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IMAGE SEGMENTATION WITH A FINITE
ELEMENT METHOD

BLAISE BOURDIN!

Abstract. The Mumford-Shah functional for image segmentation is an original approach of the image
segmentation problem, based on a minimal energy criterion. Its minimization can be seen as a free
discontinuity problem and is based on I'-convergence and bounded variation functions theories. Some
new regularization results, make possible to imagine a finite element resolution method. In a first time,
the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete
formulation for the Mumford-Shah problem is proposed and its I'-convergence is proved. Finally, some
numerical results, computed from both artificial and real images are presented and discussed.

Résumé. La fonctionelle de Mumford-Shah est une approche originale du probléme de la segmen-
tation d’images, basée sur un critére d’énérgie minimale. Sa minimisation peut étre vue comme un
probléme de discontinuités libres et repose alors sur les théories de la I'-convergence et des fonctions
a variations bornées. Des résultats de régularisation récents ont permi d’envisager une méthode de
résolution, a base d’éléments finis. Dans un premier temps, le modele est présenté et des résultats
existants sont cités. Ensuite, une formulation discréte du probleme de Mumford-Shah est proposée et
sa I'-convergence prouvée. Enfin, des résultats numériques, issus de calculs sur des images synthétiques
et réelles sont proposés et discutés.
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INTRODUCTION

Our aim is to minimize the functional proposed by Mumford and Shah [12] in the problem of image segmen-
tation, namely

Ew, 1) =p /(u—g)Qdac—i— / | Vu | dz + aH" 1T NQ)
o\l o\l

where Q@ C R?, an open bounded set, is the image domain, g is the observed grey level of the image (g €
L>(9;0,1])) and u is a smooth approximation of g (u € C*(Q2\ I')), T denotes the set of possible edges (a
closed subset of 2) and H"~! denotes the n — 1-dimensional Hausdorff measure and o and 3 are positive fixed
parameters.
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In a formal way, £ can be represented by an energy, associated to a function u, which must be smooth and
close to the original image, except on a curve set I, called the edge set of the image.

This problem has been studied by several authors. First, De Giorgi, et al. [8] proposed an equivalent
functional, F, with v in SBV(Q) and T represented by S, the discontinuity set of w.

Then, Ambrosio and Tortorelli devised an approximation E. of F by means of an elliptic functional that
uses an additional variable v, representing (in some sense) %" !(S,) and a small parameter, c, the relaxation
parameter, via I'-convergence. In view of the properties of I'-convergence, the minimization of E reduces to
that of E., for small c. See [1,2].

This work led to at least two different numerical approaches: Belletini and Coscia [3] proposed a discrete
approximation th of E. by piecewise linear functions, which lends itself to a finite element analysis of the
problem, while Richardson and Mitter [13] implemented a gradient method.

In this study, we start from the functional E., propose a discrete approximation E, different from that
proposed by Belletini and Coscia and implement a finite element method for the minimization of E p.

The content of this paper is as follows:

Section 1 is entirely devoted to notation. In Section 2, we recall various results borrowed from the already
quoted references. In Section 3, we present our discrete functional E. j, and prove its I'-convergence to E and the
convergence of the minimum values and of the minimizers. In Section 4, we detail the numerical implementation
of the computation. In Section 5, we present and discuss a few numerical results computed from both real and
artificial images.

1. NOTATION

In R", | o | denotes the usual Euclidean norm, dx or £", the Lebesgue measure, and H*, the k-dimensional
Hausdorff measure.

Set E(u,I) =4 [ (u—g)?*dz+ [ |Vul|? do+aH" 1 (QNT) (the Mumford-Shah functional).

o\T o\T

Let BV (2) be the space of functions u € L*(Q) such that the distributional derivative of u can be represented
by a regular Borel measure with finite total variation Du : B(2) — R™, where B(2) denotes the set of all Borel
subsets of Q.

Let S, be the complement of the Lebesgue set of u, i.e.,

Sy =1z €Q:Az € Rsuch that lim p™" / |u(z) —z| de =0
p—0+

By(z)

Denote by SBV (), the space of functions u in BV (2) such that Du is absolutely continuous with respect
to L + HLLS,.

For further properties of BV and SBV, see [10] and [1].

Denote by R, the class of all piecewise C? submanifolds of R™ of dimension n — 1.

Denote by {Si}n, a regular family of partition of Q into simplices.

Let P,,(Q) be the space of polynomials on € of total degree less or equal than n.

Denote by V,(2) € H'(Q), the linear finite element space over Sy: vy, € Vj, if and only if v, € PY(T),VT € Sy,
and vy, € C(9).

Let V4(9,[0,1]) = {v € V1, (Q);Vz € Q,v(z) € [0,1]}.

Let 7, be the Lagrange projection operator over Vj,, i.e. given v € C(Q), 7 (v) is such that m,(v) € Vi (Q)
and for all nodes s € Sy, (7, (v)) (5) = v(s).
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2. VARIOUS RESULTS

2.1. Extension to SBV and equivalent problem
Set

E(u) = ﬁ/(u —g)*dx +/ | Vu |? dz +aH" (S, N Q). (1)
Q Q

It is proved in [8] that min {E(u),u € SBV(Q)} and min {€(u,T); T closed subset of 2 and u € C}(Q\T)} are
equivalent problems. Firstly, inf {E(u),u € SBV ()} is smaller than inf {£(u,T");T" closed subset of  and
u € C*(Q\T)}, which is immediate because, if u € C}(Q\I')NL>(Q), fQ\F | Vu |2 dx < oo and H*1(QNT) <
00, then u € SBV(Q) (Lemma 2.3 of [8]). Then the existence of min {E(u),u € SBV ()} is established in
Lemma 5.1 of [8]. Finally, if u is a minimizer of E, on SBV(Q2), then (Lemma 5.2 of [8]) u € C}(Q\ S,) and
H (S, NQ)\ S.) =0, and the result is achieved.

The next step is to focus on the term H"~1(S, N Q). To this effect, E is approximated in the sense of
I'-convergence by means of an elliptic functional.

Many such functionals have been proposed [1-3,13].

2.2. T'-convergence results

The main idea is to use an additional functional variable v : Q@ — [0,1], that will “represent” the jump set
Sy and to define the relaxed functional E.(u,v), with 4 and v in a convenient space.

One sets
E.(u,v) if (u,v) € Dom(E,),
oo otherwise,

Fotu) = {

and
E(u) if u € Dom(E) and v =1 a.e.,
0o otherwise.

Fuo) = {

If F, T-converges to F' when ¢ — 0, with respect to the L?(2) x L?(;[0,1]) strong topology, and if the

sequence of minimizers (u., v.) for E, is compact in Dom(E), then a subsequence of (u.,v.) (still indexed by ¢)
is such that u. — u in L?(Q) and v, — v in L?(Q) and (u,v) minimizes F, i.e., u minimizes E.
Remark. It is not necessary to establish the I'-convergence of F, to F' so as to construct approximate mini-
mizers. Indeed it suffices to prove that if (u,v) is a minimizer for F', there exists (uc, v.) in Dom(E.), such that
(te,ve) = (u,v) in L2() and F(u,v) > limsup F.(u.,v.), that the lower inequality, lim inf F. (@, v.) > F(a, )
if (e, v.) — (@,v) in L?(Q), holds and that sequences of approximate minimizers are compact in L?(Q).

The first approximating functional of this kind was proposed in [1]. It is

2
c

E.(u,v) = / {ﬂ(u — 9+ (| Vu PP+ | Vo ) (1=2%)° + 5—62112} dx (2)
o)

with W12(Q) x {v € WH2(Q);0 <v <1ae} C Dom(E.) C B(2) x {ve B(Q);0<v <1 ae.}, where B() is
the set of Borelian mappings on (2.

The TI-convergence takes place in L%(Q) x L2?(£;[0,1]) strong topology, and the total variation of
1- v)lH/C weakly converges in the sense of measures to 2H" !LS,(B), as ¢ — 0, i.e., u. defined as
pe(B) = (1+ 1) [povc(1— ve)+ | Vo | dz vaguely converges to H" LS, as ¢ — 0.

Note that because of the term (1 — 02)%, this functional cannot be easily discretized, as ¢ — 0.
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Then, in [2] the T-convergence, with respect to the L?(2) x L?(;[0,1]) strong topology, of the following
functional is addressed:

E.(u,v) = sfz {ﬁ(u —9)2+ (V® + k) | Vu |2 +a (c | Vo |? +%>} dz,
with k. < ¢ and o > 0.

3)

In (3), Dom(E.) = {L=(Q) N CY(Q)} x {L>°(Q;[0,1]) N CL(£;]0,1])} and v plays the role that 1 — v played in
(2). This expression gave rise to two different numerical methodologies.

In [3] the I'-convergence of a piecewise linear functional close to (3) is investigated.

It is of the form

EB, (u,v) = g{ {Brn((u— ge)*) + (v + ke)|[Vul*} do + 22 M. 4(v)
with M n(v) = [ (c|Vo|? + £mn(1 — v?)) da, ()
Q

where (u,v) € V4(Q) x V,(2;0,1]), g € C§°(Q) approximates g, in a manner such that g. — g in L*(Q),
lgell =) < 9llze() and [|Vge|lr=@) < €, which is feasible by convolution with an approximation of the
identity (cf. e.g. [5], Sect. IV.4). If h = o(k.) and k. = o(c) then F. (defined from E. ; as F, was defined from
E.) T-converges to F, with respect to the L*(Q) x L2(£;0, 1]) strong topology, as ¢ — 0.

The functional E. j, is a good candidate for a finite element analysis of the problem. A numerical implemen-
tation of (4) has been recently proposed by [11] for synthetics images.

Yet another change from (3) is the formulation proposed in [13], namely,

Eu(u,v) = Q/ {5@ 9 +3(v) | Vu|? +a (c\If(v) | Vo |2 +%)} da. (5)

In (5), ® and ¥ are C! functions with ”good” properties, in which case, F. is shown in [2] to I'-converge to F,
with respect to the L?(Q) x L2(£;]0,1]) strong topology.

Using this expression of E., a gradient descent algorithm is implemented in [13]: given (u°,v°) and ¢,, ,c,,,,
2 scalars, compute:

WS, 0,F, ©
vt =" — ¢, 0,E,

and update the scalars ¢, ,c,, , using un, vn, ® and V.

The authors also propose dynamic scaling, setting ¢ = ¢(n), 8 = B(n), then using ¢(n) as a stopping criterion,
because the edge width is correlated with the value ¢(n).

In the present paper, we propose to build a piecewise linear discretization of (3) proposed by Ambrosio and
Tortorelli. We revisit the I-convergence of the discretized problem with respect to the L2(2) x L%(Q;[0,1])
strong topology, the compactness of the sequence of the minimizers, then implement a finite element method
so as to solve the discretized problem.

3. THE FINITE ELEMENT METHOD FOR IMAGE SEGMENTATION

3.1. T'-convergence and piecewise linear approximation

Let us consider the functional E., proposed in [2], namely,

E.(u,v) :/{5(u—g)2+(v2+kc) | Vu |? +2?0‘ (c | Vo |2 e _”)2)} dz. (7)

4c
Q
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Set

E.(u,v) if (u,v) € HY () x HY(Q;[0,1]),
+00 otherwise

Fou) = {

and let E. 5, be the following

2
Een(u,v) / (u—gen)® + (v* + ke) | Vu |2} dﬂ?+?aMc,h(v) 9)
Q
where
M. n(v) = [, {c | Vo |2 +7((1Z:))2} dx (10)
and g, = mr(ge), with g as in (4),
and

E. pn(u,v) if (u,v) € Vi () x Vi (Q; [0, 1]),
+00 otherwise.

Fen(u,v) = {

Then, the following approximation theorem, which is a mere adaptation of Theorem 1.1 in [3] holds:

Theorem. Let h < k. < ¢; then the minimum of (E. ) converges to the minimum of F' as ¢ — 0.
Furthermore, if (uc,h,Ve,n) @5 @ minimizer for F, then, possibly passing to a subsequence, (Uc.p,Ve,n) CON-
verges strongly in L?(Q) x L*(2;[0,1]) to a minimizer of F.

The proof of this theorem divides into three steps:

Step 1. — the lower inequality.

Let h = o(c), (u,v) € L>®(Q2) x L>*(€;]0,1]) and for every ¢ > 0 let (uc,p,ve,n) € Vi(2) x V(€5 1]0,1]) be such
that the sequence {(uc,n,ve,n)}e converges to (u,s) in L?(Q) x L2(;10,1]).

Then

F(u,v) <liminf F, j,(uc p, Ve,n)- (12)

c—0

Step 2. — the upper inequality.
Let h = o(k.), (u,v) € SBV(Q2) N L>*(Q) x L>®(Q;[0,1]). Then for every ¢ > 0, there exists (ucn,Ve,n) €
Vi(Q) x Vi(2;0,1]) such that the sequence {(uc,p,ven)}e converges to (u,v) in L2(2) x L*(Q;[0,1]) and

F(u,v) > limsup F, j(tc,hy Ve,hn)- (13)

c—0

Step 3. — compactness of the minimizers for F; ; and convergence of the minimum values.

The following properties pertaining to th, were proved in [3] (see Theorem 6.1 and 6.2), and will apply to
E. 1, at the expense of minor changes in the proofs.

Let h = o(k.), and (ucp, ve,p) € VA () x Vi, (€250, 1]) be a minimum point of F, , then, a subsequence (still
indexed by ¢) {(ue,n, Ve,n)}e converges in L2(2) x L2(;[0,1]) (as ¢ — 0) to (u, 1) where u € SBV(Q) x L>(Q)

Further, assume that there exists at least a minimizer % of F. Then the minimum values of F,; converge
to the minimum value of F as ¢ — 0. Moreover, any family {(uc n, vc,n)}e of absolute minimizers of {F, }. is
relatively compact in L2(Q) x L?(Q;[0,1]), and each of its limit points minimizes F'.
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Proof of step 1. Assume that liminf F, j,(uc,p, ve,n) < 00, otherwise the result is trivial. Then,

liminf E. p,(te,hy Ve,p) = Uminf E.(ue p, Ve, n)-
c—0 ’ ’ ’ c—0 ’ ’

Indeed,
B (te s ven) = Boltien, vep) + / {(ten — gen)? — (ten — 9)°} da.
But ?
/Q {(ten — gen)? = (uen — 9)*} do < /ng,h —g*dz+2 /Q Uc,n-(9 = ge,n) da.

Since gen = Th(9c), ge € C5° () and h = o(c), ge,n, — g in L? when ¢ — 0.
Holder’s inequality implies

1/2 1/2
/ ten-(g — gen)] de < ( / |uc,h|2dm) ( / |g—gc,h|2da:)
Q Q Q

and by virtue of the convergence of u. j to u and g, to g in L? when ¢ — 0,

/ |uc,h‘(g - gc,h)| dz — 0.
Q

Thus liminf. 0 Eep(ten,ve,n) = liminfeo Ee(uen,ven) and since V() C H'(), one can use the
I'-convergence of F to F' and conclude that F'(u,v) < liminf._,o F¢ p(tc,h,ve,n) and that the lower inequality
holds.
Proof of step 2. In a first time, we will prove the upper inequality with the additional hypothesis, S, € R,
which has been supposed in [3]. Then, we will explain how to prevent from the use of it.

Let h = o(ke), (u,v) € L®(Q)NSBV(Q) x L*(9;]0,1]). If F(u,v) is not finite, the result is trivial, then we
can suppose that v = 1 and u € SBV(Q) N HY(Q\ S,,).

Set (ue,n,Ven) € Va() x Vi(Q;]0,1]) such that (uep,ven) — (u,v) in L? when ¢ — 0, Eq p(uen, ven) < C
for all ¢ and u. p, € W3>(S);VS € Sj.

One has:

th(uc,h7 Uc,h) - Ec,h(uc,hv vc,h) - ﬂfg Th ((uc,h - gc>2) - (uc,h - gc,h)2 dx
+ ZSeSh fs(vc,h +ke)|Vuen|® — (vf,h + ke)|Vuep|? do

+50= fQ (1l — vih) — (1 —vep)?da.

We now prove that I, = 3 [, |7n (uzh) — (te,n)?|dz — 0 when ¢ — 0. Indeed, Iop < Y geg, [S|Imn(u? ;) —
u? |l (), and, using [7], Theorem 3.1.5, I, < C".h*. Y gc g [SI1D*(uZ )|l Lo (s)-

Since u. p, is piecewise linear, ||D2(uz7h>||Lm(S) = 2.||Vuch ® Vuep||Lo(s) = 2.[Vuen|?, for all S € S, and
since E. p(tc,n, ve,n) < C for all ¢, one has ZSeSh fs |Vuen|? do < k—cc thus I, - 0 asc— 0.

The same kind of argument is used to prove that 8 [, [7n (92) — (ge,n)?|dz — 0 and B [, |7 (te,p-gc) —
(te,h-ge,n)?| dz — 0 when ¢ — 0.

Since ve,n, € Vi(€510,1]), vf’h < Ve,n, and fg(vc,h + ko) |Vuen|? — (vih + ke)|Vuen|? dz > 0. Further, since
7, is a linear projection, Wh(vf’h) < T (Ve,n) = Ve,ny (1 — vf’h) >1—wven > (1—v.p)? and ZSeSh fs mh(1 —

vih) — (1 —vep)?dz > 0. Thus hm_?(l)lp th(uc,h,vc,h) > limj(l;lp Ec (e hyVe,n)
C (&
We now consider the sequence (uc p, vVe,n) built in [3] for the upper inequality, and suppose that S, € R; it

is such that (uen,ven) —= (u,v) in L?, limsup, g B2, (uen, ven) < [o [Vul® + Blu — g[* dz + oH" 1 (S,) and
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verifies the above mentioned hypothesis. Thus,

lim Sup Fop (e.p; ven) < / IVl + Blu — g|? dz + oM™ (S.). (14)
Q

c—0

We now explain how to prevent from the use of the hypothesis S, € R:

In [12] Mumford and Shah conjectured that the minimizing set ' of £ should be a finite union of C* hyper-
surfaces. Some recent works partially proved this conjecture:

In [4], Bonnet proved it in the 2-dimensional case with the following additional hypothesis: T' has a finite
number of connected components.

Dibos and Séré proved in [9], Theorem 1.7, that if (u,T') is a minimum point of £ then Ve > 0, 3(u,, T¢)
where T'c is a finite union of smooth hypersurfaces (included in hyperplanes, spheres or cylinders), such that
ue € CHQ\ Te), ||ue — ul|pr < € and E(ue,Te) < E(u,T) + €. This result was generalized by Dal Maso in [6],
Lemma G.2, to all functions of SBV (). Then, each function of SBV(£2) can be approximated by functions .
such that ue — u in L', E(u.) < E(u) + ¢ and S,, € R. We apply the upper inequality to u. and by a diagonal
sequence argument, conclude: If h = o(k.) and (u,v) € L*(Q) N SBV(Q) x L>®(Q;]0,1]), then there exist a
sequence (Uc p,Ve,p) € Vi () x Vi, (Q; [0, 1]) such that

F(u,v) > limsup F j(tc,h, Ve,h)-
c—0

The proof of the third step follows step by step that of Theorems 6.1 and 6.2 in [3].

4. NUMERICAL IMPLEMENTATION

4.1. The constraint on v

A rapid investigation of the constraint v € [0, 1], permits to simplify the numerical minimization of E. .
Suppose that (u,v) € V,,(Q)? are minimizers for E, . Set & = 7, (min(1,v)), which is allowed since min(1,v) €
C().

Then [, |V3|2dz < [, |Vo?dz, [,(1—10)?dz < [,(1—v)?dz and [, (02 + k) [Vuldz < [, (v? + k) |Vu| da.

If {z € Q;v(z) > 1} > 0, then the two last inequalities are strict and E.j(u,?) < E.p(u,v), which is
in contradiction with the hypothesis that (u,v) are minimizers for E.j on V,(2)2. Thus, the constraint
v € Vi, (9 (—o0, 1)) is satisfied for the minimizers of E. j, over V,(£2)2.

A similar argument would show that v(z) > 0 a.e. in Q, and we conclude that all minimizers (u,v) for
E., over V,(Q)? are such that v(x) € V;(€;]0,1]). Consequently, our choice of discrete functional renders the
constraint on v internal, which is not the case of the formulation proposed in [3]: if (u,v) in a (constrained)
minimizer for th then v(z) > 0 a.e. and th(u, —v) < th(u,v) as soon as [{z € Q;v(z) > 0} > 0, so that
the unconstrained minimization will never yield a non negative minimizer v (if such a minimizer exists).

For a numerical standpoint, the absence of constraint on v greatly simplifies the algorithm.

4.2. Minimization strategy

Consider the problem

(u,v) = min {Ec,h(u, v)|(u,v) € Vh(Q)Q} . (15)

(u,v)

Because of the cross term v? | Vu |2, a direct finite element method cannot be used. Since E, j, is strictly convex
in the directions (e,v) and (u,e), we propose an alternate minimization scheme; specifically, our algorithm is

n — mi n—1
u" = miny B p(u, v ) and set E? = E.(u™,v"™).

as follows: given (u°,v%), compute { V" = min, Eop(u”,v)
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F1GURE 1. Relative error of the different parts of the functional.

TABLE 1. Computation on a 256 x 256 pixels images with & = 5 x 1073, 3 = 5 x 1071,

¢ = 10", without Jacobi preconditioning.

| Size of the subimages | Time | Alt. min. steps | C. G. steps (u) | C. G. steps (v) |

128 x 128 149s | 9 225 233
64 x 256 82s |9 223 249
64 x 64 85s |48 959 895
32 x 128 92 s |48 1001 912
16 x 256 36s |48 1094 1003
32 x 32 46 s | 218 3726 2867
16 x 64 3ls | 217 3793 2859

TABLE 2. Computation on a 256 x 256 pixels images with o = 5x 1072, 3 =5x107!, ¢ = 1071,
with Jacobi preconditioning.

| Size of the subimages | Time | Alt. min. steps | C. G. steps (u) | C. G. steps (v) |

128 x 128 84s |9 121 73
64 x 256 49s |9 122 74
64 x 64 57s |48 566 325
32 x 128 36s |48 559 319
16 x 256 26s |48 969 336
32x 32 36s | 218 2237 1214
16 x 64 26 s | 217 2247 1216
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(a) Computational domain. (b) Edge deformation.

FIGURE 2. Edge deformation across boundary.

(a) Starting image. (b) Deformed edge set. (c) Theoretical edge set.

F1Gure 3. Different behavior of edges across the subdomain boundary.

Since the successive minimization problems are strictly convex, the existence and uniqueness of u,, and v,, is
ensured.

The successive minimization problems being strictly convex and quadratic, a straightforward finite element
method can be implemented.

Remark. We have not managed, as of yet, to prove the convergence of the alternate minimization algorithm.
Remark however that the sequence E7 is decreasing.

In Figure 1, we present the evolution of the relative error for the different parts of E. j for a computation on
a real image of 256 x 256 pixels with the following parameters: o =2 x 1072, 5 =5 x 107!, ¢ = 107",
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[7RR)

(a) Starting image. (b) Edge set “v”. (c) Soft image “u”.

FIGURE 4. Angle with c=4x 1072, a=5x10"3, 8 =2x 1072 k. =5 x 1073.

N
N N

[7RR)

(a) Starting image. (b) Edge set “v”. (c) Soft image “u”.

FIGURE 5. Cuspidal point with c =4 x 1072,a =5x1073,3 =2 x 1072,k. = 5 x 1073,

[7RR)

(a) Starting image. (b) Edge set “v”. (c) Soft image “u”.

FIGURE 6. Square angle with c=4 x 1073, a=2x10"1,8=5 x 10~L.

The data plotted is w where E;(t) is the part E; of E.j, according to the following nota-
tions, at the step t of the alternates directions scheme. The labels are: E; = fg(v2 + ko)|Vul*dz, Ey =
o fq <C|Vv|2 + %) dz, and E3 = 8 [ |u — ge,n|? dx.

4.3. Parameter choice

We now describe the choice of the discretization parameter h, according to the hypothesis h = o(c), as well
as that of the pixel coordinates.
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'
AN

[7RR)

(a) Starting image. (b) Edge set “v”. (c) Soft image “u”.

FIGURE 7. Cuspidal point with c =4 x 1073, =2 x 1072, = 1.

Let , be the original domain, and set & = (1/k).z € Q = k.Q, for all € ©, then one has

Boheta) = Joe kvl +afy (v G as
2 Jola -9 di
_ fQ(@2+kc)|Vﬁ|2 da +%f* <c k‘|Vv|2—|- (4];;) )dA
i foli— 9 da.

The magnitude ratio between the different terms in E. will only be preserved for all homothetics of ratio k of
the original domain if

ck) = ck
ath) = 7
k) = o

Thus the domain size k influences both the choice of allowable discretization parameter h and of the constants
a and B. In other words, differents computation cannot be compared until o, 6 and k are specified.

4.4. General choices

No computation can be performed without prior mesh generation. A simplifying idea would be to use
regular meshes (grids), the nodes of which coincide with the pixels. The finite element method could then
be equivalent to a finite difference method, provided all elements are identical and identically oriented. This
lowers the computation time, since approximate integration or affine transformation are then superfluous. In a
finite element method, however, the computation time is mostly spent solving the linear system, while the time
spent generating more complicated finite element matrices is negligible; this motivates our decision to generate
arbitrary meshes that do not need to coincide with the pixels.

With arbitrary mesh, the implementation of further enhancements like scale focusing, mesh adaptation, and
the processing of non rectangular images becomes possible. For the same reason, it would be possible to use
higher order elements, if one could prove the convergence of the discrete functional for a better discretization.

In the presented computations, however, the computational mesh has been taken to coincide with the pixels
(but the possible simplification resulting from the use of such a mesh have not been implemented; in other
words, we are still using a general finite element algorithm for the solving of the minimization problem). In any
case, h, defined as the radius of the inscribed circle in an element is thus of the order of 1, while k (the size of
the image) is proportional to the square root of the number of pixels.
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(a) Starting image, 480 x 480 pixels. (b) Soft image “u”.

(c) Edge set “v”.

FIGURE 8. Computation for a =5 x 1073, =5x10"1,c=10""1.

Each alternate minimization step involves the resolution of a linear system, the dimension of which is the
number of nodes.

Since finite element method, produces linear system whose matrices are symmetrical with a large proportion
of zeros, a skyline storage is implemented: the only terms to be stored as a vector are the elements of each line
between the first non logically zero term and the diagonal term. A second vector, the profile, keeps the position
in the compressed vector of the diagonal terms of the starting matrix.

Computations are then performed only inside the skyline, which enhances the computational speed too.
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(a) Starting image, 256 X 256 pixels. (b) Soft image “u”.

(c) Edge set “v”.

FIGURE 9. Computation for a =2 x 1072, =5x 1071, ¢ =10""1.

The linear system resolution algorithm we use is a conjugated gradient method. For this algorithm, a starting
point is required, and we use the results of the former alternate minimization step, considering this way that
the convergence rate of the alternate minimization is low enough to produce results close one from another.

A second enhancement is the implementation of a Jacobi (diagonal) preconditioning, inside the conjugate
gradient algorithm: the conjugate gradient direction for the resolution of A.x = b is that of D~1.A.D~!, instead

of that of A, where [D]; ; = 0; j+/[Ai,;]. The Jacobi preconditioning reduces the number of conjugate steps by
a factor close to 2 for the u-problem and 3 for the v-problem.
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(a) Starting image, 256 X 256 pixels. (b) Soft image “u”.
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(c) Edge set “v”.

FIGURE 10. Computation for a =2x1072,8=5x 10" ,c¢=10""1.

At last, we need a stopping criterion for the alternate minimization. Since we didn’t manage to prove the
convergence of this scheme, we can’t use an error majoration, then we decided to use the distance between the
results of successive alternate minimization results, .e. the norm of v,, — v,—1 in H', L? or L*°, as desired,
with an upper bound for the total number of alternate minimization steps.
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4.5. Domain decomposition

Since both computational time and memory requirement dependence on the number of pixels are more than
linear, for finite element method, we implemented a domain decomposition method: each image is decomposed
into sub-images and the minimization of E. } is computed on each subimage.

The difficulty in such an algorithm resides in the lack of continuity of u and v on subdomain boundaries:
deformations could then appear across the subdomain boundaries. We show in the next section how to control
the edges deformation across subdomain boundaries, but the lack of continuity of u should, in truth, necessitate
a better decomposition algorithm, which may use, for example, overlapping subdomains.

In Table 1 and 2, we present some computational time and parameter for a 256 by 256 image, with several
decomposition.

Table 1 is related on computations without preconditioning, and Table 2 is related on computations with a
Jacobi preconditioning.

It is important to remark that even with those enhancements, between 50 and 75% of the computation time
is spent in implementing the conjugate gradient method: thus any improvement in the linear system resolution
results in an important decrease in computational time.

5. NUMERICAL RESULTS

5.1. Edge geometry

The following regularity conjectures on the minimizing set I" for £ can be found in [12] Theorem 2.1, p. 599:

e I meets 0f) perpendicularly,
e apoint P € ), is the end of 0, 1 or 3 edges (i.e. corners, cuspidal points and cross point are not allowed),
and if P is a triple point, the arcs meet with angles 27/3.

Those geometrical restrictions lead to two kinds of edge deformations: across the subdomain boundaries and
at edge corners or intersection inside each subdomain. In view to decompose the domain into several subdo-
mains, we want to prevent from the first effect.

We now focus to the intersection of a sub domain and a circle of radius R, centered at the point where an
edge, I, crosses the boundary. We suppose that I is a segment, crossing the boundary into an angle 6 and that
g equals 1, above I' and 0, otherwise (see Fig. 2a for the geometrical construction). Then, we build a second
edge set, denoted by I's, derived from I" and such that from a distance [ from the boundary, I" has been replaced
by an arc of radius r, crossing the boundary perpendicularly (see Fig. 2b for the geometrical construction). By
imposing that the arc is tangent to the theoretical edge, we get r = [. cot 6.

Let & and & be the total energy of each configuration; then £&; = R.a, while since [I's] = R —1.(1 — 6. cot 6)
and [Q.| = 5L — 226, £, = L0 (1 _ 9 cot ) — La.(1 — 6. cot 6) + R.av.

2 2
‘We now minimize & over all [ < R: if R > % tan @, the minimum value is reached for [ = % tan @ and is equal

to R.a— %z(tane —0). Since, for § € [0, 5], tan@ — 6 > 0, we obtain £ < £, and the detected edge set will be
different from the theoretical one at the point where it crosses the subdomain boundaries, if not perpendicular.

In Figure 3a, we decomposed the image of Figure 3b into two vertical bands; the resulting deformation of
the edge is demonstrated.

One can however estimate the radius of the area where such deformation appears as a linear function of o/
(see the expression of the optimal [ above). Then, a proper choice of «/3 should be such that the radius is less
than the width of a pixel; in such a case, the edge will take its theoretical shape (see Figure 3c).

The resolution parameters in Figure 3 are for (b): a =5x 1073,3=2x 1072 and ¢ = 4 x 1072, and for (c):
a=10"3,8=5x10"tand c =4 x 1072.

A similar argument can be used to show that there are no corner or cuspidal point allowed for the optimal
edge set but that, with a proper adjustment of the parameters « and 3 the deformation can be controlled and
inscribed inside a pixel.
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Figures 4 and 5 show deformed corners and cuspidal points for the set of parameters o = 5x1073, 3 = 2x 1072
and ¢ = 4 x 1072, while Figures 6 and 7 show results based on the same images, with adjusted parameters, so
as to generate the real edge geometry.

In Figure 8, we present a numerical result for a standard image, “Lenna” (a), the soft image, corresponding
to u (b) and the edge set v (c).

In Figure 9a, we magnify a detail from Figure 8a and perturb it with random noise (salt and pepper noise
with maximal intensity +80); the results are presented in Figures 9b and c; they demonstrate the sturdiness of
the algorithm when subject to random noise.

In Figure 10a, we took a rastered portrait of A. Einstein (magnification of a printed image) and used our
algorithm. The results are shown in Figure 10b and 10c; they are unaffected by periodical perturbations.

The author would like to thank A. Chambolle and G. Francfort for their helpful advices.
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