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Filters in topology optimization

Blaise Bourdin∗;†

Department of Mathematics; Technical University of Denmark; DK-2800 Lyngby; Denmark

SUMMARY

In this article, a modi!ed (‘!ltered’) version of the minimum compliance topology optimization problem
is studied. The direct dependence of the material properties on its pointwise density is replaced by a
regularization of the density !eld by the mean of a convolution operator. In this setting it is possible to
establish the existence of solutions. Moreover, convergence of an approximation by means of !nite ele-
ments can be obtained. This is illustrated through some numerical experiments. The ‘!ltering’ technique
is also shown to cope with two important numerical problems in topology optimization, checkerboards
and mesh dependent designs. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: topology optimization; regularization method; convolution; !nite element approximation;
existence of solutions

1. INTRODUCTION

Topology optimization problems in mechanics, electro-magnetics and multi-physics settings
are well known to be ill-posed in many typical problem settings, if one seeks, without
restriction, an optimal distribution of void and material with prescribed volume (see, e.g.
References [1–5]). This shows up through the possibility of building non-convergent min-
imizing sequences for the considered problem, the limiting solution achieved as a micro
perforated material. A consequence of this non-existence is that even if each discretization
(by, e.g. !nite elements) of the unrestricted problem is well-posed, these solutions do not
converge to a macroscopic design when the discretization parameter tends to 0, and smaller
and smaller patterns are exhibited. This phenomenon is often also refered to in the literature
as mesh dependency.
The methods currently used to provide solutions to these non-existence issues and associated

numerical side-e"ects can be sorted in three categories. In the homogenization method, one
enlarges the set of admissible domains with the limits (in the sense of homogenization) of any
distribution of void and material and characterize these limits as micro structures that depend
on a number of parameters (see, for example, Reference [6] or [7]). In another approach,
one adds extra constraints on the set of admissible designs in order to ensure existence, for
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2144 B. BOURDIN

example by imposing an upper bound on the perimeter of the resulting design. The ‘void
and material problem’ is then solved directly (see Reference [8] for the existence result and
Reference [9] for a numerical implementation).
The third approach to continuum topology design in a well-posed setting, can be referred

to as a ‘!ltered, penalized arti!cial material’ method. This is the type of setting studied here,
in a structural optimization context. In this method one de!nes at each point of the domain a
density of material ! that varies continuously between 1 and 0, with density 1 characterizing
the material and 0 the void (no material). The elastic properties for intermediate densities are
expressed in terms of the function !, for example, using a simple power-law interpolation
which, through optimization, is known to lead to designs without intermediate densities. Even
though such a method is often labeled as an arti!cial power law method, one can actually
give a physical interpretation in terms of sub-optimal, isotropic micro-structures (see Reference
[10]). In order to ensure existence of solutions for this method, one is normally also in this
case required to add some extra constraints on the admissible designs, i.e., on the admissible
densities !. This can take the form of a constraint on the total variation of the density (that
can be interpreted as the perimeter, in case the design is a bi-level function whose level
sets are regular enough) or on the gradient of the density (see References [11; 12] for the
former method, and Reference [13] for the latter). An alternative to these approaches has
been proposed in References [14; 15] and consists of a !ltering technique implemented in the
optimization algorithm. This gives mesh-independent designs at a moderate computational cost.
Filtering techniques is the subject of the present study, implemented in our case in a form

where !ltering is performed on the interpolation of the elastic properties, along the lines
proposed in Reference [16]. Here we prove existence of solutions and show that one obtains,
with a !xed !lter function, convergence of !nite element discretized forms of the problem.
Numerical experiments are also reported, and the possibilities and complications of using
alternatives such as design spaces of !ltered density functions are also discussed. The method
is applicable to a range of problems and application areas, but the scope of this paper is to
focus on a simple two-dimensional minimum compliance optimization problem and to give a
full mathematical justi!cation of the !ltering technique in this setting.
The use of !lters in numerical methods in order to ensure regularity or existence of solutions

to a problem has been used for many years in various domains of applications. The basic
idea is to replace a (possibly) non-regular function by its regularization obtained by the
convolution with a smooth function.
An overview of the paper is as follows. In Section 2, we !x notations and de!ne the

!ltered version of the minimum compliance topology optimization problem, depending on a
!lter function, F , inspired by Bruns and Tortorelli [16] and Sigmund [14; 15]. In Section
3, it is shown that if the !lter function F veri!es some (weak) regularity assumptions, the
!ltered topology optimization problem admits at least one, possibly non-unique, solution. An
approximation result in terms of !nite elements is then given in Section 4. The numerical
implementation is detailed in Section 5.1 and illustrated by some numerical experiments in
Section 5.2. Finally, some further extensions of the method are discussed in Section 6.

2. NOTATIONS AND STATEMENT OF THE PROBLEM

In the following we will de!ne a !ltered version of the minimum compliance topology design
problem based on the power-law interpolation approach. The technique is to replace the
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FILTERS IN TOPOLOGY OPTIMIZATION 2145

dependence of the elastic properties on the density of material by a dependence of a !ltered
version of the density function. This means that rapid variations in material properties are
not allowed by the problem statement. Loosely speaking, this ensures existence of solutions.
However, the proof involves some technicalities.
In the standard framework of material distribution methods for topology design, we work,

throughout this paper, in a !xed domain #⊂R2, and the optimal design is generated referring
to this ‘ground-structure’. Here, this domain is a Lipschitz bounded and open domain. We
denote by ‖·‖(m;p;#) and |·|(m;p;#) the usual norms and semi-norms over the Sobolev space
Wm;p(#;R2) and for the sake of simplicity abbreviate the notation for ‖·‖(m;2;#) and |·|(m;2;#)
with ‖·‖m and |·|m (we refer to Reference [17] for actual de!nitions and properties of the
Sobolev spaces).
What will be called a !lter of characteristic radius R¿0, is a function F verifying the

following properties:

F ∈W 1;∞(R2)
SuppF ⊂BR
F¿0 a:e: in BR
∫

BR
F dx=1

where BR denotes the open ball of centre 0 and radius R.
The !ltering operation is achieved by mean of the convolution product of the !lter and the

density

(F ∗!)(x)=
∫

R2
F(x − y)!(y) dy

Loosely speaking, we replace at each point the density !eld by a weighted average of its
values. One consequence of this operation is that the !ltered density is then a smooth and
di"erentiable function, among other properties [see e.g. Reference 18, IV 6, p. 66]. Remark
that this de!nition requires to extend the density !eld ! to the whole space R2. Some ways
to address this technicality are detailed in Section 5.
In the following we will thus work with a parametrization of design through a density

function !, while the material properties of the equilibrium equation will depend on the !ltered
density F ∗!. Thus, the ‘!ltered’ version of the minimum compliance topology optimization
problem (MCF) in structural optimization is de!ned as (for further details on the minimum
compliance topology optimization problem, refer to Reference [20])

(MCF) :















inf
!∈H

l(u)

subject to

(u;!)∈EF(#)

where

l(u)=
∫

#
fu dx

is the compliance of the design given by the density !eld ! subject to the body load f∈L2(#)
and where EF denotes the set of densities and related displacements under the given load,
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the exponent F signifying that the displacement is computed from a !ltered version of the
density. In order to rigorously de!ne the set of admissible couples (u;!)∈EF , one needs some
extra de!nitions: by U; one denotes the set of kinematically admissible displacements, i.e.

U := {u∈W 1;2(#); u=0 on @#D}
while H is the space of feasible designs:

H:=
{

!∈L∞(R2)∩L1(R2); 0¡!6!6 1 a:e: on #;
∫

R2
! dx6V

}

for any given 0¡! and 0¡V .
A displacement !eld u∈U is said to verify the equilibrium condition for the density !∈H

if one has
∫

#
(F ∗!)pE"(u) : "(v) dx=

∫

#
fv dx ∀v∈U (1)

where we use the !ltered density. In the equilibrium condition e(u) is the symmetrized
gradient of u ("(u)= (∇u + ∇uT)=2), E is the fourth-order elastic properties tensor for a
given material and the duality product ‘:’ is the scalar product of two matrices (in other
words, one has E"(u) : "(v)=Eijkl(@ui=@xj)@vk=@xl where the implicit summation convention is
used).
It is now possible to de!ne the space EF of admissible couples (u;!) for the problem

(MCF) by
EF(#) := {(u;!)∈U×H satisfying (1)}

Remark that we in (1) have modelled the sti"ness of intermediates densities as (F ∗!)p
in accordance with the so-called power-law method in topology design of penalizing inter-
mediates densities, as described in the introduction. We thus refer to (MCF) as the !ltered
problem with penalization p (p¿1).

Remark 1. Bicontinuity and ellipticity: From the de!nition of H and the properties of the
!lter, there exists two constants M and # depending only on # such that for each !∈H; the
following inequalities hold:

∫

#
(F ∗!)pE"(u) : "(v) dx6M‖u‖1‖v‖1; ∀(u; v)∈U×U (2)

and
∫

#
(F ∗!)pE"(u) : "(u) dx¿#‖u‖21 ∀u∈U (3)

Remark 2. Existence of the equilibrium con!guration: From the previous remark it follows
that for a given density !eld !∈H; there exist a unique displacement !eld u∈U such that
(u;!)∈EF .

3. EXISTENCE OF SOLUTIONS TO (MCF)

The method used to prove existence of solutions to (MCF) is the classical direct method of
variational calculus and optimal control theory. Here the smoothing e"ect of the !lter plays
a central role.
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First, we rewrite problem (MCF) in a more typical optimization setting, that is to minimize
the compliance of a structure subject to some load, for any admissible deformed con!guration:

inf
u∈U∗

l(u) (4)

where

U∗:={u∈U |∃!∈H : (u;!)∈EF} (5)

Then let uk ∈U∗ be a minimizing sequence for l(·) and !k ∈H, be a sequence of material
densities where each !k is associated with each uk through the equilibrium condition written
as (5). Then, Remark 1 implies that the sequence uk is uniformly bounded in W 1;2(#) which
in turns implies that there exists u∈U such that

uk *u in W 1;2(#) when k→ +∞ (6)

For the corresponding densities, the Dunford–Pettis criterion (cf. Reference [18, IV 29, p. 76]),
gives us that there exists a density !eld !∈H such that

!k *! in L1loc(#) when k→ +∞ (7)

Since the !lter satis!es that F ∈W 1;∞(R2), this implies that
F ∗!k −→F ∗! in L1(#) when k→∞ (8)

Using now Egoro"’s theorem, one has that for any positive real number $, there exists a
subset #$⊂# such that |#$|6$ and

F ∗!k −→F ∗! uniformly in #\#$ when k→∞ (9)

i.e. the !lter F assures strong convergence of the sti"ness appearing in the equilibrium equa-
tion. Then, combining (6) and (9), one can conclude that for each such $:

(F ∗!k)pE"(uk)* (F ∗!)pE"(u) in W 1;2(#\#$) (10)

Thus, the displacement u is related to the density ! through equilibrium under the given load,
that is

u∈U∗

Furthermore, since uk weakly converges in W 1;2 to u and since uk is a minimizing sequence
for l(·), one can conclude that

l(uk)−→ l(u)= inf
v∈U

l(v)

so that

(u;!) solves (MCF)

4. FINITE ELEMENT APPROXIMATION

In this section, we will study the convergence of solutions to the !nite element discretized
version of the continuum problem de!ned in the previous section. In order to state the !nite
element approximation results, one needs !rst to de!ne the discretized version of the sets
de!ned in Section 2, and we here choose to consider low-order approximations.
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By #h, one partitions # into open triangles and quadrangles such that the radius of the
included ball in each element is smaller than h, a given positive discretization parameter.
The discretized equivalent of U used here is then

Uh:={u∈C0(#h); u|e ∈P1(e) ∀e∈#h; u=0 on @#D}
where P1(e) is the set of polynomials of total degree less than 1 if e is a triangle and the set
of polynomials of degree less than 1 in each variable if e is a quadrangle. The discretization
operator between U and Uh is the usual !rst order Lagrange operator and will be further
denoted by %h. It is well known (see Reference [20]), that there exists a constant C such that

∀u∈U; ‖u− %h(u)‖16Ch|u|1 (11)

which together with the density of C∞(#) functions in U implies that

∀u∈U; %h(u)→ u in W 1;2(#) when h→ 0+ (12)

The discretization of the design space is here chosen to be given by

Hh:=
{

!;!|e ∈P0(e); !6!|e61 ∀e∈#h;
∫

#
!6V

}

where P0 is the set of functions that are constant on each element e∈#h and the associated
projection operator is de!ned by

$h :U−→Uh; !→!h such that !h|e =
1
|e|

∫

e
!(x) dx (13)

In order to de!ne the discretized version of the elasticity operator, one needs to give sense
to the convolution of the function of Hh by the !lter F . One can here choose to extend the
domain # in a open set #̃ such that #R:=# ∪ {x∈R2; dist(x;#)6R}⊂ #̃, and then extend
each density !eld !h ∈Hh with value outside # and compute the restriction of F ∗! to #.
For the sake of simplicity, we will denote this operation by the operator ∗#. Remark that for
each function !∈H such that !=0 on R2\ %#, one has F ∗!=F ∗# ! in #.
In order to simplify notation we de!ne for each !∈Hh, (u; v)∈U2

h

a!(u; v):=
∑

e∈#h

∫

e
[$h(F ∗# !)]pE"(u) : "(v) dx

The discrete equivalent of the equilibrium condition (1) is given for each (!h; uh)∈Hh×Uh
by

∑

e∈#h

∫

e
[$h(F ∗# !h)]pE"(uh) : "(vh) dx=

∫

#
%h(f)uh dx ∀vh ∈Uh (14)

and this permits one to de!ne the equivalent of the set EF in the present discrete setting as:

EFh (#)= {(u;!)∈Uh×Hh such that (14) is satis!ed}
so that the discretized version of the !ltered minimum compliance problem becomes

(MCFh ):



















inf
!∈Hh

∫

#
%h(f)vh dx

subject to

(u;!)∈EFh (#)
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Remark 3. The equivalents of Remarks 1 and 2 also hold in the discrete setting.

After these de!nitions, it is possible to state the following approximation result.

4.1. Finite element approximation of (MCF)

Set F ∈W 1;∞(BR) and let (u∗h ;!∗h )∈EFh (#) be a sequence of solutions of (MC
F
h ). Then, there

exists an element (u∗;!∗) of EF(#) and a subsequence (u∗hk ;!
∗
hk ) of (u

∗
h ;!

∗
h ) such that when

h→ 0+,

u∗hk −→ u∗ in W 1;2(#)

and

!∗hk *!∗ in Lq(#) ∀06q¡∞

Moreover, (u∗;!∗) solves (MCF).

Proof. The proof of this statement consists of three steps. First, we establish the weak-
W 1;2×Lq compactness of EFh and show that the weak-limit of a bounded sequence in EFh lies
in EF . Then, we show that the limit of the sequence (u∗h ;!∗h ) is a solution of (MC

F) and
!nally the strong convergence of the sequence u∗h is proven.
Remark !rst that the discrete approximations of the sets U and H are internal. Thus,

the compactness results stated in Section 3 implies that for each pair (uh;!h)∈EFh uniformly
bounded in W 1;2(#)×Lq(#), there exist two functions (u;!)∈U×H such that up to a sub-
sequence extraction,

uh*u in W 1;2(#) (15)

!h *! in Lq(#); 16q¡∞ (16)

The second step of the proof is to check whether the limit point (u;!) satis!es the equi-
librium condition (1). For that purpose, let (uh;!h) be in EFh , let (u;!) satisfy (15) and (16),
let v be an arbitrary element of U, and set vh:=%h(v). Then, since (uh;!h)∈EFh , one has that

a!h(uh; vh − v) + a!h(uh; v)=
∫

#
%h(f)vh dx (17)

From (12), one has that vh:=%h(v) converges to v and %h(f) converges to f strongly in
W 1;2(#) so that

∫

#
%h(f)vh dx−→

∫

#
fv dx (18)

From (16) we obtain that F ∗# !h−→F ∗# ! uniformly on #. Extending then !h and ! with
value 0 outside #, one has that

F ∗# !h−→F ∗! uniformly on R2

leading to

$h(F ∗# !h)−→F ∗! uniformly on R2

This together with (15), (16), (18) and (17) implies that
∫

#
(F ∗!)pE"(u) : "(v) dx=

∫

#
fv dx (19)
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By the arbitrariness of v, we can conclude that

(u;!)∈EF (20)

ending the !rst part of the proof.

Let us now show that the limit (u∗;!∗) of the sequence of solutions to (MCFh ), (u∗h ;!∗h ),
converges to a solution of (MCF).
Set !h:=$h(!) and let uh satisfy that (uh;!h)∈EFh . From the previous step, one has that

!h *! in Lq(#); 16q¡∞

and that there exists %u∈U such that

uh* %u in W 1;2(#)

Using the previous step, we have that ( %u;!)∈EF which, according to Remark 2 implies that
%u= u. Finally, since (u∗;!∗) solves (MCFh ), one has that

∫

#
%h(f)u∗h dx6

∫

#
%h(f)uh dx

Thus, from the W 1;2-weak convergence of the uh and u∗h , the L2(#)-strong convergence of
%h(f) to f, we see that

∫

#
fu∗ dx6

∫

#
fu dx

which concludes the second step.
Let us now end the proof by showing that the optimal displacement !eld for the discrete

problem actually strongly converges in W 1;2 to that of (MCF): From the discrete equivalent
of Remark 1, one has that

∑

e∈#h
‖u∗h − u∗‖1;2; e6 a!∗h (u

∗
h − u∗; u∗h − u∗)

6 a!∗h (u
∗
h − u∗;−u∗) + a!∗h (u

∗
h ; u

∗
h ) + a!∗h (u

∗; u∗h )

6 a!∗h (u
∗
h − u∗;−u∗) +

∫

#
%h(f)uh dx + a!∗h (u

∗; u∗h )

According to the previous steps, on has that u∗h *u∗ in W 1;2(#) which in turn implies that
∫

#
%h(f)u∗h dx−→

∫

#
fu∗ dx

Moreover, recalling that F ∗# !∗h →F ∗!∗ uniformly in #, we have that

a!∗h (u
∗
h − u∗;−u∗)−→ 0

and

a!∗h (u
∗; u∗h )−→ a!∗(u∗; u∗)=

∫

#
fu∗ dx
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The previous three inequalities then permit a conclusion of the proof as we can state that

u∗h −→ u∗ in W 1;2(#)

5. NUMERICAL IMPLEMENTATION

In this section, we discuss various aspects of the computational implementation of the discrete
version of the !ltered minimum compliance design problem. As the problem setting is elsewise
fairly well-known, we concentrate here on new aspects arising due to the use of !lters.
The !rst di&culty for a computational implementation of the discrete setting is the numerical

computation of the convolution operator on a bounded domain. Indeed, in a rigorous setting,
one should store the values of the density !eld outside the computational domain since the
value of the !ltered density ‘close’ to the boundary of the domain relies on that outside.
Three di"erent method have been studied.
The !rst method is the one explained in the previous section: Denoting by !e the value on

each element e of the discrete !eld ! and V (e) the set of the elements of #h whose distance
from element e is less than R and ce the co-ordinates of the centre of element e, one sets

(F ∗# !)e :=
∑

i∈V (e)

(

!i
∫

i
F(x − ce) dx

)

The drawback of this de!nition is that a smoothing e"ect happens around the boundary of
the domain (i.e. the density ! cannot take the value 1 at the edges of the domain).
Also, a second method similar to that used in Reference [14] has been used. On each

element e, one ‘renormalizes’ the convolution by dividing the previously shown computation
by the integral of the !lter function over V (e):

(F ∗# !)e :=

∑

i∈V (e)

(

!i
∫

i
F(x − ce) dx

)

∑

i∈V (e)

∫

i
F(x − ce) dx

The e"ect of this method is, contrary to the !rst method, to ‘force’ the density to take high
values on the edges of the domain. Also, it increases the requirements on computational time
and storage space (but only moderately).
The method that has been used in the numerical implementation is to extend the density

! to the whole space R2 by the mean of symmetries and translations and to compute the
convolution of the extended density by the !lter function. Of course, this does not require
the storage of the values of the extended function. Denoting the extended density by %!, and
by %V (e) the equivalent of V (e) for %!, one de!nes our discrete convolution by

(F ∗# !)e :=
∑

i∈ %V (e)

(

%!i

∫

i
F(x − ce) dx

)

The numerical method used in the actual implementation of the optimization scheme is that
of the optimality criterion, as detailed in [14; 19] and that is not repeated here. The main
di"erence in taking the !ltering step into account is in the computation of the sensitivity of
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the compliance with respect to a small design change. It is detailed here below only in the
case of the third discretization of the convolution proposed earlier.

5.1. Sensitivity analysis

Let us write the discretized problem in matrix form and use that (MCF) is equivalent to the
following problem:

!nd (u;!)∈U×H minimizing

〈K(!)u; u〉
such that

K(!)u=P

(21)

where K(!) denotes the sti"ness matrix associated with the density !, through the !lter. It is
well known that the sensitivity of the compliance Pu with respect to a small design change
$! is equal to

@(Fu)
@!e

($!)=−
〈

@K(!)
@!e

($!)u; u
〉

where one needs to compute the sensitivity of the sti"ness matrix.
The matrix K can be rewritten as a weighted sum of the local element sti"ness matrices

Ki as

K(!) :=
∑

i∈#h

(

∑

j∈ %V (i)
Fi; j %!j

)p

i

Ki

where

Fi; j :=
∫

j
F(x − ci) dx

Remarking that the contribution of element i in the !rst sum depends on !e if and only if
i∈ %V (e), one has

@K(!)
@!e

($!) =
∑

i∈ %V (e)

@
@!e







(

∑

j∈ %V (i)
Fi; j %!j

)p

i

$!







Ki

=p
∑

i∈ %V (e)







(

∑

j∈ %V (i)
Fi; j %!j

)p−1

i

Fi; eKi







$!

Denoting the discretized convolution by ∗h, this can be rewritten as
@K(!)
@!e

($!)=pF ∗h (F ∗h !p−1K)$!

Thus, the sensitivity of the compliance with respect to a small design change $! is given by
@(Fu)
@!e

($!)=− p〈F ∗h (F ∗h !p−1K)$!u; u〉 (22)
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Figure 1. A symmetrical beam: geometry and loading.

Note that this expression retains some similarities with the !ltered gradients, as used in
[14; 15]. Here however, we have worked with the !lter appearing directly in the statement of
the optimization problem.

5.2. Numerical experiments

We here illustrate some basic features of the ‘mesh independency’ of discrete solutions assured
by the the existence result and the associated convergence of !nite element solutions. The
numerical experiments are based on the same geometry and loading for various discretization
and !lter parameters.
For this, we consider a symmetrical beam, loaded with a single force applied in the middle

of its upper part. Its lower extremities are free to move in the x-direction and !xed in
the y-direction (see Figure 1). According to the symmetry hypothesis, the computations are
performed in only one-half of the domain. The parameters used for all of the following
simulations are !=0:001, p=3. The volume constraint is set so that

∫

# ! dx6 0:5|#| and
the Poisson ratio is &=0:3. The discrete convolution is realized by means of the periodic
extension method detailed in Section 5.1. The optimality criterion iterations are performed until
the L∞ error between successive designs (i.e. !) is lower than 0:01 (i.e. the maximal relative
change in all elements is less than 0:01). This strict requirement typically requires around
1000–10 000 iterations of the optimality criterion algorithm, while for practical purposes the
more normal use of approximately 100–500 iterations su&ce.
The !lter function used in the following numerical experiments is a radially linear ‘hat’

function de!ned by

F(x; y)=
3
%R2

max

(

0; 1−
√

x2 + y2

R

)

Figure 2 shows the results for a !xed !lter (R=0:015) and several discretization levels.
The left row shows plots of the density !eld ! while the right hand row shows the ‘e"ective’
density, (F ∗!)p, i.e., the material sti"ness on which the compliance e"ectively depends on
(further discussions on mechanical interpretations of both !elds can be found in Section 6
below).
In Figures 2(c) and 2(d), the !nite element discretization is chosen so that its elements are

three times wider than they are tall. This underlines the independence of the numerical results
in relation to the discretization size and its type. In Figures 2(a) and 2(b), the support of
the !lter is smaller than the grid size, so the !ltering has no e"ect. However, as soon as the
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Figure 2. Symmetrical beam, !lter radius R=1:5E− 2: (a) !, 60× 20 elements; (b) (F ∗!)p, 60× 20
elements; (c) !, 40× 40 elements; (d) (F ∗!)p, 40× 40 elements; (e) !, 90× 30 elements; (f) (F ∗!)p,

90× 30 elements; (g) !, 150× 50 elements; and (h) (F ∗!)p, 150× 50 elements.

resolution of the grid increases, the checkerboards disappear and the actual computed topology
does not change when one re!nes the mesh or when one changes the shape of the elements.
It is also noticed that while the e"ective density is relatively smooth, the un!ltered !eld
gives a purely ‘black and white’ design, even for ‘relatively small’ values of the penalization
exponent, p (a value of p as low as p=1:5 seems to be enough to get well separated void
and material designs).
Figure 3 shows computational results for the same problem, but with a di"erent character-

istic radius for the !lter. Its aim is to illustrate the fact that a change on the !lter induces
a change of design. Also, convergence of discretized solutions only holds when the !lter is
!xed. In Table I, one shows the compliance of the optimal design, as well as the number of
iterations performed before stopping, for several discretizations, and two di"erent !lters char-
acteristic length. The unusually low compliance of the coarser discretization can be explained
by arti!cially high sti"ness arising from checkerboards patterns and these compliance values
should thus not be considered as admissible values (see, e.g. Reference [11] or [22]). Also,
the compliance of the second set of computations (Figures 3) is bigger than that of the !rst
simulations set (Figures 2). This is due to the fact that the characteristic radius of the !lter is
bigger in the second set, so that the space of feasible e"ective designs is smaller (see Section
6 for more details on this argument).
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Figure 3. Symmetrical beam, !lter radius R=1:5E − 2: (a) !; 60× 20 elements; (b)
(F ∗!)p; 60× 20 elements; (c) !; 90× 30 elements; (d) (F ∗!)p; 90× 30 elements;

(e) !; 150× 50 elements; and (f) (F ∗!)p; 150× 50 elements.

Table I. Symmetrical beam, numerical results.

Discretization R Compliance # iterations

60× 20 1:5E− 2 (1× 1 element) 223.42 773
40× 40 1:5E− 2 (1× 3 elements) 221.66 405
90× 30 1:5E− 2 (3× 3 elements) 232.32 1584
105× 35 1:5E− 2 (3× 3 elements) 229.15 806
150× 50 1:5E− 2 (5× 5 elements) 232.52 3792
195× 65 1:5E− 2 (5× 5 elements) 224.49 9937
60× 20 5:0E− 2 (7× 7 elements) 309.10 3900
90× 30 5:0E− 2 (9× 9 elements) 283.52 5005
150× 50 5:0E− 2 (15× 15 elements) 281.65 10 000

6. EXTENSIONS OF THE PROPOSED METHOD

In the following we will attempt to generalize the previous results and will present some
possible further extensions of the !ltering methods, both in a theoretical and a numerical
setting.
For the sake of simplicity, the problem has been stated in a two-dimensional setting but the

generalization of the results from Sections 3 and 4 to the three-dimensional case is straight-
forward.
One drawback of the proposed model is that it is not entirely clear how one should mechan-

ically interpret the computational results. The mechanical properties of the computed design
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are those of (F ∗!)p while the design constraints are enforced on the ! !eld. A similar in-
terpretation is, in essence, required for an un!ltered power-law model, where one needs to
distinguish between !, used for the volume evaluation and !p, used for the sti"ness evalua-
tion. However, in the latter case any density !eld ! that only attains values 0 and 1 remains
unchanged, and one can, for p large enough, give an interpretation of the combination of a
density ! and a sti"ness proportional to !p in terms of sub-optimal, isotropic micro-structures
(see Reference [10]).
However, one can formulate another variant of the !ltered minimum compliance problem

where the !lter de!nes a natural design domain, and where the ‘density’ of the volume
evaluation is also the density appearing in the sti"ness evaluation.
First, one has to extend the set H by removing the pointwize constraints on the density

!eld and de!ne

HR := {'∈M+(R2) |'(#)6V;'(U )=0 ∀U ⊂R2\#̃} (23)

where M+(R2) is the set of non-negative Radon measures on R2. Then, for each '∈M+(R2)
and each !lter F , F ∗' is de!ned for each x∈R2 by

(F ∗')(x) :=
∫

R2
F(x − y) d'(y) (24)

With this at hand, one can rede!ne the minimum compliance problem to the form

(MCF' ) :







































inf
'∈HR

l(u)

subject to

0¡!6 (F ∗')6 1 a:e: on #
∫

#
(F ∗')pE"(u) : "(v) dx=

∫

#
fv dx ∀v∈U

Here the same methods as used in Section 3 can be applied to establish the existence of
solutions.
Remark that by enforcing the pointwise constraint not on the density !eld but on the

!ltered densities one has to consider radon measures as the natural density functions, which
is rather problematic in view of an actual numerical implementation. The reason for this
is that the Dunford–Pettis criterion does not apply anymore (see Equation (7)), so that a
bounded sequence of densities does not necessarily weakly-converge to a L1 function but
rather to a radon measure. Moreover, the equivalent of the local constraints on the density
(0¡!6 (F ∗')6 1) is no longer in the form of a ‘box constraint’, further complicating the
optimization algorithm. Also, since the equivalent ' of the density !eld ! is no longer to be
found in a space of functions but of measures, it has no pointwise value, which complicates
its mechanical interpretation. Remark however than one can give a sense to (F ∗')p in terms
of e"ective properties, as in the homogenization framework.
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These di&culties can be hidden by rewriting (MCF' ) as a minimization problem over a set
of density !elds which are given as !ltered functions:

(MCF( ) :











































inf
(
l(u)

subject to
0¡!6 (6 1 a:e: on #

∃'∈HR such that (=F ∗'
∫

#
(pE"(u) : "(v) dx=

∫

#
fv dx ∀v∈U

Thus the parametrization of design is now implicit and re'ects a wish to work only with
functions with certain regularity, as controlled by the !lter. The existence of solution to this
problem is a consequence of the existence of solutions to (MCF' ) and the numerical di&culty
arises now from the fact that the set of admissible densities is not explicitly given. Indeed, in
an analogy with signal processing, the deconvolution constraint (∃'∈HR such that (=F ∗')
can be seen as a constraint in frequency space. Thus, this last formulation is particularly well
suited for meshless methods where the density !eld is no longer approximated by the mean of
!nite elements but by wavelet decomposition or Fourier series (see, for example, Reference
[23]). Furthermore, by considering !lters bounded in the frequency plane, one forces the
admissible densities to also admit a bounded support in frequency space, and this could
eventually simplify the approximation method and the actual implementation.
Associating a !lter with a speci!c design space raises a new problem. That is, to characterize

a priori the properties of a design by means of the properties of a !lter. It is obvious that the
!ltered density inherits regularity from the di"erentiability of the considered !lter function.
Also, in case F ∈W 1;∞(BR), one has a natural bound on the gradient of F ∗! and then on the
size of the smallest pattern to appear in the optimal design. This criterion gives a !rst rule
of thumb on the way to !x the characteristic radius of the !lter. The proposed method would
bene!t from further studies on !lter design, i.e. can one by appropriate !lters control various
geometric features of the optimal design, such as for example curvature or minimum width
of each bar. However, such a characterization requires another theoretical study, as well as
an intensive numerical experiments campaign which are still to be achieved.
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