Rogers random predator equation:
extensions and estimation by numerical
integration

Ben Bolker
April 19, 2012

oNelel

1 Introduction

Unlike the Holling type II functional response, which predicts the instantaneous
attack rate, the Rogers random predator (RRP) equation (which allows for
predator handling time and prey depletion over time) does not have a simple
closed-form solution. Rogers| (1972)) gives a simple iterative solution, which is
fast and effective but doesn’t necessarily fit into standard maximum likelihood
optimization approaches (Julianol [1993; |Vonesh and Bolker, 2005)). However, as
known in some mathematical circles (Corless et al., [1996) and as pointed out
by McCoy and Bolker| (2008)), there is a “special function” called the Lambert
W function that can be used to compute the solution, making it a convenient
plug-in for routines to fit parameters for the Rogers equation.

Various people have written me with questions about implementing variants
of the Rogers equation:

e Amy Brooks wrote to ask if I had an analogous solution for the Rogers
equation with two prey (non-interacting other than through shared pre-
dation), as discussed in (Colton, [1987)).

e Ulrich Brose wrote to ask about the Beddington-DeAngelis functional re-

dN _ aNPT
sponse model, ‘- = TFahN+e(P=T)

e Owen Petchey wrote to ask about an alternative form of the attack rate,
a=0bN1

e Adrian Stier has been working on a problem with a background mortality

(density-independent depletion, i.e. ¥ = —N(po + aP/(1+ ahN)).

e 7?7 has a variant with density-dependent attack rate

Unfortunately, it seems that the derivation of both Rogers’ iterative scheme and
the Lambert W function form of the solution are fairly specific to the instan-
taneous Holling type IT functional form, and don’t (as far as I have been able
to figure out) generalize to other situations easily. (The original Rogers paper
is pretty dense: I have looked through it but have not sat down and worked
through it in detail, which might be required in order to really understand
whether/how it can be generalized.) Therefore, in general one has to resort to
brute force (numerical integration) to solve these problems. (The exception is
Ulrich Brose’s problem, which it turns out can be rescaled to be equivalent to
the RRP.)

Below, I develop various simple (77) bits of code to “solve” these variants
of the RRP by brute force, and compare them with the results of an even
more general /brute-force approach, i.e. numerically integrating the population
dynamics.

2 Derivation of Lambert W form for RRP equa-
tion for a single predator

(This doesn’t really need to go here, but I wanted to write it down somewhere

)

N = No (1 - ee=h)

1 — N/Ny = e~ *T="N)

_ efaT . eahN

—a(T—hNy) | ahNo (D —1
€ 0 € (NO) (1)

ahNg (1_%) _ ahNOe—a(T—hNo)

CthQ(l — N/No) - €
ahNo(1 — N/No) = W (ahNOe_“(T_hNO))
w (ahNoe_“(T_hNO))
ah

Or starting from scratch, we have dN/dt = —aN/(1 + ahN) = —A(N) so
we compute [—dN/A(N) and equate it to 7. In Mathematica:

N=N,—

m := Integrate[-(1 + al hl Np)/(al Np), Np]

The answer (indefinite integral), as we could have figured out ourselves, is
—log(N)/a — hN. To figure out the number eaten,

Solve[-h1 (Np - NO) - (Log[Np] - Log[NO])/al == T, Np]
This gives

Np -> ProductLoglal E~(al hl NO - al T) hl NO]/(al hl)

which is equivalent to our answer above (since ProductLog is Mathematica’s
version of the Lambert W), and we are computing the number eaten here (not
the number surviving).

Don’t think we can solve this for the two-prey case ... (maybe, but I haven’t
tried):

Ny

NO 1 (1 _ e—al(T—thl—h2N2)> (2)

N2 _ NO 9 (1 o 67(12(T7h1N17h2N2)) (3)

3 Two-prey case

3.1 Numerical integration

Solve by brute force numerical integration: at each moment assume the depletion
rate follows the Holling type II expectation (dN;/dt = a;N;/(1+ > ; ajh;Nj)).
Load the deSolve package and define the gradient function:

library(deSolve)
frgrad <- function(t,y,parms) {
with(c(as.list(parms),as.list(y)),
list(c(-al1*N1/(1+al*h1*N1+a2xh2*N2),
-a2*N2/ (1+alxh1*N1+a2xh2*N2)),
NULL))

A simple example showing the time dynamics:
L1 <- lsoda(y=c(N1=10,N2=10),times=seq(0,50,by=0.1),

parms=c(al=0.3,a2=0.1,h1=1,h2=1),
func=frgrad)

10

Pop. density

Time
A function to compute the number eaten by time 7"

rogers.lsoda <- function(N10,N20,al,a2,h1,h2,T) {

L1 <- 1soda(y=c(N1=N10,N2=N20),times=seq(0,T,length=2),
parms=c(al=al,a2=a2,h1=h1,h2=h2),
func=frgrad)

c(N10,N20)-L1[2,-1]

}

3.2 Solution by optimization

It should be faster (although perhaps not enough to matter?) to solve the
Rogers 2-prey equations by numerical optimization rather than integrating
all the way through.

It turns out that the solution is more robust if one (1) picks reasonably good
starting points (I use the expectation from the Holling type II function without
depletion); (2) uses bounded optimization to make sure the number eaten is
between 0 and the starting number available; (3) defines a function to calculate
the gradient.

The most straightforward to solve would be to use Newton’s method.
It is marginally more convenient in R to use the built-in optimization tools
to minimize (3J(N; — N;)?) — the squared deviation of the solution from the
desired value.

Define sum-of-squares function, a gradient function, and an initial-estimate
function:

rogers.dev <- function(p,N10,N20,al,a2,hl1,h2,T,
debug=FALSE) {
N1 <- p[1]
N2 <- p[2]
x <- T-h1*N1-h2xN2
expected <- c(N10,N20)*(1-exp(-c(al,a2)*x))
s <- sum((expected-p)"2)
if (debug) cat (N1,N2,x,expected,p,s,)
s

gradient
rogers.devgr <- function(p,N10,N20,al,a2,h1,h2,T,
debug=FALSE) {
N1 <- p[1]
N2 <- pl[2]
x <- T-h1xN1-h2x*N2
expected <- c(N10,N20)*(1-exp(-c(al,a2)*x))
if (debug) cat(expected,)
deriv of (expected N_i wrt N_i)
dNx = -c(N10,N20) *exp(-c(al,a2)*x)*c(al,a2)*c(hl,h2)
deriv of (expected N_i wrt N_j)
dNy = -c(N10,N20)*exp(-c(al,a2)*x)*c(al,a2)*c(h2,hl)
dev = (expected-c(N1,N2))
2x (dev* (-1+dNx) +rev(dev)*rev (dNy))
¥

rogers.init <- function(N10,N20,al,a2,h1,h2,T) {
T*c(al*N10,a2*N20) / (1+al*h1*N10+a2*h2*N20)
}

A function to return the number eaten:

rogers.opt <- function(N10,N20,al1,a2,h1,h2,T,
start,debug=FALSE) {
if (missing(start))
start = rogers.init(N10,N20,a1,a2,h1,h2,T)
if (debug)cat(,start,)
01 <- optim(fn=rogers.dev,
gr=rogers.devgr,

par=start,
N10=N10,N20=N20,al=al,a2=a2,h1=h1,h2=h2,T=T,
method= ,upper=c(N10,N20) ,lower=c(0,0),

debug=debug)
if (01$convergence==0) 01l$par else stop(

Some basic tests:
rogers.lsoda(N10=10,N20=10,a1=0.3,a2=0.1,h1=1,h2=1,T=50)

#it N1 N2
9.999 9.525

rogers.opt(N10=10,N20=10,a1=0.3,a2=0.1,h1=1,h2=1,T=50)
[1] 9.999 9.525

Try it for ¢ = {0.3,0.1}, h = {1,1}, T = 50, and equal starting numbers
from 1 to 80.

35

30

20

Number eaten

10

I I I I I
0 20 40 60 80

Starting density

The optimization and 1soda results are overlaid — they’re exactly the same.
The “bump” in the less-attacked species is mildly interesting — I guess increas-
ing the density of the more-attacked species is actually lowering the effective
attack rate.

One could then plug these functions into a maximum-likelihood estimator
(insert blatant plug for my bbmle package here. With one species one can do
something like

mle2(eaten~dbinom(prob=rogers(init,a,h,T)/init,size=init))

For two species, one would either have to write out an explicit negative
log-likelihood function, something like

rogers2nlik = function(NO1,N02,a1,a2,h1,h2,T,N1,N2) {
expected = rogers.opt(NO1,NO2,al,a2,h1,h2,T)
init = c(NO1,N02)
-sum(dbinom(c(N1,N2) ,prob=expected/init,size=init,log=TRUE))
}

(however, n.b. that this function is not properly vectorized — one would
have to tweak it a bit so that it would deal with the whole data set at once, e.g.
something like:

rogers2nlik = function(NO1,N02,al,a2,h1,h2,T,N1,N2) {
expected = t(mapply(rogers.opt,
NO1,NO2,
MoreArgs=list(al=al,a2=a2,h1=h1,h2=h2,T=T)))
-sum(dbinom (N1, prob=expected[,1]/N01,size=N01,10g=TRUE))-
sum(dbinom (N2, prob=expected[,2] /N02,size=N02,10g=TRUE))

n.b. this isn’t tested either! It’s just a rough guide to what one would need
to do.
Then:

mle2(minuslogl=rogers2nlik,start=...,...)

Slightly more cleverly, one could probably write a function that would allow
use of the formula interface — there is an example like this buried, but not
published, in Chapter 8 of my book (search http://www.zoo.ufl.edu/bolker/
emdbook/chap8.Rnw| for dicweib, or look in the tests directory of the source
version of the bbmle package — yes, I know these are both pretty obscure).

4 Beddington-DeAngelis

I had a query from Ulrich Brose about using the Beddington-DeAngelis func-
tional response model,

dN aNPT
dt 1+ahN +c(P—1)’

which incorporates a predator interference term into the Holling type II; when
¢ =0 (or P =1), it reduces to the type II. (Brose et al used slightly different
notation in their message to me; here, changing things slightly from the previous
case, I have also included P explicitly — previously, it could essentially be
included in T.)

In their message to me, they had derived the following integrated version:

N = Ny(1 —exp((aNh — aPT)/(1+ c(P —1))))

http://www.zoo.ufl.edu/bolker/emdbook/chap8.Rnw
http://www.zoo.ufl.edu/bolker/emdbook/chap8.Rnw

(which T initially didn’t believe but confirmed by brute-force testing: see below).

What I realized, after writing much of the code below, is that this model
can be written as a re-parameterization of the Holling type II where the attack
rate depends on P. If we define ¢ =1+ ¢(P — 1), we have:

AN aNPT
At~ (14+¢(P—1))+ahN
~ aNPT
"~ ¢+ahN
(a/¢)NPT

" 1+ (a/$)hN

For an experiment with a single value of P, a and ¢ can’t be separated; for
varying P, we can just reparameterize (see below).
Code to solve the ODE by brute force:

BDAfr <- function(N,P,a,h,c) {
a*xN*P/ (1+a*h*N+c* (P-1))
}
gfun <- function(t,y,parms) {
with(as.list(c(y,parms)),
list (c(N=-BDAfr(N,P,a,h,c)),NULL))
}
ffun <- function(NO,P,a,h,T,c) {
r <- lsoda(c(N=NO),times=c(0,T),parms=c(a=a,h=h,P=P,c=c),
func=gfun)
NO-r[2,2]
}

Check that we recover the Rogers answer when ¢ = 0 (and/or P = 1):

library (emdbook)

Loading required package: MASS
Loading required package: lattice

rogers.pred <- function(NO,a,h,P,T) {
NO - lambertW(a*xh*NO*exp(-a* (P*T-h*N0)))/(axh)
}
checks
rogers.pred(N0O=1,a=0.5,h=0.5,P=2,T=2)-
ffun(NO=1,a=0.5,h=0.5,P=2,T=2, c=0)

#i# N
1.477e-08

0.6 —

0.5

0.4 —

0.3

0.2

Number (density) removed

0.1

0.0

Predator interference
Check the ODE integration against an iterative approach:

rr2 <- function(NO,a,h,P,T,c,maxit=200,tol=1e-4) {
Np <- N <- NO/2
it <- 1
repeat {
Np <- N
N <- NO*(1-exp((axN*h-a*P*T)/(1+c*(P-1))))
it <- it +1
if (it==maxit || abs(Np-N) < tol) break
}
if (it==maxit) stop(
N
}
ffun(NO=1,P=2,a=0.5,h=0.5,T=2,c=4) -
rr2(NO=1,P=2,a=0.5,h=0.5,T=2,c=4,tol=1e-8)

#i# N
-2.119e-06

0K, these are the same

But in this case the Lambert W approach should work too:

bda.pred <- function(NO,a,h,T,P,c) {

a = a/(1+cx(P-1))

NO - lambertW(a*xh*NO*exp (-a* (P*T-h*N0)))/(a*xh)
+

ffun(NO=1,P=2,a=0.
bda.pred(NO=1,P=

N
-2.119e-06

Somewhat to my surprise, the iterative approach is actually fastest (for this
particular test case). Don’t know how much speed, robustness, etc. vary across
parameter space??

system.time(replicate(1000,ffun(N0=1,P=2,a=0.5,h=0.5,T=2,c=4)))

#it user system elapsed
1.920 0.000 1.836

system.time(replicate(1000,rr2(N0=1,P=2,a=0.5,h=0.5,T=2,c=4)))

#i# user system elapsed
0.048 0.000 0.043

system.time(replicate(1000,bda.pred(N0O=1,P=2,a=0.5,h=0.5,T=2,c=4)))

##t user system elapsed
0.212 0.000 0.197

5 Power-law attack

Suppose (as in Owen Petchey’s problem) that the attack rate in the absence of
handling time constraints is not linear in prey density, but a power law of prey
density: a(N) = bN? (rather than = aN in the usual case).

Owen wanted to know if one could get away with substituting a(N) into the
Lambert W equation. Unfortunately not.

Define an attack-rate function:

attack <- function(b,q,N) {
b*N"q
}

And a modified RRP:

10

funl <- function(b,q,h,P,T,NO) {

A <- attack(b,q,NO)

NO-lambertW (A*h*NO*exp (-A* (PxT-h*NO)))/ (Axh)
+

Try this function with a series of different g values, and with an explicit
ODE solution to double-check:

gradfun <- function(t,y,parms) {
with(as.list(c(y,parms)),

{ A <- attack(b,q,N)
grad <- -A*N/(1+Axhx*N)
list(grad,NULL)

1)

+

fun2 <- function(b,q,h,P,T,NO) {
L <- lsoda(c(N=NO),
times=c(0,T),
func=gradfun,
parms=c(b=b,q=q,h=h,P=P))
N.final <- L[2,2]
NO-N.final
+

Quick test shows the answers are different:
funi(b=1,9=1,h=0.2,P=1,T=1,N0=30)
[1] 4.97
fun2(b=1,9=1,h=0.2,P=1,T=1,N0=30)

#it N
4.967

Curve shows (wrong) Lambert W solution, points show numerical integration
solution:

11

=

I 5 -

o

P

o

" 4 -

'_

o

1

o 3

o

(=}

1

< 2

)

1

o 1 4 — q:O

— — q:l

I j —— Q=2

Ke]

EI 0 - g=-0.5

2 I I I I I I I
0 10 20 30 40 50 60

Iterative solution? I tried to check this, but for some reason it’s not working.
Fix it later ...

fun3 <- function(b,q,h,P,T,NO,maxit=40,Nstart=A*NO/(1+h*N0)) {
A <- attack(b,q,NO)
N <- Nstart
diff <- 1000
it <- 1
while (diff>0.0001 && it < maxit) {
e <- (N*h-Px*T)
N <- NO*(1l-exp(Axe))
it <- it + 1
cat(it,N,)
}
N
+
f6 = fun2(b=1,9=0,h=0.2,P=1,T=1,N0=30)

6 Density-independent depletion

This example (due to Adrian Stier) uses

dN
—r = ~N(po+aP/(1+ahN)).

12

I don’t have the example ready to go here. It was slow/finicky to do the fitting,
especially if one wants to compute likelihood profiles etc.. Some thoughts on
this are listed below.

7 Density-dependent attack rate

Suppose we model attack rate as (d+bNp)/(1+ cNy) (need to figure out where
this is from, it’s not entirely consistent that the attack rate depends only on
initial density: shouldn’t that be subject to depletion too, so that what we really
have is the solution to dN/dt = —(a(N(t))/(1+a(N(t))hN(t)) dt? Nevertheless,
let’s forge ahead:

predfun <- function(b,c,d,h,T,NO,debug=FALSE) {
a <= (d+b*N0)/(1+c*NO)
r <- NO - (1/(a*h))*lambertW(a*xh*NO*exp (a* (h*NO-T)))
if (debug) cat(mean(a),b,c,d,h,mean(r),)
r
}
dlW <- function(x) plogis(-lambertW(x))

8 Multiple predators with different attack rates

Rate of consumption at time ¢t = instantaneous consumption from both preda-
tors = —dN/dt = C(t) = a1 N/(1 + a1h1N) + aaN/(1 + aghaN) (wrote N(t) as
N for convenience here).

Number eaten by time T is fOT(—dN/dt) dt, but this is more easily done by
just figuring out N(0) — N(T'), (i.e. getting number surviving), so we need to
integrate both sides of

dN

=T+C
/alN/(l+a1h1N)+a2N/(1+a2h2N) +

If we were just to do this for RRP we would have [1/(a1N)+ hydN =
log N/a; + hiN = T + C (so we can see immediately where the Lambert W
stuff has to come from).

If we try to do this in Mathematica, we start by defining the attack rate, as
above:

Aa[Np] := al Np /(1 + al hl Np) + a2 Np/(1 + a2 h2 Np)
Integrate —dN/N:

m := Integrate[-1/Aa[Np], Np]

13

-(al a2 (al + a2) hl h2 (hl + h2) Np +
al a2 (hl + h2)"2 Log[Np] +
(al hl - a2 h2)"2 Logla2 + al (1 + a2 (hl + h2) Np)1)/
(al a2 (al + a2) (hl + h2)"2)

(This could also have been done by a good student in first semester calculus,
although the algebra is a little more tedious ...)

Unfortunately Mathematica can’t solve for N in this case.

We can solve this by brute force, though:

f1 <- function(N,al,a2,hi,h2) {
-(al*a2x(al+a2)* hixh2* (h1+h2)*N +
al*a2*(h1+h2) "2*log(N)+
(al*hl - a2*h2)"2* log(a2+al*(1+a2x(h1+h2)*N)))/
(a1*a2*(al+a2)*(h1+h2) ~2)
}
£f2 <- function(N,NO,al,a2,h1,h2,T) {
f1(N,al,a2,h1,h2)-f1(NO,al,a2,h1,h2)-T
}
£f3 <- function(NO,al,a2,h1,h2,T) {

NO-uniroot (f2,interval=c(0,NO),NO=NO,al=al,a2=a2,h1=h1,h2=h2,T=T)$root
}

The results should be identical if we compare RRP with two predators (of the
same species) with a and h vs this new formulation with a; = as and hy = has.

This approach should be applicable much more generally than
the Lambert W solution and generally much faster and more robust
(though requiring slightly more hand/user calculation) than numeri-
cal integration ...

Some haphazard examples:

rogers.pred(NO=1,a=0.5,h=0.5,P=2,T=2)

[1] 0.8333
£3(NO=1,a21=0.5,22=0.5,h1=0.5,h2=0.5,T=2)
[1] 0.8333
rogers.pred(NO=1,a=1,h=0.5,P=2,T=2)

[1] 0.9702
£3(N0=1,a1=1,a2=1,h1=0.5,h2=0.5,T=2)

[1] 0.9702

14

Draw the curve for RRP and the equivalent, then try two predators with
a=1{1,2} and h = {1,0.25}:

8 -
6 -
c
Q
©
(]
g 4
Qo
£
=}
Z
, —— equal predators
: ---- (ditto)
........ Holling Il
. — unequal predators
| | ' ' I I I
0 5 0o 20 s %0
Initial density

9 More thoughts on optimization

A problem from the r-help mailing list (definition of dat hidden):
Naive Nelder-Mead fit starting from (arbitrary??) starting values:

library(bbmle)
tt <- try(rl <- mle2(FR~-dbinom(size=NO,
prob=rogers.pred(NO,a,h,T=24,P=1)/NO),
start=1list(a=1.5,h=0.04),
method= ,data=dat))

Error in dbinom(x, size, prob, log)
Non-numeric argument to mathematical function

This occurs because we end up trying a value in lambertW that gives complex
results. In particular, running with options(error=recover) shows that we
get to a = —0.262, h = 1.75:
rogers.pred(5,a=-0.262,h=1.75,P=1,T=24)

[1] 12.39+5.46i

15

Works with method="L-BFGS-B", as long as we set lower strictly greater
than 0:

r2 <- mle2(FR~dbinom(size=NO,
prob=rogers.pred(NO,a=a,h=h,T=24,P=1)/NO),
start=1ist(a=1.5,h=0.04),
method= ,lower=1e-5,data=dat)

Could we have done better starting from Holling parameters? We can fit a
Holling model without specifying starting parameters by using a GLM with an
inverse link (as also detailed here). If p = a/(1 + ahN) then 1/p = 1/a + hN,
so:

r3 <-
glm(cbind (FR,NO-FR)~NO,family=binomial (1ink=) ,data=dat)

We can translate back to {a, h} as follows:

startparams <- glmparams <-
with(as.list(coef(r3)),list(a=1/¢(Intercept) ‘,h=N0))
startparams$a <- startparams$a/24 ## need to scale parameters
from /hour to /day

startparams$h <- startparams$h*24 ## need to scale parameters
from hours to days

r2B <- mle2(FR~dbinom(size=NO,
prob=rogers.pred(NO,a=a,h=h,T=24,P=1)/NO),
start=startparams,method= ,data=dat)

No, this fails again — even though the parameters are apparently on about
the correct order of magnitude ...

holling.start RRP
a 0.03656 0.06074
h 1.36593 1.56138

The overall RRP fit to data is slightly better, but not much better. In terms
of AIC:

AICtab(r2,r3,weights=TRUE)

#i# dAIC df weight
#* r2 0.0 2 0.634
r3 1.1 2 0.366

16

http://emdbolker.wikidot.com/voneshglm

Or a picture:

60
— RRP
—— Holling Il
50 ---- Rogers (HIl params)
40
T 30+
20

The dashed line shows the predictions of the RRP model on the basis of the
Holling parameters (i.e., the same instantaneous attack rate and handling time,
applied for 24 hours, but with depletion). The RRP conclusion is that most
of the observed limitation is due to depletion (and hence increased searching
time), rather than to predator saturation ...Predator saturation (fraction of
time spent handling rather than searching) at density N is 1/(aN)/(1/(aN) +
h) = 1/(1 4+ ahN); for N = 60 this is 0.1495 for RRP vs. 0.2502 for Holling
type II (yes, I could also compute confidence intervals for these quantities —
but I claim that 15% vs. 25% is potentially ecologically important).

There are pretty big differences between the Holling (non-depletion) a and
h estimates ...

#it 2.5 % 97.5 %
a 0.02957 0.04433
h 1.12988 1.60099

and the RRP ones ...

#it 2.5 % 97.5 7%
a 0.04452 0.08419
h 1.30630 1.81256

I think this is correct (although I'm still not 100% sure that I've scaled
everything correctly in making the comparison, especially in the Ny vs FR
plot).

17

TO DO: illustrate using the derivative of the Lambert W to construct an
analytical gradient for the RRP model — should make things even more ro-
bust/faster when used with nlminb or L-BFGS-B?

2.0
—~ 1.8
2
>
o
=2
o 1.6
g e
(o))
£
T 1.4
I
<
12 —— RRP
—— Holling type Il

I I I I I
0.02 0.04 0.06 0.08 0.10

attack rate (/hour)

(Bivariate confidence intervals are somewhat wider than univariate ones, so
the confidence regions do actually overlap in this case — but they may still be
significantly different, as they don’t overlap by much ...)

10 Future thoughts

e is there a back-of-the envelope calculation to decide whether depletion
could be important? For example, fit Holling type II and then compare
implied consumption rates at the beginning and end of the experiment?
For the example above, for Ny = 60 we would have an initial probability
of 0.0091 per hour and a final probability of 0.0229 per hour (assuming
N = 12 at the end of the experiment); this ratio is 2.5, enough (perhaps)
to be concerned about ...

e one could certainly clean a lot of this up and hide the details to allow
end-users to fit 2-predator data, or other more general RRP extensions,
in a few lines of code (including loading a package or sourceing a file full
of code)

e rogers.lsoda is potentially more useful than rogers.opt, even though
it is marginally less efficient (0.578 seconds vs. 0.16 to do the calcula-
tions above), because it can more easily be generalized to other situations
(interference, trait-mediated interactions, etc.)

18

e Juliano and Williams| (1987)) simulated data with which to test (single-
prey) Rogers equation fitting techniques in a more sophisticated way, by
allowing a log-normal distribution of handling times and an exponential
distribution of attack times. It would be interesting (although perhaps
not worthwhile in terms of making a huge difference to the estimates) to
work out a statistical method that actually took this process error into
account ...

e in general, could improve calculation of second derivatives by (1) using
parscale/ changing to log scale, or (??) trying numDeriv

e is there an analogue/extension of Rogers RP equation for multiple preda-
tors with varying attack rates and handling times? If so, we could cheat
and pretend that the baseline mortality rate is due to an additional preda-
tor with a handling time of zero ... (i.e. density-ind. mortality) ...but I
don’t think there is ...

e we can construct confidence intervals for the curves etc. by bootstrap-
ping, but (1) this will be really slow with our current code and (2) it’s
not optimal because there aren’t very many replicates (37) within treat-
ment/density combination in the current Stier experimental design (37)

e power tools: try AD Model Builder? Can’t see an easy way to do this
with WinBUGS ... might be able to use MCMCpack to get a posterior
distribution ...

e Does the RRP have an inverse? It’s not impossible — in which case we
could use it as a custom link in a GLM ...

References

Colton, T. F. 1987. Extending functional response models to in-
clude a second prey type: An experimental test. Ecology 68:900—
912. URL http://links.jstor.org/sici?sici=0012-9658%28198708
2968%3A47,3C900%3AEFRMTIY,3E2.0.C0%3B2-1.

Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth.
1996. On the Lambert W function. Advances in Computational Mathematics
5:329-359.

Juliano, S. A. 1993. Nonlinear curve fitting: predation and functional response
curves. Pages 159-182. in S. M. Scheiner and J. Gurevitch, editors. Design
and analysis of ecological experiments. Chapman & Hall, New York.

Juliano, S. A. and F. M. Williams. 1987. A comparison of methods for estimating
the functional response parameters of the random predator equation. Journal
of Animal Ecology 56:641-653.

19

http://links.jstor.org/sici?sici=0012-9658%28198708%2968%3A4%3C900%3AEFRMTI%3E2.0.CO%3B2-I
http://links.jstor.org/sici?sici=0012-9658%28198708%2968%3A4%3C900%3AEFRMTI%3E2.0.CO%3B2-I

McCoy, M. W. and B. M. Bolker. 2008. Trait-mediated interactions: in-
fluence of prey size, density and experience. Journal of Animal Ecology
77:478-486. URL http://www.ingentaconnect.com/content/bsc/janim/
2008/00000077/00000003/art00007.

Rogers, D. J. 1972. Random search and insect population models. Journal of
Animal Ecology 41:369-383.

Vonesh, J. R. and B. M. Bolker. 2005. Compensatory larval responses shift trade-
offs associated with predator-induced hatching plasticity. Ecology 86:1580—
1591.

20

http://www.ingentaconnect.com/content/bsc/janim/2008/00000077/00000003/art00007
http://www.ingentaconnect.com/content/bsc/janim/2008/00000077/00000003/art00007

	Introduction
	Derivation of Lambert W form for RRP equation for a single predator
	Two-prey case
	Numerical integration
	Solution by optimization

	Beddington-DeAngelis
	Power-law attack
	Density-independent depletion
	Density-dependent attack rate
	Multiple predators with different attack rates
	More thoughts on optimization
	Future thoughts

