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Summary. We present and detail a method for the numerical solving of the
Mumford-Shah problem, based on a finite element method and on adaptive
meshes. We start with the formulation introduced in [13], detail its numerical
implementation and then propose a variant which is proved to converge to
the Mumford-Shah problem. A few experiments are illustrated.
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1. Introduction

In order to solve the image segmentation problem, D. Mumford and J. Shah
have proposed in [26] to minimize overand K the functional

G(u, K) :/QVU( z)*dx +HY (K /u (z)]? de,

where 2 C R? is the image domain (a bounded open two-dimensional
domain),g € L ({2) is the original image, that has to be segment&d,
is a closed set of Hausdorff one-dimensional meaguték) andu €
C1(£2\ K). The setK is supposed to represent tbégesof the segmented
imagew that is regular out of and can be discontinuous acradss(see
Appendix A.2 for details).

The actual minimization ofj is a difficult problem, that has been ad-
dressed by many authors. Mumford and Shah themselves derived their en-
ergy from discrete energies introduced by D. Geman and S. Geman [24]
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and A. Blake and A. Zisserman [7], and these works can be seen as the first
attempts to minimiz&; by a finite differences approach. In [4], L. Ambro-

sio and V.-M. Tortorelli proposed an approximationgfdepending on a
scale parameter > 0, in which the se#{ was approximated in some sense

by a functionv, making thus easier the discretization of the problem. This
led G. Bellettini and A. Coscia to propose a finite elements approximation
in [6], adapted and implemented by S. Finzi-Vita and P. Perugia [21] and
B. Bourdin [10]. In all these approaches, the quality of the approximation is
very poor ife, the discretization step, ande/c are not very small, so that

the computations must be performed on a very fine mesh.

In [13], A. Chambolle and G. Dal Maso have proposed a different fi-
nite elements approach, that is not derived from Ambrosio and Tortorelli's
approximation result, and relies only on one scale parameter (the discretiza-
tion stepe). On the other hand, unlike the previous methods, it requires an
adaption of the triangulation in order to approximate correctly the theoret-
ical Mumford-Shah energy. We show in this paper how to deal with this
difficulty.

Although this method seems very complicated, itis a promising approach
and has been successfully implemented for a brittle fracture formulation
proposed by G. Francfort and J.-J. Marigo in [22], that is similar to the
Mumford-Shah problem. In that particular case, a finite elements method is
natural. Furthermore, one wants to localize the cracks as well as possible,
and the mesh adaption method described in this paper is a real advantage
since is doesn't require the use of a very thin mesh to do so.

In what follows, we recall the results of [13]. We then propose a variant
whose interest will be discussed in Sect. 2, where the numerical implemen-
tation of both formulations are described. Then, in Sect. 3, we prove that our
variant actually approximates the Mumford-Shah functional, in the sense
of the I'-convergence, a notion of variational convergence introduced by
De Giorgi (see for instance [15] and Appendix B).

In the whole paper, The s&is a bounded domain &?, with Lipschitz-
regular boundary. Ariangulationof (2 is a finite family of (closed) triangles
coveringf?2, and such that the intersection of any two such triangles, if not
empty, is either an edge or a vertex common to both triangles. Following [13],
we fix some anglé, > 0 (¢ < 60°), a constant > 6, and let forany > 0
T(£2) = T=(£2, ¢, 0p) be the set of all triangulations ¢? whose triangles
T have the following characteristics

— the length of all three edges @fis betweere andce,
— the three angles df are greater than or equal dg.

We call V-(£2) the set of all continuous functions : {2 — R such that
u is affine on any triangld” € T (more precisely, orf’ N (2) of some
triangulationT” € 7:(2), and given such a, 7:(u) C 7-(£2) is the set of
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all triangulationsadaptedto w, i.e., such that this property is satisfied (for
“most” u, T:(u) has just one element, if = constant,7:(u) = 7-({2)).
Given a trianglél” we denote by, its smallest height. If” belongs to some
triangulation of7Z(£2), thene sin 6y < hy < ecV/3/2.

Throughout the whole paper, we fix, as in [11,13], a non-decreasing
continuous functiory : [0, +00) — [0, +00) such that

im 1) _ : _
(1) ltlfgl .= 1 and t_lgrnoo f(t) = foo-
The simplest case i5(t) = min(¢, fo ). For the sake of simplicity, we will
also assume that

2 f(t) < min(t, foo) forallt >0

(in the practical applicationg is concave and this condition is obviously
satisfied).

Fix p € [1,+00). In [13], the following functionalG.(u,T") is intro-
duced, for any. € LP(£2) andT € T-(2):

1 o
G:(u,T) = {%Tﬂ Q’Ef(hT\VuT\ ), ifue Vo(2), T € Tz(u),

400, otherwise,
3)

whereVur denotes the (constant) gradientobn the trianglel’. Then, if
for anyu we set

4 G = in G.(u, T

(4) e(u) Tén’l'l?ﬁ) (u,T),

(which means, practically, that the “best” triangulation adapteaditocho-
sen) it is proved that, asgoes to zero and providedj is less than some
© > 0, G I'-converges to the Mumford-Shah functional

() = / \Vu(z)|? dz + foo ™ (Sy), if u e LP(2) N GSBV (1),
+%o, if ue LP(2)\ GSBV(12),

G

®)
where the spac&'SBV (£2) and the essential jumps s} are defined in
Appendix A.1. The definition and basic properties of freonvergence are
reviewed in Appendix B, we just recall that what we are mainly interested
in is the fact that the minimizers @f. will be, ase becomes infinitesimal,
good approximations of minimizers 6f.

In the next Sect. 2, we describe a way to implement numerically the
minimization of G.. The results are quite good, but the method is subject
to numerical instabilities. We introduce therefore a “stabilized” version in
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the following way, that is inspired by an approximation of A. Braides and
G. Dal Maso. In [11], they introduce the non-local functional

1 1
6 — P —— U 24 dx
©) £ /Qf <8|Bs($) N 2| JB.@)ne Vul) y)

and show that if"-converges, as goes to 0, tof, |Vu[> dz + 2 foc HV !
(S.), provided f satisfies conditions (1). Unfortunately, this formulation
doesn't fit easily into a finite elements implementation. We follow a slightly
different approach, replacing the mean on the Ballz) in (6) by an aver-
aging operator that depends on the triangulation.

Given a triangulatiol”, we define on the Euclidean spaké the oper-
ator M : RT — RT such that for any = (vr)rer € RT,

Z |T’ﬂ Q|’UT/

T'eT T'NT+)

Sornel

T'eT, T'NT#)

(7) (Mv)r = Mr(v) =

If v is considered as a piecewise constant functiofi2osuch thaty = vy
on each triangld” € T', Mr(v) is therefore the mean of overT and all
the neighboring triangle®’. We introduce oR” the scalar product

(u,v) = Z |7 N Q2| ur - vr.
TeT

It is simple to check that, with respect to this scalar product, the adjoint of
M is given by

(Mo)r = Mp() = 3

T'eT T'NT+)

|T" N Q|

Sr

vrr,

whereSt =3 e [T N £2].
Foru € LP(§2) andT € 7.(12), the new functional is

i * ug if y
Fa(“,T){j;TmQhTf(hTMT(V | ))’|f EV'E(‘Q),TG,];( ),

+00, otherwise,
8
andF;(u) is defined onl?({2) by a formula similar to (4). Then, if we let

B / |Vu(z)|? dz 4 3f M (Sy), if u € LP(2) N GSBV (12),
F(U) = n '
+00, if we LP(£2)\ GSBV (£2),
9)

we have the following theorem, that holds for gn¥ [1, +00).
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Theorem 1. There exist® > 0 such that if9y < ©, F. I'-converges td'
in LP(§2) ase goes to zero.

We do not know whether the upper boufids the same as in the previous
result of [13], however, both are larger thasf.

Remark.For technical reasons, the adjoibt* of M has to be used in

the definition (8) ofF.(u,T). If M were used instead, the-limit of F.
would be strictly belowF’, although the exact form is not clear. However,
the example in Appendix C shows that the optimal triangulation one would
have to use in this case in order to get a good estimate of the limiting energy
is a very complex, “oscillating” triangulation, that it would be absurd, if not
impossible, to try to build.

We finally state the following compactness result, that ensures that func-
tional F' can be approximated by means of functiohalin a “practical”
sense.

Theorem 2. Letp € [1,400) and (u®).~o be a family of functions such
thatu® e V,(£2) for all ¢ and

sup Fz(u®) + [[u®||r () < +o0.
e>0

Then there exists € GSBV ({2) and a subsequena€: converging tou
a.e. inf2, such that

(10) F(u) < liminf F, (u®).

J—00

In particular, if g € LP(§2) and for eache > 0, u° is a solution of the
problem

(12) mln F /|v x)|P dz,
veLP(£2

then the limitu solves

(12) mm F /]v x)|P dz,
veELP (2

and, ifp > 1, the sequence® strongly converges ta.

2. Numerical implementation

In this section, we describe the scheme we propose for minimizing

(13) +ﬁ/ (2 (z)|? d,
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whereg is the original image an@g > 0 a fixed parameter. Sina@, -
converges td- [13], an approximation of the solution can be computed by
minimizing the functional

(14) Ge(u) + /Q () — g(o)|? da

for a “small enough®. SinceG. depends om but also on the triangulation

on whichu is defined, this problem is achieved by finding both a minimizing
functionu and an optimal triangulatior?’, adapted ta:, such thatu, T")
minimizesGe(u, T) + 3 [, |u— g|* dz. A huge difficulty, in view of a finite
element implementation, is the fact that the optimal mesh depends on the
unknown solution that is to be computed.

2.1. Minimization method

When estimating thé'-lim sup of G, one has to build, given a functian
an optimal sequence of functions and their associated méshées. ) such
that

limsup Ge(ue, T:) < G(u).
el0

This is done in [13, Sect. 4], but the sequence built in Sect. 3.2 for the
functionalsF;, F' could also be used fa@Fr. andG. If we knew in advance a
minimizerw for (13) and its jump se%,,, these constructions would show us
how to build the optimal triangulation for the approximated problem (14).
This minimizeru being obviously unknown (since it is exactly what we
are looking for), we propose to deduce some nearly optimal triangulation
from a previously computed approximatiop, assuming that it is “close”,

in some sense, t@. The following iterative algorithm, that can also be seen
as a relaxation algorithm between both unknown for (3) is then natural.

— initialization (background mesh generation):
giveneg, choose an arbitrary (regular) triangulatiéh, .
— iterationi (minimization process):
I find u; solvingmin,ey, () Ge,(u, T=,) + 8 [, [u — g|? dz
ii. mesh adaption: build the medh., ,, according to the functiom;
and the choice of; 1 (that can be the same a3.

In Sects. 2.1.1 and 2.1.2, we detail the method we use to achieve points
andii. Note however that we do not know howrtally minimize(14) with
respect to the triangulation, and jesttimatesome triangulation that seems
optimal, according to the construction in Sect. 3.2.
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2.1.1. Minimization of (8) for a fixed'. In this section, we assume that a
triangulationT’. is given and show how to minimiz&. (u, T'.) with respect

to u, for u, piecewise linear on each elemé@nt T'. and continuous oi.

Of course, the energies we are dealing with, that are strongly non convex,
may have many local minimizers. We can never be sure that we will not
compute one of these. However, the iterative algorithm we propose, which

is classical in image reconstruction methods (see [23], and for instance [5])
ensures that the energy decreases at each iteration and converges to some
critical value. It has been successfully used for other similar problems (see
for instance [12]).

In what follows, we suppose that the functifiis concave and differen-
tiable and thayf (0) = 0, which is a consequence of (2). Thus, extendfng
with the value—oo on| — oo, 0], — f is convex and lower semi-continuous.
Let

Y(—v) = suptv — (—f)(t) = (—f)* ().
teR
be the Legendre-Fenchel transformfofBy a classical result (see for ex-
ample [18]),(— f)** = —f, so that

—f(t) = sup —¢(—v) = inf tv + ¥ (v)

VER vER
It is well known that the first sup in this equation is attained atich that
t € 9(—f)*(v) (the subdifferential of— f)* at¢ ), and that it is equivalent
tov € 9(—f)(t). Sinced(—f)(t) = {—f'(t)} fort > 0 and] — oo, —1]
for ¢ = 0, we deduce that the sup is reached at sonte[—1, 0] (since for
t = 0 we check that— f)*(—1) = 0 and thus the sup is reachedat —1).
Hence,

t) = min ¢t

f(t) min v +1(v)

and the min is reached far= f’(¢). GivenT'., the minimization of (3) is
then equivalent to that of

(15)  Giwwv,T.)= > ITnQ <vT|VuT|2 + %UT))
TeT,: T

overallu € V.(£2) andv = (vr)rer., piecewise constant on eathe T ..
This problemiis still non linear and non convex, but for fixethe minimizer
over eachv is explicitly given by

(16) v = f’(hT\VuT\Q)

and the optimal: for fixed v solves an elliptic equation.
The use of an iterative method for the solving of (15) is then natural and
our algorithm is:
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i. initialization
Chooseuy anduy,
ii. iteration
fixed v, find u € V.(£2), minimizing

(17) Z/ vT]VuT]2dx+ﬂ/ lu — g|* da.
TN 2

TET.
Then, fixedu, compute the new using equation (16).

In particular, note that we do not need to compute the Legendre-Fenchel
transform of functiory, neither for the minimization of (3) nor for its compu-
tation. The minimization with respect tds explicit while the minimization
with respect tou is a simple (linear) problem, since the energy is convex
and quadratic. Its solving is achieved by the use of a standard finite ele-
ment method, since the triangulation used is usually unstructured (i.e. not a
grid), due to the mesh adaption process, described in the following section.
Since thev field is piecewise constant, the solving of (17) is very efficient
and doesn’t require a complicated assembly procedure for the finite element
matrix, compared to the method described in [10].

2.1.2. Mesh adaption For the generation of the adapted triangulation, we
use the automatic mesh generaRit2D, developed at théNRIA?! (see
[9] and [8] for details about anisotropic mesh generation).

Prior to describing the mesh adaption method, one has to introduce a few
notions. Theébackground mests an existing mesh that one wishes to adapt
to aforeground meshThe foreground mesh is built from the background
mesh by the use of asstimatorwhich consists in giving anetricat each
point of the background mesh. This metric is defined by a symmetric def-
inite positive2 x 2 matrix A that identifies the point&z, y) at distancel
from the reference point with the ellipsis, y) AT (z,y) = 1. Up to a ro-
tation of angled and a translation, this ellipsis is described by the equation
22 /h} +y?/h3 = 1 (hy?, hy % being thus the eigenvalues gj. The three
quantities(d, h1, ho) are related to the orientation and anisotropy factor of
the elements in the adapted triangulation. The foreground mesh is then built
as a Delaunay triangulation, with respect to the metric, given at each point
of the background triangulation. A complete description of the algorithms
used for the building of such adapted meshes and of the theories involved is
to be found in [9].

Theanisotropy raticof an element, defines the ratio between its smallest
and its largest height, i.%(T") = min,eq 23y (hr/hi), hi , being thei™
height of T, theorientationof an element is that of its longest edge.

1 available at http://www-rocqg.inria.frlgamma/cdrom/wwwi/bl2d/eng.htm
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The optimal triangulation for problem (3) as described in Sect. 3.2 is such
that “close” to the edge set the elements have an high anisotropy ratio and
an orientation parallel to the edge, while “far” from the edges the elements
may have an anisotropy ratio close itoThis description is intentionally
unprecise, since in the minimization process, we don’t have any description
of the theoretical edge set. Thus, one has to build the estimator by the use
of the functionsu andv, computed on the background mesh.

The firstidea is then to use the valuewpko as to set the anisotropy;(
andhs) and the gradient af for the angle), sincev is supposed to be close
to 0, near the edges and close to 1, otherwise, while the gradientoof
the set where = 0 should represent the normal £3. Unfortunately, this
method causes several problems:

— Afirsttechnical problemisthat one has to build the estimator ateach node
of the background mesh, while battandV« are piecewise constant on
T'. and then not uniquely defined on the nodes.

— Another problem is the regularity of the fieldsand Vu: if (u,v) are
minimizers for (3), then across the area where 0, the gradient of,
is oscillating and its direction is related more to the orientation of the
elements rather than to the real orientation of the jump set. Indeed,
being nearly constant on each side of its jump, its gradient inside each
triangle is perpendicular to the edge along whidhk constant. If we use
this information without care, the adapted triangulation will thus be too
sensitive to the background mesh.

— Then, one needs thie; and iy values of the estimator to be smooth
enough, to ensure that the adaption is feasible. This need can be easily
illustrated in an unidimensional problem. Sét= i.h, the coordinate
of the nodes of the 1D mesh, the mesh size. In that particular case, the
metric for the estimator is defined by only one parameter, denotéél.by
If Bt~ = hitt > h andh} < h then one cannot build a triangulation
with respect to the estimator. This problem is illustrated in Fig. 1(b).

The technique we use for preventing such effects is a regularization of
the minimizersu andv. A possible method is to regularizeby iteratingn
times the operatokb/ defined in equation (7), and to truncate it at an arbi-
trary lower valueV": v = ((Mr)™(v) V V). Then, the regularized
functionug is computed by replacingby vy in the problem in: (17). With
a good choice forn and Vﬁ”in, it is then possible to deduce usableand
hs from vg andf from Vug. A typical choice for both parameteris~ 10
and Vi ~ 0.5.

The algorithm for the minimization af ., for a fixed mesH’., and the

generation off’_, is then:
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(&) The unit ball of the
metric (0, h1, h2) in the
reference metric

i+1 _ pi—1
hl - hl

(b) An uncorrectly defined metric

Fig. 1. Estimators
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(a) The original imagel@28 x 128) (b) Same image with noise

Fig. 2. Two artificial images to be segmented
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Fig. 3. Segmentation of Figure 2(a)

initialization,

setug andvg, possibly using the results of a previous fixed triangulation
problem.

minimization,

minimize (8), by solving iteratively the problems (17) and (16) until
numerical convergence.

i. regularization,

setur andvg, as described above.

estimation,

chooses; ;1 and deduce from; 1, vr, Vugr, and the direction oVug
“good” values for(hq, ha, ).
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128

(b) Detail from
6 the previous fig-
ure

07 ‘ \
0 64 128

(c) Detail of the
(a) Thev field, given by equation (16) u field

Fig. 4. Segmentation of Figure 2(b)

v. adaption,
run program BL2D with input valueghy, hy,0) to build T, ,, and
restart fromi.

2.2. Examples

In the following tests, we usg(z) = 22 arctan(%Z), so that the weight on
the edge set ig,, = a > 0.

The initial mesh used for all experiments is shown in Fig. 3(a).

In Fig. 3, we present the result of the segmentation of the image shown in
Fig. 2(a) after 2 mesh adaption processes. The successive values (in pixels
unit) for h; andhy are: (3.0,3.0) for the background mesh; (1.0,7.5) close to
the edges and (10.0,10.0) far from the edges for the first adaption; (1.0,10.0)
and (10.0,10.0) for the second adaption. The other parametexs-ar#0,
£ = 0.05. The edges are well focussed and at their right position. The
theoretical surface energy (i.e.x the length of the jump) i6.28 x 10* and
the computed one i6.46x10%. The adapted mesh is shown on Fig. 3(b)
and the fieldv on Fig. 3(c). Note that the number of nodes in the successive
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meshes are 2298, 523 and 341. Since the mesh can be coarse far from the
edges, the mesh adaption process permits to reduce the number of nodes
used at each iteration.

Figure 4 shows the results fer as in Fig. 2(b), witha = 200 and
B = 0.05, after 3 adaptions. The computed surface energy38x10*
while the theoretical one should Bel4x10*. The edge set is broken at
some points as shown in the detail 4(b). This is due to the very low noise
sturdiness of the approximati@d.. In some sense, the representation of
the jump set inG. is very local. This could be seen as an advantage, since
it should provide a more accurate estimate of the length of the jump set.
Unfortunately, it also makes the edge detection more sensitive to noise so
that the jump set that is detected is deformed. It also seems that the scheme
gets easily stuck in local minima, and is very sensitive to the initial guesses
ug, vg and to mesh effects.

In order to reduce this numerical instability, we introduce in (8) the
functional F, which is a variant of~. in which a smoothing operator has
been inserted.

2.3. The “stabilized” version

The algorithm for minimizing

(18) F.(u,T.)+ ﬂ/ﬂ lu(x) — g(z)|* dx

is similar to the one described above, with a few modifications. Indeed, we
also introduce a piecewise constant fiele= (vr)rer. and introduce the
functional

Pl = 3 1m0l (ordt(vup) + 420,
TeT, T

The minimization ofF,(u,v,T.) + 8 [, |u — g|* dz overv is explicit and
is given byvy = f/(hrM%(|Vul?)). In order to perform the minimization
with respect ta:, we rewriteF, in the following way

Fl(u,v,T.) = Z T N 0| <MT(U)(|VuT|2) n 1/121)TT)>,
TET.:

so that the problem is the same as minimizing (17), withiliield being
replaced by the fields = (wr)rer., given by

(19) wr = Mp(v) = Mp(f'(hM*(|Vul?)).
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(b) Detail from

the previous fig-

ure
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u field

(a) Thewr = My (v) field, given by formula (19)

Fig. 5. Segmentation of Figure 2(b) with the approximatiin
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1280

640

(a) Optimalu for T'¢,, (b) Optimalwr = Mz (v) for T,

Fig. 7. The segmented image and its jump set

In Fig.5, we show the results (for the same problem of Fig. 4) given
by our “stabilized” functional, with the same parameter set. The computed
surface energy.30x 10 is closer to the theoretical one than that computed
with G..

Remark.The use of the filters\/ and M* in the computation ofv can
be compared to the filtering used in [28] for the stabilization of topology
optimization algorithms.

Remarklt is to notice that one can combine both formulation into one by
setting

Ec(u,T)
= ‘T;TQ’ {(1 — 0) f(hr|Vur|?) + gf (3hTM%(\WI2))}
TeT
(20)

if ue Vo(2), T € Tz(u), andE;(u, T') = +oo otherwise. (We then define
E.(u) asin (4).) The proof of thé'-convergence of (20) t6'(u) is a simple
adaption of the proof given faF., since the sequence built in Sect. 3.2 for
the estimate from above of thelim sup of £ also suits ta7. (and thus to
E.). With this third functional, one can, in essence, control the width of the
regularization operatal/r.

This functional E. seems to give better results when used with a pa-
rameterd close t00.5 (i.e., whenkE; is “halfway” betweenG. and F;). In
the following Table 1, we compare the values of the total endéfgy:) +
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Table 1. Computed energies for various choicesf

vo 0 E. Surface energyf||u — g[|72(,, Total energy
vo = 1.00 5.84x10* 3.30x10% 2.13x10° 2.19x10°
vo =1 0.75 5.97x10* 3.34x10% 2.13%x10° 2.18x10°
vo =1 0.50 5.89x10* 3.27x10* 2.10%10° 2.16x10°
vo =1 0.25 6.20x10* 3.65x10* 2.14x10° 2.20x108
vo =1 0.00 6.83x10* 4.30x10% 2.24%10° 2.31x10°
vo € [0.5,1] 1.00 5.86x10* 3.24x10* 2.14x10° 2.19x10°
vo € [0.5,1] 0.75 5.98x10* 3.34x10* 2.11x10° 2.17x10°
vo € [0.5,1] 0.50 5.86x10* 3.24x10* 2.10x10° 2.16x10°

0.5,1] 0.25 6.87x10* 4.18x10* 2.15x10° 2.22x10°
0.5,1] 0.00 6.72x10* 4.15x10* 2.22%10° 2.29%10°

[
[
[
[
[0,1] 1.00 6.13x10* 3.62x10* 2.15x10° 2.21x10°
[0,1] 0.75 6.08x10* 3.41x10* 2.16x10° 2.23x10°
[0,1] 0.50 6.23x10* 3.62x10* 2.19x10° 2.25x10°
[0,1] 0.25 6.53x10* 3.97x10* 2.19x10° 2.25x10°
[0,1] 0.00 7.52x10* 4.82x10* 2.28x10° 2.36x10°

B [, |u— g|? dz and of various other energies for different values.6fhe

same computation has been made for various choices of the initial gyess
for v, respectivelyy = 1, vy randomly chosen if0.5, 1] andwv, randomly
chosenif0, 1]. The problem is the segmentation of the image shown in Fig-
ure 2(b). The mesh is the same for all experiments, it is the mesh generated
after three adaptions with = 1. The idea is to test the sensitivity of the
algorithm with respect to the initial values. In order to give an estimate of the
length#*(S,,) of the approximated solution we compute a “surface energy”
as the sum ofT’|/hr over all the triangle§” wherehr|Vur|? > «. This

is exactly the surface energy that would be measured by erdergy the

case wherg (z) = min(|z|, «), and can be compared with the theoretical
expected value x 507 ~ 3.14x10*. In every case, the stabilized functional

F. gives better results than the original oie. By introducing a diffusion
operator, we decreased the sensitiveness to the initial guess, without losing
accuracy either on the surface energy or on the focalization of the edges.
FunctionalE. is a good compromise betweéh andG, since it can give a
better approximation of the energies thn(see the case, = 1), even if

it is more sensitive on the initial guess (see the egse [0, 1]).

The last example is the segmentation of a “T junction” with 20 percent
of additive noise, shown in Fig. 6(a). To adapt the mesh at the junction is
difficult: if the anisotropy ratio is high, the set of “flat” elements cannot be
curved enough so as to follow the edge while a smaller ratio prevents a good
approximation of the surface energy. An improvement to the way we adapt
the mesh would then be to add in some way the local curvature of the edge



Adaptive finite-element approximation of the Mumford-Shah functional 625

set. The first and last mesh are shown in Fig. 6(b) and 6(c). The segmented
image and its edge set are in Fig. 7(a) and 7(b). The parameters-afé,

6 =0.075, 0 = 0.5; and the successive valuesigfandh- are (1,5), (0.75,
3.75), (0.5, 3.75), close to the edges and (10,10), (7.5,7.5), (10,10) far from
the edges.

The next section is devoted to the mathematical proofs of the convergence
results.

3. Proof of the convergence results

In Sects. 3.1 and 3.2 we first show Theorem 1. We will show, in a standard
way, that thel'-lim inf F’ of F. satisfiesF” > F, while the"-lim sup F”
is less thar¥". Then, in Sect. 3.3, we deduce Theorem 2.

3.1. Estimate from below of thé-lim inf

For every open set C (2 and every > 0, we define

1 .
d TN Alhff(hTM%(IVuIQ)), ifueV(2), T € T(u),
TeT T
+00, otherwise,

F.(u,T, A=

(21)
and we letF.(u, A) = infper () F:(u, T, A). We choose a sequence
(ej)j>1 with e; | 0 asj — oo, and set for every, € LP({2) and every
open setd
F'(u, A) = I' = liminf F; (u, A).
J—00

In order to prove thatF”(u, £2) is finite if and only ifu € LP(£22) N
GSBV (£2), and that in this case
(22) F(0,2) 2 [ [Vu(e)? do+ 3H!(S.),

Q
we will use the same localization technique as in [4,11, 13]. The result will
be a consequence of the following lemma.
Lemmal. Let A C (2 be an open set and € LP({2), and assume
F'(u,A) < +00. Thenu € GSBV(A) and
(23) F'(u,A) > / |Vu(z)|? dz,

A

(24) F'(u,A) > 3focHY(ANS,).

Arguing for instance as in [11, Prop. 6.5], we immediately deduce inequal-
ity (22) from Lemma 1, since it can easily be shown that given LP({2),
the set functionst — F’(u, A) are increasing and superadditive.
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3.1.1. Proof of (23) Choose an open sdt C (2 and a sequende7, T/)
such that® — win LP(§2) andliminf; , F. (u, T, A) < +oo. For
simplicity’s sake we will drop the subscrigtand writee | 0 instead of
j — oo. We fix a positive constamt, and write, taking into account the fact
that f is nondecreasing,
(25)  F(u,T°,4) = Y 7l (hTM; (]Vu€]2 A f)) .

toa b c

For everyT’ € T, we have the following estimates:

1
(26) 582 sinfy < |T| < ?0252,
and )
1
(27) 552 sin26p < St <7 <1+ ?) 2e?
as soon a§’ or someT” with 7"’ N T # () is included in{2; moreover,
(28) esindy < by < \égce.
In particular, ifI" C A C {2,
K 1 St K
M* ( €2 7) < - T/ 0 —
P(Veral)sg X guimnal
T'NT#D

2
2

< 2me [ VB s

sin 26 3 €

so that there exists some consta&ntlepending only oy, ¢ such that

(29) ho M <|Vu€|2 A f) < Kk.

3
Letb, = infoci<kw f(t)/t, by (1) we know thab,, — 1 ask goes to zero,
and from (25), (29) we get

€ € > * €12 E
(30) Fo(uf, T%, A) > bK%mMT (yvu 2 A E) .

Let nowT™ be the set of all triangle® € T such that every triangle
T e T, T"NT # 0, lies in A. We have from (30)

NN
F(us,T5,4) 20, > T Y | | <|VuET,|2 A f)
TCA T'NT#D ' c
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= b 3 102l (Vs A7) slT, S

T'eT*® TNT'#0,TCA
1
>be Y T ((VupPAS) o= D 1T
T'eTs, &0 OT g
—b. Y [TI(IVuzP A 2),
TeT? ¢

so that, lettindl™, = {T € T° : |Vus|* > k/e},

T
Bl F.(uf,T°,A)>b, Y [TI[Vuzl +berx Y il
TET\TS TeTSNTS,

Let A(e) = UTeTng‘; T C Aandset®(z) = (1— Xa(e) (x))us () for
all z € 2. We can assume that(z) — u(x) for almost everyr € 2 as
e } 0. Since by (31)|A(e)| < (F(u®,T*, A)/bsk)e, we can also assume
(up to a subsequence) thxaj‘(s)(x) — 0 for almost everyr € (2. Then,

v® — w a.e. inf2. The function® belongs taSBV ({2), and its jumps set
satisfiesSye € Ureqe nge 9T Since foranyl’ € T¢,

sIT1 6 171

1
<
@) HOT) <6y < D

we deduce from (31) that

(33) HL(S,) <

—  F.(u*, T A
~ bk sin by (u, T% 4),

and is thus bounded. If we fix now > 0 and letA? = {z ¢ A
dist(z, A) > 6}, it is clear that ife is small enoughA® C UTGT% T, so
that we also have from (31)

(34) bﬁ/ (Ve (2)|> de < F.(uf, T¢, A).
Ad

Since||v®||zr(2) < [[u°|| Ly () is also bounded, we can invoke Ambrosio’s
Theorem 3 to conclude thate GSBV (A%), with

6

1 é S € e

u A%) < 1 fF, ,T ,A N
# (S ) b,ilﬁ sin 90 Hg,%)n E(u )

and
(35) bx / |Vu(z)]? dz < liminf F.(u®, T, A).
A el0
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Sendings to zero, we deduce thate GSBV (A), withH!(S,NA) < +oo,
and sending then to zero in (35) we get

(36) / \Vu(z)|* de < liminf F.(uf, T¢, A).
A el0
Since the sequenge®, T°) was arbitrary, we deduce (23).

3.1.2. Proof of (24) The proof of inequality (24) is similar. We choose
againA, v, T¢ as in the previous sectiofl’%y and T, are defined in the
same way, and we also Iﬂti O T% be the set of triangle® € T such
that somel” € T satisfiesT” N T # (). We now defineT";, as the set of
trianglesT” € T such that, along at least two edgedbtthe slope of.° is
(Nstrictly) grealtgrthar\/g.glearly, for such a triangl¢Vus|* > £, so that
T. cT:cT,. fTeT,, andifforallT’, T'NT #0 = T' C 2, we
have, using (26), (27) and (28),
hy M|V 2) > sin 6 51112920 K = K'x,
v3\* 2mc
(1 + 7)

so that, for such &,
F(he M7 (VU ?)) > ax

for some constant, = f(K'k) that goes tof, asx goes to infinity. Thus,

T
(37 RGET A 20 Y 4
TeT,NT?,

In the same way as in the previous section, we let

Ble)= |J T and  w(z)=(1-Xg (@) (),
TeTsNT,,

De)= |J T and r(2) = (1 - Xpe (@) (x).
TeTyNT,,

We also letC'(¢) be the union of all the triangles &, N T%,, plus the
triangles inT$ N ’fi \ T% that have at least two edges that belong to
triangles ofI™,. This setC(¢) is thus slightly larger than the sdfc) of the
previous section. We leff (z) = (1 — Xc(e) (x))us(z) for all x € 2. We
haveB(e) C C(e) C D(e) and by (37),|D(e)| — 0 ase | 0, so that we
may assume that®, ¢° andr® go tou a.e. inf2.
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If T ¢ T, , the slope of:c along at least two edges ®fis less than /%,
so that it is not difficult to check (see [13, Remark 3.5]) that

5 K
Vs < -
| T| ~ sinfg e

Letting " = 5x/ sin fy, we deduce, as in the previous section, that for any
0 > 0 ande small enough,

(38) by / \Vw® (z)|* de < F.(u, T¢, A)
Ad

for some constani,; > 0 (hot depending om nor ¢), and obviously the
same inequality holds fay* andr<.

We now estimate the length 81 (c) N A%, 9C () N A° andd.D () N A,
for e small enough.

Consider first a triangl& e Ti. If (part of) an edgd. of T" belongs to
OB(g) N A%, then, if the slope ofi¢ along L is smaller than, /%, we use
the estimaté{*(L) < 2|T|/hr, otherwise L is the edge common t6 an
another triangld” such thatl” ¢ Ti, but since the slope off alongL is
larger than,/%, T € T+, and we estimaté{' (L) < 2|T"|/hy. Since the
first case occurs for at most one edgdofby definition ofT,i), and since
the triangleT” in the second case can only be considered once (otherwise
the slope of.° along at least two edges @f would be larger tharq/? and

we would havel” e TZ), we conclude that (it is small enough, so that
TNA 40 = TecT)

(39) H'(0B(e)nA’) <2 ) |hT’
T

TeTsNT;
Consider now an edgk which is part of the boundary af'(¢) (inside
A%). Then, there are two possible cases:

i. Listhe edge ofatrianglé Cc C(e), T € ’_7"; \ T%,, and each of the two
other edges of " is the edge of another triangle that belonggta In
this case we estimate the lengthlofwith 2|T'|/hr, and the two other
edges ofl" are insideC () so that they can not be part of the boundary
of neitherC(¢) nor D(e).

ii. Lisanedge common to atrianglec ’fi \ T, and atriangld” € T,
with thereforeI” ¢ C(e) andT N C(e) = (. In this case, the two other
edges off" can not be on the boundary bf(¢) (since they share a vertex
with 7" and thus each one is commonZaand another triangle @2),
and can not either be commorif@and another triangle af¢,, otherwise,
by definition ofC'(¢), we would havd"uT” C C(g) andL would not be
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on the boundary. Therefore, if one of these edges is part of the boundary
of C'(¢), it must enter the previous casgdnd its length can already be
estimated by the surface of the adjacent triangle included(i). We
estimateH! (L) < 2|T|/hr.

We deduce that/!(0C(g) N A?%) can be bounded by a sud . |T|/hr

that is taken on triangl€B of ’_7’2 \ T, such that none of the three edge§of
coincides with some part @D () (or, more precisely, such that! (07 N
dD(g) N A%) = 0).

On the other hand, if. is the edge of some triangle € ’_7’2 \ T, such
that (part of)L belongs to the boundary @i(¢), we easily show that the two
other edges of” are not part 0B D(¢) N A°. Indeed, ifT" = [z, y, z] with
L = [z,y], thenz must also be a vertex of some triangleTdf (otherwise
it would be the case for eitharor y and L could not be on the boundary
of D(¢)), therefore neithejz, z] nor [y, z] can be on the boundary @f(¢)
(nor on the boundary af'(¢), in fact). We still estimaté{! (L) < 2|T'|/hr.
We deduce, it is small enough, that

(40) H'(OC(e)NA°) +H'(OD(e)NA%) <2 > )

TeTyNT\T; hr
Thus, with (37), (39) and (40),
Fo,T%,4) = % {#'(0B(z)n 4%)
(41) FHLHOO(2) N A% + HEHOD(e) N Aé)} .

Since||w®||rr (@) < [¢°llze(2) < [Ir¥llze(2) < lullLe(), Which is uni-
formly bounded, we may invoke Lemma 2 (see Appendix 3.3) to get that

M (S N A%) < % lm inf 71 (0 (2) 11 4%),

whereX (¢) isanyone ofthe set8(e), C'(¢) or D(e). We conclude from (41)
that
3a,H (S, N A%) < hr%nf F.(uf,T¢, A).
€.

Sendings to zero, and thenr to infinity, we deduce
(42) 3focM(SyNA) < hml inf F.(uf,T¢, A),
and by the arbitrariness of the sequefce T°) we get (24). The proof of

Lemma 1 is thus achieved.

Remarklnequalities (36) and (42) were proved using only the assumptions
thatu® is bounded in.”((2) and that it goes te a.e. in{2. They still hold if
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u® does not converge strongly tg but only weakly inLP((2), and satisfy
these assumptions. We deduce that, in the same way as (22) is deduced
from (23) and (24)x € GSBV ({2) and

(43) / V(o) P de + 3o (S1) < lim nf F.(, T°)
Q E

as soon asf is bounded inL!(£2) and goes ta; a.e.inf2. This will be
useful in the proof of Theorem 2.
It remains to estimate thE-lim sup F” of F..

3.2. Estimate from above of tlielim sup

We now wish to prove that for any € LP({2), there exist§u®).~o con-
verging tou in LP({2) with

(44) lim sup F(u®) < F(u)
el0
(more exactly, we should find for any sequericg with ¢; | 0 asj — oo
a sequenceu’ ) ;> with limsup,_, ., F% (u) < F(u)).
Arguing like in [14], where the approximation result of Dibos ar&teS
[17] (see Appendix 3.3) is generalized, we can find, givenamry L ((2)
with F'(u) < +o00, a sequenceéu,,),>1 of bounded functions such that

— eachu™ is defined on som€&/, O> (2;

— for everyn, there exist disjoint closed segmeits, i = 1, ..., N,, such
thatu,, € W (0, \ UM~ L7);

— foreveryn, |luy||p=(0) < llull Lo (o)

— asn goes to infinity,u,, — w in LP(£2) and

Ny,
lim sup/ |V (2)]? dz + 3foo Z HY(LY) < F(u).
n—o00 0 i—

The assumption thad(? is Lipschitz is crucial in order to establish the
existence of the functions, in a larger domairf2,. Now, by a standard
diagonalization argument, if for eaechwe find a sequence.?,).~o, con-
verging tou,, in LP({2) ase goes to zero, such that

Ny,
(45)  limsup Fi(uf,) < / |V (2)* de + 3fa Y H'(L})
el0 (0] i—1

then we will be able to build the sequene€) satisfying (44).
We fix n > 1 and now describe how to build the sequerfeg).~o.
In order to simplify the notations we will drop all subscripts (superscripts)
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1 .
(2 [;:Liféz]] +6> e cos g

B it e it >

Fig. 8. Each discontinuityL; (thick line) is covered by a strip ddN; + 13 “minimal”
triangles (V; = [H'(L;)/€']), the whole strip is included in a rectangle whose external
nodes have to be connected to a “background triangulation”

n. The functionu is thus a piecewise regular function, defined on an open
domain(?’ > 2, and such that there exisf disjoint closed segments
(Lz),f\;l with u € WZ’OO(.QI \ UZ]\Lle)

The construction we use in order to build the sequénég. - satisfy-
ing (45) is almost identical to the construction in [13, Appendix], so that
we will not enter too much into the details. The idea is to build and connect
together local triangulations designed around each discontihyiip such
a way that the energy. aroundL; gives a good estimate &ff..H!(L;),
ase goes to zero. This is obtained by recoveribgwith a strip of “mini-
mal” triangles, i.e., triangles with two edges of lengtand one of length
¢/ = 2e cos By, as shown in Fig. 8. Then, these triangulations are connected
in some way to a uniform “background triangulation” (made of the squares
[ke!, (k + 1)e'] x [le/, (I + 1)€), k,1 € Z, cut into two triangles along a
diagonal), in order to obtain a global triangulati®® over all {2.

Let us give some details about this construction. Calllfjgthe union
of all triangles that toucli; and’f? the union of all triangleq” such that
eitherT or some neighbor df (i.e., a trianglel” with 7" N'T # () touches
L;, we want to design this strip in such a way that

T
> s
~_hr
TET,
ase goes to zero. Figure 8 shows how to do this: it suffices to include
firstin 2V; + 5 minimal triangles, withV; = [H!(L;)/'] ([-] denoting the
integer part), and then juxtapose along this thin strip two other strips in such
a way that the heightt of each triangle irTf is perpendicular td.;. For
this particular constructior#Tf = 6N; + 13, and, since for every € Tj,
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|T|/hp = ecosby = £'/2, we have

T
(46) 37—[1(Li) 4+ Tecosly < Z u < 3H1(Li) 4+ 13¢e cos 0.
~_hr
TeT:

The stripf’f is then included into a larger rectangle of sizé x (N; +
3)e’. The algorithm described in [13] shows that it is always possible to
connect the rectangle of Fig. 8 to the background triangulation, provided
£ << mingy; dist(L;, Lj) > 0 (so that fori # j, Tf and”fj are not too
close),fy is not too large, and is not too small§y < 18° andc > 6 suit).

Now, T* being constructed, we simply lef be the piecewise constant
function equal ta; at each node df* (including the vertices that are not in
{2 of triangles that mee® without being included in it — we assumds
small enough, so that each trian@lec T° with |T' N 2| > 0 is contained
in £2). Itis a classical fact thai® converges ta: in L?(2) ase | 0. Let

s =UN, T andTy = UY, T, we have, using (2) and (46),

TN
Fa(UE,TE) < Z | N ‘
TeT®

(hr M (IVus?) A foo)

N
< Y ITNQIME(VUP) +3f Y H (L)
TeT\T' =1
(47) +13N fooe cos By,
We write the first sum in the last line of (47) as follows:

> ITNQIM(VuEP)
TeT\Tg

|T" N 2 9

TeTs \fss T'NT#D
1
= Y TN 0|V 5 Y ITng)
T'eT* TOT'£0,T¢T'g

Since the last term in the parentheses is always less than 1, and is zero as
soon asl’ € TS, we deduce

N
Fo(us, T%) < Y |TNQVug> +3f Y H' (L)
TeT\T% i=1

(48) +13N foo€ cos by.
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Again, we proceed now as in [13]: using [27, Theorem 4.4-3], we have for
anyT ¢ Tg,

lw = w1y < e(6o) € | Dull 2z

wherec(y) > 0 is some constant (depending only @) and D?u is the
Hessian ofu, so that, if we let
Us(z)= Y Vug Xp(x)
TeT\TS

forall z € 12,
[Vu — UEH%?(Q,}R@) < c(fo)* € HDQUH%%Q,W) + /A( ) Vu(z)[? dz

whereA(e) = UTGT% T satisfies A(e)| — 0 ase | 0. Thus,U¢ goes to
Vu strongly inL?(£2, R?), and sending to zero in (48) we get (45). The
proof of Theorem 1 is thus achieved.

Remarkf the functionw is bounded, we notice that the functiomSthat
we build satisfyi|u®|| o () < [[ul| () for everye > 0. In particular, we
deduce that the functionals® I"-converge taF’ ase J. 0 also in the space

{ue IP(2) : llul o) < M}

forany M > 0.

3.3. Proof of Theorem 2

We considefu®).~q satisfying the assumptions of Theorem 2, and for each
e an adapted triangulatio® such thatF.(u®,T°) = F.(u®). Like in
Sect.3.1.1 we fix > 0 and introduce a s&, = {T € T° : |Vui|> >
/e }. Following the proof in Sect. 3.1.1 with = {2, we can build functions

v® € SBV(§2) such that for every > 0, [[v°|| 1r () < ||u®]|zr (),

(49) hﬁ)l Hzr e 2 : u(x) #v°(x)}| =0

and for every§ > 0,
sup / (Vo ()2 dz + H (Spe N 2%) < +00.
e>0 J 9

We can thus invoke Ambrosio’s Theorem 3, and follow a diagonal procedure
in order to build a functionu € GSBV (£2) N LP({2) and a subsequence
v% such that®s — « a.e. ing2. From (49) we deduce, possibly extracting
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another subsequence, théat goes tou a.e. inf2. The Remark at the end of
Sect. 3.1 yields (10).

Assume now that for each > 0, the functionu® is a solution of (11).
For anyw € LP({2) we proved in Sect. 3.2 that we can build a sequence
(w®);>1 converging taw in LP(£2) such that

lim sup F; (w®) / |w® (z x)|P de < F(w / |w(z x)|P dx.
Jj—00

Since for every, F, wei) +f |wei —g[Pdx > F., uy) +f usi —g|Pde,
we deduce from (10) and Fatou’s Lemma that

/ |u(x x)|Pdr < F(w / |w(z x)|P dx,

henceu solves (12). Takingy = u, we also get that

lim ., (u") /|m @) de = F /\u )P da,
j—o0

which yields, ifp > 1, the strong convergence ofi to u.

Remark.If g € L*({2), it is standard that any solutiom of (12) satis-
fies||ul| (o) < [|gllLe()- This might not be true for the approximated
problem (11), however, the Remark at the end of Sect. 3.2 shows that Theo-
rem (2) still holds if we add in the minimization problems (11) and (12) the
additional constrainfjv|| (o) < [|gllLe (). In this caseu® converges
strongly tou for anyp € [1, +0).

A. Special functions of bounded variation
A.1. The spaceSBV andGS BV definitions and main properties

In this section we define briefly the “special functions of bounded variation”
and state afew properties. See forinstance [3] or [2] for further details. Given
2 C RN andu : 2 — [~o0,+0co] @ measurable function, we first define
theapproximate upper limiof v atz € 2 as

U+(l') —inf {t e [—OO,—FOO] . lplﬁ)l |{y : U(y) ;Nt} ﬂBp<1')’ _ 0}’

whereB,,(z) isthe ball of radiug centered at and| £/| denotes the Lebesgue
measure of the sdf. Theapproximate lower limit._(x) is defined in the
same way (i.eaq—(z) = —(—u)4(z)). The set

Su={zx € : u_(z) <us(x)},
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is the set of essential discontinuitiesigft is a (Lebesgue-)negligible Borel
set. Ifx £ S, we say that is approximately continuoust z and we write
w(zr) = u_(x) = uy(z) = aplimy, u(y).

A functionu € L*(£2) is afunction of bounded variatioifi its distribu-
tional derivativeDuw is a vector-valued measure with finite total variation in
{2 (equivalently, if the partial distributional derivativésu, i =1,..., N,
are real-valued measures with finite total variatiofin The space of func-
tions of bounded variation is denoted By ({2). For the general theory we
refer to [19], [20], [25] and [29]. Ifu € BV (£2), the setS,, is countably
(HN=1 N — 1)-rectifiable i.e,

SUZGKZ»UN

i=1

whereHN~1(N) = 0 and eachi’; is a compact subset of@ -hypersurface
I;. There exists a Borel functiom, : S, — SV~! such that{V—1-a.e. in
S, the vector, (x) is normal toS,, atx in the sense that it is normal 9
if + € K;. For everyu,v € BV ({2), we must therefore have, = +u,
HN-1.a.e.inS, N S,.

For everyu € BV (£2) the measuréu can be decomposed as follows:

Du = Vu(z)dz + (uy —u_)r,HYN 1S, + Cu
whereVu is theapproximate gradiendf u, defined a.e. if2 by

ap lim u(y) — u(z) = (Vu(z),y — )
Yy—x ’y _ x’

=0,

HN-1|_ S, is the restriction of théV — 1 dimensional Hausdorff measure
tothe setS,,, andCw is theCantor partof the measur®uw, which is singular
with respect to the Lebesgue measure and suchdhd{E) = 0 for any
E with HN"1(E) < +o0.

We say that a functiom € BV ({2) is aspecial function of bounded
variationif Cu = 0, which means that the singular part of the distributional
derivative Du is concentrated on the jumps &t We denote bys BV (2)
the space of such functions. We also define the spa€81((2) of gen-
eralized SBV functions as the set of all measurable functians 2 —
[—o0, +oo] suchthat forany?’ cc 2andanyk > 0,u* = (—kVu)Ak €
SBV () (whereX AY = min(X,Y)andX VY = max(X,Y)).

If w e GSBV(£2)N L (£2), v has an approximate gradient a.efn
moreover, ag 1 oo,

(50) Vu* — Vu a.e.ing, and  |Vu*| 1 |Vul a.e.ing;
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Sur C Sy HY 1S ) — HYTL(S,) and
(51) Vyk = Uy HN1-a.e. NS,

Slicing.We consider now fo¢ € SN~! the setg = {z ¢ RY : (£,2) =
O}andforany: € ¢4, 02, = {t e R : z+t£ € 2}.0n2, ¢ we define a
functionu, ¢ : 2, ¢ = [—00, +00] byu, ¢(s) = u(z+s). If u € BV (£2),

we have the following classical representation (see for instance [1], [4]): for
HNlaez € &t u, e € BV(2,¢) and for any Borel seB C {2

(Du.€)(B) = [ 72 Duc(Bg)

whereB, . is defined inthe same way &5 .; converselyifu, . € BV (12, ¢)
for at leastV independent vectoise SV~ andH VN !-a.e.z € £+, and if

/ BV (2)| Dtz | (226) < +o0c
€1

thenu € BV (£2). Now (see [2], [1]), ifu € SBW.(2), then for almost
everyz € ¢+, uye € SBVioc(§2;¢) (the converse is true provided this
property is satisfied for at least independent vectorsandu has locally
bounded variation), the approximate derivative satisfies

i ¢(s) = (Vu(z + 5€),€)
fora.e.s € £2, ¢, moreover
Suz_’§ = {S S 0275 cz+s8€ € Su},
andforalls € S,,,_ .,
(Uz,e)+(8) = us (2 + s§).

Eventually, for any Borel seB C 2

/ d/HNil(Z),HO(Bz,E N Suz,s) - / |<VU($)7 §>‘ d,HNil(x)'
et b

Compactness. We finally mention two compactness result. The first one
is the classical compactness and lower semi-continuity result proved in [1]
(see also [2], [3]). The lemma that follows is a variant that is useful in the
proof of ourl’-convergence theorems.
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Theorem 3 (Ambrosio).Let {2 be an open subset & and let(u;) be a
sequence it S BV ({2). Suppose that there exjst [1, co] and a constant
C such that

/Q |Vuj]2d:n —I—HN_l(Suj) + HUjHLp(Q) <C < +o00

for everyj. Then there exist a subsequence (still denoteduyy) and a
functionu € GSBV (£2) N LP(§2) such that

uj(z) — u(z) a.e.inf2,

Vu;j—Vu weakly inL?(£2, RY),

HNTL(S,) < liminf HYH(S,,).
Jj—o00

Moreover

(v, €) ] dHN Y < lim inf / (v, )| dHN !
Su J]—00 Su]-

for every¢ € SV-1,

Lemma 2. Let (2 be an open subset &, p € [1, +oc], and let(4;) be
a sequence of open subsetsbind and(u;) a sequence of functions such
that

— forall j,u; € C(2\ Aj) N HY 2\ A;),
— sup; [|ujll o (o) —I—/Q|Vuj(x)|2dx < 400,

— sup; HNH(04;) < +oc.

Then there exist a subsequence (not relabelled) and a funet®i:S BV
(£2) N LP(£2) such that (each; being extended with the value zeroAn)

uj(x) = u(x) a.e. ing?,

Vu;—Vu weakly inL?(£2, RY),

1
HNL(S,) < 5 lim inf HY (04, N 0).

Jj—o0

Proof of the lemmaThe only property to check is the inequality

(52) HNL(S,) < %nm inf HY (04, N 0),

J]—00

since the other statements easily follow from Ambrosio’s previous theorem.
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We can assump = oo: indeed if we replace the functions and their
limits by the truncations at any levél > 0, u;“ = (—k Vu;) Ak and
uF = (=k V u) Ak, and if the result holds for the sequen@é) and the
function«”, then from (51) we'll deduce the general result.

We callM = sup; ||uil| ;oo vy, @and on eackd; we setu; = M + 1
(the value ofu; insid]e[’éljj(!geé%\(ﬁjgﬁect the Iimit).] ’

Sinceu; is continuous o2 \ A;,

Sy, C{x €0A; : 0< D" (x,4;), D™ (z,4;) <1} = SXAJ_ C 0A;

where D" (x, Aj) = limsup, o |B(z, p) N Ajl/wnp™ and D~ (z, 4;) =
liminf, o |B(z, p) N A;j|/wnp” € [0,1] are theN-dimensional upper and
lower densities ofA; atz; and for allz € Sy,, (u;)+(x) = M + 1 and
(uj)-(z) < M. We denote by4; the setSy | .
J
We first choose¢ € SV—! and an open sg® cC (2, and we will show
that

(53) / (v, E)|dHN 1 <7hm1nf7-[N 104, N B).

SuNB J—00
For anyz € ¢+ we denote byB* the set{t c R : z + t£ € B} and
respectively by:*(¢) andu? () the functionsu(z + t£) andu;(z + t£).
We have that

/]u]—u\dx—/ N (2 )/BZ 3 (t) — ()] dt = 0

asj — oo, so that we may assume (up to a subsequence) thatfor -a. e.
ze&t,
(54) lim luj —u®|dt = 0.

j—}OO Bz

Moreover, forHN~l-a.e.z € ¢+,

(55) / (WY ()2 dt + HO(B7 A Sye) < 400,
since
N—-1 2 0 z
/&d% (z)(/ (W) (02 dt + HO(B msuz)>
= / [(Vu(z) \Qdﬂf+/ |(vu(z), €)| dHN " (x) < 4o0;
B

andu? is in SBV (B?), with

(56) liminf/z () (O dt + HO(B* 1 S,:) < +os,

J—00
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since, by Fatou’s lemma,

/ dHN (2 )(hmmf/z y(uj)'(t)|2dt+H0(Bzmsu;)>

J—00

< l1m1nf/| Vu;(x),&))? d:c+/ |<Vuj(x),§>\dHN_1(ﬂs) < +o0.
BNSu,

J—00

We also know that for{" ~!-a.e.z € £+, the jumps set o} € SBV (B?)
is

BzmSuj ={teB* : z+t{ €Sy}
and(u)+(t) = M + 1, (uf)-(t) < M foranyt € Syz.

We may therefore choose asuch that this holds for alj, as well
as (54), (55) and (56). By (55), the functian is piecewise continuous on
B* with a finite number of jumps. We lef,- N B* = {t1,...,t,}, with
ty <ty < --- < t,. Lete > 0 be chosen such thét; — ¢,t; + ¢) CC B,
andt; + ¢ < t;41 — € for all i. We will show that for an infinity of indices
j, eachintervalt; — e,t; + ¢) contains at least two jumps of.

dConsider a subsequen¢e’ ) of (u7) such that; — u* a.e. onB*
an

n¢ = lim 77/ \(ujk)'(t)|2 dt+’HO(BZﬂSu§k)
BZ

k—o0

_hmmfn/ () (1) dt +HOB* 1 S,:) < +o,

J—00

wheren > 0 is a fixed small parameter. For every= 1,...,n, leto; =
u? (t;) — v (t;) and choos®; < min(e, 07 /8¢). We choosey;, 3; such
that

—ti— 0 < <t <P <ti+ 0,

= limyy o0 u, () =u (az) andhmkﬁoou (ﬂz) =u*(6),
—and|u®(5;) — u® ()| > az (by contlnwty)

For k large enoughSqu,k N (s, B;) # 0, otherwise we would have, for all
indicesk such that this is not true,

Bi
16, (5= 0) = (o + 0 < [ s V(o)

{/ ﬁ ) OPd VG a

As k goes to infinity, the limit of the left-hand term would be greater than
0;/2, while the limit of the right-hand term would be smaller thdfy/24; <
0;/2, a contradiction.
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Now, fork large enough, both’ («;) andu?, (5;) are less thamupg- u*
+1/2 < M + 1/2 (thus thanM, sinceu;, takes its values ifi-M, M| U
{M + 1}), so that ifSu;.k N (i, 3;) # (0 it must contain at least two points
(since any jump oﬂjk occurs between a value lower th&h and the value
M +1).

We deduce that ik is large enough,

70 (BZ N Su;;k) > Zn:’HO ((ai,ﬁi) N Su§k> > 9p,
=1

therefore
290 (B* N Sy+) < liminf H° <BZ A S ) .
k—oo Ik
Notice now that applying Ambrosio’s Theorem 3 to the sequeﬁn;ke)kzl

of SBV(B?), we deduce thatu; )’ goes weakly tqu*)’ in L?(B*) ask
goes to infinity so that

/z|( NP dt < hmlnf/z|( us ) (t t)|2 dt.

k—o0

Combining the last two inequalities, we deduce
n/ |(w?) ()| dt + 2H(B* N S,z)
BZ

< lim n/ ) (O dt + HO(B* 1 S, )
B=

" k—oo

= liminfn/ |(uj)'(7§)\2dt + HY(B* N S,2)
j—)OO z J

This inequality being true for a.e. € ¢+, we can integrate over, and

Fatou’s lemma yields

/ (Vu(z), €)[2dz + Q/BOS (val), &) dHN 1 (2)

< liminfn/ |Vui(z)|*de + ’HN_I(BﬂSuj).
B

J—00
Sincesup; [ |Vu;(z)? dz < 400, we can seng to zero and we get (53).
Finally, by a standard localization argument (used for instance in the proof
of Theorem 3, see [2]), we deduce from (53) that

2HNL(S,) < hm inf HN =1 (64, N 02),

—00

hence (52).

Remark.The same result holds if, instead of assumingcontinuous on
2\ A;, we assume that the boundary 4f is “regular” in the sense that
’HN‘1(8A]- \ 04;) =
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A.2. An application: the Mumford-Shah functional

The functional originally introduced by D. Mumford and J. Shah, in order
to modelize the image segmentation problem in a continuous setting, is the
following

Glu, K) = /Q\K \Vu(z)|? dz +HYNH(K)

(57) + /Q () — () ? d,

whereg € L*°({2) is a given “original image”K is a closed set and €
C'(2\ K). L. Ambrosio and E. De Giorgi introduced the weak formulation
in GSBV (12)

(58) G(u) = /Q V() de + HY(S,) + /Q u() — g(a)|? da,

and proved the existence of a minimizer 6rusing Theorem 3. Then,

E. De Giorgi, M. Carriero and A. Leaci established the existence of a mini-
mizer forG by proving that ifu minimizesG, thenHN =1 (205, \ S,) =0
andu € C'(22\ S,), so that(u, S,) minimizesG [16].

In [17], Dibos and &ré showed that any minimizer of G may be
approximated by a sequenge ).~ of piecewise regular functions such that
the jumps sef,,_ of eachu, is contained in a finite union of parallelipedic
subsets of hyperplané&’, ..., K<), u. — u a.e. as goes to zero, and

lim/ |Vu5(:c)|2dx+ZHN1(K§):/ V() de + HY(Sy).
=0 Ja =1 2

This result is generalized in [14]. In order to establish inequality (44)
(Sect. 3.2) we need a variant of [14, Co 3.11], whose proof we do not give
since it is easily derived from the proofs in [17] and [14].

B. The I'-convergence

We shortly define thé'-convergence of functionals (in metric spaces) and
its main properties. For more details we refer to [15].

Given a metric spaceX, d) andFy, : X — [—oo, +0o0] a sequence of
functions, we define for every € X the I'-liminf of F

F'(u) = F—likn_l)icngk(u) = inf liminf Fj(ug)

up—u k—oo
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and thel-lim sup of F’

F"(u) = I' — limsup Fj(u) = inf limsup F}(ug),
k—oo U= koo
and we say thak}, I'-converges td : X — [—oo, +oo] if F/ = F" =F.
F', F", andF (if it exists) are lower semi-continuous oxi. We have the
following two properties:

1. Fj, I'-converges td' if and only if for everyu € X,

(i) for every sequencey, converging tou, F'(u) < liminfy_, o Fi(ug);
(i) there exists a sequenag that converges ta and such thalim sup;,_, .

2.If G : X — R is continuous and’}, I'-converges ta’, thenF;, + G
I'-converges td" + G.

The following result makes clear the interest of the notioniof
convergence:

Theorem 4. Assumd’}, I'-converges td and for every letu;, be a mini-
mizer of F}, over X. Then, if the sequence (or a subsequengeonverges
to someu € X, u is a minimizer forF" and Fy,(uy) converges td' (u).

Finally, we give the following definition of -convergence in the case
where (F}y,)p~0 is a family of functionals onX indexed by a continuous
parametef.: we say thatFj, I'-converges td' in X ash | 0 if and only if
for every sequencgh;) that converges to zero gs— oo, Fj,; I'-converges
to F.

C. A strange triangulation

In this section we show why/* has to be used instead df in the defini-
tion (8) of F.. Actually, letf2 = (0,1) x (0,1), and for each* € V.(12),
T € T-(u®), let

L(u,T%) = ) |T|Mp(|Vusf?).
TeT*
We will construct a sequenes,, T',,, with u,, € V1 (£2) andT',, € T-(uy),
such thatu,, converges ta.(z,y) = y andlim,, o 11 (u,, Ty) < 1. FiX
A € (0,1) and, forn > 1, consider inR? the dotsz; = (£, 1), k,1 € Z,
andyy,; = (£,%2), k,1 € Z. Let T, be the triangulation of2 made of
the triangleszy 1, 11,0, Y1)s (Th+1,0 Yt Yir1,1), Of surfacer/2n?, and
of the triangles(yx.i, Yr+1,0 Thr1,41), (Yk,ls Thit1, Thy1,441), Of surface
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3>

o 3=

0

3=

Fig. 9. The triangulatiori’,,

(1—)\)/2n?, contained in2 (Fig. 9). We assume is large and restrict our

attention to the triangles includedﬁ%, 1-— %]2 We will call “small” trian-
gles the triangles of surface’2n? and “large” triangles the other triangles.
For each trianglé€” of one kind (i.e., “small” or “large”) there are 5 triangles
T’ of the same kind (includin@ itself) such tha” N T" # () and 8 triangles
of the other kind satisfying the same property. Wedfi)é € R and define a
functionu,,, withu,,(-,0) = 0 andu,(-,1) = 1, such thaVu,, = (0, 1+ «)
on the small triangles ardu,, = (0, 1 + () on the large triangles. We must
havela + (1 — A\)gB = 0, so thatu,, goes tou (uniformly, and weakly in
H'(£2)) asn — co.

If T is a small triangleSt = (8 — 3)\)/2n?, while if T is large,St =
(54 3))/2n2, so that forT” small,

a)? _ 9
M (V) = 220D gi(zlu A1+ B)

and if T is large,

5(1 = A)(1+ B)% +8M\(1+ a)?

M 5 = :

7(|Vul?) =

Since there argn? triangles of each kind, we easily deduce that
I(a,B,\) = ILm Ii(up,Th)

A1+ )2 4+ 8(1 — M) (1 + B)?
8 — 3\

=A
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5(1 =X)L+ B8)? 4+ 8A(1 + «)?
5+ 3\ ’
If \is small, this expression is less than 1 for admissible values 6f \,

for instance,
1 1 1
Il\——,—,— ] =0
< 5,45,1()) 0.9873

(1= )
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