February 24, 2009

6.5. Legends and axes Scales, axes and legends

year

le
ve

l −
 5

575

580

585

1880 1900 1920 1940 1960

Direction

below

above

See Section 1.2.1 for an alternative approach to the problem.

6.4.5. The identity scale

The identity scale is used when your data is already in a form that the plotting functions
in R understand, i.e. when the data and aesthetic spaces are the same. This means there is
no way to derive a meaningful legend from the data alone, and by default a legend is not
drawn. If you want one, you can still use the breaks and labels arguments to set it up
yourself.

Figure 6.11 shows one sort of data where scale_identity is useful. Here the data
themselves are colours, and there’s no way we could make a meaningful legend. The identity
scale can also be useful in the case where you have manually scaled the data to aesthetic
values. In that situation, you will have to figure out what breaks and labels make sense for
your data.

6.5. Legends and axes

Collectively, axes and legends are called guides, and they are the inverse of the scale: they
allow you to read observations from the plot and map them back to their original values.
Figure 6.12 labels the guides and their components. There are natural equivalents between
the legend and the axis: the legend title and axis label are equivalent and determined by
the scale name; the legend keys and tick labels are both determined by the scale breaks.

In ggplot2, legends and axes are produced automatically based on the scales and geoms
that you used in the plot. This is different to how legends work in most other plotting
systems, where you are responsible for adding them. In ggplot2, there is little you can do
to directly control the legend. This seems like a big restriction at first, but as you get more
comfortable with this approach, you will discover that it saves you a lot of time, and there
is little you can not do with it.

To draw the legend, the plot must collect information about how each aesthetic is used:
for what data and what geoms. The scale breaks are used to determine the values of the
legend keys and a list of the geoms that use the aesthetic is used to determine how to draw

February 24, 2009 107

6.5. Legends and axes Scales, axes and legends

u

v

●

●●●●●
●●●● ●

●●●●●

●
●●●●●

●

●

●●
●

●

●

●

●
●●●

●

●●●●
●

●
●●●

●

●●●
●

●
●

●●●
●

●
●●●

●

●

●●●●●

●●●● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
● ●●●

●

●

●
●

●

●

●
●●

●●●
●

●

●●●●●●
●

●

●●●●●

●●●
●

●

●●

●●●
●

●

●
●●●

●
●

●

●●

●●●
●

●
●
●●

●

●

●●

●●●
●

●

●

●●
●●●●●

●●●●●

● ●●●●●●●●●

●
●●
●
●

●
●●●●●

●

●●●●
●

●●●●
●

●

●●●●●

●●●
●

●
●

●

●

● ●●●●●

●●●●
●

●

●
●●●

●

●

●●
●●●●
●

●●●●●

●

●

●●●
●

●

●

●●●
●

●

●

●
●●

●

●

●
●●
●

●

●

●

●

●

●

●

● ●●●●●

●●●●●
●

●●

●

●

●●
●

●
●●●

●

● ●●●●
●

●
●●

●
●

●

●●●
●

●

●●●●● ●●●●●

●
●●●●●

●

●●●●●

●●●
●

●

●

●
●
●
●

●

●●●●
●

●●●●●

●
●
●
●

●

● ●
●●●

●

●

●

●●
●

●

●●●●●

●
●●●

●

●

●●
●

●

●

●●
●

●

●
●●●
●●

●●●●●

●●●
●

●

●

●●
●

●

●

●●●
●

●●●●
●

●●●●
●

●

●●● ●

●

●

●●●●

●●●●
●

●●

●●●
●

●

●

−15000

−10000

−5000

0

5000

10000

−5000 0 5000 10000 15000

Figure 6.11.: A plot of R colours in Luv space. A legend is unnecessary, because the colour of the
points represents itself: the data and aesthetic spaces are the same.

mpg

wt

2

3

4

5

15 20 25 30

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

Cylinders
● 8
● 6
● 4

Axis label

Legend

Key

Tick mark
and label

Legend title
Axis

Key label

Figure 6.12.: The components of the axes and legend.

108 February 24, 2009

6.5. Legends and axes Scales, axes and legends

the keys. For example, if you use the point geom, then you will get points in the legend; if
you use the lines geom, you will get lines. If both point and line geoms are used, then both
points and lines will be drawn in the legend. This is illustrated in Figure 6.13.

cut

● Ideal

● Premium

● Good

● Very Good

● Fair

cut

Ideal

Premium

Good

Very Good

Fair

cut

● Ideal

● Premium

● Good

● Very Good

● Fair

cut

Fair

Good

Very Good

Premium

Ideal

Figure 6.13.: Legends produced by geom: point, line, point and line, and bar.

ggplot2 tries to use the smallest possible number of legends that accurately conveys the
aesthetics used in the plot. It does this by combining legends if a variable is used with
more than one aesthetic. Figure 6.14 shows an example of this for the points geom: if both
colour and shape are mapped to the same variable, then only a single legend is necessary.
In order for legends to be merged, they must have the same name (the same legend title).
For this reason, if you change the name of one of the merged legends you’ll need to change
it for all of them.

cut

● Ideal

● Premium

● Good

● Very Good

● Fair

cut

● Ideal

Premium

Good

Very Good

Fair

cut

● Ideal

Premium

Good

Very Good

Fair

Figure 6.14.: Colour legend, shape legend, colour + shape legend.

To contents of the legend and axes is controlled by the scale, and the details of the
rendering are controlled by the theming system. The following list includes the most
commonly tweaked settings.

• The scale name controls the axis label and the legend title. This can be a string, or a
mathematical expression, as described in ?plotmath.

• The breaks and labels arguments to the scale function, introduced earlier in this
chapter, are particularly important because they control what tick marks appear on
the axis and what keys appear on the legend. If the breaks chosen by default are not
appropriate (or you want to use more informative labels) setting these arguments will
adjust the appearance of the legend keys and axis ticks.

• The theme settings axis.* and legend.* control the visual appearance of axes and
legends. To learn how to manipulate these settings, see Section 8.1.

February 24, 2009 109

6.6. More resources Scales, axes and legends

• The internal grid lines are controlled by the breaks and minor breaks arguments.
By default minor grid lines are spaced evenly in the original data space: this gives
the common behaviour of log-log plots where major grid lines are multiplicative
and minor grid lines are additive. You can override the minor grid lines with the
minor breaks argument. Grid line appearance is controlled by the panel.grid.major
and panel.grid.minor theme settings.

• The position and justification of legends are controlled by the theme setting legend.position,
and the value can be right, left, top, bottom, none (no legend), or a numeric position.
The numeric position gives (in values between 0 and 1) the position of the corner given
by legend.justification, a numeric vector of length two. Top-right = c(1, 1),
bottom-left = c(0, 0).

6.6. More resources

As you experiment with different aesthetic choices and new scales, it’s important to keep in
mind how the plot will be perceived. Some particularly good references to consult are:

• Cleveland (1993a, 1985); Cleveland and McGill (1987) for research on how plots are
perceived and the best ways to encode data.

• Tufte (1990, 1997, 2001, 2006) for how to make beautiful, data-rich, graphics.

• Brewer (1994a,b) for how to choose colours that work well in a wide variety of
situations, particularly for area plots.

• Carr (1994, 2002); Carr and Sun (1999) for the use of colour in general.

110 February 24, 2009

Chapter 7

Positioning

7.1. Introduction

This chapter discusses position, particularly how facets are laid out on a page, and how
coordinate systems within a panel work. There are four components that control position.
You have already learned about two of them that work within a facet:

• Position adjustments adjust the position of overlapping objects within a layer, and
were described in Section 4.8. These are most useful for bar and other interval geoms,
but can be useful in other situations.

• Position scales, previously described in Section 6.4.2, control how the values in the
data are mapped to positions on the plot. Common transformations are linear and
log, but any other invertible function can also be used.

This chapter will describe the other two components and show you how all four components
can be used together:

• Faceting, described in Section 7.2, is a mechanism for automatically laying out
multiple plots on a page. It splits the data into subsets, and then plots each subset
into a different panel on the page. Such plots are often called small multiples.

• Coordinate systems, described in Section 7.3, control how the two independent
position scales are combined to create a 2d coordinate system. The most common
coordinate system is Cartesian, but other coordinate systems can be useful in special
circumstances.

7.2. Faceting

You first encountered faceting in the introduction to qplot(), Section 2.6, and you may
already have been using it in your plots. Faceting generates small multiples each showing
a different subset of the data. Small multiples are a powerful tool for exploratory data
analysis: you can rapidly compare patterns in different parts of the data and see whether
they are the same or different. This section will discusses how you can fine tune facets,
particularly in the way in which they interact with position scales.

111

7.2. Faceting Positioning

There are two types of faceting provided by ggplot2: facet_grid and facet_wrap.
Facet grid produces a 2d grid of panels defined by variables which form the rows and
columns, and while facet wrap produces 1d ribbon of panels that is wrapped into 2d. The
grid layout is similar to the layout of coplot in base graphics, and the wrapped layout is
similar to the layout of panels in lattice. These differences are illustrated in Figure ??.

1 2 3

4 5 6

7 8 9

1

2

3

A B C

A1 B1 C1

A2 B2 C2

A3 B3 C3

facet_grid facet_wrap

Figure 7.1.: A sketch illustrating the difference between the two faceting systems. facet_grid()
(left) is fundamentally two-d, being made up of two independent components.
facet_wrap() (right) is one-d, but wrapped into two-d to save space.

There are two basic arguments to the faceting systems: the variables to facet by, and
whether position scales should global or local to the facet. The way these options are
specified is a little different for the two systems, so they are described separately below.

You can access either faceting system from qplot(). A 2d faceting specification (e.g.
x ~ y) will use facet_grid, while a 1d specification (e.g. ~ x) will use facet_wrap.

Facetted plots have the capability to fill up a lot of space, so for this chapter we will use a
subset of the mpg dataset that has a manageable number of levels: three cylinders (4, 6, 8)
and two types of drive train (4 and f). This removes 29 vehicles from the original dataset.

> mpg2 <- subset(mpg, cyl != 5 & drv %in% c("4", "f"))

7.2.1. Facet grid

The grid faceter lays out plots in a 2d grid. When specifying a faceting formula, you specify
which variables should appear in the columns and which should appear in the rows, as
follows:

• . ~ . The default. Neither rows nor columns are faceted, so you get a single panel.

> qplot(cty, hwy, data = mpg2) + facet_grid(. ~ .)

112 February 24, 2009

7.2. Faceting Positioning

cty

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

● ●●
●●
●

●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

• . ~ a A single row with multiple columns. This is normally the most useful direction
because computer screens are usually wider than they are long. This direction of
faceting facilitates comparisons of y position, because the vertical scales are aligned.

> qplot(cty, hwy, data = mpg2) + facet_grid(. ~ cyl)

cty

hw
y ● ●

●
●

●
●

●
●●

●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●●●●
●

●

●

●

● ●

●

●

●●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●
●

●

● ●
●

● ●●●
●

●
●

●

●

●

●●

●●

●

●
●

●●

●
●

● ●● ●

●

●

●

●●

●●

●

●● ●

●

●
●

●

●

●
●●
●●

● ●

●

●●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●●
●

●

● ●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

15

20

25

30

35

40

10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35

4 6 8

• b ~ . A single column with multiple rows. This direction facilitates comparison of x
position, because the horizontal scales are aligned, and so is particularly useful for
comparing distributions. Figure 2.16 on page 21 is a good example of this use.

> qplot(cty, data = mpg2, geom="histogram", binwidth = 2) +
+ facet_grid(cyl ~ .)

February 24, 2009 113

7.2. Faceting Positioning

cty

co
un

t
0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

4
6

8

10 15 20 25 30 35

• a ~ b: Multiple rows and columns. You’ll usually want to put the variable with the
greatest number of levels in the columns, to take advantage of the aspect ratio of
your screen.

> qplot(cty, hwy, data = mpg2) + facet_grid(drv ~ cyl)

cty

hw
y

●●
●●

●●
●

● ●
●

●●●● ●
●

●
●

● ●● ●
●

● ●
● ●

●
●

●

●● ●
●

●
●

●●

●
●●

●●

●
● ●●

●
●

●●
●
●

●●

●
●
● ● ●

●
●

●
●

●
●

● ●

●

●
●

●●

●
●

●
●

●● ● ●

● ●●●● ●

●●● ●● ●
●

●
●

●●

●
●●

●
●

● ●
● ●

●
●

●
●●

●

● ●●●
●

●
●

●●
●●

●

●●
●●

●●
●

●● ●
●●● ●●●● ● ●

●●
●

●●●
●● ●

● ●●

●

●

●●
●
●●

●

●
●

●

●

●●
●

● ●

●

●●●

●
●●

●
●

●
●●●●●
● ●

●

●●

●●
●●

●

●
●● ●

●
●

●

15
20
25
30
35
40

15
20
25
30
35
40

4
f

10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35

4 6 8

• . ~ a + b or a + b ~ . Multiple variables in the rows or columns (or both). This
is unlikely to be useful unless the number of factor levels is small, you have a very
wide screen, or you want to produce a long, skinny poster.

> qplot(cty, hwy, data = mpg2) + facet_grid(. ~ cyl + drv)

cty

hw
y

●
●

●
●

●
●

●

●
●

●

●●●●
●

●

●

●

●●●●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

● ●●●
●

●

●
●

●●●●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

● ●
●
●

●

●

●

●●

●●

●

●
●

●●

●●

●

●●●

●
●●
●●

●●
●

●

●●

●

●●
●

●
●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●●
●

●

●●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

15

20

25

30

35

40

10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35

4
4

4
f

6
4

6
f

8
4

8
f

114 February 24, 2009

7.2. Faceting Positioning

Variables appearing together on the rows or columns are nested in the sense that only
combinations that appear in the data will appear in the plot. Variables that are specified
on rows and columns will be crossed: all combinations will be shown, including those that
didn’t appear in the original data set: this may result in empty panels.

Margins

Faceting a plot is like creating a contingency table. In contingency tables it is often useful
to display marginal totals (totals over a row or column) as well as the individual cells. It
is also useful to be able to do this with graphics, and you can do so with the margins
argument. This allows you to compare the conditional patterns with the marginal patterns.

You can either specify that all margins should be displayed, using margins = TRUE, or by
listing the names of the variables that you want margins for, margins = c("sex", "age").
You can also use "grand_row" or "grand_col" to produce grand row and grand column
margins respectively.

Figure 7.2 shows what margins look like. The first plot shows what the data looks like
without margins, and the second shows all margins. The margin column shows all drive
trains, the margin row shows all cylinders, and the bottom-right plot (the grand total)
shows the full data set. For this data we can see that as the number of cylinders increases,
engine displacement increases and fuel economy decreases, and compared to front wheel
drive vehicles, as a group four wheel drive vehicles have about the same displacement, but
are less fuel efficient. The figure was produced with the following code:

p <- qplot(displ, hwy, data = mpg2) +
geom_smooth(method = "lm", se = F)

p + facet_grid(cyl ~ drv)
p + facet_grid(cyl ~ drv, margins = T)

Groups in the margins are controlled in the same way as groups in all other panels,
defaulting to the interaction of all categorical variables present in the layer. (See Section 4.5.3
for a reminder.) The following example shows what happens when we add a coloured
smooth for each drive train.

> qplot(displ, hwy, data = mpg2) +
+ geom_smooth(aes(colour = drv), method = "lm", se = F) +
+ facet_grid(cyl ~ drv, margins = T)

February 24, 2009 115

7.2. Faceting Positioning

Figure 7.2.: Graphical margins work like margins of a contingency table to give unconditioned views
of the data. A plot facetted by number of cylinders and drive train (left) is supplemented
with margins (right).

Plots with many facets and margins may be more appropriate for printing than on screen
display, as the higher resolution of print (600 dpi vs 72 dpi) allows you to compare many
more subsets.

7.2.2. Facet wrap

An alternative to the grid is a wrapped ribbon of plots. Instead of having a 2d grid generated
by the combination of two (or more) variables, facet_wrap makes a long ribbon of panels

116 February 24, 2009

7.2. Faceting Positioning

(generated by any number of variables) and wraps it into 2d. This is useful if you have a
single variable that with many levels and want to arrange the plots in a more space efficient
manner. This is what trellising in lattice does.

Figure 7.3 shows the distribution of average movie ratings by decade. The main difference
over time seems to be the increasing spread of ratings. This is probably an artefact of the
number of votes: newer movies get more votes and so the average ratings are likely to be
less extreme. The disadvantage of this style of faceting is that it is harder to compare some
subsets that should be close together, as in this example where the plots for the 50’s and
60’s are particularly far apart because of the way the ribbon has been wrapped around.
The figure was produced with the following code:

movies$decade <- round_any(movies$year, 10, floor)
qplot(rating, ..density.., data=subset(movies, decade > 1890),

geom="histogram", binwidth = 0.5) + facet_wrap(~ decade, ncol = 6)

rating

de
ns

ity 0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

1900

1960

2 4 6 8 10

1910

1970

2 4 6 8 10

1920

1980

2 4 6 8 10

1930

1990

2 4 6 8 10

1940

2000

2 4 6 8 10

1950

2 4 6 8 10

Figure 7.3.: Movie rating distribution by decade.

The specification of faceting variables is of the form ~ a + b + c. By default, facet_wrap
will try and layout the panels as close to a square as possible, with a slight bias towards
wider rather than taller rectangles. You can override the default by setting ncol, nrow or
both. See the documentation for more examples.

7.2.3. Controlling scales

For both types of faceting you can control whether the position scales are the same in all
panels (fixed) or allowed to vary between panels (free). This is controlled by the scales
parameter:

• scales = "fixed": x and y scales are fixed across all panels

• scales = "free": x and y scales vary across panels.

• scales = "free_x": the x scale is free, and the y scale is fixed.

February 24, 2009 117

7.2. Faceting Positioning

• scales = "free_y": the y scale is free, and the x scale is fixed.

Figure ?? illustrates the difference between the two extremes of fixed and free.
Fixed scales allow us to compare subsets on an equal basis, seeing where each fits into the

overall pattern. Free scales zoom in on the region that each subset occupies, allowing you
to see more details. Free scales are particularly useful when we want to display multiple
times series that were measured on different scales. To do this, we first need to change from
“wide” to “long” data, stacking the separate variables into a single column. An example of
this is shown in Figure 7.4, and the topic is discussed in more detail in Section 1.2.

em <- melt(economics, id = "date")
qplot(date, value, data = em, geom = "line", group = variable) +
facet_grid(variable ~ ., scale = "free_y")

date

va
lu

e

2000
4000
6000
8000

200000
220000
240000
260000
280000
300000

0
5

10

4
6
8

10
12

4000
6000
8000

10000
12000

pce
pop

psavert
uem

pm
ed

unem
ploy

1967 1972 1977 1982 1987 1992 1997 2002 2007

Figure 7.4.: Free scales are particularly useful when displaying multiple time series that are measured
on different scales.

There is an additional constraint on the scales of facet_grid: all panels in a column
must have the same x scale, and all panels in a row must have the same y scale. This is
because each column shares an x axis, and each row shares a y axis.

For facet_grid there is an additional parameter called space, which takes values "free"
or "fixed". When the space can vary freely, each column (or row) will have width (or
height) proportional to the range of the scale for that column (or row). This makes the
scaling equal across the whole plot: 1 cm on each panel maps to the same range of data.
(This is somewhat analogous to the “sliced” axis limits of lattice). For example, if panel
a had range 2 and panel b had range 4, one-third of the space would be given to a, and
two-thirds to b. This is most useful for categorical scales, where we can assign space
proportionally based on the number of levels in each facet, as illustrated by Figure 7.5. The
code to create this plot is shown below: note the use of reorder() to arrange the models
and manufacturers in order of city fuel usage.

mpg3 <- within(mpg2, {

118 February 24, 2009

7.2. Faceting Positioning

model <- reorder(model, cty)
manufacturer <- reorder(manufacturer, -cty)

})
models <- qplot(cty, model, data = mpg3)

models
models + facet_grid(manufacturer ~ ., scales = "free", space = "free") +

opts(strip.text.y = theme_text())

7.2.4. Missing faceting variables

If you using faceting on a plot with multiple datasets, what happens when one of those
datasets is missing the faceting variables? This situation commonly arises when you are
adding contextual information that should be the same in all panels. For example, imagine
you have spatial display of disease faceted by gender. What happens when you add a map
layer that does not contain the gender variable? Here ggplot2 will do what you expect: it
will display the map in every facet: missing faceting variables are treated like they have all
values.

7.2.5. Grouping vs. faceting

Faceting is an alternative to using aesthetics (like colour, shape or size) to differentiate
groups. Both techniques have strengths and weaknesses, based around the relative positions
of the subsets.

With faceting, each group is quite far apart in its own panel, and there is no overlap
between the groups. This is good if the groups overlap a lot, but it does make small
differences harder to see. When using aesthetics to differentiate groups, the groups are close
together and may overlap, but small differences are easier to see. Figure 7.6 illustrates these
trade-offs. With the scatterplots, it is possible to not realise the groups are overlapping
when just colour is used to separate them, but with the regression lines they are too far
apart to see that D, E and G are grouped together and J is further away. The code to
produce these figures is shown below.

xmajor <- c(0.3, 0.5, 1,3, 5)
xminor <- as.vector(outer(1:10, 10^c(-1, 0)))
ymajor <- c(500, 1000, 5000, 10000)
yminor <- as.vector(outer(1:10, 10^c(2,3,4)))
dplot <- ggplot(subset(diamonds, color %in% c("D","E","G","J")),

aes(carat, price, colour = color)) +
scale_x_log10(breaks = xmajor, labels = xmajor, minor = xminor) +
scale_y_log10(breaks = ymajor, labels = ymajor, minor = yminor) +
scale_colour_hue(limits = levels(diamonds$color)) +
opts(legend.position = "none")

dplot + geom_point()

February 24, 2009 119

7.2. Faceting Positioning

cty

m
od

el

●● ●●●● ●● ●●

●●●●

●●● ●● ●●

● ●

●●● ●

●●●●●●● ●●

●●●●●● ●

●●●●

●●●●● ●●●

●●●●●●

●●●●

●●●●●●

●●●●●●●

●●●●●●● ●●●●

● ●●

●●●●●

●● ●●● ●●●

●●●●●●●

●●● ●● ●●

●●●

● ●●●●

●● ●●●●

● ●●●● ●●

●● ●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●● ●●●

●● ●●●●

●●● ●●●●

●●●●● ●●●●

●● ● ●●

●●●●

a4

a4 quattro

a6 quattro

k1500 tahoe 4wd

malibu

caravan 2wd

dakota pickup 4wd

durango 4wd

ram 1500 pickup 4wd

explorer 4wd

f150 pickup 4wd

civic

sonata

tiburon

grand cherokee 4wd

range rover

mountaineer 4wd

altima

maxima

pathfinder 4wd

grand prix

forester awd

impreza awd

4runner 4wd

camry

camry solara

corolla

land cruiser wagon 4wd

toyota tacoma 4wd

gti

jetta

new beetle

passat

10 15 20 25 30 35
cty

m
od

el

●●●●● ●●●●

●●● ●● ●●

●● ●●●

●●● ●●●●

●●●●

●● ●●●●

●●●●●●●●

●●●●●●●

●● ●●●●●

● ●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●● ● ●●

●●●●

●●●

●● ●●●●

● ●●

●● ●●● ●●●

● ●●●● ●●

●●●●●

●●● ●

● ●●●●

●●●●● ●●●

●●●●●● ●

●●●●●●

●●●●

●● ●●●● ●● ●●

●●● ●● ●●

●●●●●●● ●●

●●●●●●● ●●●●

●●●●

civic

gti
jetta

new beetle
passat

forester awd
impreza awd

sonata
tiburon

4runner 4wd
camry

camry solara
corolla

land cruiser wagon 4wd
toyota tacoma 4wd

altima
maxima

pathfinder 4wd

a4
a4 quattro
a6 quattro

grand prix

k1500 tahoe 4wd
malibu

grand cherokee 4wd

explorer 4wd
f150 pickup 4wd

mountaineer 4wd

caravan 2wd
dakota pickup 4wd

durango 4wd
ram 1500 pickup 4wd

range rover

honda

volkswagen

subaru

hyundai

toyota

nissan

audi

pontiac

chevrolet

jeep

ford

mercury

dodge

land rover

10 15 20 25 30 35

Figure 7.5.: A dotplot showing the range of city gas mileage for each model of car. (Left) Models
ordered by average mpg, and (right) faceted by manufacturer with scales="free_y"
and space = "free". The strip.text.y theme setting has been used to rotate the
facet labels.

120 February 24, 2009

7.2. Faceting Positioning

dplot + geom_point() + facet_grid(. ~ color)

dplot + geom_smooth(method = lm, se = F, fullrange = T)
dplot + geom_smooth(method = lm, se = F, fullrange = T) +

facet_grid(. ~ color)

Figure 7.6.: The differences between faceting vs grouping, illustrated with a log-log plot of carat vs
price with four selected colours.

Faceting will also work with much larger number of groups, and because you can split
in two dimensions, you can compare two variables simultaneously more easily than using
two different aesthetics. The other advantage of faceting is that the scales can vary across
panels, which is useful if the subsets occupy very different ranges.

February 24, 2009 121

7.2. Faceting Positioning

7.2.6. Dodging vs faceting

Faceting can achieve similar effects to dodging. Figure 7.7 shows how dodging and faceting
can create plots that look remarkably similar. The main difference is the labelling: the
faceted plot has colour labelled above and cut below; and the dodged below colour below and
cut is not explicitly labelled. Here example the labels in the faceted plot are excessive and
very cramped. The code to produce the figure is shown below: note the theme adjustments
to show the x axis labels in a readable way.

qplot(color, data=diamonds, geom="bar", fill=cut, position="dodge")
qplot(cut, data = diamonds, geom = "bar", fill = cut) +
facet_grid(. ~ color) +
opts(axis.text.x = theme_text(angle = 90, hjust = 1, size = 8,
colour = "grey50"))

color

co
un

t

0

1000

2000

3000

4000

E I J H F G D

cut

Fair

Good

Very Good

Premium

Ideal

cut

co
un

t

0

1000

2000

3000

4000

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

V
er

y
G

oo
d

G
oo

d

P
re

m
iu

m

Id
ea

l

F
ai

r

D E F G H I J

cut

Very Good

Good

Premium

Ideal

Fair

Figure 7.7.: Dodging (top) vs faceting (bottom) for a completely crossed pair of variables.

Apart from labelling, the main difference between dodging and faceting occurs when
the two variables are nearly completely crossed, but there are some combinations that do
not occur. In this case, dodging becomes less useful because it only splits up the bars
locally, and there are no labels. Faceting is more useful as we can control the whether the
splitting is local (scales = "free_x", space = "free") or global (scales = "fixed").
Figure 7.8 compares faceting and dodging for two nested variables from the mpg dataset,
model and manufacturer, with the code shown below.

122 February 24, 2009

7.2. Faceting Positioning

mpg4 <- subset(mpg, manufacturer %in% c("audi", "volkswagen", "jeep"))
base <- ggplot(mpg4, aes(fill = model)) +

geom_bar(position = "dodge")

base + aes(x = model) +
facet_grid(. ~ manufacturer) +
opts(legend.position = "none")

last_plot() +
facet_grid(. ~ manufacturer, scales = "free_x", space = "free")

base + aes(x = manufacturer)

In summary, the choice between faceting and dodging depends on the relationship between
the two variables:

• Completely crossed: faceting and dodging are basically equivalent.

• Almost crossed: faceting with shared scales ensures that all combinations are visible,
even if empty. This is particularly useful if missing combinations are non-structural
missings.

• Nested: faceting with free scales and space allocates just enough space for each higher
level group, and labels each item individually.

7.2.7. Continuous variables

You can facet by continuous variables, but you will need to convert them into discrete
categories first. There are three ways to do this:

• Divide the data into n bins each of the same length: cut_interval(x, n = 10) to
specify the number of bins, or cut_interval(x, length = 1) to specify the length
of each interval. Specifying the number of bins is easy, but may produce ranges that
are not “nice” numbers.

• Divide the data into n bins each containing (approximately) the same number of
points: cut_number(x, n = 10). This makes it easier to compare facets (they will
all have the same number of points in), but you need to note that the range of each
bin is different.

The following code demonstrates each of the three possibilities, with the results shown in
Figure 7.9.

mpg2$disp_ww <- cut_interval(mpg2$displ, length = 1)
mpg2$disp_wn <- cut_interval(mpg2$displ, n = 6)
mpg2$disp_nn <- cut_number(mpg2$displ, n = 6)

plot <- qplot(cty, hwy, data = mpg2) + labs(x = NULL, y = NULL)
plot + facet_wrap(~ disp_ww, nrow = 1)
plot + facet_wrap(~ disp_wn, nrow = 1)
plot + facet_wrap(~ disp_nn, nrow = 1)

February 24, 2009 123

7.2. Faceting Positioning

model

co
un

t

0

2

4

6

8

a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat

audi jeep volkswagen

model

co
un

t

0

2

4

6

8

a4 a4 quattro a6 quattro grand cherokee 4wd gti jetta new beetle passat

audi jeep volkswagen

manufacturer

co
un

t

0

2

4

6

8

audi jeep volkswagen

model

a4

a4 quattro

a6 quattro

grand cherokee 4wd

gti

jetta

new beetle

passat

Figure 7.8.: For nested data, there is a clear advantage to faceting (top and middle) compared to
dodging (bottom), because it is possible to carefully control and label the facets. For
this example, the top plot is not useful, but it will be useful in situations where the
data is almost crossed, i.e. where a single combination is missing.

124 February 24, 2009

7.3. Coordinate systems Positioning

15
20
25
30
35
40

[1,2]

● ●
●●

●●
●●

●●●
●
●

●
●●

●
●
●●●

●
●

●
●

●

●
●

●●

●

●
●

●●

●
●

●
●

●●● ●

10 15 20 25 30 35

(2,3]

● ●● ●●
●

●

●●
●●

●●

●●
●●●
●

●
●

●●

●●●●
●

●●
●

●●●●●
●

●
●

●●

●
●

●●

●● ●
●
●●

●●

●●
●
●●●

● ●

10 15 20 25 30 35

(3,4]

●
●● ●●
●

●

●●
●●

●

●●
●●

●●●●●●
●

●
●

●

●●

●
●

●

●●●

●●
●

●●●●

●
●
●

●●

●
●●
●

●

10 15 20 25 30 35

(4,5]

●

●●

●

●

●

●●

●

●●●

●

●
●●●●●●●

●

●●●
●

●
●●

●

10 15 20 25 30 35

(5,6]

●

●●
●
●●

●
●●●

●
●●

●●●

●

●

10 15 20 25 30 35

(6,7]

●
●

10 15 20 25 30 35

15
20
25
30
35
40

[1.6,2.42]

● ●
●●

●●
●●●

●

●

●●●
●
●

●
●●

●
●●

●●

●
●●●

●
● ●●

●
●

●●

●
●
●● ●

●
●

●
●

●
●

●●

●

●
●

●●

●
●

●
●

●●● ●

10 15 20 25 30 35

(2.42,3.23]

● ●●● ●●●● ●●
●
●●

●●●
●

●●

●●●●●
●

●●
●
●●●
●

●
●

●●

●●●●

●●
●
●●●

● ●

10 15 20 25 30 35

(3.23,4.05]

●
●

●●
●●

●

●●
●●

●●●●●●
●

●
●

●

●●

●
●

●

●●●

●●
●

●●●

●
●
●

●●

●
●●
●

●

10 15 20 25 30 35

(4.05,4.87]

●

●●

●

●

●

●●

●

●●●

●

●
●●●●●●

●

●●●
●

●
●

●

10 15 20 25 30 35

(4.87,5.68]

●

●
●
●●●●

●
●

●●●

●

10 15 20 25 30 35

(5.68,6.5]

●
●●

●
●

●
●

●

●

10 15 20 25 30 35

15
20
25
30
35
40

[1.6,2]

● ●
●●

●●
●●

●●●
●
●

●
●●

●
●
●●●

●
●

●
●

●

●
●

●●

●

●
●

●●

●
●

●
●

●●● ●

10 15 20 25 30 35

(2,2.5]

●
●

●
●●

●●

●●
●

●

●●

●●
●

●●
●

●●●●●
●

●
●
●
●

●●

●
●
●●

10 15 20 25 30 35

(2.5,3]

● ●● ●● ●●●●
●

●●

●●

●●●●

●●
●
●●●

● ●

10 15 20 25 30 35

(3,3.8]

●
●● ●●
●

●

●●
●●

●

●●
●

●●

●

●

●●●

●●

●●●●

●
●

●●

●
●

●

10 15 20 25 30 35

(3.8,4.7]

●●

●●
●●

●

●●

●

●●

●

●●●

●

●
●

●
●●
●●●●●
●

●

●

●

●
●●

●
●

●●● ●
●

●
●
●

10 15 20 25 30 35

(4.7,6.5]

●

●●
●●

●●
●

●●●
●

●
●

●
●●

●
●●

●

●

10 15 20 25 30 35

Figure 7.9.: Three ways of breaking a continuous variable into discrete bins. From top to bottom:
bins of length one, six bins of equal length, six bins containing equal numbers of points.

Note that the faceting formula only works with variables in the data set (not functions of
the variables), so you will also need to create a new variable containing the discretised data.

7.3. Coordinate systems

Coordinate systems tie together the two position scales to produce a 2d location. Currently,
ggplot2 comes with six different coordinate systems, listed in Table 7.1. All these coordinate
systems are two dimensional, although one day I hope to add 3d graphics too. As with
the other components in ggplot2, you generate the R name by joining coord_ and the
name of the coordinate system. Most plots use the default Cartesian coordinate system,
coord_cartesian(), where the 2d position of an element is given by the combination of
the x and y positions.

Coordinate systems have two main jobs:

• Combine the two position aesthetics to produce a 2d position on the plot. The
position aesthetics are called x and y, but they might be better called position 1 and
2 because their meaning depends on the coordinate system used. For example, with
the polar coordinate system they become angle and radius (or radius and angle), and
with maps they become latitude and longitude.

February 24, 2009 125

7.3. Coordinate systems Positioning

Name Description

cartesian Cartesian coordinates
equal Equal scale Cartesian coordinates
flip Flipped Cartesian coordinates
trans Transformed Cartesian coordinate system

map Map projections
polar Polar coordinates

Table 7.1.: Coordinate systems available in ggplot. coord_equal, coord_flip and coord_trans
are all basically Cartesian in nature (i.e. the the dimensions combine orthogonally), while
coord_map and coord_polar are more complex.

• In coordination with the faceter, coordinate systems draw axes and panel backgrounds.
While the scales control the values that appear on the axes, and how they map from
data to position, it is the coordinate system which actually draws them. This is
because their appearance depends on the coordinate system: an angle axis looks quite
different to an x axis.

7.3.1. Transformation

Unlike transforming the data or transforming the scales, transformations carried out by the
coordinate system change the appearance of the geoms: in polar coordinates a rectangle
becomes a slice of a doughnut; in a map projection, the shortest path between two points
will no longer be a straight line. Figure 7.10 illustrate what happens to a line and a rectangle
in a few different coordinate systems.

This transformation takes part in two steps. Firstly, the parameterisation of each geom
is changed to be purely location based, rather than location and dimension based. For
example, a bar can be represented as an x position (a location), a height and a width (two
dimensions). But how do we interpret height and width in a non-Cartesian coordinate
system, where a rectangle may not have constant height and width? We solve the problem
by using a purely location based representation, the location of the four corners of the
rectangle, and then transforming these locations: we have converted a rectangle to a
polygon. By doing this, we effectively convert all geoms to a combination of points, lines
and polygons.

With all geoms in this consistent location based representation, they next step is to
transform each location into the new coordinate system. It is easy to transforming points,
because a point is still a point no matter what coordinate system you are in, but lines and
polygons are harder, because a straight line may no longer be straight in the new coordinate
system. To make the problem tractable we assume that all coordinate transformations are
smooth, in the sense that all very short lines will still be very short straight lines in the new
coordinate system. With this assumption in hand, we can transform lines and polygons by
breaking them up in to many small line segments and transforming each segment. This

126 February 24, 2009

7.3. Coordinate systems Positioning

x

y
20

40

60

80

100

50 100 150 200
x

y 50

100

150

200

20
40
60
80

100

x

y

20

4060

80

100

50

100

150

200

y

x

50

100

150

200

20 40 60 80 100
x

y

20

40
60
80

100

50 100 150 200
x

y

−50

0

50

100

150

0 50 100 150 200

Figure 7.10.: A set of examples illustrating what a line and rectangle look like when displayed in a
variety of coordinate systems. From top-left to bottom-right: Cartesian, polar with x
position mapped to angle, polar with y position mapped to angle, flipped, transformed
with log in y direction, and equal scales.

process is called munching. Figure 7.11 illustrates this procedure. We start with a line
parameterised by its two ends points, then break it into multiple line segments, each with
two end points. Those points are then translated into the new coordinate system, and
connected up. In the example, the number of line segments is too small, so you can see
more easily how it works. For practical use, we use many more segments so that the result
looks smooth.

7.3.2. Statistics

To be technically correct, the actual statistical method used by a stat should depend on
the coordinate system. For example, a smoother in polar coordinates should use circular
regression, and in 3d should return a 2d surface rather than a 1d curve. However, many
statistical operations have not been derived for non-Cartesian coordinates and ggplot2
falls back to Cartesian coordinates for calculation, which, while not strictly correct, will
normally be a fairly close approximation.

7.3.3. Cartesian coordinate systems

The four Cartesian based coordinate systems, coord_cartesian, coord_equal, coord_flip
and coord_trans share a number of common features. They are still essentially Cartesian
because the x and y positions map orthogonally to x and y positions on the plot.

Setting limits. coord_cartesian has arguments xlim and ylim. If you think back to
the scales chapter, you might wonder why we need these. Doesn’t the limits argument of

February 24, 2009 127

7.3. Coordinate systems Positioning

r

θθ

●

●

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
r

θθ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
r

θθ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

x == rsin((θθ))

x
==

rc
os

((θθ
))

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−0.6

−0.4

−0.2

0.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x == rsin((θθ))

x
==

rc
os

((θθ
))

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−0.6

−0.4

−0.2

0.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x == rsin((θθ))

x
==

rc
os

((θθ
))

●●

−0.6

−0.4

−0.2

0.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

Figure 7.11.: How coordinate transformations work: converting a line in Cartesian coordinates to
a line in polar coordinates. The original x position is converted to radius, and the y
position to angle.

the scales already allow use to control what appears on the plot? The key difference is
how the limits work: when setting scale limits, any data outside the limits is thrown away;
but when setting coordinate system limits we still use all the data, but we only display a
small region of the plot. Setting coordinate system limits is like looking at the plot under a
magnifying glass. Figures 7.12 and 7.13 show an example of this.

(p <- qplot(disp, wt, data=mtcars) + geom_smooth())
p + scale_x_continuous(limits = c(325, 500))
p + coord_cartesian(xlim = c(325, 500))

(d <- ggplot(diamonds, aes(carat, price)) +
stat_bin2d(bins = 25, colour="grey70") + opts(legend.position = "none"))

d + scale_x_continuous(limits = c(0, 2))
d + coord_cartesian(xlim = c(0, 2))

Flipping the axes. Most statistics and geoms assume you are interested in y values
conditional on x values (e.g. smooth, summary, boxplot, line): in most statistical models,
the x values are assumed to be measured without error. If you are interested in x condition

128 February 24, 2009

7.3. Coordinate systems Positioning

disp

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

100 200 300 400
disp

w
t

●
●

●

●
●

● ●

●

2

3

4

5

350 400 450 500
disp

w
t

●
●

●

●
●

●
●

● ●

●

●

2

3

4

5

400

Figure 7.12.: Setting limits on the coordinate system, vs setting limits on the scales. Left, entire
dataset; middle, x scale limits set to (325, 500); right, coordinate system x limits set
to (325, 500). Scaling the coordinate limits performs a visual zoom, while setting the
scale limits subsets the data and refits the smooth.

carat

pr
ic

e

0

5000

10000

15000

1 2 3 4 5
carat

pr
ic

e

0

5000

10000

15000

0.0 0.5 1.0 1.5 2.0
carat

pr
ic

e

0

5000

10000

15000

1 2

Figure 7.13.: Setting limits on the coordinate system, vs setting limits on the scales. Left, entire
dataset; middle, x scale limits set to (0, 2); right, coordinate x limits set to (0, 2).
Compare the size of the bins: when you set the scale limits, there is the same number
of bins but they each cover a smaller region of the data; when you set the coordinate
limits, there are fewer bins and they cover the same amount of data as the original.

on y (or you just want to rotate the plot 90 degrees), you can use coord_flip to exchange
the x and y axes. Compare this with just exchanging the variables mapped to x and y, as
shown in Figure 7.14.

qplot(displ, cty, data = mpg) + geom_smooth()
qplot(cty, displ, data = mpg) + geom_smooth()
qplot(cty, displ, data = mpg) + geom_smooth() + coord_flip()

Transformations. Like limits, we can also transform the data in two places: at the scale
level or at the coordinate system level. coord_trans has arguments x and y which should
be strings naming the transformer (Table 6.2) to use for that axis. Transforming at the
scale level occurs before statistics are computed and does not change the shape of the geom.

February 24, 2009 129

7.3. Coordinate systems Positioning

displ

ct
y

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

10

15

20

25

30

35

2 3 4 5 6 7
cty

di
sp

l

● ●

● ●

● ●

●

●●

●●

● ●

●●

●

●

●

●● ●

●

●

●●

●●

●

●●

●

●

● ●

●

●
●

●

●

●● ●●●

●● ●

●

●●

● ●

●●●

●●

●

●● ●

●

●

●

●● ●●●●

●●

●

●

●

● ●

● ●●●

●

●

●●

●●●

● ●

●●

●●

●●●●

●

●● ●● ●

●●●

●

●● ●●
●●

●

●● ●●

●● ●

●

●

●

●● ●

●

●

●

●

●

●

●● ●

●●

●

●

●●
●●

●●

● ●

●

● ●

●

●

●

● ● ●

●

●● ●● ●●

●●

●● ●●● ●

● ●

●●

●

●

●●

●●

●●

●

●●

● ●

●●

●

●● ● ●●

●

●

● ● ●

●●

● ●

●● ● ●

●

●
●● ●●

●●

● ●

●●
●●

●●

●●

● ●

● ●

●

2

3

4

5

6

7

10 15 20 25 30 35
displ

ct
y

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

10

15

20

25

30

35

2 3 4 5 6 7

Figure 7.14.: Left, a scatterplot and smoother with engine displacement on x axis and city mpg on
y axis. Middle, exchanging cty and displ rotates the plot 90 degrees, but the smooth is
fit to the rotated data. Left, using coord_flip fits the smooth to the original data,
and then rotates the output, this is a smooth curve of x conditional on y.

Transforming at the coordinate system level occurs after the statistics have been computed,
and does affect the shape of the geom. Using both together allows us to model the data on
a transformed scale and then back transform it for interpretation: a common pattern in
analysis. An example of this is shown in Figure 7.15.

qplot(carat, price, data = diamonds, log = "xy") +
geom_smooth(method = "lm")

last_plot() + coord_trans(x = "pow10", y = "pow10")

Equal scales. coord_equal ensures that the x and y axes have equal scales: i.e. 1 cm
along the x axis represents the same range of data as 1 cm along the y axis. By default
it will assume that you want a one-to-one ratio, but you can change this with the ratio
parameter. The aspect ratio will also be set to ensure that the mapping is maintained
regardless of the shape of the output device. See the documentation of coord_equal() for
more details.

7.3.4. Non-Cartesian coordinate systems

There are two non-Cartesian coordinates systems: polar coordinates and map projections.
These coordinate systems are still somewhat experimental, and there are fewer standards
for the layout of axes, so you may need to tweak them to meet your needs using the tools
in Chapter C.

Polar coordinates. Using polar coordinates gives rise to pie charts and wind roses (from
bar geoms), and radar charts (from line geoms). Polar coordinates are often used for circular
data, particularly time or direction, but the perceptual properties are not good because
the angle is harder perceive for small radii than it is for large radii. The theta argument
determines which position variable is mapped to angle (by default, x) and which to radius.

130 February 24, 2009

7.3. Coordinate systems Positioning

Figure 7.15.: (Left) a scatterplot of carat vs price on log base 10 transformed scales. A linear
regression summarises the trend: log(y) = a + b ∗ log(x). (Right) The previous plot
backtransformed (with coord trans(x = "pow10", y = "pow10")) on to the original
scales. The linear trend line now becomes geometric, y = k ∗ cx, and highlights the
lack of expensive diamonds for larger carats.

Figure 7.16 shows how by changing the coordinate system we can turn a bar chart into a
pie chart or a bullseye chart. The documentation includes other examples of polar charts.

Stacked barchart
(pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +

geom_bar(width = 1))
Pie chart
pie + coord_polar(theta = "y")

The bullseye chart
pie + coord_polar()

Map projections. These are still rather experimental, and rely on the mapproj package
(for R by Ray Brownrigg and Minka., 2005). coord_map() takes the same arguments as
mapproj() for controlling the projection. See the documentation of coord_map() for more
examples, and consult a cartographer for the most appropriate projection for your data.

February 24, 2009 131

7.3. Coordinate systems Positioning

factor(1)

co
un

t

0

5

10

15

20

25

30

1

factor(cyl)

4

6

8

factor(1)

co
un

t

0

5

10

15

20

25

30

1
factor(cyl)

4

6

8

factor(1)

co
un

t

0
5

10
15
20
25
30

factor(cyl)

4

6

8

Figure 7.16.: (Left) A stacked barchart. (Middle) The stacked barchart in polar coordi-
nates, with x position mapped to radius and y position mapped to angle,
coord_polar(theta = "y")). This is more commonly known as a pie chart.
(Right) The stacked barchart in polar coordinates with the opposite mapping,
coord_polar(theta = "x"). This is sometimes called a bullseye chart.

132 February 24, 2009

Chapter 8

Polishing your plots for publication

In this chapter you will learn how to prepare polished plots for publication. Most of this
chapter focusses on the theming capability of ggplot2 which allows you to control many
non-data aspects of plot appearance, but you will also learn how to adjust geom, stat and
scale defaults, and the best way to save plots for inclusion into other software packages.
Together with the next chapter, manipulating plot rendering with grid, you will learn how
to control every visual aspect of the plot to get exactly the appearance that you want.

The visual appearance of the plot is determined by both data and non-data related
components. Section 8.1 introduces the theme system which controls all aspects of non-data
display. By now you should be familiar with the many ways that you can alter the data
related components of the plot—layers and scales—to visualise your data and change the
appearance of the plot. In Section 8.2 you will learn how you can change the defaults for
these, so that you do not need to repeat the same parameters again and again.

Finally, Section 8.3 concludes the chapter with a discussion about how to get your
graphics out of R and into LATEX, Word or other presentation or word-processing software.

8.1. Themes

The appearance of non-data elements of the plot are controlled by the theme system. They
do not affect how the data is rendered by geoms, or how it is transformed by scales. Themes
don’t change the perceptual properties of the plot, but they do help you make the plot
aesthetically pleasing or match existing style guides. Themes give you control over the
things like the fonts in all parts of the plot: the title, axis labels, axis tick labels, strips,
legend labels and legend key labels; and the colour of ticks, grid lines, and backgrounds
(panel, plot, strip and legend).

This separation of control into data and non-data parts is quite different to base and
lattice graphics. In base and lattice graphics, most functions take a large number of
arguments that specify both data and non-data appearance, which makes the functions
complicated and hard to learn. ggplot2 takes a different approach: when creating the
plot you determine how the data is displayed, then after it has been created you can edit
every detail of the rendering, using the theming system. Some of the effects of changing
the theme of a plot are shown in Figure 8.1. The two plot show the two themes included
by default in ggplot2.

133

8.1. Themes Polishing your plots for publication

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
ratingco

un
t

0

5000

10000

15000

2 4 6 8 10

Figure 8.1.: The effect of changing themes. Left the default grey theme with grey background and
white gridlines. Right the alternative black and white theme with white background
and grey gridlines. Notice how the bars, data elements, are identical in both plots.

Like many other areas of ggplot2, themes can be controlled on multiple levels from the
coarse to fine. You can:

• Use a built-in theme, as described in Section 8.1.1. This affects every element of the
plot in a visually consistent manner. The default theme uses a grey panel background
with white gridlines, while the alternative theme uses a white background with grey
gridlines.

• Modify a single element of a built-in theme, as described in Section 8.1.2. Each theme
is made up of multiple elements. The theme system comes with a number of built-in
element rendering functions with a limited set of parameters. By adjusting these
parameters you can control things like text size and colour, background and grid line
colours and text orientation. By combining multiple elements you can create your
own theme.

Generally each of these theme settings can be applied globally, to all plots, or locally to a
single plot. How to do this is described in each section.

8.1.1. Built-in themes

There are two built-in themes. The default, theme_gray(), uses a very light grey background
with white gridlines. This follows from the advice of Tufte (1990, 1997, 2001, 2006) and
Brewer (1994a); Carr (1994, 2002); Carr and Sun (1999). We can still see the gridlines to
aid in the judgement of position (Cleveland, 1993b), but they have little visual impact and
we can easily “tune” them out. The grey background gives the plot a similar colour (in a
typographical sense) to the remainder of the text, ensuring that the graphics fit in with
the flow of a text without jumping out with a bright white background. Finally, the grey
background creates a continuous field of colour which ensures that the plot is perceived as
a single visual entity.

The other built-in theme, theme_bw(), has a more traditional white background with
dark grey grid lines. Figure 8.1 shows some of the difference between these themes.

134 February 24, 2009

8.1. Themes Polishing your plots for publication

Both themes have a single parameter, base_size, which controls the base font size. The
base font size is the size that the axis titles use: the plot title is 20% bigger, and the tick
and strip labels are 20% smaller. If you want to control these sizes separately, you’ll need
to modify the individual elements as described in the following section.

You can apply themes in two ways:

• Globally, affecting all plots when they are drawn: theme_set(theme_grey()) or
theme_set(theme_bw()). theme_set() returns the previous theme so that you can
restore it later if you want.

• Locally, for an individual plot: qplot(...) + theme_grey(). A locally applied
theme will override the global default.

The following example shows a few of these combinations:

> hgram <- qplot(rating, data = movies, binwidth = 1)
>
> # Themes affect the plot when they are drawn,
> # not when they are created
> hgram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

> previous_theme <- theme_set(theme_bw())
> hgram

ratingco
un

t

0

5000

10000

15000

2 4 6 8 10

>
> # You can override the theme for a single plot by adding
> # the theme to the plot. Here we apply the original theme

February 24, 2009 135

8.1. Themes Polishing your plots for publication

> hgram + previous_theme

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

>
> # Permanently restore the original theme
> theme_set(previous_theme)

8.1.2. Theme elements and element functions

A theme is made up of multiple elements which control the appearance of a single item
on the plot, as listed in Table 8.1. There are three elements that have individual x and
y settings: axis.text, axis.title and strip.text. Having a different setting for the
horizontal and vertical elements allows you to control how text should appear in different
orientations. The appearance of each element controlled by an element function.

There are four basic types of built-in element functions: text, lines and segments,
rectangles and blank. Each element function has a set of parameters that control the
appearance as described below:

• theme_text() draws labels and headings. You can control the font family, face,
colour, size, hjust, vjust, angle, and lineheight.

The following code shows the affect of changing these parameters on the plot title.
The results are shown in Figure 8.2. Changing the angle is probably more useful for
tick labels. When changing the angle you will probably also need to change hjust to
0 or 1.

hgramt <- hgram +
opts(title = "This is a histogram")

hgramt
hgramt + opts(plot.title = theme_text(size = 20))
hgramt + opts(plot.title = theme_text(size = 20, colour = "red"))
hgramt + opts(plot.title = theme_text(size = 20, hjust = 0))
hgramt + opts(plot.title = theme_text(size = 20, face = "bold"))
hgramt + opts(plot.title = theme_text(size = 20, angle = 180))

• theme_line() and theme_segment() draw lines and segments with the same options
but in a slightly different way. Make sure you match the appropriate type or you

136 February 24, 2009

8.1. Themes Polishing your plots for publication

Theme element Type Description

axis.line segment line along axis
axis.text.x text x axis label
axis.text.y text y axis label
axis.ticks segment axis tick marks
axis.ticks.y segment axis tick marks
axis.title.x text horizontal tick labels
axis.title.y text vertical tick labels

legend.background rect background of legend
legend.key rect background underneath legend keys
legend.text text legend labels
legend.title text legend name

panel.background rect background of panel
panel.border rect border around panel
panel.grid.major line major grid lines
panel.grid.minor line minor grid lines
plot.background rect background of the entire plot
plot.title text plot title

strip.background rect background of facet labels
strip.text.x text text for horizontal strips
strip.text.y text text for vertical strips

Table 8.1.: Theme elements

will get strange grid errors. For these element functions you can control the colour,
size, and linetype. These options are illustrated with the code and the results are
shown in Figure 8.4.

hgram + opts(panel.grid.major = theme_line(colour = "red"))
hgram + opts(panel.grid.major = theme_line(size = 2))
hgram + opts(panel.grid.major = theme_line(linetype = "dotted"))
hgram + opts(axis.line = theme_segment())
hgram + opts(axis.line = theme_segment(colour = "red"))
hgram + opts(axis.line = theme_segment(size = 0.5, linetype = "dashed"))

• theme_rect() draws rectangles, mostly used for backgrounds, you can control the
fill colour and border colour, size, and linetype. Again, examples

hgram + opts(plot.background = theme_rect(fill = "grey80", colour = NA))
hgram + opts(plot.background = theme_rect(size = 2))
hgram + opts(plot.background = theme_rect(colour = "red"))

February 24, 2009 137

8.1. Themes Polishing your plots for publication

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

Figure 8.2.: Changing the appearance of the plot title.

hgram + opts(panel.background = theme_rect())
hgram + opts(panel.background = theme_rect(colour = NA))
hgram + opts(panel.background = theme_rect(linetype = "dotted"))

• theme_blank() draws nothing. Use this element type if you don’t want anything
drawn, and no space allocated for that element. The following example uses theme_blank()
to progressively suppress the appearance of elements we’re not interested in. The
results are shown in Figure 8.5. Notice how the plot automatically reclaims the space
previously used by these elements: if you don’t want this to happen (perhaps because
they need to line up with other plots on the page), use colour = NA, fill = NA as
parameter to create invisible elements that still take up space.

hgramt
last_plot() + opts(panel.grid.minor = theme_blank())
last_plot() + opts(panel.grid.major = theme_blank())
last_plot() + opts(panel.background = theme_blank())
last_plot() +

opts(axis.title.x = theme_blank(), axis.title.y = theme_blank())
last_plot() + opts(axis.line = theme_segment())

138 February 24, 2009

8.1. Themes Polishing your plots for publication

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

Figure 8.3.: Changing the appearance of lines and segments in the plot.

You can see the settings for the current theme with theme_get(). The output isn’t
included here because it takes up several pages. You can modify the elements locally for a
single plot with opts() (as seen above), or globally for all future plots with theme_update().
Figure 8.6 shows the results of pulling together multiple theme settings with the following
code.

old_theme <- theme_update(
plot.background = theme_rect(fill = "#3366FF"),
panel.background = theme_rect(fill = "#003DF5"),
axis.text.x = theme_text(colour = "#CCFF33"),
axis.text.y = theme_text(colour = "#CCFF33", hjust = 1),
axis.title.x = theme_text(colour = "#CCFF33", face = "bold"),
axis.title.y = theme_text(colour = "#CCFF33", face = "bold", angle = 90)

)
qplot(cut, data = diamonds, geom="bar")
qplot(cty, hwy, data = mpg)
theme_set(old_theme)

There is some duplication in this example because we have to specify the x and y elements
separately. This is a necessary evil so that you can have total control over the appearance
of the elements. If you are writing your own theme, you would probably want to write a
function to minimise this repetition.

February 24, 2009 139

8.2. Customising scales and geoms Polishing your plots for publication

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

Figure 8.4.: Changing the appearance of the plot and panel background

8.2. Customising scales and geoms

When producing a consistent theme, you may also want to tune some of the scale and geom
defaults. Rather than having to manually specify the changes every time you add the scale
or geom, you can use the following functions to alter the default settings for scales and
geoms.

8.2.1. Scales

To change the default scale associated with an aesthetic, use set_default_scale(). (See
Table 6.1 for the defaults.) This function takes three arguments: the name of the aesthetic,
the type of variable (discrete or continuous) and the name of the scale to use as the default.
Further arguments override the default parameters of the scale. The following example sets
up colour and fill scales for black and white printing:

set_default_scale("colour", "discrete", "grey")
set_default_scale("fill", "discrete", "grey")
set_default_scale("colour", "continuous", "gradient",
low = "white", high = "black")

set_default_scale("fill", "continuous", "gradient",
low = "white", high = "black")

140 February 24, 2009

8.2. Customising scales and geoms Polishing your plots for publication

This is a histogram

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
rating

co
un

t

0

5000

10000

15000

2 4 6 8 10

rating

co
un

t

0

5000

10000

15000

2 4 6 8 10
0

5000

10000

15000

2 4 6 8 10

0

5000

10000

15000

2 4 6 8 10

Figure 8.5.: Progressively removing non-data elements from a plot with theme_blank()

cut

co
un

t

0

5000

10000

15000

20000

Ideal Premium Good Very Good Fair
cty

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

Figure 8.6.: A barchart and scatterplot created after a new visually consistent theme has been
applied.

February 24, 2009 141

8.2. Customising scales and geoms Polishing your plots for publication

Aesthetic Default value Geoms

colour #3366FF contour, density2d, quantile, smooth
colour NA area, bar, histogram, polygon, rect, tile
colour black abline, crossbar, density, errorbar, hline, line,

linerange, path, pointrange, rug, segment, step, text,
vline

colour darkblue jitter, point
colour grey60 boxplot, ribbon
fill NA crossbar, density, jitter, point, pointrange
fill grey20 area, bar, histogram, polygon, rect, ribbon, tile
linetype 1 abline, area, bar, contour, crossbar, density, density2d,

errorbar, histogram, hline, line, linerange, path,
pointrange, polygon, quantile, rect, ribbon, rug,
segment, smooth, step, tile, vline

shape 19 jitter, point, pointrange
size 0.5 abline, area, bar, boxplot, contour, crossbar, density,

density2d, errorbar, histogram, hline, line, linerange,
path, pointrange, polygon, quantile, rect, ribbon, rug,
segment, smooth, step, vline

size 2 jitter, point
weight 1 bar, boxplot, contour, density, density2d, histogram,

quantile, smooth

Table 8.2.: Default aesthetic values for geoms. See Appendix B for how the values are interpreted
by R.

8.2.2. Geoms and stats

You can customise geoms and stats in a similar way with update_geom_defaults() and
update_stat_defaults(). Unlike the other theme settings these will only affect plots
created after the setting has been changed, not all plots drawn after the setting has been
changed. The following example demonstrates changing the default point colour and
changing the default histogram to a density (“true”) histogram.

update_geom_defaults("point", aes(colour = "darkblue"))
qplot(mpg, wt, data=mtcars)
update_stat_defaults("bin", aes(y = ..density..))
qplot(rating, data = movies, geom = "histogram", binwidth = 1)

Table 8.2 lists all of the common aesthetic defaults. If you change the defaults for one
geom, it’s a good idea to change all the defaults for all the other geoms that you commonly
use so that your plots look consistent. If you are unsure on what makes for a valid colour,
line type, shape or size, Appendix B gives the details.

142 February 24, 2009

8.3. Saving your output Polishing your plots for publication

8.3. Saving your output

You have two basic choices of output: raster or vector. Vector graphics are procedural.
This means that they are essentially “infinitely” zoomable; there is no loss of detail.
Raster graphics are stored as an array of pixels and have a fixed optimal viewing size.
Figure 8.7 illustrates the basic differences for a basic circle. A good description is available
at http://tinyurl.com/rstrvctr.

Generally, vector output is more desirable, but for complex graphics containing thousands
of graphical objects it can be slow to render. In this case, it may be better to switch to
raster output. For printed use, a high-resolution (e.g. 600 dpi) graphic may be an acceptable
compromise, but may be large.

Figure 8.7.: The schematic difference between raster, left, and vector, right, graphics.

To save your output, you can use the typical R way with disk-based graphics devices,
which works for all packages, or a special function from ggplot2 that saves the current
plot: ggsave(). ggsave() is optimised for interactive use and has the following important
arguments:

• The path specifies the path where the image should be saved. The file extension will
be used to automatically select the correct graphics device.

• Three arguments control output size. If left blank, the size of the current on-screen
graphics device will be used. width and height can be used to specify the absolute
size, or scale to specify the size of the plot relative to the on-screen display. When
creating the final versions of graphics it’s a good idea to set width and height so
you know exactly what size output you’re going to get.

• For raster graphics, the dpi argument controls the resolution of the plot. It defaults
to 300, which is appropriate for most printers, but you may want to use 600 for
particularly high-resolution output, or 72 for on-screen (e.g. web) display.

The following code shows these two methods. If you want to save multiple plots to a
single file, you will need to use the open a disk based graphics device, print the plots and
then close it.

qplot(mpg, wt, data = mtcars)
ggsave(file = "output.pdf")

February 24, 2009 143

http://tinyurl.com/rstrvctr

8.4. Multiple plots on the same page Polishing your plots for publication

Software Recommended graphics device

Illustrator svg
latex ps
MS Office png (600 dpi)
Open Office png (600 dpi)
pdflatex pdf, png (600 dpi)
web png (72 dpi)

Table 8.3.: Recommended graphic output for different purposes.

pdf(filename = "output.pdf", width = 6, height = 6)
If inside a script, you will need to explicitly print() plots
qplot(mpg, wt, data = mtcars)
qplot(wt, mpg, data = mtcars)
dev.off()

Table 8.3 lists recommended graphic formats for various tasks. R output generally works
best as part of a linux development tool chain: using png or pdf output in LATEX documents.
With Microsoft Office it is easiest to use a high-resolution (dpi = 600) png file. You can
use vector output, but neither Windows meta files nor postscript supports transparency,
and while postscript prints fine, it is only shown on screen if you add a preview in another
software package. Transparency is used to show confidence intervals with the points showing
through. If you copy and paste a graph into Word, and see that the confidence interval
bands have vanished, that is the cause The same advice holds for OpenOffice.

If you are using LATEX, I recommend including \DeclareGraphicsExtensions{.png, .pdf}
in the preamble. Then you don’t need to specify the file extension in includegraphics
commands, but LATEX will pick png files in preference to pdf. I choose this order because
you can produce all your files in pdf, and then go back and re-render any big ones as png.
Another useful command is \graphicspath{{include/}} which specifies a path in which
to look for graphics, allowing you to keep graphics in a separate directory to the text.

8.4. Multiple plots on the same page

If you want to arrange multiple plots on a single page, you’ll need to learn a little bit of
grid, the underlying graphics system used by ggplot2. The key concept you’ll need to
learn about is a viewport: a rectangular subregion of the display. The default viewport
takes up the entire plotting region, and by customising the viewport you can arrange a set
of plots in just about any way you can imagine.

To begin, lets create three plots that we can experiment with. When arranging multiple
plots on a page, it will usually be easiest to create them, assign them to variables and then
plot them. This makes it easier to experiment with plot placement independent on content.
The plots created by the code below are shown in Figure 8.10.

(a <- qplot(date, unemploy, data = economics, geom = "line"))

144 February 24, 2009

8.4. Multiple plots on the same page Polishing your plots for publication

(b <- qplot(uempmed, unemploy, data = economics) + geom_smooth(se = F))
(c <- qplot(uempmed, unemploy, data = economics, geom="path"))

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007
uempmed

un
em

pl
oy

●●●
●●●

●●●
●●

●●● ●●●●● ●●●●●●●
●●
●●

●
●
●

● ●
●● ●

●
●

●
● ●●●●●● ●●● ●

●●
● ●●●●● ●●●●

● ●
●● ●●

●●●● ●
●

●●
●●●●●

●
●●

●●

●

●

● ●

●
●

●
●●

●●● ●●
●

● ●●
●

●
●●
●●

●●
●

●
●
●

●
●

●●●●●

●●
●●

●● ●
●
●●
●

●
● ●●●●
●●

●

●
●●● ●

● ●●

●

● ●
● ●

●●●
●

●●● ●
●●

●
●

●

●

●
●

●
●

●

● ●
●

●●

●
●

●●

●●
●

● ●●

●●

●

●

●
●

●
●●●

●
●
●●
●●

●
●● ●●●●

● ●
●●●

●●

●

●●●●
●

●
●

●●●
●●●●
●●

●
●●

● ●
●●●●●

●
●

● ●
●

●●●●
●

●
●
●●
●●●●●

●●●●●
● ●

●

●
●

●●
●

●●
●

●
●

● ●● ●● ● ●
● ●

●●●

●
●

●●●

●
● ●

●
●●●●●

●
●●●
●●

● ●●
●

●●●●
● ●

●
●

●
●●

●
●● ●●●

●● ●●● ● ●●

●
●

●●
●

●●● ●● ●
●
●

●● ●
●

●
●●●●

●●
●●●●●

●●●
●

●
●

●
●●

●●
●●●●
●●
●

●● ● ●
● ●●●

● ● ●
● ●
● ●

● ●

●
●

●●●●
●

● ●●● ●●
● ●●●●

●●
●

●●●
●

●
●●

●
●

● ● ●●
● ●●●●
●

●
●●●
●●●

●
●●

●
●

●
●●●●

●●
●

●●●
●
●

●●

4000

6000

8000

10000

12000

4 6 8 10 12
uempmed

un
em

pl
oy

4000

6000

8000

10000

12000

4 6 8 10 12

Figure 8.8.: Three simple graphics we’ll use to experiment with sophisticated plot layouts.

8.4.1. Subplots

One common layout is to have a small subplot embedded drawn on top of the main plot.
To achieve this affect, we first plot the main plot, and then draw the subplot in a smaller
viewport. Viewports are created with (surprise!) the viewport() function, with parameters
x, y, width and height to control the size and position of the viewport. By default, the
measurements are given in “npc” units, which range from 0 to 1. The location (0, 0) is
the bottom-left, (1, 1) the top-right and (0.5, 0.5) the centre of viewport. If these relative
units don’t work for your needs, you can also use absolute units, like unit(2, "cm") or
unit(1, "inch").

A viewport that takes up the entire plot device
vp1 <- viewport(width = 1, height = 1, x = 0.5, y = 0.5)
vp1 <- viewport()

A viewport that takes up half the width and half the height, located
in the middle of the plot.
vp2 <- viewport(width = 0.5, height = 0.5, x = 0.5, y = 0.5)
vp2 <- viewport(width = 0.5, height = 0.5)

A viewport that is 2cm x 3cm located in the center
vp3 <- viewport(width = unit(2, "cm"), height = unit(3, "cm"))

By default, the x and y parameters control the location of the centre of the viewport.
When positioning the plot in other locations, you may need to use the just parameter
to control which corner of the plot you are positioning. The following code gives some
examples.

February 24, 2009 145

8.4. Multiple plots on the same page Polishing your plots for publication

A viewport in the top-right
vp4 <- viewport(x = 1, y = 1, justification = c("top", "right"))
Bottom left
vp5 <- viewport(x = 0, y = 0, justificaiton = c("bottom", "right"))

To draw the plot in our new viewport, we use the vp argument of the ggplot print()
method. This method is normally called automatically whenever you evaluate something
on the command line, but because we want to customise the viewport, we need to call it
ourselves. The result of this is shown in Figure 8.9(a).

pdf("polishing-subplot-1.pdf", width = 4, height = 4)
subvp <- viewport(width = 0.4, height = 0.4, x = 0.75, y = 0.35)
b
print(c, vp = subvp)
dev.off()

This gives us what we want, but we need to make a few tweaks to the appearance: the
text should be smaller, we want to remove the axis labels and shrink the plot margins. The
result is shown in Figure 8.9(b).

csmall <- c +
theme_gray(9) +
labs(x = NULL, y = NULL) +
opts(plot.margin = unit(rep(0, 4), "lines"))

pdf("polishing-subplot-2.pdf", width = 4, height = 4)
b
print(csmall, vp = subvp)
dev.off()

Note we need to use pdf() (or png() etc) to save the plots to disk because ggsave()
only saves a single plot.

8.4.2. Rectangular grids

A more complicated scenario is when you want to arrange a number of plots in a rectangular
grid. Of course you could create a series of viewport and use what you’ve learned above,
but doing all the calculations by hand is cumbersome. A better approach is to use
grid.layout(), which sets up a regular grid of viewports with arbitrary heights and
widths. You still need to create each viewport, but instead of explicitly specifying the
position and size, you can specify the row and column of the layout.

The following example shows how this work. We first create the layout, here a 2× 2 grid,
then assign it to a viewport and push that viewport on to the plotting device. Now we are
ready to draw each plot into its own position on the grid. We create a small function to
save some typing, and then draw each plot in the desired place on the grid. You can supply
a vector of rows or columns to span a plot over multiple cells.

146 February 24, 2009

8.4. Multiple plots on the same page Polishing your plots for publication

uempmed

un
em

pl
oy

●●●
●●●

●●●
●●

●●● ●●●●● ●●●●●●●
●●
●●

●
●
●

● ●
●● ●

●
●

●
● ●●●●●● ●●● ●

●●
● ●●●●● ●●●●

● ●
●● ●●●●●● ●

●
●●

●●●●●
●

●●

●●

●

●

● ●

●
●

●
●●

●●● ●●
●

● ●●
●

●
●●
●●

●●
●

●
●
●

●
●

●●●●●

●●
●●

●● ●
●
●●
●●

● ●●●●
●●

●
● ●●● ●

● ●●

●

● ●
● ●

●●●
●

●●● ●
●●

●
●

●

●

●
●●

●
●

● ●
●

●●

●
●

●●

●●
●

● ●●

●●

●

●

●
●

●
●●●

●
●
●●
●●

●
●● ●●●●

● ●
●●●

●●

●

●●●●
●

●
●

●●●
●●●●
●●

●●●
● ●

●●●●●
●
●

● ●
●

●●●●
●

●
●
●●
●●●●●

●●●●●
● ●

●
●
●

●●
●

●●
●

●
●

● ●● ●● ● ●
● ●

●●●
●

●
●●●

●
● ●

●
●●●●●

●
●●●
●●

● ●●
●

●●●●
● ●

●
●

●
●●

●
●● ●●●

●● ●●● ● ●●
●
●

●●
●

●●● ●● ●
●
●

●● ●
●

●
●●●●

●●
●●●●●

●●●
●
●

●
●

●●
●●

●●●●
●●
●

●● ● ●
● ●●●

● ● ●● ●
● ●

● ●

●
●

●●●●
●

● ●●● ●●
● ●●●●

●●
●

●●●
●

●
●●

●
●

● ● ●●
● ●●●●
●

●
●●●
●●●

●
●●

●
●

●
●●●●

●●
●

●●●
●
●

●●

4000

6000

8000

10000

12000

4 6 8 10 12

uempmed

un
em

pl
oy

4000
6000
8000

10000
12000

4 6 8 1012

(a) Figure with subplot.

uempmed

un
em

pl
oy

●●●
●●●

●●●
●●

●●● ●●●●● ●●●●●●●
●●
●●

●
●
●

● ●
●● ●

●
●

●
● ●●●●●● ●●● ●

●●
● ●●●●● ●●●●

● ●
●● ●●●●●● ●

●
●●

●●●●●
●

●●

●●

●

●

● ●

●
●

●
●●

●●● ●●
●

● ●●
●

●
●●
●●

●●
●

●
●
●

●
●

●●●●●

●●
●●

●● ●
●
●●
●●

● ●●●●
●●

●
● ●●● ●

● ●●

●

● ●
● ●

●●●
●

●●● ●
●●

●
●

●

●

●
●●

●
●

● ●
●

●●

●
●

●●

●●
●

● ●●

●●

●

●

●
●

●
●●●

●
●
●●
●●

●
●● ●●●●

● ●
●●●

●●

●

●●●●
●

●
●

●●●
●●●●
●●

●●●
● ●

●●●●●
●
●

● ●
●

●●●●
●

●
●
●●
●●●●●

●●●●●
● ●

●
●
●

●●
●

●●
●

●
●

● ●● ●● ● ●
● ●

●●●
●

●
●●●

●
● ●

●
●●●●●

●
●●●
●●

● ●●
●

●●●●
● ●

●
●

●
●●

●
●● ●●●

●● ●●● ● ●●
●
●

●●
●

●●● ●● ●
●
●

●● ●
●

●
●●●●

●●
●●●●●

●●●
●
●

●
●

●●
●●

●●●●
●●
●

●● ● ●
● ●●●

● ● ●● ●
● ●

● ●

●
●

●●●●
●

● ●●● ●●
● ●●●●

●●
●

●●●
●

●
●●

●
●

● ● ●●
● ●●●●
●

●
●●●
●●●

●
●●

●
●

●
●●●●

●●
●

●●●
●
●

●●

4000

6000

8000

10000

12000

4 6 8 10 12

4000

6000

8000

10000

12000

4 6 8 10 12

(b) Subplot tweaked for better display.

Figure 8.9.

pdf("polishing-layout.pdf", width = 8, height = 6)
grid.newpage()
pushViewport(viewport(layout = grid.layout(2, 2)))

vplayout <- function(x, y)
viewport(layout.pos.row = x, layout.pos.col = y)

print(a, vp = vplayout(1, 1:2))
print(b, vp = vplayout(2, 1))
print(c, vp = vplayout(2, 2))
dev.off()

By default grid.layout() creates makes each cell the same size, but you can use the
widths and heights arguments to make them different sizes. See the documentation for
grid.layout() for more examples.

February 24, 2009 147

8.4. Multiple plots on the same page Polishing your plots for publication

date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

uempmed

un
em

pl
oy

●●●
●●● ●●● ●●

●●● ●●●●● ●●●●●●●
●● ●●

●
●●

● ●●● ●
●●

● ● ●●●●●● ●●● ●
●●● ●●●●● ●●●●

● ●
●● ●●●●●● ●

●
●● ●●●●●

● ●●
●●

●

●

● ●
●

●
●

●●
●●● ●●

●
● ●●
●

●●
●●●

●●
●●●

● ●
●

●●●●●
●●●●●● ●

●
●● ●●● ●●●●

●● ●
● ●●● ●

● ●●

●

● ●
● ●

●●●
●

●●● ●
●●

●●
●
●
●
●●

●●
● ●

●
●●

●
●

●●

●● ● ● ●●

●●
●
●

●●
●

●●●
●

●
●● ●●●●

● ●●●●● ●
●●●●●

●

●●●●●●● ●●●
●●●●
●●●●●● ●●●●●●

●●● ●
●

●●●●●
●●
●●
●●●●●

●●●●●
● ●●

●
●●●

●●●
●

●●
● ●● ●● ● ●

● ●●●●
●

●●●●
●● ●

●●●●●●●●●●
●● ● ●●●

●●●●
● ●

●●●●●

●
●● ●●● ●● ●●● ● ●●

●
●
●●●

●●● ●● ●
●● ●● ●

●●●●●●
●● ●●●●● ●●●●●

●
●●● ●●●●●●

●●
●

●● ● ●
● ●●●

● ● ●● ●
● ●

● ●

●
●

●●●●
●

● ●●● ●●
● ●●●●

●●
●

●●●●●
●●

●
●

● ● ●● ● ●●●●
●

●
●●●●●●

●●●
●
● ●●●●●

●●
●

●●● ●● ●●

4000

6000

8000

10000

12000

4 6 8 10 12
uempmed

un
em

pl
oy

4000

6000

8000

10000

12000

4 6 8 10 12

Figure 8.10.: Three plots laid out in a grid using grid.layout().

148 February 24, 2009

Chapter 9

Manipulating data

So far this book has assumed you have your data in a nicely structured data frame ready
to feed to ggplot() or qplot(). If this is not the case, then you’ll need to do some
transformation.

In Section 1.1, you will learn how to use the plyr package to reproduce the statistical
transformations performed by the layers, and then in Section 1.2 you will learn a little
about “molten” (or long) data, which is useful for time series and parallel coordinates plots,
among others. Section 1.3 shows you how to write methods that let you plot objects other
than data frames, and demonstrates how ggplot2 can be used to recreate a more flexible
version of the built in linear-model diagnostics.

Data cleaning, manipulation and transformation is a big topic and this chapter only
scratches the surface of topics closely related to ggplot2. I recommend the following
references which go into considerably more depth on this topic:

• “Data manipulation with R”, by Phil Spector. Published by Springer, 2008.

• “plyr: divide and conquer for data analysis”, Hadley Wickham. Available from
http://had.co.nz/plyr. This is a full description of the package used in Section 1.1.

• “Reshaping data with the reshape package”, Hadley Wickham. Journal of Statistical
Software, 21 (12), 2007. http://www.jstatsoft.org/v21/i12/. This describes the
complement of the melt function used in Section ??, which can be used like pivot
tables to create a wide range of data summaries and rearrangements.

9.1. An introduction to plyr

With faceting, ggplot2 makes it very easy to identical plots for different subsets of your
data. This section introduces ddply() from the plyr package, a function that makes it
easy to do the same thing for numerical summaries. plyr provides a comprehensive suite
of tools for breaking up complicated data structures into pieces, processing each piece and
then joining the results back together. The plyr package as a whole provides tools for
breaking and combining lists, arrays and data frames. Here we will focus on the ddply()
function which breaks up a data frame into subsets based on row values, applies a function
to each subset, and the joins the results back into a data frame. The basic syntax is
ddply(.data, .variables, .fun, ...), where

149

http://had.co.nz/plyr
http://www.jstatsoft.org/v21/i12/

9.1. An introduction to plyr Manipulating data

• .data is the dataset to break up (e.g. the data that you are plotting).

• .variables is a description of the grouping variables used to break up the dataset.
This is written like .(var1, var2), and to match the plot should contain all the
grouping and faceting variables that you’ve used in the plot.

• .fun is the summary function you want to use. The function can return a vector or
data frame. The result does not need to contain the grouping variables: these will be
added on automatically if they’re needed. The result can be a much reduced aggregated
dataset (maybe even one number), or the original data modified or expanded in some
way.

More information and examples are available in the documentation, ?ddply, and on
the package website, http://had.co.nz/plyr. The following examples show a few useful
summary functions that solve common data manipulation problems.

• Using subset() allows you to select the top (or bottom) n (or x%) of observations in
each group, or observations above (or below) some group specific threshold:

Select the smallest diamond in each colour
ddply(diamonds, .(color), subset, carat == min(carat))

Select the two smallest diamonds
ddply(diamonds, .(color), subset, order(carat) < 2)

Select the 1% largest diamonds in each group
ddply(diamonds, .(color), subset, carat > quantile(carat, 0.99))

Select all diamonds bigger that the group average
ddply(diamonds, .(color), subset, price > mean(price))

• Using transform() allows you to perform group-wise transformations with very little
work. This is particularly useful if you want to add new variables that can are
calculated on a per group level, such as a per-group standardisation. Section 1.2.1
shows another use of this technique for standardising time series to a common scale.

Within each colour, scale price to have mean 0 and variance 1
ddply(diamonds, .(color), transform, price = scale(price))

Subtract off group mean
ddply(diamonds, .(color), transform, price = price - mean(price))

• If you want to apply a function to every column in the data frame, you might find the
colwise() function handy. This function converts a function that operates on vectors
to a function that operates column-wise on data frames. This is rather different to
most functions: instead of returning a vector of numbers, colwise() returns a new

150 February 24, 2009

http://had.co.nz/plyr

9.1. An introduction to plyr Manipulating data

function. The following example creates a function to count the number of missing
values in a vector and then shows how we can use colwise() to apply it to every
column in a data frame.

> nmissing <- function(x) sum(is.na(x))
> nmissing(msleep$name)
[1] 0
> nmissing(msleep$brainwt)
[1] 27
>
> nmissing_df <- colwise(nmissing)
> nmissing_df(msleep)

name genus vore order conservation sleep_total sleep_rem
1 0 0 0 0 0 0 22

sleep_cycle awake brainwt bodywt
1 51 0 27 0
> # This is shorthand for the previous two steps
> colwise(nmissing)(msleep)

name genus vore order conservation sleep_total sleep_rem
1 0 0 0 0 0 0 22

sleep_cycle awake brainwt bodywt
1 51 0 27 0

The specialised version numcolwise() does the same thing, but works only with
numeric columns. For example, numcolwise(median) will calculate a median for
every numeric column, or numcolwise(quantile) will calculate quantiles for every
numeric column. Similarly, catcolwise() only works with categorical columns.

> numcolwise(median)(msleep, na.rm = T)
sleep_total sleep_rem sleep_cycle awake brainwt bodywt

1 10 1.5 0.33 14 0.012 1.7
> numcolwise(quantile)(msleep, na.rm = T)

sleep_total sleep_rem sleep_cycle awake brainwt
0% 1.9 0.1 0.12 4.1 0.00014
25% 7.8 0.9 0.18 10.2 0.00290
50% 10.1 1.5 0.33 13.9 0.01240
75% 13.8 2.4 0.58 16.1 0.12550
100% 19.9 6.6 1.50 22.1 5.71200

bodywt
0% 5.0e-03
25% 1.7e-01
50% 1.7e+00
75% 4.2e+01
100% 6.7e+03
> numcolwise(quantile)(msleep, probs = c(0.25, 0.75), na.rm = T)

February 24, 2009 151

9.1. An introduction to plyr Manipulating data

sleep_total sleep_rem sleep_cycle awake brainwt bodywt
25% 7.8 0.9 0.18 10 0.0029 0.17
75% 13.8 2.4 0.58 16 0.1255 41.75

Combined with ddply, this makes it easy to produce per-group summaries:

> ddply(msleep, .(vore), numcolwise(median), na.rm = T)
vore sleep_total sleep_rem sleep_cycle awake brainwt

1 10.6 2.00 0.18 13.4 0.0030
2 carni 10.4 1.95 0.38 13.6 0.0445
3 herbi 10.3 0.95 0.22 13.7 0.0123
4 insecti 18.1 3.00 0.17 5.9 0.0012
5 omni 9.9 1.85 0.50 14.1 0.0066
bodywt

1 0.122
2 20.490
3 1.225
4 0.075
5 0.950
> ddply(msleep, .(vore), numcolwise(mean), na.rm = T)

vore sleep_total sleep_rem sleep_cycle awake brainwt
1 10.2 1.9 0.18 14 0.0076
2 carni 10.4 2.3 0.37 14 0.0793
3 herbi 9.5 1.4 0.42 14 0.6216
4 insecti 14.9 3.5 0.16 9 0.0215
5 omni 10.9 2.0 0.59 13 0.1457
bodywt

1 0.86
2 90.75
3 366.88
4 12.92
5 12.72

• If none of the previous shortcuts is appropriate, make your own summary function
which takes a data frame as input and returns an appropriately summarised data
frame as output. The following functions calculates the rank correlation of price and
carat and compares it to the regular correlation of the logged values.

> my_summary <- function(df) {
+ with(df, data.frame(
+ pc_cor = cor(price, carat, method = "spearman"),
+ lpc_cor = cor(log(price), log(carat))
+))
+ }
> ddply(diamonds, .(cut), my_summary)

152 February 24, 2009

9.1. An introduction to plyr Manipulating data

cut pc_cor lpc_cor
1 Fair 0.91 0.91
2 Good 0.96 0.97
3 Very Good 0.97 0.97
4 Premium 0.96 0.97
5 Ideal 0.95 0.97
> ddply(diamonds, .(color), my_summary)

color pc_cor lpc_cor
1 D 0.96 0.96
2 E 0.96 0.96
3 F 0.96 0.96
4 G 0.96 0.97
5 H 0.97 0.98
6 I 0.98 0.99
7 J 0.98 0.99

Note how our summary function did not need to output the group variables. This
makes it much easier to aggregate over different groups.

The common pattern of all these problems is that they are easy to solve if we have
the right subset. Often the solution for a single case might be a single line of code. The
difficulty comes when we want to apply the function to multiple subsets and then correctly
join back up the results. This may take a lot of code, especially if you want to preserve
group labels. ddply() takes care of all this for you.

The following case study shows how you can use plyr to reproduce the statistical
summaries produced by ggplot2. This is useful if you want to save them to disk or apply
them to other datasets. It’s also useful to be able to check that ggplot2 is doing exactly
what you think!

9.1.1. Fitting multiple models

In this section, we’ll work through the process of generating the smoothed data produced
by stat_smooth. This process will be the same for any other statistic, and should allow
you to produce more complex summaries that ggplot2 can’t produce by itself. Figure 1.1
shows the group-wise smoothes produced by the following code.

qplot(carat, price, data = diamonds, geom = "smooth", colour = color)
dense <- subset(diamonds, carat < 2)
qplot(carat, price, data = dense, geom = "smooth", colour = color,

fullrange = TRUE)

How can we recreate this by hand? First we read the stat_smooth() documentation
to determine what the model is: for large data it’s gam(y ~ s(x, bs = "cs")). To get
the same output as stat_smooth(), we need to fit the model, then predict it on an evenly
spaced grid of points. This task is performed by the smooth() function in the following

February 24, 2009 153

9.1. An introduction to plyr Manipulating data

carat

pr
ic

e

0

5000

10000

15000

1 2 3 4 5

color

D

E

F

G

H

I

J

carat

pr
ic

e

0

5000

10000

15000

0.5 1.0 1.5

color

D

E

F

G

H

I

J

Figure 9.1.: A plot showing the smoothed trends for price vs carat for each colour of diamonds.
With the full range of carats (left), the standard errors balloon after around two carats
because there are relatively few diamonds of that size. Restricting attention to diamonds
of less than two carats (right) focuses on the region where we have plenty of data.

code. Once we have written this function it is straightforward to apply it to each diamond
colour using ddply().

Figure 1.2 shows the results of this work, which are identical to what we got with ggplot2
doing all the work.

library(mgcv)
smooth <- function(df) {
mod <- gam(price ~ s(carat, bs = "cs"), data = df)
grid <- data.frame(carat = seq(0.2, 2, length = 50))
pred <- predict(mod, grid, se = T)

grid$price <- pred$fit
grid$se <- pred$se.fit
grid

}
smoothes <- ddply(dense, .(color), smooth)
qplot(carat, price, data = smoothes, colour = color, geom = "line")
qplot(carat, price, data = smoothes, colour = color, geom = "smooth",
ymax = price + 2 * se, ymin = price - 2 * se)

Doing the summary by hand gives you much more flexibility to fit models where the
grouping factor is explicitly included as a covariate. For example, the following model
models price as a non-linear function of carat, plus a constant term for each colour. It’s
not a very good model as it predicts negative prices for small, poor-quality diamonds, but
it’s a starting point for a better model.

154 February 24, 2009

9.1. An introduction to plyr Manipulating data

carat

pr
ic

e

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

carat

pr
ic

e

0

5000

10000

15000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

Figure 9.2.: Figure 1.1 with all statistical calculations performed by hand. The predicted values
(left), and with standard errors (right).

> mod <- gam(price ~ s(carat, bs = "cs") + color, data = dense)
> grid <- with(diamonds, expand.grid(
+ carat = seq(0.2, 2, length = 50),
+ color = levels(color)
+))
> grid$pred <- predict(mod, grid)
> qplot(carat, pred, data = grid, colour = color, geom = "line")

carat

pr
ed

0

5000

10000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

See also Sections 4.9.3 and 5.8 for other ways of combining models and data.

February 24, 2009 155

9.2. Converting data from wide to long Manipulating data

9.2. Converting data from wide to long

In ggplot2 graphics, groups are defined by rows, not by columns. This makes it easy to
draw a line for each group defined by the value of a variable (or set of variables) but difficult
to draw a separate line for each variable. In this section you will learn how to transform
your data to a form in which you can draw line for each variable. This transformation
converts from “wide” data to “long” data, where each variable now occupies it’s own set of
rows.

To perform this transformation we will use the melt() function from the reshape
package (Wickham, 2007). Reshape also provides the cast() function to flexibly reshape
and aggregate data, which you may want to read about yourself. Table 1.1 gives an example.
The melt() function has three arguments:

• data: the data frame you want to convert to long form.

• id.vars: Identifier (id) variables identify the unit that measurements take place on.
Id variables are usually discrete, and are typically fixed by design. In anova notation
(Yijk), id variables are the indices on the variables (i, j, k); in database notation, id
variables are a composite primary key.

• measure.vars: Measured variables represent what is measured on that unit (Y).
These will be the variables that you want to display simultaneously on the plot.

If you’re familiar with Wilkinson’s grammar of graphics, you might wonder why there is
no equivalent to the algebra. There is no equivalent to the algebra within ggplot2 itself
because there are many other facilities for transforming data in R, and it is inline with
the ggplot2 philosophy of keeping data transformation and visualisation as separate as
possible.

date pce pop

1967-06-30 508 198,712
1967-07-31 511 198,911
1967-08-31 517 199,113
1967-09-30 513 199,311
1967-10-31 518 199,498
1967-11-30 526 199,657

date variable value

1967-06-30 pce 508
1967-07-31 pce 511
1967-08-31 pce 517
1967-09-30 pce 513
1967-10-31 pce 518
1967-11-30 pce 526
1967-06-30 pop 198,712
1967-07-31 pop 198,911
1967-08-31 pop 199,113
1967-09-30 pop 199,311
1967-10-31 pop 199,498
1967-11-30 pop 199,657

Table 9.1.: Economics data in wide, left, and long, right, formats. The data stored in each table
is equivalent, just the arrangement is different. It it easy to use the wider format with
ggplot2 to produce a line for each variable.

156 February 24, 2009

9.2. Converting data from wide to long Manipulating data

The following sections explore two important uses of molten data in more detail: plotting
multiple time series and creating parallel coordinate plots. You will also see how to use
ddply() to rescale the variables, and learn about the features of ggplot2 that are most
useful in conjunction with this sort of data.

9.2.1. Multiple time series

Take the economics data set. It contains information about monthly economic data like
the number of people unemployed (unemploy) and the median length of unemployment
(uempmed). We might expect these two variables to be related. Each of these variables is
stored in a column, which makes it easy to compare them with a scatterplot, and draw
individual time series, as shown in Figure 1.3. But what if we want to see the time series
them simultaneously?

date

ue
m

pm
ed

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007
date

un
em

pl
oy

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007
unemploy

ue
m

pm
ed

●
●●

●
●●

●

●

●

●
●●●

●

●
●

●●●

●

●●
●
●●●

●
●

●
● ● ●●

●

●
●
●

●
●●

●

●

●●
●●
●

●

●
●

●

●●
●●

●●●●

●

●●

●●●

●

●

●

●

●●●
●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●

●

●●

●

●

●●

●●
●●●

●

●

●

●●●

●

●

●●

●
●●●

●
●

●●

●

●
●●

●

●

●●

●●●

●
●●

●

●

●●
●

●

●

●
●

● ●

●

●

●
●
●
●

● ●

●●

●

●

●

●●

● ● ●●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

● ●
●

●

●●●

●

●●
●●

●

●
●
●
●●

●●
●●●●
●●

●

●

●●●
●

●●

●

●●●●

●

●●
●
●●

●

●●●

●
●

●●●
●

●
●● ●●●
●

●●●●●
●

●
●

●

●●
● ●

●
● ●

●●
●

●●
●

●●

●

●

●

●

●

●●●
●

● ●●
●
●

●●

●

●●●●

●
●●●●

●

●●

●

●●
●●●

●●

●

●

●

●

●●
● ●

●

●

●
●

●

●
●

●●

●

●

●●

● ●●●●

●●●

●
●

●

●●

●

●

●

●●●●

●
●●

●

●
●●●

●

●
●●●●

●

●
●

●

●

●●●

●●

●●●

●●

●

●

●

●●●
●

●

●

●

●

●

● ●

● ●

●

●
●●●

●

●

●

●●

●●

●

●●●
●

●

●

●

●
●●

●●●
●

● ●

●

●

●

●

●

●●
●

●●

●●
●●

●
●

●

●●
●●●

●

●●●

●

●
●

●●
●

●

●●

●
●

4

6

8

10

12

4000 6000 8000 10000 12000

Figure 9.3.: When the economics data set is stored in wide format, it is easy to create separate time
series plots for each variable (left and centre), and easy to create scatterplots comparing
them (right).

One way is to build up the plot with a different layer for each variable, as you saw
in Section 6.4.4. However, this quickly becomes tedious when you have many variables,
and a better alternative is to melt the data into a long format and then visualise that.
In the molten data the time series have their value stored in the value variable and we
can distinguish between them with the variable variable. The code below shows these two
alternatives. The plots they produce are very similar, and are shown in Figure 1.4.

ggplot(economics, aes(date)) +
geom_line(aes(y = unemploy, colour = "unemploy")) +
geom_line(aes(y = uempmed, colour = "umempmed")) +
scale_colour_hue("variable")

emp <- melt(economics, id = "date", measure = c("unemploy", "uempmed"))
qplot(date, value, data = emp, geom = "line", colour = variable)

There is a problem with these plots: the two variables have radically different scales, and
so the series for unempmed appears as a flat line at the bottom of the plot. There is no
way to produce a plot with two axis in ggplot2 because this type of plot is fundamentally

February 24, 2009 157

9.2. Converting data from wide to long Manipulating data

date

un
em

pl
oy

2000

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

variable

unemploy

umempmed

date

va
lu

e

2000

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

variable

unemploy

uempmed

Figure 9.4.: The two methods of displaying both series on a single plot produce identical plots, but
using long data is much easier when you have many variables. The series have radically
different scales, so we only see the pattern in the unemploy variable. You might not
even notice unempmed unless you’re paying close attention: it’s the line at the bottom
of the plot.

misleading. Instead there are two perceptually well-founded alternatives: rescale the
variables to have a common range, or use faceting with free scales. These alternatives are
created with the code below and are shown in Figure 1.5

range01 <- function(x) {
rng <- range(x, na.rm = TRUE)
(x - rng[1]) / diff(rng)

}
emp2 <- ddply(emp, .(variable), transform, value = range01(value))
qplot(date, value, data = emp2, geom = "line",
colour = variable, linetype = variable)

qplot(date, value, data = emp, geom = "line") +
facet_grid(variable ~ ., scales = "free_y")

date

va
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

1967 1972 1977 1982 1987 1992 1997 2002 2007

variable

unemploy

uempmed

date

va
lu

e

4000

6000

8000

10000

12000

4

6

8

10

12

unem
ploy

uem
pm

ed

1967 1972 1977 1982 1987 1992 1997 2002 2007

Figure 9.5.: When the series have very different scales we have two alternatives: left, rescale the
variables to a common scale, or right, display the variables on separate facets and using
free scales.

9.2.2. Parallel coordinates plot

In a similar manner, we can use molten data to create a parallel coordinates plot (Inselberg,
1985; Wegman, 1990), which has the “variable” variable on the x axis and value on the y

158 February 24, 2009

9.2. Converting data from wide to long Manipulating data

axis. We need a new variable to record the row that each observation came from, which is
used as a grouping variable for the lines (so we get one line per observation). The easiest
value to use for this is the data frame rownames, and we give it an unusual name .row) so
we don’t squash any of the existing variables). Once we have the data in this form, creating
a parallel coordinates plot is easy.

The following code does exactly that for the ratings of 840 movies with over 10,000 votes.
This data set has a moderate number of variables (10) and many cases, and will allow us to
experiment with a common technique for dealing with large data in parallel coordinates
plots: transparency and clustering. Each variable gives the proportion of votes givens
to each rating between 0 (very bad) and 10 (very good). Since this data is already on a
common scale we don’t need to rescale it, but in general, we would need to use the technique
from the previous section to ensure the variables are comparable. This is particularly
important if we are going to use other multidimensional techniques to analyse the data.

popular <- subset(movies, votes > 1e4)
ratings <- popular[, 7:16]
ratings$.row <- rownames(ratings)
molten <- melt(ratings, id = ".row")

Once the data is in this form, creating a parallel coordinates plot is easy. All we need a
line plot with variable on the x axis, value on the y axis and the lines grouped by .row.
This data needs a few tweaks to the default because the values are highly discrete. In the
following code, we experiment with jittering and alpha blending to better display where the
bulk on the movies lie. The results are shown in Figure 1.6. Most of are rated as sevens or
eights by around 25% voters, with a few exceptional movies getting 35% of more perfect
10s. However the large number of lines makes it difficult to distinguish individual movies
and it’s hard to draw firm conclusions.

pcp <- ggplot(molten, aes(variable, value, group = .row))
pcp + geom_line()
pcp + geom_line(colour = alpha("black", 1 / 20))
jit <- position_jitter(width = 0.25, height = 2.5)
pcp + geom_line(position = jit)
pcp + geom_line(colour = alpha("black", 1 / 20), position = jit)

To make the patterns more clear we will cluster the movies into groups of similar rating
patterns. The following code uses kmeans clustering (Hartigan and Wong, 1979) to produce
six groups of similar movies. To make the clusters a little more interpretable, they are
relabelled so that cluster 1 has the lowest average rating and cluster six the highest.

cl <- kmeans(ratings[1:10], 6)
ratings$cluster <- reorder(factor(cl$cluster), popular$rating)
levels(ratings$cluster) <- seq_along(levels(ratings$cluster))
molten <- melt(ratings, id = c(".row", "cluster"))

There are many different ways that we can visualise the result of this clustering. One
popular method is shown in Figure ?? where line colour is mapped to group membership.

February 24, 2009 159

9.3. ggplot() methods Manipulating data

Figure 9.6.: Variants on the parallel coordinates plot to better display the patterns in this highly
discrete data. To improve the default pcp (top-left) we experiment with alpha-blending
(top-right), jittering (bottom-left) and then both together (bottom-right).

This plot is supplemented with a plot that just shows averages for each group. These plots
are both straightforward to create, as shown in the following code.

pcp_cl <- ggplot(molten,
aes(variable, value, group = .row, colour = cluster))
pcp_cl + geom_line(position = jit) + scale_colour_hue(alpha = 1/5)
pcp_cl + stat_summary(aes(group = cluster), fun.y = mean, geom = "line")

These plots are good for showing the differences between groups, but they don’t tell us a
lot about whether we’ve done a good job clustering the data. Figure ?? uses faceting to
display the each group in its own panel. This plot highlights the variation within many of
the groups, suggesting that perhaps more clusters would be appropriate.

pcp_cl + geom_line(position = jit, colour = alpha("black", 1/5)) +
facet_wrap(~ cluster)

9.3. ggplot() methods

ggplot() is a generic function, with different methods for different types of data. The most
common input, and what we have used until now, is a data frame. As with base and lattice

160 February 24, 2009

9.3. ggplot() methods Manipulating data

Figure 9.7.: Displaying cluster membership on a parallel coordinates plot. (Left) individual movies
coloured by group membership and (right) group means.

Figure 9.8.: Faceting allows us to display each group in its own panel, highlighting the fact that
there seems to be considerable variation within each group, and suggesting that we
need more groups in our clustering.

February 24, 2009 161

9.3. ggplot() methods Manipulating data

graphics, it is possible to extend ggplot() to work with other types of data. However,
the way this works with ggplot2 is fundamentally different: ggplot2 will not give you a
complete plot, but instead will give you the tools you need to make any plot you desire.

This process is mediated by the fortify() method, which takes an object, and optional
data frame, and creates a version of the object in a form suitable for plotting with ggplot2,
i.e. as a data frame. The name fortify comes from thinking about combining a model with
its data: the model fortifies the data, and the data fortifies the model, and the result can
be used to simultaneously visualise the model and the data. An example will make this
concrete, as you will see when we describe the fortify method for linear models.

This section describes how the fortify() method works, and how you can create new
methods that are aligned with the ggplot2 philosophy. The most important philosophical
consideration is that data transformation and display should be kept as separate as possible.
This maximises reusability, as you are no longer trapped into the single display that the
author envisaged.

These different types of input also work with qplot(): remember that qplot() is just a
thin wrapper around ggplot().

9.3.1. Linear models

Currently, ggplot2 provides only one fortify method, for linear models. Here we’ll show how
this method works, and how you can use it to create tailored plots for better understanding
your data and models. Figure 1.9 shows the output of plot.lm() for a simple model. The
graphics are a set of pre-chosen model summary plots. These are useful for particular
problems, but are completely inflexible: there is no way to modify them apart from opening
up the source code for plot.lm() and modifying it. This is hard because the the because
data transformation and display are inextricably entangled, making the code difficult to
understand.

The ggplot2 approach completely separates data transformation and display. The
fortify() method does the transformation, and then we use ggplot2 as usual to create
the display that we want. Currently fortify() adds the variables listed in Table 1.2 to
the original dataset. These are basically all the variables that plot.lm() creates in order
to produce its summary plots. The variables have a leading . (full stop) in their names, so
there is little risk that they will clobber variables already in the dataset.

To demonstrate these techniques, we’re going to fit the very simple model with code
below, which also creates the plot in Figure 1.10. This model clearly doesn’t fit the data
well, so we should be able to use model diagnostics to figure out how to improve it. A
sample of the output from fortifying this model is shown in Table 1.3. Because we didn’t
supply the original data frame, it contains the two variables used in the model as well as
the six diagnostic variables. It’s easy to see exactly what data our plot will be working
with and we could easily add more variables if we wanted.

qplot(displ, cty, data = mpg) + geom_smooth(method = "lm")
mpgmod <- lm(cty ~ displ, data = mpg)

With a fortified data set in hand we can easily recreate the plots produced by plot.lm(),
and even better, we can adapt them to our needs. The example below shows how we can

162 February 24, 2009

9.3. ggplot() methods Manipulating data

8 10 12 14 16 18 20 22

−
5

0
5

10
15

Fitted values

R
es

id
ua

ls

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●●●

●●

●

●●
●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●
●
●

●
●

●●●●●●

●
●●

●
●

●●●●

●

●

●
●

●
●

●
●
●

●

●●

●●

●●

●

●●
●●

●
●
●

●●
●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●●

●●

●
●

●

●
●

●

●
●●

●
●

●

●●

●
●
●

●

●

●
●●
●●
●
●

●
●

●●

●● ●●
●●

●●

●

●●
●
●

●●
●

●●

●

●

●

●

●

●
●
●●●

●
● ●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

Residuals vs Fitted

222

213

223

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●
●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●
●●

●●
●●

●●

●●

●

●●
●

●

●●
●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

222

213

223

8 10 12 14 16 18 20 22

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●●●●

● ●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●
●●
●
●

●

●

●●

●
●

●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

Scale−Location
222

213

223

0.00 0.01 0.02 0.03

−
2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ● ●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●
●●●

●●

●

●●
●
●

●
●
●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●
●
●

●
●

●● ●●● ●

●
●●
●
●

●●●●

●

●

●
●

●
●

●
●
●

●

●●

●●

●●

●

●●
●●

●
●
●

●●
●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●●

●●

●
●

●

●
●

●

●
●●
●
●

●

●●

●
●
●

●

●

●
●●
●●
●
●

●
●

●●

● ●●●
●●

●●

●

●●
●
●

●●
●

●●

●

●

●

●

●

●
●
●●●

●
● ●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

28

222

213

Figure 9.9.: The output from plot.lm() for a simple model.

Variable Description

.cooksd Cook’s distances

.fitted Fitted values

.hat Diagonal of the hat matrix

.resid Residuals

.sigma Estimate of residual standard devia-
tion when corresponding observation
is dropped from model

.stdresid Standardised residuals

Table 9.2.: The diagnostic variables that fortify.lm() assembles and adds to the model data.

February 24, 2009 163

9.3. ggplot() methods Manipulating data

displ

ct
y

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

10

15

20

25

30

35

2 3 4 5 6 7

Figure 9.10.: A simple linear model that doesn’t fit the data very well.

cty displ .hat .sigma .cooksd .fitted .resid .stdresid

18 1.80 0.01 2.56 0.01 21.26 -3.26 -1.28
21 1.80 0.01 2.57 0.00 21.26 -0.26 -0.10
20 2.00 0.01 2.57 0.00 20.73 -0.73 -0.29
21 2.00 0.01 2.57 0.00 20.73 0.27 0.11
16 2.80 0.01 2.57 0.00 18.63 -2.63 -1.03
18 2.80 0.01 2.57 0.00 18.63 -0.63 -0.24

Table 9.3.: The output of fortify(mpgmod) contains the two variables used in the model (cty and
displ), and the six diagnostic variables described above.

recreate and then extend the first plot produced by plot.lm(). Once we have the basic
plot we can easily enhance it: use standardised residuals instead of raw residuals, or make
size proportional to Cook’s distance. The results are shown in Figure 1.11.

mod <- lm(cty ~ displ, data = mpg)
basic <- ggplot(mod, aes(.fitted, .resid)) +
geom_hline(yintercept = 0, colour = "grey50", size = 0.5) +
geom_point() +
geom_smooth(size = 0.5, se = F)

basic
basic + aes(y = .stdresid)
basic + aes(size = .cooksd) + scale_area("Cook’s distance")

Additionally, we can fortify the whole dataset and add to the plot variables that are in
the original data but not in the model. This helps us to understand what variables are
useful to improve the model. Figure 1.12 colours the residuals by the number of cylinders,

164 February 24, 2009

9.3. ggplot() methods Manipulating data

.fitted

.r
es

id

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−5

0

5

10

8 10 12 14 16 18 20
.fitted

.s
td

re
si

d

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−2

0

2

4

8 10 12 14 16 18 20
.fitted

.r
es

id

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−5

0

5

10

8 10 12 14 16 18 20

Cook's distance

● 0.0025

● 0.0100

● 0.0225

Figure 9.11.: Basic fitted values-residual plot, left. With standardised residuals, centre. With size
proportional to Cook’s distance, right. It is easy to modify the basic plots when we
have access to all of the data.

and suggests that this variable would be good to add to the model: within each cylinder
group, the pattern is close to linear.

full <- basic %+% fortify(mod, mpg)
full + aes(colour = factor(cyl))
full + aes(displ, colour = factor(cyl))

.fitted

.r
es

id

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●

● ●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

−5

0

5

10

8 10 12 14 16 18 20

factor(cyl)

● 4

● 6

● 8

● 5

displ

.r
es

id

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

−5

0

5

10

2 3 4 5 6 7

factor(cyl)

● 4

● 6

● 8

● 5

Figure 9.12.: Adding variables from the original data can be enlightening. Here when we add
the number of cylinders we see that instead of a curvi-linear relationship between
displacement and city mpg, it is essentially linear, conditional on the number of
cylinders.

February 24, 2009 165

9.3. ggplot() methods Manipulating data

9.3.2. Writing your own

To write your own fortify() method, you will need to think about what variables are
most useful for model diagnosis, and how they should be returned to the user. The method
for linear models adds them on to the original data frame, but this might not be the best
approach in other circumstances, and you may instead want to return a list of data frames
giving information at different levels of aggregation.

You can also use fortify() with non-model functions. The following example shows
how we could write a fortify() method to make it easier to add images to your plots. The
EBImage from bioconductor is used to get the image into R, and then the fortify method
converts it into a form (a data frame) that ggplot2 can render. Should you even need a
picture of me on your plot, the following code will allow you to do so.

fortify.Image <- function(model, data, ...) {
colours <- channel(model, "x11")[,,]
colours <- colours[, rev(seq_len(ncol(colours)))]
melt(colours, c("x", "y"))

}

library(EBImage)
img <- readImage("http://had.co.nz/me.jpeg", TrueColor)
qplot(x, y, data = img, fill = value, geom="tile") +
scale_fill_identity() + coord_equal()

This approach cleanly separates the display of the data from its production, and dramati-
cally improves reuse. However, it does not provide any conveniently pre-packaged functions.
If you want to create a diagnostic plot for a linear model you have to assemble all the pieces
yourself. Once you have the basic structure in place, so that people can always dig back
down and alter the individual pieces, you can write a function that joins all the components
together in a useful way. See Section 10.4 for some pointers on how to do this.

166 February 24, 2009

Chapter 10

Reducing duplication

10.1. Introduction

A major requirement of a good data analysis is flexibility. If the data changes, or you
discover something that makes you rethink your basic assumptions, you need to be able
to easily change many plots at once. The main inhibitor of flexibility is duplication. If
you have the same plotting statement repeated over and over again, you have to make the
same change in many different places. Often just the thought of making all those changes
is exhausting!

This chapter describes three ways of reducing duplication. In Section 10.2, you will learn
how to iteratively modify the previous plot, allowing you to build on top of your previous
work without having to retype a lot of code. Section 10.3 will show you how to produce
plot “templates” that encapsulate repeated components that are defined once and used
in many different places. Finally, 10.4 talks about how to create functions that create or
modify plots.

10.2. Iteration

Whenever you create or modify a plot, ggplot2 saves a copy of the result so you can refer
to it in later expressions. You can access this plot with last_plot(). This is useful in
interactive work as you can start with a basic plot and then iteratively add layers and tweak
the scales until you get to the final result. The following code demonstrates iteratively
zooming in on a plot to find a region of interest, and then adding a layer which highlights
something interesting that we have found: very few diamonds have equal x and y dimensions.
The plots are shown in Figure 10.1.

qplot(x, y, data = diamonds, na.rm = TRUE)
last_plot() + xlim(3, 11) + ylim(3, 11)
last_plot() + xlim(4, 10) + ylim(4, 10)
last_plot() + xlim(4, 5) + ylim(4, 5)
last_plot() + xlim(4, 4.5) + ylim(4, 4.5)
last_plot() + geom_abline(colour = "red")

Once you have tweaked the plot to your liking, it’s a good idea to go back and create a
single expression that generates your final plot. This is important as when you come back

167

10.3. Plot templates Reducing duplication

Figure 10.1.: When “zooming” in on the plot, it’s useful to use last_plot() iteratively to quickly
find the best view. The final plot adds a line with slope 1 and intercept 0, confirming
it is the square diamonds that are missing.

to the plot, you’ll be able to recreate the plot quickly, without having to step through your
original process. You many want to add a comment to your code to indicate exactly why
you chose that final plot. This is good practice in general for R code: after experimenting
interactively, you always want to create a source file that recreates your analysis. The
following code shows the final plot after our interactive modifications above.

qplot(x, y, data = diamonds, na.rm = T) +
geom_abline(colour = "red") +
xlim(4, 4.5) + ylim(4, 4.5)

10.3. Plot templates

Each component of a ggplot2 plot is its own object and can be created, stored and applied
independently to a plot. This makes it possible to create reusable components that can
automate common tasks and helps to offset the cost of typing the long function names. The
following example creates some colour scales and then applies them to plots. The results
are shown in Figure 10.2

gradient_rb <- scale_colour_gradient(low = "red", high = "blue")
qplot(cty, hwy, data = mpg, colour = displ) + gradient_rb

168 February 24, 2009

10.3. Plot templates Reducing duplication

qplot(bodywt, brainwt, data = msleep, colour = awake, log="xy") +
gradient_rb

cty

hw
y

● ●

●
●

● ●
●
●

●

●
●

● ●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●

● ●

●●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●

● ●●
●●
●

●

●

●
●

●

●

●
●
●
●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●●
●●

● ●

●

●

●●
●

●

● ●
●

●

●
●

●

●●●●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

15

20

25

30

35

40

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

bodywt

br
ai

nw
t

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●●

10−3

10−2

10−1

100

10−2 10−1 100 101 102 103

awake

● 5

● 10

● 15

● 20

Figure 10.2.: Saving a scale to a variable makes it easy to apply exaclty the same scale to multiple
plots. You can do the same thing with layers and facets too.

As well as saving single objects, you can also save vectors of ggplot2 components. Adding
a vector of components to a plot is equivalent to adding each component of the vector in
turn. The following example creates two continuous scales that can be used to turn off the
display of axis labels and ticks. You only need to create these objects once and you can
apply them to many different plots, as shown in the code below and Figure 10.3.

xquiet <- scale_x_continuous("", breaks = NA)
yquiet <- scale_y_continuous("", breaks = NA)
quiet <- c(xquiet, yquiet)

qplot(mpg, wt, data = mtcars) + quiet
qplot(displ, cty, data = mpg) + quiet

Similarly, it’s easy to write simple functions that change the defaults of a layer. For
example, if you wanted to create a function that added linear models to a plot, you could
create a function like the one below. The results are shown in Figure 10.4.

geom_lm <- function(formula = y ~ x) {
geom_smooth(formula = formula, se = FALSE, method = "lm")

}
qplot(mpg, wt, data = mtcars) + geom_lm()
library(splines)
qplot(mpg, wt, data = mtcars) + geom_lm(y ~ ns(x, 3))

February 24, 2009 169

10.3. Plot templates Reducing duplication

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Figure 10.3.: Using “quiet” x and y scales removes the labels and hides ticks and gridlines.

mpg

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

15 20 25 30
mpg

w
t

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

2

3

4

5

15 20 25 30

Figure 10.4.: Creating a custom geom function saves typing when creating plots with similar (but
not the same) components.

170 February 24, 2009

10.4. Plot functions Reducing duplication

Depending on how complicated your function is, it might even return multiple components
in a vector. You can build up arbitrarily complex plots this way, reducing duplication
wherever you find it. If you want to create a plot that combines together many different
components in a pre-specified way, you might need to write a function that produces the
entire plot. This is described in the next section.

10.4. Plot functions

If you are using the same basic plot again and again with different datasets or different
parameters, it may be worthwhile to wrap up all the different options into a single function.
Maybe you need to perform some data restructuring or transformation, or need to combine
the data with a predefined model. In that case you will need to write a function that
produces ggplot2 plots. It’s hard to give advice on how to go about this because there are
so many different possible scenarions, but this section aims to point out some important
things to think about.

• Since you’re creating the plot within the environment of a function, you need to be
extra careful about supplying the data to ggplot() as a data frame, and you need to
double check that you haven’t accidentally referred to any function local variables in
your aesthetic mappings.

• If you want to allow the user to provide their own variables for aesthetic mappings,
I’d suggest using aes_string(). This function works just like aes(), but uses
strings rather than unevaluated expressions. aes_string("cty", colour = "hwy")
is equivalent to aes(cty, colour = hwy). Strings are much easier to work with
than expressions.

• As mentioned in Chapter 1, you want to separate your plotting code into a function
that does any data transformations and manipulations and a function that creates the
plot. Generally, your plotting function should do no data manipulation, just create a
plot. The following example shows one way to create parallel coordinate plot function,
wrapping up the code used in Section 1.2.2.

> pcp_data <- function(df) {
+ numeric <- laply(df, is.numeric)
+ # Rescale numeric columns
+ df[numeric] <- colwise(range01)(df[numeric])
+ # Add row identified
+ df$.row <- rownames(df)
+ # Melt, using non-numeric variables as id vars
+ dfm <- melt(df, id = c(".row", names(df)[!numeric]))
+ # Add pcp to class of the data frame
+ class(dfm) <- c("pcp", class(dfm))
+ dfm
+ }
> pcp <- function(df, ...) {

February 24, 2009 171

10.4. Plot functions Reducing duplication

+ df <- pcp_data(df)
+ ggplot(df, aes(variable, value)) + geom_line(aes(group = .row))
+ }
> pcp(mpg)

variable

va
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

displ year cyl cty hwy

> pcp(mpg) + aes(colour = drv)

variable

va
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

displ year cyl cty hwy

drv

f

4

r

The best example of this technique is qplot(), and if you’re interesting in writing your
own functions I strongly recommend you have a look at the source code for this function
and step through it line by line to see how it works. If you’ve made your way this far
through the book you should have a pretty good grasp of all the ggplot2 related code:
most of the complexity is R tricks to correctly interpret all of the possible plot types.

172 February 24, 2009

Appendices

173

Appendix A

Translating between different syntaxes

A.1. Introduction

ggplot2 does not exist in isolation, but is part of long history of graphical tools in R and
elsewhere. This chapter describes how to convert between ggplot2 commands and other
plotting systems:

• Within ggplot2, between the qplot() and ggplot() syntaxes, §A.2

• From base graphics, §A.3.

• From lattice graphics, §A.4.

• From gpl, §A.5.

Each section gives a general outline on how to convert between the difference types,
followed by a number of examples.

A.2. Translating between qplot and ggplot

Within ggplot2, there are two basic methods to create plots, with qplot() and ggplot().
qplot() is designed primarily for interactive use: it makes a number of assumptions that
speed most cases, but when designing multi-layered plots with different data sources it can
get in the way. This section describes what those defaults are, and how they map to the
fuller ggplot() syntax.

By default, qplot() assumes that you want a scatterplot, i.e. you want to use geom_point().

qplot(x, y, data = data)
ggplot(data, aes(x, y)) + geom_point()

A.2.1. Aesthetics

If you map additional aesthetics, these will be added to the defaults. With qplot() there
is no way to use different aesthetic mappings (or data) in different layers.

qplot(x, y, data = data, shape = shape, colour = colour)
ggplot(data, aes(x, y, shape = shape, colour = colour)) + geom_point()

175

A.2. Translating between qplot and ggplot Translating between different syntaxes

Aesthetic parameters in qplot() always try and map the aesthetic to a variable. If
the argument is not a variable but a value, effectively a new column is added to the
original dataset with that value. To set an aesthetic to a value and override the default
appearance, you surround the value with I() in qplot(), or pass it as a parameter to the
layer. Section 4.5.2 expands on the differences between setting and mapping.

qplot(x, y, data = data, colour = I("red"))
ggplot(data, aes(x, y)) + geom_point(colour = "red")

A.2.2. Layers

Changing the geom parameter changes the geom added to the plot:

qplot(x, y, data = data, geom = "line")
ggplot(data, aes(x, y)) + geom_line()

If a vector of multiple geom names is supplied to the geom argument, each geom will be
added in turn:

qplot(x, y, data = data, geom = c("point", "smooth"))
ggplot(data, aes(x, y)) + geom_point() + geom_smooth()

Unlike the rest of ggplot2, stats and geoms are independent:

qplot(x, y, data = data, stat = "bin")
ggplot(data, aes(x, y)) + geom_point(stat = "bin")

Any layer parameters will be passed on to all layers. Most layers will ignore parameters
that they don’t need.

qplot(x, y, data = data, geom = c("point", "smooth"), method = "lm")
ggplot(data, aes(x, y)) +
geom_point(method = "lm") + geom_smooth(method = "lm")

A.2.3. Scales and axes

You can control basic properties of the x and y scales with the xlim, ylim, xlab and ylab
arguments:

qplot(x, y, data = data, xlim = c(1, 5), xlab = "my label")
ggplot(data, aes(x, y)) + geom_point() +
scale_x_continuous("my label", limits = c(1, 5))

qplot(x, y, data = data, xlim = c(1, 5), ylim = c(10, 20))
ggplot(data, aes(x, y)) + geom_point() +
scale_x_continuous(limits = c(1, 5))
scale_y_continuous(limits = c(10, 20))

176 February 24, 2009

A.3. Base graphics Translating between different syntaxes

Like plot(), qplot() has a convenient way of log transforming the axes. There are many
other possible transformations that are not accessible from within qplot(), see Section 6.4.2
for more details.

qplot(x, y, data = data, log="xy")
ggplot(data, aes(x, y)) + geom_point() + scale_x_log10() + scale_y_log10()

A.2.4. Plot options

qplot() recognise the same options as plot does, and converts them to their ggplot2
equivalents. Section 8.1.2 lists all possible plot options and their effects.

qplot(x, y, data = data, main="title", asp = 1)
ggplot(data, aes(x, y)) + geom_point() +

opts(title = "title", aspect.ratio = 1)

A.3. Base graphics

There are two types of graphics functions in base graphics, those that draw complete
graphics and those that add to existing graphics.

A.3.1. High-level plotting commands

qplot() has been designed to mimic plot(), and can do the job of all other high-level
plotting commands. There are only two graph types from base graphics that can not be
replicated with ggplot2: filled.countour() and persp()

plot(x, y); dotchart(x, y); stripchart(x, y)
qplot(x, y)

plot(x, y, type = "l")
qplot(x, y, geom = "line")

plot(x, y, type = "s")
qplot(x, y, geom = "step")

plot(x, y, type = "b")
qplot(x, y, geom = c("point", "line"))

boxplot(x, y)
qplot(x, y, geom = "boxplot")

hist(x)
qplot(x, geom = "histogram")

cdplot(x, y)

February 24, 2009 177

A.3. Base graphics Translating between different syntaxes

qplot(x, fill = y, geom = "density", position = "fill")

coplot(y ~ x | a + b)
qplot(x, y, facets = a ~ b)

Many of the geoms are parameterised differently to base graphics. For example, hist()
is parameterised in terms of the number of bins, while geom_histogram() is parmeterised
in terms of the width of each bin.

hist(x, bins = 100)
qplot(x, geom = "histogram", binwidth = 1)

qplot() often requires data in a slightly different format to the base graphics functions.
For example, the bar geom works with untabulated data, not tabulated data like barplot();
the tile and contour geoms expect data in a data frame, not a matrix like image() and
contour().

barplot(table(x))
qplot(x, geom = "bar")

barplot(x)
qplot(names(x), x, geom = "bar", stat = "identity")

image(x)
qplot(X1, X2, data = melt(x), geom = "tile", fill = value)

contour(x)
qplot(X1, X2, data = melt(x), geom = "contour", fill = value)

Generally, the base graphics function work with individual vectors, not data frames like
ggplot2. qplot() will try and construct a data frame if one is not specified, but it is not
always possible. If you get strange errors, you may need to create the data frame yourself.

with(df, plot(x, y))
qplot(x, y, data = df)

By default, qplot() map values to aesthetics with a scale. To override this behaviour
and set aesthetics, overriding the defaults, you need to use I().

plot(x, y, col = "red", cex = 1)
qplot(x, y, colour = I("red"), size = I(1))

matplot and groups

178 February 24, 2009

A.3. Base graphics Translating between different syntaxes

Base function ggplot2 layer

curve() geom_curve()
hline() geom_hline()
lines() geom_line()
points() geom_point()
polygon() geom_polygon()
rect() geom_rect()
rug() geom_rug()
segments() geom_segment()
text() geom_text()
vline() geom_vline()
abline(lm(y ~ x)) geom_smooth(method = "lm")
lines(density(x)) geom_density()
lines(loess(x, y)) geom_smooth()

Table A.1.: Equivalence between base graphics methods that add on to an existing plot, and layers
in ggplot2.

A.3.2. Low-level drawing

The low level drawing functions which add on to existing plot are equivalent to adding a
new layer in ggplot2, described in Table A.1.

plot(x, y)
lines(x, y)

qplot(x, y) + geom_line()

Or, building up piece-meal
qplot(x, y)
last_plot() + geom_line()

A.3.3. Legends, axes and grid lines

In ggplot2, the appearance of legends and axes are controlled by the scales. In base
graphics, legends are never displayed automatically, and gain more control over axes you
typically do xaxs = F in the main plot call, and then add the axes yourself with axis() or
Axis().

• limits controls the range of the axis or legend.

• breaks controls which labels appear on the axis or legend.

• labels controls the text of each label.

• name controls the axis or legend title.

February 24, 2009 179

A.4. Lattice graphics Translating between different syntaxes

Because the legend is derived automatically from the plot, there is much less you can do
to control it than in base graphics. Many of the aspects of its appearance can be changed
with plot themes, Section 8.1, while what is displayed in the legend is controlled by the
scales, Section 6.5.

The appearance of grid lines are controlled by the grid.major and grid.minor options,
and there position by the breaks of the x and y scales.

A.3.4. Colour palettes

Instead of global colour palettes, ggplot2 has scales for individual plots. Much of the time
you can rely on the default colour scale (which has somewhat better perceptual properties),
but if you want to reuse an existing colour palette, you can use scale_colour_manual().
You will need to make sure that the colour is a factor for this to work.

palette(rainbow(5))
plot(1:5, 1:5, col = 1:5, pch = 19, cex = 4)

qplot(1:5, 1:5, col = factor(1:5), size = I(4))
last_plot() + scale_colour_manual(values = rainbow(5))

In ggplot2, you can also use palettes with continuous values, with intermediate values
being linearly interpolated.

qplot(0:100, 0:100, col = 0:100, size = I(4)) +
scale_colour_gradientn(colours = rainbow(7))

last_plot() +
scale_colour_gradientn(colours = terrain.colors(7))

A.3.5. Graphical parameters

The majority of par settings have some analogue within the theme system, or in the defaults
of the geoms and scales. The appearance plot border drawn by box() can be controlled in
a similar way by the panel.background and plot.background theme elements. Instead
of using title(), the plot title is set with the title option.

A.3.6. Specialised graphics

Unlike plot(), qplot() doesn’t know how to plot anything other than data frames: there
is no equivalent to plot(lm). This is a deliberate design decision, to better force the
separation between the functions that extract useful data from objects and the functions
that plot that data.

A.4. Lattice graphics

The major difference between lattice and ggplot2 is that lattice uses a formula based
interface. ggplot2 does not because the formula does not generalise well to more complicated
situations.

180 February 24, 2009

A.4. Lattice graphics Translating between different syntaxes

xyplot(rating ~ year, data=movies)
qplot(year, rating, data=movies)

xyplot(rating ~ year | Comedy + Action, data = movies)
qplot(year, rating, data = movies, facets = ~ Comedy + Action)
Or maybe
qplot(year, rating, data = movies, facets = Comedy ~ Action)

While lattice has many different functions to produce different types of graphics (which
are all basically equivalent to setting the panel argument), ggplot2 has qplot().

stripplot(~ rating, data = movies, jitter.data = TRUE)
qplot(rating, 1, data = movies, geom = "jitter")

histogram(~ rating, data = movies)
qplot(rating, data = movies, geom = "histogram")

bwplot(Comedy ~ rating ,data = movies)
qplot(factor(Comedy), rating, data = movies, type = "boxplot")

xyplot(wt ~ mpg, mtcars, type = c("p","smooth"))
qplot(mpg, wt, data = mtcars, geom = c("point","smooth"))

xyplot(wt ~ mpg, mtcars, type = c("p","r"))
qplot(mpg, wt, data = mtcars, geom = c("point","smooth"), method = "lm")

The capabilities for scale manipulations are similar in both ggplot2 and lattice, although
the syntax is a little different.

xyplot(wt ~ mpg | cyl, mtcars, scales = list(y = list(relation = "free")))
qplot(mpg, wt, data = mtcars) + facet_wrap(~ cyl, scales = "free")

xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 10))
qplot(mpg, wt, data = mtcars, log = "xy")

xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 2))
qplot(mpg, wt, data = mtcars) +

scale_x_log2() + scale_y_log2()

xyplot(wt ~ mpg, mtcars, group = cyl, auto.key = TRUE)
Map directly to an aesthetic like colour, size, or shape.
qplot(mpg, wt, data = mtcars, colour = cyl)

xyplot(wt ~ mpg, mtcars, xlim = c(20,30))
Works like lattice, except you can’t specify a different limit
for each panel/facet
qplot(mpg, wt, data = mtcars, xlim = c(20,30))

February 24, 2009 181

A.5. GPL Translating between different syntaxes

Both lattice and ggplot2 have similar options for controlling labels on the plot.

xyplot(wt ~ mpg, mtcars,
xlab = "Miles per gallon", ylab = "Weight",
main = "Weight-efficiency tradeoff")

qplot(mpg, wt, data = mtcars,
xlab = "Miles per gallon", ylab = "Weight",
main = "Weight-efficiency tradeoff")

xyplot(wt ~ mpg, mtcars, aspect = 1)
qplot(mpg, wt, data = mtcars, asp = 1)

par.settings() is equivalent to + opts() and trellis.options.set() and trellis.par.get()
to theme_set() and theme_get().

More complicated lattice formulas are equivalent to rearranging the data before using
ggplot2.

A.5. GPL

The Grammar of Graphics uses two specifications. A concise format is used to caption
figures, and a more detailed xml format stored on disk. The following example of the
concise format is adapted from Wilkinson (2005, Figure 1.5, page 13).

DATA: source("demographics")
DATA: longitude, latitude = map(source("World"))
TRANS: bd = max(birth - death, 0)
COORD: project.mercator()
ELEMENT: point(position(lon * lat), size(bf), color(color.red))
ELEMENT: polygon(position(longitude * latitude))

This is relatively simple to adapt to the syntax of ggplot:

• ggplot() is used to specify the default data and default aesthetic mappings. aes
is short for aesthetic mapping and specifies which variables in the data should be
mapped to which aesthetic attributes.

• Data is provided as standard R data.frames existing in the global environment; it
does not need to be explicitly loaded. We also use a slightly different world data set,
with columns lat and long. This lets us use the same aesthetic mappings for both
datasets. Layers can override the default data and aesthetic mappings provided by
the plot.

• We replace TRANS with an explicit transformation by R code.

• ELEMENTs are replaced with layers, which explicitly specify where the data comes
from. Each geom has a default statistic which is used to transform the data prior to
plotting. For the geoms in this example, the default statistic is the identity function.
Fixed aesthetics (the colour red in this example) are supplied as additional arguments
to the layer, rather than as special constants.

182 February 24, 2009

A.5. GPL Translating between different syntaxes

• The SCALE component has been omitted from this example (so that the defaults
are used)In both the ggplot and GoG examples, scales are defined by default. In
ggplot you can override the defaults by adding a scale object, e.g. scale colour or
scale size

• COORD uses a slightly different format. In general, most of the components specifica-
tions in ggplot are slightly different to those in GoG, in order to be more familiar to
R users.

• Each component is added together with + to create the final plot

This gives us:

demographics <- transform(demographics, bd = max(birth - death, 0))

ggplot(data = demographic, mapping = aes(x = lon, y = lat)) +
layer(geom = "point", mapping = aes(size = bd), colour="red") +
layer(geom = "polygon", data = world) +
coord_map(projection = "mercator")

February 24, 2009 183

Appendix B

Aesthetic specifications

This appendix summarises the various formats that grid drawing functions take. Most of
this information is available scattered throughout the R documentation. This appendix
brings it all together in one place.

B.1. Colour

Colours can be specified with:

• A name, e.g. "red". The colours are displayed in Figure B.1(a), and can be listed in
more detail with colours(). The Stower’s institute provides a nice printable pdf that
lists all colours: http://research.stowers-institute.org/efg/R/Color/Chart/.

• An rgb specification, with a string of the form "#RRGGBB" where each of the pairs
RR, GG, BB consist of two hexadecimal digits giving a value in the range 00 to FF.
Partially transparent can be made with alpha(), e.g. alpha("red", 0.5)

• An NA, for a completely transparent colour.

The functions rgb(), hsv(), hcl() can be used to create colours specified in different
colour spaces.

B.2. Line type

Line types can be specified with:

• A integer or name: 0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash,
6=twodash), illustrated in Figure B.1(b)

• The lengths of on/off stretches of line. This is done with a string of an even number
(up to eight) of hexadecimal digits which give the lengths in consecutive positions in
the string. For example, the string "33" specifies three units on followed by three
off and "3313" specifies three units on followed by three off followed by one on and
finally three off.

The five standard dash-dot line types described above correspond to 44, 13, 134, 73,
and 2262.

Note that NA is not a valid value for lty.

185

http://research.stowers-institute.org/efg/R/Color/Chart/

B.3. Shape Aesthetic specifications

B.3. Shape

Shapes take four types of values:

• An integer in [0, 25], illustrated in Figure B.1(c).

• A single character, to use that character as a plotting symbol.

• A . to draw the smallest rectangle that is visible (i.e. about one pixel).

• An NA, to draw nothing.

While all symbols have a foreground colour, symbols 19–25 also take a background colour
(fill).

B.4. Size

Throughout ggplot2, for text height, point size and line width, size is specified in millime-
tres.

B.5. Justification

Justification of a string (or legend) defines the location within the string that is placed
at the given position. There are two values for horizontal and vertical justification. The
values can be:

• A string: "left", "right", "centre", "center", "bottom", and "top".

• A number between 0 and 1, giving the position within the string (from bottom-left
corner). These values are demonstrated in Figure B.1(d).

B.6. Fonts

postscriptFonts, pdfFonts, quartzFonts
Find R news article

• face

• family

• lineheight

• fontsize

186 February 24, 2009

B.6. Fonts Aesthetic specifications

(a) All named colours in Luv space

blank

dashed

dotdash

dotted

longdash

solid

twodash

(b) Built-in line types

●

●

●

●

●

●

●

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

21

24

23

20

(c) R plotting symbols. Colour is black, and fill is
blue. Symbol 25 (not shown) is symbol 24 rotated
180 degrees.

(d) Horizontal and vertical justification settings.

Figure B.1.: Examples illustrating different aesthetic settings.

February 24, 2009 187

Appendix C

Manipulating plot rendering with grid

C.1. Introduction

Sometimes you may need to go beyond the theming system and directly modify the
underlying grid graphics output. To do this, you will need a good understanding of
grid, as described in “R Graphics” (Murrell, 2005). If you can’t get the book, at least
read Chapter 5, “The grid graphics model”, which is available online for free at http:
//www.stat.auckland.ac.nz/~paul/RGraphics/chapter5.pdf. This appendix outlines
the more important viewports and grobs used by ggplot2 and should be helpful if you
need to interact with the grobs produced by ggplot2.

C.2. Plot viewports

Viewports define the basic regions of the plot. The structure will vary slightly from plot to
plot, depending on the type of faceting used, but the basics will remain the same.

The panels viewport contains the meat of the plot: strip labels, axes and faceted panels.
The viewports are named according to both their job and their position on the plot. A
prefix (listed below) describes the contents of the viewport, and is followed by integer x
and y position (counting from bottom left) separated by “ ”. Figure C.1 illustrates this
naming scheme for a 2×2 plot.

• strip h: horizontal strip labels

• strip v: vertical strip labels

• axis h: horizontal axes

• axis v: vertical axes

• panel: faceting panels

The panels viewport is contained inside the background viewport which also contains
the following viewports:

• title, xlabel, and ylabel: for the plot title, and x and y axis labels

• legend_box: for all of the legends for the plot

189

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter5.pdf
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter5.pdf

C.2. Plot viewports Manipulating plot rendering with grid

panel_1_1 panel_2_1

panel_2_2panel_2_1

strip_h_1_1 strip_h_2_1

axis_h_1_1 axis_h_2_1

strip_h_1_1

strip_v_1_1
strip_v_1_2

ax
is_

v_
2_
1

ax
is_

v_
1_
1

Figure C.1.: Naming scheming of the panel viewports

Figure C.2 labels a plot with a representative sample of these viewports. To get a list of all
viewports on the current plot, run current.vpTree(all=TRUE) or grid.ls(grobs = FALSE, viewports = TRUE).

mpg

wt

2

3

4

5

15 20 25 30

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

Cylinders
● 8
● 6
● 4

legends

ylabel

background

Figure C.2.: Diagram showing the structure and names of viewports.

190 February 24, 2009

C.3. Plot grobs Manipulating plot rendering with grid

C.3. Plot grobs

Grob names have three components: the name of the grob, the class of the grob, and a
unique numeric suffix. The three components are joined together with “.” to give a name
like title.text.435 or ticks.segments.15. These three components ensure that all grob
names are unique, and allow you to select multiple grobs with the same name at the same
time. Figure C.3 labels some of these grobs. The grobs are arranged hierarchically, but it’s
hard to capture this in a diagram. You can see a list of all the grobs in the current plot
with grid.ls().

mpg

wt

2

3

4

5

15 20 25 30

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

Cylinders
● 8
● 6
● 4

axis.title

legend

legend.key

axis.ticks

legend.title

axis_h

legend.text

axis.text

panel.backgroundpanel.grid.major.ygeom_point

Figure C.3.: A selection of the most important grobs.

C.4. Saving your work

Using grid.gedit(), and similar functions, works fine if you are editing the plot on screen,
but if you want to save it to disk you need take some extra steps, or you will end up with
multiple pages of output, each showing one change. The key is not to modify the plot on
screen, but to modify the plot grob, and then draw it once you have made all the changes.

p <- qplot(wt, mpg, data=mtcars, colour=cyl)
Get the plot grob
grob <- ggplotGrob(p)
Modify in place
grob <- geditGrob(grob, gPath("strip","label"), gp=gpar(fontface="bold"))

Draw it

February 24, 2009 191

C.4. Saving your work Manipulating plot rendering with grid

grid.newpage()
grid.draw(grob)

An alternative is make all of the changes on screen, and then use dev.copy2pdf() to
copy the final version to disk.

192 February 24, 2009

Bibliography

A. Azzalini and A. W Bowman. A look at some data on the old faithful geyser. Applied
Statistics, 39:357–365, 1990.

Cynthia A. Brewer. Color use guidelines for mapping and visualization. In A.M. MacEachren
and D.R.F. Taylor, editors, Visualization in Modern Cartography, chapter 7, pages 123–
147. Elsevier Science, Tarrytown, NY, 1994a.

Cynthia A. Brewer. Guidelines for use of the perceptual dimensions of color for mapping and
visualization. In Color Hard Copy and Graphic Arts III, Proceedings of the International
Society for Optical Engineering (SPIE), San Jose, volume 2171, pages 54–63, 1994b.

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot matrix
techniques for large n. Journal of the American Statistical Association, 82(398):424–436,
1987.

Dan Carr. Using gray in plots. ASA Statistical Computing and Graphics Newsletter, 2(5):
11–14, 1994. URL http://www.galaxy.gmu.edu/~dcarr/lib/v5n2.pdf.

Dan Carr. Graphical displays. In Abdel H. El-Shaarawi and Walter W. Piegorsch,
editors, Encyclopedia of Environmetrics, volume 2, pages 933–960. John Wiley &
Sons, Ltd, Chichester, 2002. URL http://www.galaxy.gmu.edu/%7Edcarr/lib/
EnvironmentalGraphics.pdf.

Dan Carr and Ru Sun. Using layering and perceptual grouping in statistical graphics. ASA
Statistical Computing and Graphics Newsletter, 10(1):25–31, 1999.

Dan Carr, Nicholas Lewin-Koh, and Martin Maechler. hexbin: Hexagonal Binning Routines,
2008. R package version 1.14.0.

John Chambers, William Cleveland, Beat Kleiner, and Paul Tukey. Graphical methods for
data analysis. Wadsworth, 1983.

William Cleveland. Visualizing data. Hobart Press, 1993a.

William Cleveland. A model for studying display methods of statistical graphics.
Journal of Computational and Graphical Statistics, 2:323–364, 1993b. URL http:
//stat.bell-labs.com/doc/93.4.ps.

William Cleveland. The Elements of Graphing Data. Hobart Press, 1985.

193

http://www.galaxy.gmu.edu/~dcarr/lib/v5n2.pdf
http://www.galaxy.gmu.edu/%7Edcarr/lib/EnvironmentalGraphics.pdf
http://www.galaxy.gmu.edu/%7Edcarr/lib/EnvironmentalGraphics.pdf
http://stat.bell-labs.com/doc/93.4.ps
http://stat.bell-labs.com/doc/93.4.ps

Bibliography Bibliography

William S Cleveland and Robert McGill. Graphical perception: The visual decoding of
quantitative information on graphical displays of data. Journal of the Royal Statistical
Society. Series A (General), 150(3):192–229, 1987.

Dianne Cook and Deborah F. Swayne. Interactive and Dynamic Graphics for Data Analysis:
With Examples Using R and GGobi. Springer, 2007.

Doug McIlroy. Packaged for R by Ray Brownrigg and Thomas P Minka. mapproj: Map
Projections, 2005. R package version 1.1-7.1.

John Fox. effects: Effect Displays for Linear and Generalized Linear Models, 2008. URL
http://www.r-project.org,http://socserv.socsci.mcmaster.ca/jfox/. R pack-
age version 1.0-12.

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics, 28
(100-108), 1979.

A. Inselberg. The Plane with Parallel Coordinates. The Visual Computer, 1:69–91, 1985.

Jim Lemon, Ben Bolker, Sander Oom, Eduardo Klein, Barry Rowlingson, Hadley Wickham,
Anupam Tyagi, Olivier Eterradossi, Gabor Grothendieck, Michael Toews, and John Kane.
plotrix: Various plotting functions, 2008. R package version 2.4-3.

Thomas Lumley. dichromat: Color schemes for dichromats, 2007. R package version 1.2-2.

David Meyer, Achim Zeileis, and Kurt Hornik. The strucplot framework: Visualizing
multi-way contingency tables with vcd. Journal of Statistical Software, 17(3):1–48, 2006.
URL http://www.jstatsoft.org/v17/i03/.

Paul Murrell. Investigations in Graphical Statistics. PhD thesis, The University of Auckland,
1998.

Paul Murrell. R graphics. Chapman & Hall/CRC, 2005.

Naomi Robbins. Creating More Effective Graphs. Wiley-Interscience, 2004.

Deepayan Sarkar. lattice: Lattice Graphics, 2008a. R package version 0.17-6.

Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer, 2008b.

Gregory R. Warnes. Includes R source code and/or documentation contributed by Ben Bolker
and Thomas Lumley. gplots: Various R programming tools for plotting data, 2007. R
package version 2.6.0.

Edward R. Tufte. Envisioning information. Graphics Press, Chesire, Connecticut, 1990.

Edward R. Tufte. Visual explanations. Graphics Press, Chesire, Connecticut, 1997.

Edward R. Tufte. The visual display of quantitative information. Graphics Press, Chesire,
Connecticut, 2001.

Edward R. Tufte. Beautiful evidence. Graphics Press, Chesire, Connecticut, 2006.

194 February 24, 2009

http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/
http://www.jstatsoft.org/v17/i03/

Bibliography Bibliography

John W. Tukey. Exploratory data analysis. Addison Wesley, 1977.

Edward J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal of
the American Statistical Association, 85(411):664–675, 1990.

Hadley Wickham. Reshaping data with the reshape package. Journal of Statistical Software,
21(12), 2007. URL http://www.jstatsoft.org/v21/i12/paper.

Hadley Wickham. A layered grammar of graphics. Journal of Computational and Graphical
Statistics, Tentatively accepted.

Hadley Wickham. Practical tools for exploring data and models. PhD thesis, Iowa State
University, 2008. URL http://had.co.nz/thesis.

Leland Wilkinson. The Grammar of graphics. Statistics and Computing. Springer, 2nd
edition, 2005.

Achim Zeileis, Kurt Hornik, and Paul Murrell. Escaping RGBland: Selecting colors for statis-
tical graphics. Computational Statistics & Data Analysis, 2008. URL http://statmath.
wu-wien.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf. Forthcom-
ing.

February 24, 2009 195

http://www.jstatsoft.org/v21/i12/paper
http://had.co.nz/thesis
http://statmath.wu-wien.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf
http://statmath.wu-wien.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf

	1 Preface
	1.1 Introduction
	1.2 Other resources
	1.3 What is the grammar of graphics?
	1.4 How does ggplot2 fit in with other R graphics?
	1.5 About this book
	1.6 Installation
	1.7 Acknowledgements

	2 Getting started with qplot
	2.1 Introduction
	2.2 Data sets
	2.3 Basic use
	2.4 Colour, size, shape and other aesthetic attributes
	2.5 Plot geoms
	2.5.1 Adding a smoother to a plot
	2.5.2 Boxplots and jittered points
	2.5.3 Histogram and density plots
	2.5.4 Bar charts
	2.5.5 Time series with line and path plots

	2.6 Faceting
	2.7 Other options
	2.8 Differences from plot

	3 Mastering the grammar
	3.1 Introduction
	3.2 Fuel economy data
	3.3 Building a scatterplot
	3.4 A more complex plot
	3.5 Components of the layered grammar
	3.5.1 Layers
	3.5.2 Scales
	3.5.3 Coordinate system
	3.5.4 Faceting

	3.6 Data structures

	4 Build a plot layer by layer
	4.1 Introduction
	4.2 Creating a plot
	4.3 Layers
	4.4 Data
	4.5 Aesthetic mappings
	4.5.1 Plots and layers
	4.5.2 Setting vs. mapping
	4.5.3 Grouping
	4.5.4 Matching aesthetics to graphic objects

	4.6 Geoms
	4.7 Stat
	4.8 Position adjustments
	4.9 Pulling it all together
	4.9.1 Combining geoms and stats
	4.9.2 Displaying precomputed statistics
	4.9.3 Varying aesthetics and data

	5 Toolbox
	5.1 Introduction
	5.2 Overall layering strategy
	5.3 Basic plot types
	5.4 Displaying distributions
	5.5 Dealing with overplotting
	5.6 Surface plots
	5.7 Drawing maps
	5.8 Revealing uncertainty
	5.9 Statistical summaries
	5.9.1 Individual summary functions
	5.9.2 Single summary function

	5.10 Annotating a plot
	5.11 Weighted data

	6 Scales, axes and legends
	6.1 Introduction
	6.2 How scales work
	6.3 Usage
	6.4 Scale details
	6.4.1 Common arguments
	6.4.2 Position scales
	6.4.3 Colour
	6.4.4 The manual discrete scale
	6.4.5 The identity scale

	6.5 Legends and axes
	6.6 More resources

	7 Positioning
	7.1 Introduction
	7.2 Faceting
	7.2.1 Facet grid
	7.2.2 Facet wrap
	7.2.3 Controlling scales
	7.2.4 Missing faceting variables
	7.2.5 Grouping vs. faceting
	7.2.6 Dodging vs faceting
	7.2.7 Continuous variables

	7.3 Coordinate systems
	7.3.1 Transformation
	7.3.2 Statistics
	7.3.3 Cartesian coordinate systems
	7.3.4 Non-Cartesian coordinate systems

	8 Polishing your plots for publication
	8.1 Themes
	8.1.1 Built-in themes
	8.1.2 Theme elements and element functions

	8.2 Customising scales and geoms
	8.2.1 Scales
	8.2.2 Geoms and stats

	8.3 Saving your output
	8.4 Multiple plots on the same page
	8.4.1 Subplots
	8.4.2 Rectangular grids

	9 Manipulating data
	9.1 An introduction to plyr
	9.1.1 Fitting multiple models

	9.2 Converting data from wide to long
	9.2.1 Multiple time series
	9.2.2 Parallel coordinates plot

	9.3 !ggplot()! methods
	9.3.1 Linear models
	9.3.2 Writing your own

	10 Reducing duplication
	10.1 Introduction
	10.2 Iteration
	10.3 Plot templates
	10.4 Plot functions
	Appendices
	A Translating between different syntaxes
	A.1 Introduction
	A.2 Translating between qplot and ggplot
	A.2.1 Aesthetics
	A.2.2 Layers
	A.2.3 Scales and axes
	A.2.4 Plot options

	A.3 Base graphics
	A.3.1 High-level plotting commands
	A.3.2 Low-level drawing
	A.3.3 Legends, axes and grid lines
	A.3.4 Colour palettes
	A.3.5 Graphical parameters
	A.3.6 Specialised graphics

	A.4 Lattice graphics
	A.5 GPL

	B Aesthetic specifications
	B.1 Colour
	B.2 Line type
	B.3 Shape
	B.4 Size
	B.5 Justification
	B.6 Fonts

	C Manipulating plot rendering with !grid!
	C.1 Introduction
	C.2 Plot viewports
	C.3 Plot grobs
	C.4 Saving your work

	References

