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Summary. We present and detail a method for the numerical solving of the
Mumford-Shah problem, based on a finite element method and on adaptive
meshes. We start with the formulation introduced in [13], detail its numerical
implementation and then propose a variant which is proved to converge to
the Mumford-Shah problem. A few experiments are illustrated.
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1. Introduction

In order to solve the image segmentation problem, D. Mumford and J. Shah
have proposed in [26] to minimize overu andK the functional

G(u,K) =
∫

Ω
|∇u(x)|2 dx+ H1(K) +

∫
Ω

|u(x) − g(x)|2 dx,

whereΩ ⊂ R
2 is the image domain (a bounded open two-dimensional

domain),g ∈ L∞(Ω) is the original image, that has to be segmented,K
is a closed set of Hausdorff one-dimensional measureH1(K) and u ∈
C1(Ω \K). The setK is supposed to represent theedgesof the segmented
imageu that is regular out ofK and can be discontinuous acrossK (see
Appendix A.2 for details).

The actual minimization ofG is a difficult problem, that has been ad-
dressed by many authors. Mumford and Shah themselves derived their en-
ergy from discrete energies introduced by D. Geman and S. Geman [24]
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and A. Blake and A. Zisserman [7], and these works can be seen as the first
attempts to minimizeG by a finite differences approach. In [4], L. Ambro-
sio and V.-M. Tortorelli proposed an approximation ofG, depending on a
scale parameterc > 0, in which the setK was approximated in some sense
by a functionv, making thus easier the discretization of the problem. This
led G. Bellettini and A. Coscia to propose a finite elements approximation
in [6], adapted and implemented by S. Finzi-Vita and P. Perugia [21] and
B. Bourdin [10]. In all these approaches, the quality of the approximation is
very poor ifc, the discretization stepε, andε/c are not very small, so that
the computations must be performed on a very fine mesh.

In [13], A. Chambolle and G. Dal Maso have proposed a different fi-
nite elements approach, that is not derived from Ambrosio and Tortorelli’s
approximation result, and relies only on one scale parameter (the discretiza-
tion stepε). On the other hand, unlike the previous methods, it requires an
adaption of the triangulation in order to approximate correctly the theoret-
ical Mumford-Shah energy. We show in this paper how to deal with this
difficulty.

Although this method seems very complicated, it is a promising approach
and has been successfully implemented for a brittle fracture formulation
proposed by G. Francfort and J.-J. Marigo in [22], that is similar to the
Mumford-Shah problem. In that particular case, a finite elements method is
natural. Furthermore, one wants to localize the cracks as well as possible,
and the mesh adaption method described in this paper is a real advantage
since is doesn’t require the use of a very thin mesh to do so.

In what follows, we recall the results of [13]. We then propose a variant
whose interest will be discussed in Sect. 2, where the numerical implemen-
tation of both formulations are described. Then, in Sect. 3, we prove that our
variant actually approximates the Mumford-Shah functional, in the sense
of theΓ–convergence, a notion of variational convergence introduced by
De Giorgi (see for instance [15] and Appendix B).

In the whole paper, The setΩ is a bounded domain ofR
2, with Lipschitz-

regular boundary. AtriangulationofΩ is a finite family of (closed) triangles
coveringΩ, and such that the intersection of any two such triangles, if not
empty, is either an edge or a vertex common to both triangles. Following [13],
we fix some angleθ0 > 0 (θ0 ≤ 60◦), a constantc ≥ 6, and let for anyε > 0
Tε(Ω) = Tε(Ω, c, θ0) be the set of all triangulations ofΩ whose triangles
T have the following characteristics

– the length of all three edges ofT is betweenε andcε,
– the three angles ofT are greater than or equal toθ0.

We callVε(Ω) the set of all continuous functionsu : Ω → R such that
u is affine on any triangleT ∈ T (more precisely, onT ∩ Ω) of some
triangulationT ∈ Tε(Ω), and given such au, Tε(u) ⊆ Tε(Ω) is the set of
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all triangulationsadaptedto u, i.e., such that this property is satisfied (for
“most” u, Tε(u) has just one element, ifu = constant,Tε(u) = Tε(Ω)).
Given a triangleT we denote byhT its smallest height. IfT belongs to some
triangulation ofTε(Ω), thenε sin θ0 ≤ hT ≤ εc

√
3/2.

Throughout the whole paper, we fix, as in [11,13], a non-decreasing
continuous functionf : [0,+∞) → [0,+∞) such that

lim
t↓0

f(t)
t

= 1 and lim
t→+∞ f(t) = f∞.(1)

The simplest case isf(t) = min(t, f∞). For the sake of simplicity, we will
also assume that

f(t) ≤ min(t, f∞) for all t ≥ 0(2)

(in the practical applicationsf is concave and this condition is obviously
satisfied).

Fix p ∈ [1,+∞). In [13], the following functionalGε(u,T ) is intro-
duced, for anyu ∈ Lp(Ω) andT ∈ Tε(Ω):

Gε(u,T ) =


∑
T∈T

|T ∩Ω| 1
hT
f(hT |∇uT |2), if u ∈ Vε(Ω), T ∈ Tε(u),

+∞, otherwise,
(3)
where∇uT denotes the (constant) gradient ofu on the triangleT . Then, if
for anyu we set

Gε(u) = min
T ∈Tε(Ω)

Gε(u,T ),(4)

(which means, practically, that the “best” triangulation adapted tou is cho-
sen) it is proved that, asε goes to zero and providedθ0 is less than some
Θ > 0,Gε Γ -converges to the Mumford-Shah functional

G(u) =


∫

Ω
|∇u(x)|2 dx+ f∞H1(Su), if u ∈ Lp(Ω) ∩GSBV (Ω),

+∞, if u ∈ Lp(Ω) \GSBV (Ω),
(5)
where the spaceGSBV (Ω) and the essential jumps setSu are defined in
Appendix A.1. The definition and basic properties of theΓ -convergence are
reviewed in Appendix B, we just recall that what we are mainly interested
in is the fact that the minimizers ofGε will be, asε becomes infinitesimal,
good approximations of minimizers ofG.

In the next Sect. 2, we describe a way to implement numerically the
minimization ofGε. The results are quite good, but the method is subject
to numerical instabilities. We introduce therefore a “stabilized” version in
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the following way, that is inspired by an approximation of A. Braides and
G. Dal Maso. In [11], they introduce the non-local functional

1
ε

∫
Ω
f

(
ε

1
|Bε(x) ∩Ω|

∫
Bε(x)∩Ω

|∇u(y)|2 dy
)
dx(6)

and show that itΓ -converges, asε goes to 0, to
∫
Ω |∇u|2 dx+ 2f∞HN−1

(Su), providedf satisfies conditions (1). Unfortunately, this formulation
doesn’t fit easily into a finite elements implementation. We follow a slightly
different approach, replacing the mean on the ballBε(x) in (6) by an aver-
aging operator that depends on the triangulation.

Given a triangulationT , we define on the Euclidean spaceR
T the oper-

atorM : R
T → R

T such that for anyv = (vT )T∈T ∈ R
T ,

(Mv)T = MT (v) =

∑
T ′∈T ,T ′∩T 6=∅

|T ′ ∩Ω|vT ′

∑
T ′∈T ,T ′∩T 6=∅

|T ′ ∩Ω|
.(7)

If v is considered as a piecewise constant function onΩ, such thatv ≡ vT

on each triangleT ∈ T , MT (v) is therefore the mean ofv overT and all
the neighboring trianglesT ′. We introduce onRT the scalar product

(u, v) =
∑
T∈T

|T ∩Ω|uT · vT .

It is simple to check that, with respect to this scalar product, the adjoint of
M is given by

(M∗v)T = M∗
T (v) =

∑
T ′∈T ,T ′∩T 6=∅

|T ′ ∩Ω|
ST ′

vT ′ ,

whereST =
∑

T ′∩T 6=∅ |T ′ ∩Ω|.
Foru ∈ Lp(Ω) andT ∈ Tε(Ω), the new functional is

Fε(u,T )=


∑
T∈T

|T ∩Ω| 1
hT
f(hTM

∗
T (|∇u|2)), if u ∈Vε(Ω), T ∈ Tε(u),

+∞, otherwise,
(8)
andFε(u) is defined onLp(Ω) by a formula similar to (4). Then, if we let

F (u) =


∫

Ω
|∇u(x)|2 dx+ 3f∞H1(Su), if u ∈ Lp(Ω) ∩GSBV (Ω),

+∞, if u ∈ Lp(Ω) \GSBV (Ω),
(9)
we have the following theorem, that holds for anyp ∈ [1,+∞).
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Theorem 1. There existsΘ > 0 such that ifθ0 ≤ Θ, Fε Γ -converges toF
in Lp(Ω) asε goes to zero.

We do not know whether the upper boundΘ is the same as in the previous
result of [13], however, both are larger than18◦.

Remark.For technical reasons, the adjointM∗ of M has to be used in
the definition (8) ofFε(u,T ). If M were used instead, theΓ -limit of Fε

would be strictly belowF , although the exact form is not clear. However,
the example in Appendix C shows that the optimal triangulation one would
have to use in this case in order to get a good estimate of the limiting energy
is a very complex, “oscillating” triangulation, that it would be absurd, if not
impossible, to try to build.

We finally state the following compactness result, that ensures that func-
tional F can be approximated by means of functionalFε in a “practical”
sense.

Theorem 2. Let p ∈ [1,+∞) and (uε)ε>0 be a family of functions such
thatuε ∈ Vε(Ω) for all ε and

sup
ε>0

Fε(uε) + ‖uε‖Lp(Ω) < +∞.

Then there existsu ∈ GSBV (Ω) and a subsequenceuεj converging tou
a.e. inΩ, such that

F (u) ≤ lim inf
j→∞

Fεj (u
εj ).(10)

In particular, if g ∈ Lp(Ω) and for eachε > 0, uε is a solution of the
problem

min
v∈Lp(Ω)

Fε(v) +
∫

Ω
|v(x) − g(x)|p dx,(11)

then the limitu solves

min
v∈Lp(Ω)

F (v) +
∫

Ω
|v(x) − g(x)|p dx,(12)

and, ifp > 1, the sequenceuεj strongly converges tou.

2. Numerical implementation

In this section, we describe the scheme we propose for minimizing

G(u) + β

∫
Ω

|u(x) − g(x)|2 dx,(13)
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whereg is the original image andβ > 0 a fixed parameter. SinceGε Γ -
converges toG [13], an approximation of the solution can be computed by
minimizing the functional

Gε(u) + β

∫
Ω

|u(x) − g(x)|2 dx(14)

for a “small enough”ε. SinceGε depends onu but also on the triangulation
on whichu is defined, this problem is achieved by finding both a minimizing
functionu and an optimal triangulationT , adapted tou, such that(u,T )
minimizesGε(u,T )+β

∫
Ω |u−g|2 dx. A huge difficulty, in view of a finite

element implementation, is the fact that the optimal mesh depends on the
unknown solution that is to be computed.

2.1. Minimization method

When estimating theΓ -lim sup ofGε, one has to build, given a functionu,
an optimal sequence of functions and their associated meshes(uε,T ε) such
that

lim sup
ε↓0

Gε(uε,T ε) ≤ G(u).

This is done in [13, Sect. 4], but the sequence built in Sect. 3.2 for the
functionalsFε,F could also be used forGε andG. If we knew in advance a
minimizeru for (13) and its jump setSu, these constructions would show us
how to build the optimal triangulation for the approximated problem (14).
This minimizeru being obviously unknown (since it is exactly what we
are looking for), we propose to deduce some nearly optimal triangulation
from a previously computed approximationuε, assuming that it is “close”,
in some sense, tou. The following iterative algorithm, that can also be seen
as a relaxation algorithm between both unknown for (3) is then natural.

– initialization (background mesh generation):
givenε0, choose an arbitrary (regular) triangulationT ε0 .

– iteration i (minimization process):
i. find ui solvingminu∈Vεi (Ω)Gεi(u,T εi) + β

∫
Ω |u− g|2 dx

ii. mesh adaption: build the meshT εi+1 , according to the functionui

and the choice ofεi+1 (that can be the same asεi).

In Sects. 2.1.1 and 2.1.2, we detail the method we use to achieve pointsi
andii . Note however that we do not know how toreally minimize(14) with
respect to the triangulation, and justestimatesome triangulation that seems
optimal, according to the construction in Sect. 3.2.
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2.1.1. Minimization of (8) for a fixedT ε In this section, we assume that a
triangulationT ε is given and show how to minimizeGε(u,T ε) with respect
to u, for u, piecewise linear on each elementT ∈ T ε and continuous onΩ.
Of course, the energies we are dealing with, that are strongly non convex,
may have many local minimizers. We can never be sure that we will not
compute one of these. However, the iterative algorithm we propose, which
is classical in image reconstruction methods (see [23], and for instance [5])
ensures that the energy decreases at each iteration and converges to some
critical value. It has been successfully used for other similar problems (see
for instance [12]).

In what follows, we suppose that the functionf is concave and differen-
tiable and thatf(0) = 0, which is a consequence of (2). Thus, extendingf
with the value−∞ on ] − ∞, 0], −f is convex and lower semi-continuous.
Let

ψ(−v) = sup
t∈R

tv − (−f)(t) = (−f)∗(v).

be the Legendre-Fenchel transform off . By a classical result (see for ex-
ample [18]),(−f)∗∗ = −f , so that

−f(t) = sup
v∈R

−ψ(−v) = inf
v∈R

tv + ψ(v)

It is well known that the first sup in this equation is attained atv such that
t ∈ ∂(−f)∗(v) (the subdifferential of(−f)∗ at t ), and that it is equivalent
to v ∈ ∂(−f)(t). Since∂(−f)(t) = {−f ′(t)} for t > 0 and] − ∞,−1]
for t = 0, we deduce that the sup is reached at somev ∈ [−1, 0] (since for
t = 0 we check that(−f)∗(−1) = 0 and thus the sup is reached atv = −1).
Hence,

f(t) = min
v∈[0,1]

tv + ψ(v)

and the min is reached forv = f ′(t). GivenT ε, the minimization of (3) is
then equivalent to that of

G′
ε(u, v,T ε) =

∑
T∈T ε

|T ∩Ω|
(
vT |∇uT |2 +

ψ(vT )
hT

)
(15)

over allu ∈ Vε(Ω) andv = (vT )T∈T ε , piecewise constant on eachT ∈ T ε.
This problem is still non linear and non convex, but for fixedu, the minimizer
over eachv is explicitly given by

vT = f ′(hT |∇uT |2)(16)

and the optimalu for fixedv solves an elliptic equation.
The use of an iterative method for the solving of (15) is then natural and

our algorithm is:
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i. initialization
Chooseu0 andv0,

ii. iteration
fixedv, findu ∈ Vε(Ω), minimizing∑

T∈T ε

∫
T∩Ω

vT |∇uT |2 dx+ β

∫
Ω

|u− g|2 dx.(17)

Then, fixedu, compute the newv using equation (16).

In particular, note that we do not need to compute the Legendre-Fenchel
transform of functionf , neither for the minimization of (3) nor for its compu-
tation. The minimization with respect tov is explicit while the minimization
with respect tou is a simple (linear) problem, since the energy is convex
and quadratic. Its solving is achieved by the use of a standard finite ele-
ment method, since the triangulation used is usually unstructured (i.e. not a
grid), due to the mesh adaption process, described in the following section.
Since thev field is piecewise constant, the solving of (17) is very efficient
and doesn’t require a complicated assembly procedure for the finite element
matrix, compared to the method described in [10].

2.1.2. Mesh adaption For the generation of the adapted triangulation, we
use the automatic mesh generatorBL2D, developed at theINRIA1 (see
[9] and [8] for details about anisotropic mesh generation).

Prior to describing the mesh adaption method, one has to introduce a few
notions. Thebackground meshis an existing mesh that one wishes to adapt
to a foreground mesh. The foreground mesh is built from the background
mesh by the use of anestimatorwhich consists in giving ametric at each
point of the background mesh. This metric is defined by a symmetric def-
inite positive2 × 2 matrixA that identifies the points(x, y) at distance1
from the reference point with the ellipsis(x, y)AT(x, y) = 1. Up to a ro-
tation of angleθ and a translation, this ellipsis is described by the equation
x2/h2

1 + y2/h2
2 = 1 (h−2

1 , h−2
2 being thus the eigenvalues ofA). The three

quantities(θ, h1, h2) are related to the orientation and anisotropy factor of
the elements in the adapted triangulation. The foreground mesh is then built
as a Delaunay triangulation, with respect to the metric, given at each point
of the background triangulation. A complete description of the algorithms
used for the building of such adapted meshes and of the theories involved is
to be found in [9].

Theanisotropy ratioof an element, defines the ratio between its smallest
and its largest height, i.e.R(T ) = mini∈{1,2,3} (hT /hi), hi , being theith

height ofT , theorientationof an element is that of its longest edge.

1 available at http://www-rocq.inria.fr/gamma/cdrom/www/bl2d/eng.htm
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The optimal triangulation for problem (3) as described in Sect. 3.2 is such
that “close” to the edge set the elements have an high anisotropy ratio and
an orientation parallel to the edge, while “far” from the edges the elements
may have an anisotropy ratio close to1. This description is intentionally
unprecise, since in the minimization process, we don’t have any description
of the theoretical edge set. Thus, one has to build the estimator by the use
of the functionsu andv, computed on the background mesh.

The first idea is then to use the value ofv, so as to set the anisotropy (h1
andh2) and the gradient ofu for the angleθ, sincev is supposed to be close
to 0, near the edges and close to 1, otherwise, while the gradient ofu, on
the set wherev = 0 should represent the normal toSu. Unfortunately, this
method causes several problems:

– A first technical problem is that one has to build the estimator at each node
of the background mesh, while bothv and∇u are piecewise constant on
T ε and then not uniquely defined on the nodes.

– Another problem is the regularity of the fieldsv and∇u: if (u, v) are
minimizers for (3), then across the area wherev ' 0, the gradient ofu
is oscillating and its direction is related more to the orientation of the
elements rather than to the real orientation of the jump set. Indeed,u
being nearly constant on each side of its jump, its gradient inside each
triangle is perpendicular to the edge along whichu is constant. If we use
this information without care, the adapted triangulation will thus be too
sensitive to the background mesh.

– Then, one needs theh1 andh2 values of the estimator to be smooth
enough, to ensure that the adaption is feasible. This need can be easily
illustrated in an unidimensional problem. Setxi = i.h, the coordinate
of the nodes of the 1D mesh,h, the mesh size. In that particular case, the
metric for the estimator is defined by only one parameter, denoted byhi

1.
If hi−1

1 = hi+1
1 � h andhi

1 � h then one cannot build a triangulation
with respect to the estimator. This problem is illustrated in Fig. 1(b).

The technique we use for preventing such effects is a regularization of
the minimizersu andv. A possible method is to regularizev by iteratingn
times the operatorMT defined in equation (7), and to truncate it at an arbi-
trary lower valueV min

R : vR =
(
(MT )n(v) ∨ V min

R
)
. Then, the regularized

functionuR is computed by replacingv byvR in the problem inu (17). With
a good choice forn andV min

R , it is then possible to deduce usableh1 and
h2 from vR andθ from ∇uR. A typical choice for both parameter isn ' 10
andV min

R ' 0.5.
The algorithm for the minimization ofGεi for a fixed meshT εi and the

generation ofT εi+1 is then:
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θ

h1

h2

(a) The unit ball of the
metric (θ, h1, h2) in the
reference metric

hi
1

xi−1 xi xi+1

hi+1
1 = hi−1

1

(b) An uncorrectly defined metric

Fig. 1. Estimators
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(a) The original image (128 × 128) (b) Same image with noise

Fig. 2. Two artificial images to be segmented

0.0 64.0 128.0

0.0

64.0

128.0

(a) Background mesh

0.0 64.0 128.0

0.0

64.0

128.0

(b) Adapted Mesh

0.0 64.0 128.0

0.0

64.0

128.0

(c) Edge setv

Fig. 3. Segmentation of Figure 2(a)

i. initialization,
setu0 andv0, possibly using the results of a previous fixed triangulation
problem.

ii. minimization,
minimize (8), by solving iteratively the problems (17) and (16) until
numerical convergence.

iii. regularization,
setuR andvR, as described above.

iv. estimation,
chooseεi+1 and deduce fromεi+1, vR, ∇uR, and the direction of∇uR
“good” values for(h1, h2, θ).



620 B. Bourdin, A. Chambolle

0 64 128

0

64

128

(a) Thev field, given by equation (16)

40 45 50

50

55

60

(b) Detail from
the previous fig-
ure

40 45 50

50

55

60

(c) Detail of the
u field

Fig. 4. Segmentation of Figure 2(b)

v. adaption,
run program BL2D with input values(h1, h2, θ) to build T εi+1 , and
restart fromi.

2.2. Examples

In the following tests, we usef(x) = 2α
π arctan(πx

2α ), so that the weight on
the edge set isf∞ = α > 0.

The initial mesh used for all experiments is shown in Fig. 3(a).
In Fig. 3, we present the result of the segmentation of the image shown in

Fig. 2(a) after 2 mesh adaption processes. The successive values (in pixels
unit) forh1 andh2 are: (3.0,3.0) for the background mesh; (1.0,7.5) close to
the edges and (10.0,10.0) far from the edges for the first adaption; (1.0,10.0)
and (10.0,10.0) for the second adaption. The other parameters areα = 400,
β = 0.05. The edges are well focussed and at their right position. The
theoretical surface energy (i.e.,α× the length of the jump) is6.28×104 and
the computed one is6.46×104. The adapted mesh is shown on Fig. 3(b)
and the fieldv on Fig. 3(c). Note that the number of nodes in the successive
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meshes are 2298, 523 and 341. Since the mesh can be coarse far from the
edges, the mesh adaption process permits to reduce the number of nodes
used at each iteration.

Figure 4 shows the results forg as in Fig. 2(b), withα = 200 and
β = 0.05, after 3 adaptions. The computed surface energy is4.30×104

while the theoretical one should be3.14×104. The edge set is broken at
some points as shown in the detail 4(b). This is due to the very low noise
sturdiness of the approximationGε. In some sense, the representation of
the jump set inGε is very local. This could be seen as an advantage, since
it should provide a more accurate estimate of the length of the jump set.
Unfortunately, it also makes the edge detection more sensitive to noise so
that the jump set that is detected is deformed. It also seems that the scheme
gets easily stuck in local minima, and is very sensitive to the initial guesses
u0, v0 and to mesh effects.

In order to reduce this numerical instability, we introduce in (8) the
functionalFε, which is a variant ofGε in which a smoothing operator has
been inserted.

2.3. The “stabilized” version

The algorithm for minimizing

Fε(u,T ε) + β

∫
Ω

|u(x) − g(x)|2 dx(18)

is similar to the one described above, with a few modifications. Indeed, we
also introduce a piecewise constant fieldv = (vT )T∈T ε and introduce the
functional

F ′
ε(u, v,T ε) =

∑
T∈T ε

|T ∩Ω|
(
vTM

∗
T (|∇u|2) +

ψ(vT )
hT

)
.

The minimization ofF ′
ε(u, v,T ε) + β

∫
Ω |u− g|2 dx overv is explicit and

is given byvT = f ′(hTM
∗
T (|∇u|2)). In order to perform the minimization

with respect tou, we rewriteF ′
ε in the following way

F ′
ε(u, v,T ε) =

∑
T∈T ε

|T ∩Ω|
(
MT (v)(|∇uT |2) +

ψ(vT )
hT

)
,

so that the problem is the same as minimizing (17), with thev field being
replaced by the fieldw = (wT )T∈T ε , given by

wT = MT (v) = MT (f ′(hM∗(|∇u|2)).(19)
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0.0 64.0 128.0

0.0
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(a) ThewT = MT (v) field, given by formula (19)
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(b) Detail from
the previous fig-
ure
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(c) Detail of the
u field

Fig. 5. Segmentation of Figure 2(b) with the approximationFε.

(a) Original image

0.0 64.0 128.0

0.0

64.0

128.0

(b) Background mesh
T ε0

0.0 64.0 128.0

0.0

64.0

128.0

(c) Final mesh,T ε3

Fig. 6. Illustration of the mesh adaption process
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(a) Optimalu for T ε0

0.0 64.0 128.0

0.0

64.0

128.0

(b) OptimalwT = MT (v) for T ε3

Fig. 7. The segmented image and its jump set

In Fig. 5, we show the results (for the same problem of Fig. 4) given
by our “stabilized” functional, with the same parameter set. The computed
surface energy,3.30×104 is closer to the theoretical one than that computed
with Gε.

Remark.The use of the filtersM andM∗ in the computation ofw can
be compared to the filtering used in [28] for the stabilization of topology
optimization algorithms.

Remark.It is to notice that one can combine both formulation into one by
setting

Eε(u,T )

=
∑
T∈T

|T ∩Ω|
hT

{
(1 − θ)f(hT |∇uT |2) +

θ

3
f
(
3hTM

∗
T (|∇u|2))}

(20)

if u ∈ Vε(Ω), T ∈ Tε(u), andEε(u,T ) = +∞ otherwise. (We then define
Eε(u) as in (4).) The proof of theΓ -convergence of (20) toG(u) is a simple
adaption of the proof given forFε, since the sequence built in Sect. 3.2 for
the estimate from above of theΓ -lim sup ofFε also suits toGε (and thus to
Eε). With this third functional, one can, in essence, control the width of the
regularization operatorMT .

This functionalEε seems to give better results when used with a pa-
rameterθ close to0.5 (i.e., whenEε is “halfway” betweenGε andFε). In
the following Table 1, we compare the values of the total energyEε(u) +



624 B. Bourdin, A. Chambolle

Table 1. Computed energies for various choices ofv0

v0 θ Eε Surface energyβ‖u − g‖2
L2(Ω) Total energy

v0 ≡ 1 1.00 5.84×104 3.30×104 2.13×106 2.19×106

v0 ≡ 1 0.75 5.97×104 3.34×104 2.13×106 2.18×106

v0 ≡ 1 0.50 5.89×104 3.27×104 2.10×106 2.16×106

v0 ≡ 1 0.25 6.20×104 3.65×104 2.14×106 2.20×106

v0 ≡ 1 0.00 6.83×104 4.30×104 2.24×106 2.31×106

v0 ∈ [0.5, 1] 1.00 5.86×104 3.24×104 2.14×106 2.19×106

v0 ∈ [0.5, 1] 0.75 5.98×104 3.34×104 2.11×106 2.17×106

v0 ∈ [0.5, 1] 0.50 5.86×104 3.24×104 2.10×106 2.16×106

v0 ∈ [0.5, 1] 0.25 6.87×104 4.18×104 2.15×106 2.22×106

v0 ∈ [0.5, 1] 0.00 6.72×104 4.15×104 2.22×106 2.29×106

v0 ∈ [0, 1] 1.00 6.13×104 3.62×104 2.15×106 2.21×106

v0 ∈ [0, 1] 0.75 6.08×104 3.41×104 2.16×106 2.23×106

v0 ∈ [0, 1] 0.50 6.23×104 3.62×104 2.19×106 2.25×106

v0 ∈ [0, 1] 0.25 6.53×104 3.97×104 2.19×106 2.25×106

v0 ∈ [0, 1] 0.00 7.52×104 4.82×104 2.28×106 2.36×106

β
∫
Ω |u− g|2 dx and of various other energies for different values ofθ. The

same computation has been made for various choices of the initial guessv0
for v, respectivelyv0 ≡ 1, v0 randomly chosen in[0.5, 1] andv0 randomly
chosen in[0, 1]. The problem is the segmentation of the image shown in Fig-
ure 2(b). The mesh is the same for all experiments, it is the mesh generated
after three adaptions withθ = 1. The idea is to test the sensitivity of the
algorithm with respect to the initial values. In order to give an estimate of the
lengthH1(Su) of the approximated solution we compute a “surface energy”
as the sum of|T |/hT over all the trianglesT wherehT |∇uT |2 ≥ α. This
is exactly the surface energy that would be measured by energyGε in the
case wheref(x) = min(|x|, α), and can be compared with the theoretical
expected valueα×50π ' 3.14×104. In every case, the stabilized functional
Fε gives better results than the original oneGε. By introducing a diffusion
operator, we decreased the sensitiveness to the initial guess, without losing
accuracy either on the surface energy or on the focalization of the edges.
FunctionalEε is a good compromise betweenFε andGε since it can give a
better approximation of the energies thanFε (see the casev0 ≡ 1), even if
it is more sensitive on the initial guess (see the casev0 ∈ [0, 1]).

The last example is the segmentation of a “T junction” with 20 percent
of additive noise, shown in Fig. 6(a). To adapt the mesh at the junction is
difficult: if the anisotropy ratio is high, the set of “flat” elements cannot be
curved enough so as to follow the edge while a smaller ratio prevents a good
approximation of the surface energy. An improvement to the way we adapt
the mesh would then be to add in some way the local curvature of the edge
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set. The first and last mesh are shown in Fig. 6(b) and 6(c). The segmented
image and its edge set are in Fig. 7(a) and 7(b). The parameters areα = 75,
β = 0.075, θ = 0.5; and the successive values ofh1 andh2 are (1,5), (0.75,
3.75), (0.5, 3.75), close to the edges and (10,10), (7.5,7.5), (10,10) far from
the edges.

The next section is devoted to the mathematical proofs of the convergence
results.

3. Proof of the convergence results

In Sects. 3.1 and 3.2 we first show Theorem 1. We will show, in a standard
way, that theΓ -lim inf F ′ of Fε satisfiesF ′ ≥ F , while theΓ -lim sup F ′′
is less thanF . Then, in Sect. 3.3, we deduce Theorem 2.

3.1. Estimate from below of theΓ -lim inf

For every open setA ⊆ Ω and everyε > 0, we define

Fε(u,T ,A)=


∑
T∈T

|T ∩A| 1
hT
f(hTM

∗
T (|∇u|2)), if u ∈Vε(Ω), T ∈ Tε(u),

+∞, otherwise,
(21)
and we letFε(u,A) = infT ∈Tε(u) Fε(u,T , A). We choose a sequence
(εj)j≥1 with εj ↓ 0 asj → ∞, and set for everyu ∈ Lp(Ω) and every
open setA

F ′(u,A) = Γ − lim inf
j→∞

Fεj (u,A).

In order to prove thatF ′(u,Ω) is finite if and only if u ∈ Lp(Ω) ∩
GSBV (Ω), and that in this case

F ′(u,Ω) ≥
∫

Ω
|∇u(x)|2 dx+ 3f∞H1(Su),(22)

we will use the same localization technique as in [4,11,13]. The result will
be a consequence of the following lemma.

Lemma 1. Let A ⊆ Ω be an open set andu ∈ Lp(Ω), and assume
F ′(u,A) < +∞. Then,u ∈ GSBV (A) and

F ′(u,A) ≥
∫

A
|∇u(x)|2 dx,(23)

F ′(u,A) ≥ 3f∞H1(A ∩ Su).(24)

Arguing for instance as in [11, Prop. 6.5], we immediately deduce inequal-
ity (22) from Lemma 1, since it can easily be shown that givenu ∈ Lp(Ω),
the set functionsA 7→ F ′(u,A) are increasing and superadditive.
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3.1.1. Proof of (23) Choose an open setA ⊆ Ω and a sequence(uεj ,T εj )
such thatuεj → u in Lp(Ω) andlim infj→∞ Fεj (u

εj ,T εj , A) < +∞. For
simplicity’s sake we will drop the subscriptj and writeε ↓ 0 instead of
j → ∞. We fix a positive constantκ, and write, taking into account the fact
thatf is nondecreasing,

Fε(uε,T ε, A) ≥
∑
T⊂A

|T |
hT

f
(
hTM

∗
T

(
|∇uε|2 ∧ κ

ε

))
.(25)

For everyT ∈ T ε, we have the following estimates:

1
2
ε2 sin θ0 ≤ |T | ≤

√
3

2
c2ε2,(26)

and
1
2
ε2 sin 2θ0 ≤ ST ≤ π

(
1 +

√
3

3

)2

c2ε2(27)

as soon asT or someT ′ with T ′ ∩ T 6= ∅ is included inΩ; moreover,

ε sin θ0 ≤ hT ≤
√

3
2
cε.(28)

In particular, ifT ⊂ A ⊆ Ω,

M∗
T

(
|∇uε|2 ∧ κ

ε

)
≤ 1
ST

∑
T ′∩T 6=∅

ST

ST ′
|T ′ ∩Ω| κ

ε

≤ 2πc2

sin 2θ0

(
1 +

√
3

3

)2
κ

ε
,

so that there exists some constantK depending only onθ0, c such that

hTM
∗
T

(
|∇uε|2 ∧ κ

ε

)
≤ Kκ.(29)

Let bκ = inf0<t≤Kκ f(t)/t, by (1) we know thatbκ → 1 asκ goes to zero,
and from (25), (29) we get

Fε(uε,T ε, A) ≥ bκ
∑
T⊂A

|T |M∗
T

(
|∇uε|2 ∧ κ

ε

)
.(30)

Let nowT ε
A be the set of all trianglesT ∈ T ε such that every triangle

T ′ ∈ T ε, T ′ ∩ T 6= ∅, lies inA. We have from (30)

Fε(uε,T ε, A) ≥ bκ
∑
T⊂A

|T |
∑

T ′∩T 6=∅

|T ′ ∩Ω|
ST ′

(
|∇uε

T ′ |2 ∧ κ

ε

)
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= bκ
∑

T ′∈T ε

|T ′ ∩Ω|
(
|∇uε

T ′ |2 ∧ κ

ε

) 1
ST ′

∑
T∩T ′ 6=∅,T⊂A

|T |

≥ bκ
∑

T ′∈T ε
A

|T ′|
(
|∇uε

T ′ |2 ∧ κ

ε

) 1
ST ′

∑
T∩T ′ 6=∅

|T |

= bκ
∑

T∈T ε
A

|T |
(
|∇uε

T |2 ∧ κ

ε

)
,

so that, lettingT ε
κ = {T ∈ T ε : |∇uε

T |2 > κ/ε},

Fε(uε,T ε, A) ≥ bκ
∑

T∈T ε
A\T ε

κ

|T ||∇uε
T |2 + bκκ

∑
T∈T ε

A∩T ε
κ

|T |
ε

(31)

Let A(ε) =
⋃

T∈T ε
A∩T ε

κ
T ⊂ A and setvε(x) = (1 − χ

A(ε)(x))u
ε(x) for

all x ∈ Ω. We can assume thatuε(x) → u(x) for almost everyx ∈ Ω as
ε ↓ 0. Since by (31),|A(ε)| ≤ (Fε(uε,T ε, A)/bκκ)ε, we can also assume
(up to a subsequence) thatχA(ε)(x) → 0 for almost everyx ∈ Ω. Then,
vε → u a.e. inΩ. The functionvε belongs toSBV (Ω), and its jumps set
satisfiesSvε ⊆ ⋃T∈T ε

A∩T ε
κ
∂T . Since for anyT ∈ T ε,

H1(∂T ) ≤ 6
|T |
hT

≤ 6
sin θ0

|T |
ε
,(32)

we deduce from (31) that

H1(Svε) ≤ 6
bκκ sin θ0

Fε(uε,T ε, A),(33)

and is thus bounded. If we fix nowδ > 0 and letAδ = {x ∈ A :
dist(x,A) > δ}, it is clear that ifε is small enough,Aδ ⊆ ⋃

T∈T ε
A
T , so

that we also have from (31)

bκ

∫
Aδ

|∇vε(x)|2 dx ≤ Fε(uε,T ε, A).(34)

Since‖vε‖Lp(Ω) ≤ ‖uε‖Lp(Ω) is also bounded, we can invoke Ambrosio’s
Theorem 3 to conclude thatu ∈ GSBV (Aδ), with

H1(Su ∩Aδ) ≤ 6
bκκ sin θ0

lim inf
ε↓0

Fε(uε,T ε, A),

and

bκ

∫
Aδ

|∇u(x)|2 dx ≤ lim inf
ε↓0

Fε(uε,T ε, A).(35)
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Sendingδ to zero, we deduce thatu ∈ GSBV (A), withH1(Su∩A) < +∞,
and sending thenκ to zero in (35) we get∫

A
|∇u(x)|2 dx ≤ lim inf

ε↓0
Fε(uε,T ε, A).(36)

Since the sequence(uε,T ε) was arbitrary, we deduce (23).

3.1.2. Proof of (24) The proof of inequality (24) is similar. We choose
againA, uε, T ε as in the previous section.T ε

A andT ε
κ are defined in the

same way, and we also let̂T
ε

κ ⊃ T ε
κ be the set of trianglesT ∈ T ε such

that someT ′ ∈ T ε
κ satisfiesT ′ ∩ T 6= ∅. We now definẽT

ε
κ as the set of

trianglesT ∈ T ε such that, along at least two edges ofT , the slope ofuε is
(strictly) greater than

√
κ
ε . Clearly, for such a triangle,|∇uε

T |2 > κ
ε , so that

T̃
ε
κ ⊂ T ε

κ ⊂ T̂
ε

κ. If T ∈ T̂
ε

κ, and if for allT ′, T ′ ∩ T 6= ∅ ⇒ T ′ ⊂ Ω, we
have, using (26), (27) and (28),

hTM
∗
T (|∇uε|2) ≥ sin θ0 sin 2θ0(

1 +
√

3
3

)2
κ

2πc2
= K ′κ,

so that, for such aT ,

f(hTM
∗
T (|∇uε|2)) ≥ aκ

for some constantaκ = f(K ′κ) that goes tof∞ asκ goes to infinity. Thus,

Fε(uε,T ε, A) ≥ aκ

∑
T∈T̂

ε
κ∩T ε

A

|T |
hT

(37)

In the same way as in the previous section, we let

B(ε) =
⋃

T∈T ε
A∩T̃

ε
κ

T and wε(x) = (1 − χ
B(ε)(x))u

ε(x),

D(ε) =
⋃

T∈T ε
A∩T̂

ε
κ

T and rε(x) = (1 − χ
D(ε)(x))u

ε(x).

We also letC(ε) be the union of all the triangles inT ε
A ∩ T ε

κ, plus the
triangles inT ε

A ∩ T̂
ε

κ \ T ε
k that have at least two edges that belong to

triangles ofT ε
κ. This setC(ε) is thus slightly larger than the setA(ε) of the

previous section. We letqε(x) = (1 − χ
C(ε)(x))u

ε(x) for all x ∈ Ω. We
haveB(ε) ⊂ C(ε) ⊂ D(ε) and by (37),|D(ε)| → 0 asε ↓ 0, so that we
may assume thatwε, qε andrε go tou a.e. inΩ.
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If T 6∈ T̃
ε
κ, the slope ofuε along at least two edges ofT is less than

√
κ
ε ,

so that it is not difficult to check (see [13, Remark 3.5]) that

|∇uε
T |2 ≤ 5

sin θ0
κ

ε
.

Lettingκ′ = 5κ/ sin θ0, we deduce, as in the previous section, that for any
δ > 0 andε small enough,

bκ′

∫
Aδ

|∇wε(x)|2 dx ≤ Fε(uε,T ε, A)(38)

for some constantbκ′ > 0 (not depending onδ nor ε), and obviously the
same inequality holds forqε andrε.

We now estimate the length of∂B(ε)∩Aδ,∂C(ε)∩Aδ and∂D(ε)∩Aδ,
for ε small enough.

Consider first a triangleT ∈ T̃
ε
κ. If (part of) an edgeL of T belongs to

∂B(ε) ∩ Aδ, then, if the slope ofuε alongL is smaller than
√

κ
ε , we use

the estimateH1(L) ≤ 2|T |/hT , otherwise,L is the edge common toT an
another triangleT ′ such thatT ′ 6∈ T̃

ε
κ, but since the slope ofuε alongL is

larger than
√

κ
ε , T ′ ∈ T ε

κ, and we estimateH1(L) ≤ 2|T ′|/hT ′ . Since the

first case occurs for at most one edge ofT (by definition ofT̃
ε
κ), and since

the triangleT ′ in the second case can only be considered once (otherwise
the slope ofuε along at least two edges ofT ′ would be larger than

√
κ
ε and

we would haveT ′ ∈ T̃
ε
κ), we conclude that (ifε is small enough, so that

T ∩Aδ 6= ∅ ⇒ T ∈ T ε
A)

H1(∂B(ε) ∩Aδ) ≤ 2
∑

T∈T ε
A∩T ε

k

|T |
hT

.(39)

Consider now an edgeL which is part of the boundary ofC(ε) (inside
Aδ). Then, there are two possible cases:

i. L is the edge of a triangleT ⊂ C(ε), T ∈ T̂
ε

κ \ T ε
κ, and each of the two

other edges ofT is the edge of another triangle that belongs toT ε
κ. In

this case we estimate the length ofL with 2|T |/hT , and the two other
edges ofT are insideC(ε) so that they can not be part of the boundary
of neitherC(ε) norD(ε).

ii. L is an edge common to a triangleT ∈ T̂
ε

κ \T ε
κ and a triangleT ′ ∈ T ε

κ,
with thereforeT ′ ⊂ C(ε) and

◦
T ∩C(ε) = ∅. In this case, the two other

edges ofT can not be on the boundary ofD(ε) (since they share a vertex
with T ′ and thus each one is common toT and another triangle of̂T

ε

κ),
and can not either be common toT and another triangle ofT ε

κ, otherwise,
by definition ofC(ε), we would haveT ∪T ′ ⊂ C(ε) andLwould not be
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on the boundary. Therefore, if one of these edges is part of the boundary
of C(ε), it must enter the previous case (i) and its length can already be
estimated by the surface of the adjacent triangle included inC(ε). We
estimateH1(L) ≤ 2|T |/hT .

We deduce thatH1(∂C(ε) ∩ Aδ) can be bounded by a sum2
∑

T |T |/hT

that is taken on trianglesT of T̂
ε

κ \T ε
κ such that none of the three edges ofT

coincides with some part of∂D(ε) (or, more precisely, such thatH1(∂T ∩
∂D(ε) ∩Aδ) = 0).

On the other hand, ifL is the edge of some triangleT ∈ T̂
ε

κ \ T ε
κ such

that (part of)L belongs to the boundary ofD(ε), we easily show that the two
other edges ofT are not part of∂D(ε) ∩ Aδ. Indeed, ifT = [x, y, z] with
L = [x, y], thenz must also be a vertex of some triangle ofT ε

k (otherwise
it would be the case for eitherx or y andL could not be on the boundary
of D(ε)), therefore neither[x, z] nor [y, z] can be on the boundary ofD(ε)
(nor on the boundary ofC(ε), in fact). We still estimateH1(L) ≤ 2|T |/hT .
We deduce, ifε is small enough, that

H1(∂C(ε) ∩Aδ) + H1(∂D(ε) ∩Aδ) ≤ 2
∑

T∈T ε
A∩T̂

ε
κ\T ε

k

|T |
hT

.(40)

Thus, with (37), (39) and (40),

Fε(uε,T ε, A) ≥ aκ

2

{
H1(∂B(ε) ∩Aδ)

+H1(∂C(ε) ∩Aδ) + H1(∂D(ε) ∩Aδ)
}
.(41)

Since‖wε‖Lp(Ω) ≤ ‖qε‖Lp(Ω) ≤ ‖rε‖Lp(Ω) ≤ ‖uε‖Lp(Ω), which is uni-
formly bounded, we may invoke Lemma 2 (see Appendix 3.3) to get that

H1(Su ∩Aδ) ≤ 1
2

lim inf
ε↓0

H1(∂X(ε) ∩Aδ),

whereX(ε) is anyone of the setsB(ε),C(ε) orD(ε). We conclude from (41)
that

3aκH1(Su ∩Aδ) ≤ lim inf
ε↓0

Fε(uε,T ε, A).

Sendingδ to zero, and thenκ to infinity, we deduce

3f∞H1(Su ∩A) ≤ lim inf
ε↓0

Fε(uε,T ε, A),(42)

and by the arbitrariness of the sequence(uε,T ε) we get (24). The proof of
Lemma 1 is thus achieved.

Remark.Inequalities (36) and (42) were proved using only the assumptions
thatuε is bounded inLp(Ω) and that it goes tou a.e. inΩ. They still hold if
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uε does not converge strongly tou, but only weakly inLp(Ω), and satisfy
these assumptions. We deduce that, in the same way as (22) is deduced
from (23) and (24),u ∈ GSBV (Ω) and∫

Ω
|∇u(x)|2 dx+ 3f∞H1(Su) ≤ lim inf

ε↓0
Fε(uε,T ε)(43)

as soon asuε is bounded inL1(Ω) and goes tou a.e.inΩ. This will be
useful in the proof of Theorem 2.

It remains to estimate theΓ -lim supF ′′ of Fε.

3.2. Estimate from above of theΓ -lim sup

We now wish to prove that for anyu ∈ Lp(Ω), there exists(uε)ε>0 con-
verging tou in Lp(Ω) with

lim sup
ε↓0

Fε(uε) ≤ F (u)(44)

(more exactly, we should find for any sequence(εj) with εj ↓ 0 asj → ∞
a sequence(uεj )j≥1 with lim supj→∞ F εj (uεj ) ≤ F (u)).

Arguing like in [14], where the approximation result of Dibos and Séŕe
[17] (see Appendix 3.3) is generalized, we can find, given anyu ∈ Lp(Ω)
with F (u) < +∞, a sequence(un)n≥1 of bounded functions such that

– eachun is defined on someΩ′
n ⊃⊃ Ω;

– for everyn, there exist disjoint closed segmentsLn
i , i = 1, . . . , Nn, such

thatun ∈ W 2,∞(Ω′
n \ ∪Nn

i=1L
n
i );

– for everyn, ‖un‖L∞(Ω) ≤ ‖u‖L∞(Ω);
– asn goes to infinity,un → u in Lp(Ω) and

lim sup
n→∞

∫
Ω

|∇un(x)|2 dx+ 3f∞
Nn∑
i=1

H1(Ln
i ) ≤ F (u).

The assumption that∂Ω is Lipschitz is crucial in order to establish the
existence of the functionsun in a larger domainΩ′

n. Now, by a standard
diagonalization argument, if for eachn we find a sequence(uε

n)ε>0, con-
verging toun in Lp(Ω) asε goes to zero, such that

lim sup
ε↓0

Fε(uε
n) ≤

∫
Ω

|∇un(x)|2 dx+ 3f∞
Nn∑
i=1

H1(Ln
i )(45)

then we will be able to build the sequence(uε) satisfying (44).
We fix n ≥ 1 and now describe how to build the sequence(uε

n)ε>0.
In order to simplify the notations we will drop all subscripts (superscripts)
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(
2

[
H1(Li)
2ε cos θ0

]
+ 6

)
ε cos θ0

Fig. 8. Each discontinuityLi (thick line) is covered by a strip of6Ni + 13 “minimal”
triangles (Ni = [H1(Li)/ε′]), the whole strip is included in a rectangle whose external
nodes have to be connected to a “background triangulation”

n. The functionu is thus a piecewise regular function, defined on an open
domainΩ′ ⊃⊃ Ω, and such that there existN disjoint closed segments
(Li)N

i=1 with u ∈ W 2,∞(Ω′ \ ∪N
i=1Li).

The construction we use in order to build the sequence(uε)ε>0 satisfy-
ing (45) is almost identical to the construction in [13, Appendix], so that
we will not enter too much into the details. The idea is to build and connect
together local triangulations designed around each discontinuityLi, in such
a way that the energyFε aroundLi gives a good estimate of3f∞H1(Li),
asε goes to zero. This is obtained by recoveringLi with a strip of “mini-
mal” triangles, i.e., triangles with two edges of lengthε and one of length
ε′ = 2ε cos θ0, as shown in Fig. 8. Then, these triangulations are connected
in some way to a uniform “background triangulation” (made of the squares
[kε′, (k + 1)ε′] × [lε′, (l + 1)ε′], k, l ∈ Z, cut into two triangles along a
diagonal), in order to obtain a global triangulationT ε over allΩ.

Let us give some details about this construction. CallingT ε
i the union

of all triangles that touchLi andT̂
ε

i the union of all trianglesT such that
eitherT or some neighbor ofT (i.e., a triangleT ′ with T ′ ∩T 6= ∅) touches
Li, we want to design this strip in such a way that∑

T∈T̂
ε
i

|T |
hT

∼ 3H1(Li)

asε goes to zero. Figure 8 shows how to do this: it suffices to includeLi

first in 2Ni + 5 minimal triangles, withNi = [H1(Li)/ε′] ([·] denoting the
integer part), and then juxtapose along this thin strip two other strips in such
a way that the heighthT of each triangle in̂T

ε

i is perpendicular toLi. For
this particular construction,#T̂

ε

i = 6Ni +13, and, since for everyT ∈ T̂
ε

i ,
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|T |/hT = ε cos θ0 = ε′/2, we have

3H1(Li) + 7ε cos θ0 ≤
∑

T∈T̂
ε
i

|T |
hT

≤ 3H1(Li) + 13ε cos θ0.(46)

The stripT̂
ε

i is then included into a larger rectangle of size2ε′ × (Ni +
3)ε′. The algorithm described in [13] shows that it is always possible to
connect the rectangle of Fig. 8 to the background triangulation, provided
ε << mini6=j dist(Li, Lj) > 0 (so that fori 6= j, T̂

ε

i andT̂
ε

j are not too
close),θ0 is not too large, andc is not too small (θ0 ≤ 18◦ andc ≥ 6 suit).

Now, T ε being constructed, we simply letuε be the piecewise constant
function equal tou at each node ofT ε (including the vertices that are not in
Ω of triangles that meetΩ without being included in it — we assumeε is
small enough, so that each triangleT ∈ T ε with |T ∩Ω| > 0 is contained
in Ω′). It is a classical fact thatuε converges tou in Lp(Ω) asε ↓ 0. Let
T ε

S =
⋃N

i=1 T ε
i andT̂

ε

S =
⋃N

i=1 T̂
ε

i , we have, using (2) and (46),

Fε(uε,T ε) ≤
∑

T∈T ε

|T ∩Ω|
hT

(
hTM

∗
T (|∇uε|2) ∧ f∞

)
≤

∑
T∈T ε\T̂

ε
S

|T ∩Ω|M∗
T (|∇uε|2) + 3f∞

N∑
i=1

H1(Li)

+13Nf∞ε cos θ0,(47)

We write the first sum in the last line of (47) as follows:∑
T∈T ε\T̂

ε
S

|T ∩Ω|M∗
T (|∇uε|2)

=
∑

T∈T ε\T̂
ε
S

|T ∩Ω|
∑

T ′∩T 6=∅

|T ′ ∩Ω|
ST ′

|∇uε
T ′ |2

=
∑

T ′∈T ε

|T ′ ∩Ω||∇uε
T ′ |2

 1
ST ′

∑
T∩T ′ 6=∅,T 6∈T̂

ε
S

|T ∩Ω|
 .

Since the last term in the parentheses is always less than 1, and is zero as
soon asT ∈ T ε

S , we deduce

Fε(uε,T ε) ≤
∑

T∈T ε\T ε
S

|T ∩Ω||∇uε
T |2 + 3f∞

N∑
i=1

H1(Li)

+13Nf∞ε cos θ0.(48)
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Again, we proceed now as in [13]: using [27, Theorem 4.4-3], we have for
anyT 6∈ T ε

S ,

‖u− uε‖H1(T ) ≤ c(θ0) ε ‖D2u‖L2(T,R4)

wherec(θ0) > 0 is some constant (depending only onθ0) andD2u is the
Hessian ofu, so that, if we let

U ε(x) =
∑

T∈T ε\T ε
S

∇uε
T · χT (x)

for all x ∈ Ω,

‖∇u− U ε‖2
L2(Ω,R2) ≤ c(θ0)2 ε2 ‖D2u‖2

L2(Ω,R4) +
∫

A(ε)
|∇u(x)|2 dx

whereA(ε) =
⋃

T∈T ε
S
T satisfies|A(ε)| → 0 asε ↓ 0. Thus,U ε goes to

∇u strongly inL2(Ω,R2), and sendingε to zero in (48) we get (45). The
proof of Theorem 1 is thus achieved.

Remark.If the functionu is bounded, we notice that the functionsuε that
we build satisfy‖uε‖L∞(Ω) ≤ ‖u‖L∞(Ω) for everyε > 0. In particular, we
deduce that the functionalsF ε Γ -converge toF asε ↓ 0 also in the space{

u ∈ Lp(Ω) : ‖u‖L∞(Ω) ≤ M
}

for anyM > 0.

3.3. Proof of Theorem 2

We consider(uε)ε>0 satisfying the assumptions of Theorem 2, and for each
ε an adapted triangulationT ε such thatFε(uε,T ε) = Fε(uε). Like in
Sect. 3.1.1 we fixκ > 0 and introduce a setT ε

κ = {T ∈ T ε : |∇uε
T |2 >

κ/ε}. Following the proof in Sect. 3.1.1 withA = Ω, we can build functions
vε ∈ SBV (Ω) such that for everyε > 0, ‖vε‖Lp(Ω) ≤ ‖uε‖Lp(Ω),

lim
ε↓0

|{x ∈ Ω : uε(x) 6= vε(x)}| = 0(49)

and for everyδ > 0,

sup
ε>0

∫
Ωδ

|∇vε(x)|2 dx+ H1(Svε ∩Ωδ) < +∞.

We can thus invoke Ambrosio’s Theorem 3, and follow a diagonal procedure
in order to build a functionu ∈ GSBV (Ω) ∩ Lp(Ω) and a subsequence
vεj such thatvεj → u a.e. inΩ. From (49) we deduce, possibly extracting
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another subsequence, thatuεj goes tou a.e. inΩ. The Remark at the end of
Sect. 3.1 yields (10).

Assume now that for eachε > 0, the functionuε is a solution of (11).
For anyw ∈ Lp(Ω) we proved in Sect. 3.2 that we can build a sequence
(wεj )j≥1 converging tow in Lp(Ω) such that

lim sup
j→∞

Fεj (w
εj )+

∫
Ω

|wεj (x)−g(x)|p dx≤F (w)+
∫

Ω
|w(x)−g(x)|p dx.

Since for everyj,Fεj (w
εj )+

∫
Ω |wεj −g|pdx ≥ Fεj (u

εj )+
∫
Ω |uεj −g|pdx,

we deduce from (10) and Fatou’s Lemma that

F (u) +
∫

Ω
|u(x) − g(x)|p dx ≤ F (w) +

∫
Ω

|w(x) − g(x)|p dx,

henceu solves (12). Takingw = u, we also get that

lim
j→∞

Fεj (u
εj ) +

∫
Ω

|uεj (x) − g(x)|p dx = F (u) +
∫

Ω
|u(x) − g(x)|p dx,

which yields, ifp > 1, the strong convergence ofuεj to u.

Remark.If g ∈ L∞(Ω), it is standard that any solutionu of (12) satis-
fies‖u‖L∞(Ω) ≤ ‖g‖L∞(Ω). This might not be true for the approximated
problem (11), however, the Remark at the end of Sect. 3.2 shows that Theo-
rem (2) still holds if we add in the minimization problems (11) and (12) the
additional constraint‖v‖L∞(Ω) ≤ ‖g‖L∞(Ω). In this case,uεj converges
strongly tou for anyp ∈ [1,+∞).

A. Special functions of bounded variation

A.1. The spacesSBV andGSBV : definitions and main properties

In this section we define briefly the “special functions of bounded variation”
and state a few properties. See for instance [3] or [2] for further details. Given
Ω ⊆ R

N andu : Ω → [−∞,+∞] a measurable function, we first define
theapproximate upper limitof u atx ∈ Ω as

u+(x) = inf
{
t ∈ [−∞,+∞] : lim

ρ↓0

|{y : u(y) > t} ∩Bρ(x)|
ρN

= 0
}
,

whereBρ(x) is the ball of radiusρcentered atxand|E|denotes the Lebesgue
measure of the setE. Theapproximate lower limitu−(x) is defined in the
same way (i.e.,u−(x) = −(−u)+(x)). The set

Su = {x ∈ Ω : u−(x) < u+(x)},
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is the set of essential discontinuities ofu, it is a (Lebesgue-)negligible Borel
set. Ifx 6∈ Su, we say thatu is approximately continuousatx and we write
ũ(x) = u−(x) = u+(x) = ap limy→x u(y).

A functionu ∈ L1(Ω) is afunction of bounded variationif its distribu-
tional derivativeDu is a vector-valued measure with finite total variation in
Ω (equivalently, if the partial distributional derivativesDiu, i = 1, . . . , N ,
are real-valued measures with finite total variation inΩ). The space of func-
tions of bounded variation is denoted byBV (Ω). For the general theory we
refer to [19], [20], [25] and [29]. Ifu ∈ BV (Ω), the setSu is countably
(HN−1, N − 1)-rectifiable, i.e,

Su =
∞⋃
i=1

Ki ∪ N

whereHN−1(N ) = 0 and eachKi is a compact subset of aC1-hypersurface
Γi. There exists a Borel functionνu : Su → S

N−1 such thatHN−1-a.e. in
Su the vectorνu(x) is normal toSu atx in the sense that it is normal toΓi

if x ∈ Ki. For everyu, v ∈ BV (Ω), we must therefore haveνu = ±νv

HN−1-a.e. inSu ∩ Sv.
For everyu ∈ BV (Ω) the measureDu can be decomposed as follows:

Du = ∇u(x)dx+ (u+ − u−)νuHN−1 Su + Cu

where∇u is theapproximate gradientof u, defined a.e. inΩ by

ap lim
y→x

u(y) − u(x) − 〈∇u(x), y − x〉
|y − x| = 0,

HN−1 Su is the restriction of theN − 1 dimensional Hausdorff measure
to the setSu, andCu is theCantor partof the measureDu, which is singular
with respect to the Lebesgue measure and such that|Cu|(E) = 0 for any
E with HN−1(E) < +∞.

We say that a functionu ∈ BV (Ω) is a special function of bounded
variation if Cu = 0, which means that the singular part of the distributional
derivativeDu is concentrated on the jumps setSu. We denote bySBV (Ω)
the space of such functions. We also define the spaceGSBV (Ω) of gen-
eralizedSBV functions as the set of all measurable functionsu : Ω →
[−∞,+∞] such that for anyΩ′ ⊂⊂ Ω and anyk > 0,uk = (−k∨u)∧k ∈
SBV (Ω′) (whereX ∧ Y = min(X,Y ) andX ∨ Y = max(X,Y )).

If u ∈ GSBV (Ω) ∩ L1
loc(Ω), u has an approximate gradient a.e. inΩ,

moreover, ask ↑ ∞,

∇uk → ∇u a.e. inΩ, and |∇uk| ↑ |∇u| a.e. inΩ;(50)
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Suk ⊆ Su,HN−1(Suk) → HN−1(Su) and

νuk = νu HN−1-a.e. inSuk .(51)

Slicing.We consider now forξ ∈ S
N−1 the setsξ⊥ = {x ∈ R

N : 〈ξ, x〉 =
0} and for anyz ∈ ξ⊥,Ωz,ξ = {t ∈ R : z+ tξ ∈ Ω}. OnΩz,ξ we define a
functionuz,ξ : Ωz,ξ → [−∞,+∞] byuz,ξ(s) = u(z+sξ). If u ∈ BV (Ω),
we have the following classical representation (see for instance [1], [4]): for
HN−1-a.e.z ∈ ξ⊥, uz,ξ ∈ BV (Ωz,ξ) and for any Borel setB ⊆ Ω

〈Du, ξ〉(B) =
∫

ξ⊥
dHN−1(z)Duz,ξ(Bz,ξ)

whereBz,ξ is defined in the same way asΩz,ξ; conversely ifuz,ξ ∈BV (Ωz,ξ)
for at leastN independent vectorsξ ∈ S

N−1 andHN−1-a.e.z ∈ ξ⊥, and if∫
ξ⊥
dHN−1(z)|Duz,ξ|(Ωz,ξ) < +∞

thenu ∈ BV (Ω). Now (see [2], [1]), ifu ∈ SBVloc(Ω), then for almost
every z ∈ ξ⊥, uz,ξ ∈ SBVloc(Ωz,ξ) (the converse is true provided this
property is satisfied for at leastN independent vectorsξ andu has locally
bounded variation), the approximate derivative satisfies

u′
z,ξ(s) = 〈∇u(z + sξ), ξ〉

for a.e.s ∈ Ωz,ξ, moreover

Suz,ξ
= {s ∈ Ωz,ξ : z + sξ ∈ Su} ,

and for alls ∈ Suz,ξ
,

(uz,ξ)±(s) = u±(z + sξ).

Eventually, for any Borel setB ⊆ Ω∫
ξ⊥
dHN−1(z)H0(Bz,ξ ∩ Suz,ξ

) =
∫

B
|〈νu(x), ξ〉| dHN−1(x).

Compactness. We finally mention two compactness result. The first one
is the classical compactness and lower semi-continuity result proved in [1]
(see also [2], [3]). The lemma that follows is a variant that is useful in the
proof of ourΓ -convergence theorems.
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Theorem 3 (Ambrosio).LetΩ be an open subset ofR
N and let(uj) be a

sequence inGSBV (Ω). Suppose that there existp ∈ [1,∞] and a constant
C such that∫

Ω
|∇uj |2 dx+ HN−1(Suj ) + ‖uj‖Lp(Ω) ≤ C < +∞

for everyj. Then there exist a subsequence (still denoted by(uj)) and a
functionu ∈ GSBV (Ω) ∩ Lp(Ω) such that

uj(x) → u(x) a.e. inΩ,

∇uj⇀∇u weakly inL2(Ω,RN ),

HN−1(Su) ≤ lim inf
j→∞

HN−1(Suj ).

Moreover∫
Su

|〈νu, ξ〉| dHN−1 ≤ lim inf
j→∞

∫
Suj

|〈νuj , ξ
〉| dHN−1

for everyξ ∈ S
N−1.

Lemma 2. LetΩ be an open subset ofR
N , p ∈ [1,+∞], and let(Aj) be

a sequence of open subsets ofΩ and and(uj) a sequence of functions such
that

– for all j, uj ∈ C(Ω \Aj) ∩H1(Ω \Aj),

– supj ‖uj‖Lp(Ω) +
∫

Ω
|∇uj(x)|2 dx < +∞,

– supj HN−1(∂Aj) < +∞.
– limj→∞ |Aj | = 0.

Then there exist a subsequence (not relabelled) and a functionu ∈ GSBV
(Ω) ∩ Lp(Ω) such that (eachuj being extended with the value zero inAj)

uj(x) → u(x) a.e. inΩ,

∇uj⇀∇u weakly inL2(Ω,RN ),

HN−1(Su) ≤ 1
2

lim inf
j→∞

HN−1(∂Aj ∩Ω).

Proof of the lemma.The only property to check is the inequality

HN−1(Su) ≤ 1
2

lim inf
j→∞

HN−1(∂Aj ∩Ω),(52)

since the other statements easily follow from Ambrosio’s previous theorem.
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We can assumep = ∞: indeed if we replace the functions and their
limits by the truncations at any levelk > 0, uk

j = (−k ∨ uj) ∧ k and
uk = (−k ∨ u) ∧ k, and if the result holds for the sequence(uk

j ) and the
functionuk, then from (51) we’ll deduce the general result.

We callM = supj ‖uj‖L∞(Ω\Aj), and on eachAj we setuj ≡ M + 1
(the value ofuj insideAj does not affect the limit).

Sinceuj is continuous onΩ \Aj ,

Suj ⊆ {x ∈ ∂Aj : 0 < D+(x,Aj), D−(x,Aj) < 1} = Sχ
Aj

⊆ ∂Aj

whereD+(x,Aj) = lim supρ↓0 |B(x, ρ) ∩ Aj |/ωNρ
N andD−(x,Aj) =

lim infρ↓0 |B(x, ρ) ∩Aj |/ωNρ
N ∈ [0, 1] are theN -dimensional upper and

lower densities ofAj at x; and for allx ∈ Suj , (uj)+(x) = M + 1 and
(uj)−(x) ≤ M . We denote by∂∗Aj the setSχ

Aj
.

We first chooseξ ∈ S
N−1 and an open setB ⊂⊂ Ω, and we will show

that ∫
Su∩B

|〈νu, ξ〉|dHN−1 ≤ 1
2

lim inf
j→∞

HN−1(∂∗Aj ∩B).(53)

For anyz ∈ ξ⊥ we denote byBz the set{t ∈ R : z + tξ ∈ B} and
respectively byuz(t) anduz

j (t) the functionsu(z + tξ) anduj(z + tξ).
We have that∫

B
|uj − u| dx =

∫
ξ⊥
dHN−1(z)

∫
Bz

|uz
j (t) − uz(t)| dt → 0

asj → ∞, so that we may assume (up to a subsequence) that forHN−1-a.e.
z ∈ ξ⊥,

lim
j→∞

∫
Bz

|uz
j − uz| dt = 0.(54)

Moreover, forHN−1-a.e.z ∈ ξ⊥,∫
Bz

|(uz)′(t)|2 dt+ H0(Bz ∩ Suz) < +∞,(55)

since∫
ξ⊥
dHN−1(z)

(∫
Bz

|(uz)′(t)|2 dt+ H0(Bz ∩ Suz)
)

=
∫

B
|〈∇u(x), ξ〉|2 dx+

∫
Su

|〈νu(x), ξ〉| dHN−1(x) < +∞;

anduz
j is in SBV (Bz), with

lim inf
j→∞

∫
Bz

|(uz
j )

′(t)|2 dt+ H0(Bz ∩ Suz
j
) < +∞,(56)
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since, by Fatou’s lemma,∫
ξ⊥
dHN−1(z)

(
lim inf
j→∞

∫
Bz

|(uz
j )

′(t)|2 dt+ H0(Bz ∩ Suz
j
)
)

≤ lim inf
j→∞

∫
B

|〈∇uj(x), ξ〉|2 dx+
∫

B∩Suj

|〈νuj (x), ξ〉|dHN−1(x) < +∞.

We also know that forHN−1-a.e.z ∈ ξ⊥, the jumps set ofuz
j ∈ SBV (Bz)

is
Bz ∩ Suz

j
= {t ∈ Bz : z + tξ ∈ Suj}

and(uz
j )+(t) = M + 1, (uz

j )−(t) ≤ M for anyt ∈ Suz
j
.

We may therefore choose az such that this holds for allj, as well
as (54), (55) and (56). By (55), the functionuz is piecewise continuous on
Bz with a finite number of jumps. We letSuz ∩ Bz = {t1, . . . , tn}, with
t1 < t2 < · · · < tn. Let ε > 0 be chosen such that(ti − ε, ti + ε) ⊂⊂ Bz

andti + ε < ti+1 − ε for all i. We will show that for an infinity of indices
j, each interval(ti − ε, ti + ε) contains at least two jumps ofuz

j .
Consider a subsequence(uz

jk
) of (uz

j ) such thatuz
jk

→ uz a.e. onBz

and

η` = lim
k→∞

η

∫
Bz

|(uz
jk

)′(t)|2 dt+ H0(Bz ∩ Suz
jk

)

= lim inf
j→∞

η

∫
Bz

|(uz
j )

′(t)|2 dt+ H0(Bz ∩ Suz
j
) < +∞,

whereη > 0 is a fixed small parameter. For everyi = 1, . . . , n, let σi =
uz

+(ti) − uz−(ti) and chooseδi < min(ε, σ2
i /8`). We chooseαi, βi such

that

– ti − δi < αi < ti < βi < ti + δi,
– limk→∞ uz

jk
(αi) = uz(αi) andlimk→∞ uz

jk
(βi) = uz(βi),

– and|uz(βi) − uz(αi)| > 1
2σi (by continuity).

For k large enough,Suz
jk

∩ (αi, βi) 6= ∅, otherwise we would have, for all
indicesk such that this is not true,

|uz
jk

(βi − 0) − uz
jk

(αi + 0)| ≤
∫ βi

αi

|(uz
jk

)′(t)| dt

≤
{∫ βi

αi

|(uz
jk

)′(t)|2 dt
} 1

2 √
βi − αi.

As k goes to infinity, the limit of the left-hand term would be greater than
σi/2, while the limit of the right-hand term would be smaller than

√
`
√

2δi <
σi/2, a contradiction.
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Now, fork large enough, bothuz
jk

(αi) anduz
jk

(βi) are less thansupBz uz

+1/2 ≤ M + 1/2 (thus thanM , sinceujk
takes its values in[−M,M ] ∪

{M + 1}), so that ifSuz
jk

∩ (αi, βi) 6= ∅ it must contain at least two points
(since any jump ofuz

jk
occurs between a value lower thanM and the value

M + 1).
We deduce that ifk is large enough,

H0
(
Bz ∩ Suz

jk

)
≥

n∑
i=1

H0
(
(αi, βi) ∩ Suz

jk

)
≥ 2n,

therefore
2 H0 (Bz ∩ Suz) ≤ lim inf

k→∞
H0
(
Bz ∩ Suz

jk

)
.

Notice now that applying Ambrosio’s Theorem 3 to the sequence(uz
jk

)k≥1

of SBV (Bz), we deduce that(uz
jk

)′ goes weakly to(uz)′ in L2(Bz) ask
goes to infinity so that∫

Bz

|(uz)′(t)|2 dt ≤ lim inf
k→∞

∫
Bz

|(uz
jk

)′(t)|2 dt.

Combining the last two inequalities, we deduce

η

∫
Bz

|(uz)′(t)|2 dt + 2 H0(Bz ∩ Suz)

≤ lim
k→∞

η

∫
Bz

|(uz
jk

)′(t)|2 dt + H0(Bz ∩ Suz
jk

)

= lim inf
j→∞

η

∫
Bz

|(uz
j )

′(t)|2 dt + H0(Bz ∩ Suz
j
)

This inequality being true for a.e.z ∈ ξ⊥, we can integrate overz, and
Fatou’s lemma yields

η

∫
B

|〈∇u(x), ξ〉|2 dx + 2
∫

B∩Su

|〈νu(x), ξ〉| dHN−1(x)

≤ lim inf
j→∞

η

∫
B

|∇uj(x)|2 dx + HN−1(B ∩ Suj ).

Sincesupj

∫
B |∇uj(x)|2 dx < +∞, we can sendη to zero and we get (53).

Finally, by a standard localization argument (used for instance in the proof
of Theorem 3, see [2]), we deduce from (53) that

2 HN−1(Su) ≤ lim inf
j→∞

HN−1(∂∗Aj ∩Ω),

hence (52).

Remark.The same result holds if, instead of assuminguj continuous on
Ω \ Aj , we assume that the boundary ofAj is “regular” in the sense that
HN−1(∂Aj \ ∂∗Aj) = 0.



642 B. Bourdin, A. Chambolle

A.2. An application: the Mumford-Shah functional

The functional originally introduced by D. Mumford and J. Shah, in order
to modelize the image segmentation problem in a continuous setting, is the
following

G(u,K) =
∫

Ω\K
|∇u(x)|2 dx+ HN−1(K)

+
∫

Ω
|u(x) − g(x)|2 dx,(57)

whereg ∈ L∞(Ω) is a given “original image”,K is a closed set andu ∈
C1(Ω \K). L. Ambrosio and E. De Giorgi introduced the weak formulation
in GSBV (Ω)

G(u) =
∫

Ω
|∇u(x)|2 dx+ HN−1(Su) +

∫
Ω

|u(x) − g(x)|2 dx,(58)

and proved the existence of a minimizer forG using Theorem 3. Then,
E. De Giorgi, M. Carriero and A. Leaci established the existence of a mini-
mizer forG by proving that ifuminimizesG, thenHN−1(Ω∩Su \Su) = 0
andu ∈ C1(Ω \ Su), so that(u, Su) minimizesG [16].

In [17], Dibos and Śeŕe showed that any minimizeru of G may be
approximated by a sequence(uε)ε>0 of piecewise regular functions such that
the jumps setSuε of eachuε is contained in a finite union of parallelipedic
subsets of hyperplanes(K1

ε , . . . ,K
nε
ε ), uε → u a.e. asε goes to zero, and

lim
ε↓0

∫
Ω

|∇uε(x)|2 dx+
nε∑
i=1

HN−1(Ki
ε) =

∫
Ω

|∇u(x)|2 dx+ HN−1(Su).

This result is generalized in [14]. In order to establish inequality (44)
(Sect. 3.2) we need a variant of [14, Co 3.11], whose proof we do not give
since it is easily derived from the proofs in [17] and [14].

B. The Γ -convergence

We shortly define theΓ -convergence of functionals (in metric spaces) and
its main properties. For more details we refer to [15].

Given a metric space(X, d) andFk : X → [−∞,+∞] a sequence of
functions, we define for everyu ∈ X theΓ -lim inf of F

F ′(u) = Γ − lim inf
k→∞

Fk(u) = inf
uk→u

lim inf
k→∞

Fk(uk)



Adaptive finite-element approximation of the Mumford-Shah functional 643

and theΓ -lim sup ofF

F ′′(u) = Γ − lim sup
k→∞

Fk(u) = inf
uk→u

lim sup
k→∞

Fk(uk),

and we say thatFk Γ -converges toF : X → [−∞,+∞] if F ′ = F ′′ = F .
F ′, F ′′, andF (if it exists) are lower semi-continuous onX. We have the
following two properties:

1.Fk Γ -converges toF if and only if for everyu ∈ X,

(i) for every sequenceuk converging tou, F (u) ≤ lim infk→∞ Fk(uk);
(ii) there exists a sequenceuk that converges touand such thatlim supk→∞

Fk(uk) ≤ F (u);

2. If G : X → R is continuous andFk Γ -converges toF , thenFk + G
Γ -converges toF +G.

The following result makes clear the interest of the notion ofΓ -
convergence:

Theorem 4. AssumeFk Γ -converges toF and for everyk letuk be a mini-
mizer ofFk overX. Then, if the sequence (or a subsequence)uk converges
to someu ∈ X, u is a minimizer forF andFk(uk) converges toF (u).

Finally, we give the following definition ofΓ -convergence in the case
where(Fh)h>0 is a family of functionals onX indexed by a continuous
parameterh: we say thatFh Γ -converges toF in X ash ↓ 0 if and only if
for every sequence(hj) that converges to zero asj → ∞, Fhj

Γ -converges
to F .

C. A strange triangulation

In this section we show whyM∗ has to be used instead ofM in the defini-
tion (8) ofFε. Actually, letΩ = (0, 1) × (0, 1), and for eachuε ∈ Vε(Ω),
T ε ∈ Tε(uε), let

Iε(uε,T ε) =
∑

T∈T ε

|T |MT (|∇uε|2).

We will construct a sequenceun,T n, with un ∈ V 1
n
(Ω) andT n ∈ Tε(un),

such thatun converges tou(x, y) ≡ y andlimn→∞ I 1
n
(un,T n) < 1. Fix

λ ∈ (0, 1) and, forn ≥ 1, consider inR2 the dotsxk,l =
(

k
n ,

l
n

)
, k, l ∈ Z,

andyk,l =
(

k
n ,

l+λ
n

)
, k, l ∈ Z. Let T n be the triangulation ofΩ made of

the triangles(xk,l, xk+1,l, yk,l), (xk+1,l, yk,l, yk+1,l), of surfaceλ/2n2, and
of the triangles(yk,l, yk+1,l, xk+1,l+1), (yk,l, xk,l+1, xk+1,l+1), of surface
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0
0

1

1

1
n

1
n↘

λ
n

Fig. 9. The triangulationT n

(1 − λ)/2n2, contained inΩ (Fig. 9). We assumen is large and restrict our
attention to the triangles included in

[ 1
n , 1 − 1

n

]2
. We will call “small” trian-

gles the triangles of surfaceλ/2n2 and “large” triangles the other triangles.
For each triangleT of one kind (i.e., “small” or “large”) there are 5 triangles
T ′ of the same kind (includingT itself) such thatT ′ ∩T 6= ∅ and 8 triangles
of the other kind satisfying the same property. We fixα, β ∈ R and define a
functionun, withun(·, 0) ≡ 0 andun(·, 1) ≡ 1, such that∇un = (0, 1+α)
on the small triangles and∇un = (0, 1+β) on the large triangles. We must
haveλα + (1 − λ)β = 0, so thatun goes tou (uniformly, and weakly in
H1(Ω)) asn → ∞.

If T is a small triangle,ST = (8 − 3λ)/2n2, while if T is large,ST =
(5 + 3λ)/2n2, so that forT small,

MT (|∇u|2) =
5λ(1 + α)2 + 8(1 − λ)(1 + β)2

8 − 3λ

and ifT is large,

MT (|∇u|2) =
5(1 − λ)(1 + β)2 + 8λ(1 + α)2

5 + 3λ
.

Since there are2n2 triangles of each kind, we easily deduce that

I(α, β, λ) = lim
n→∞ I 1

n
(un,T n)

= λ
5λ(1 + α)2 + 8(1 − λ)(1 + β)2

8 − 3λ



Adaptive finite-element approximation of the Mumford-Shah functional 645

+(1 − λ)
5(1 − λ)(1 + β)2 + 8λ(1 + α)2

5 + 3λ
.

If λ is small, this expression is less than 1 for admissible values ofα, β, λ,
for instance,

I

(
−1

5
,

1
45
,

1
10

)
' 0.9873
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