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Abstract We describe the phase-field method, a new approach to optimal design originally
introduced in Bourdin and Chambolle, 2000; Bourdin and Chambolle, 2003. It
is based on the penalization of the variation of the properties of the designs, and
its variational approximation (in the sense of Γ–convergence. It uses a smooth
function, the phase-field, to represent all materials involved.

We describe our approach, and detail its application to two problems.
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Introduction
Consider the following generic optimal design problem: given a reference

domain Ω in RN , some D0 ⊂ Ω, and two volume fractions 0 ≤ θ1 ≤ θ2 ≤ 1,
the admissible designs are subsets D of Ω, such that

D0 ⊆ D ⊆ Ω
θ1|Ω| ≤ |D| ≤ θ2|Ω|

(1)

An optimal design problem is to find an admissible design D minimizing some
objective function, F , that is :

inf
D admissible

F (D). (2)
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In this form, optimal designs problems are very likely to be ill–posed. The
geometric constraints are not enough to ensure the compactness and closedness
of the set of feasible designs. Over the years, several theoretical and numer-
ical workaround have been proposed. In the homogenization–based methods,
one considers generalized designs, microperforated or laminated materials for
example (see Kohn and Strang, 1986; Bendsøe and Kikuchi, 1988; Allaire and
Kohn, 1993a; Allaire and Kohn, 1993b; Allaire and Kohn, 1994; Cherkaev and
Kohn, 1997; Allaire et al., 1997; Cherkaev, 2000; Allaire, 2002, among others).
Another class of numerical methods relies on heuristic “filtering” techniques
(Diaz and Sigmund, 1995; Sigmund and Petersson, 1998). It was rigorously
studied in Bourdin, 2001. Lastly, various penalization methods have also been
suggested, where one adds an additional term to the objective function, in order
to gain compactness.

Among all these choice of penalizations, “perimeter–controlled” optimiza-
tion has a special place (Haber et al., 1996). It has been long understood that
adding a surface term proportional to the perimeter of the designs prevents
from sequences of solutions wit rapid oscilllations, and makes the problems
well posed. This was indeed formalized in Ambrosio and Buttazzo, 1993,
where (2) is replaced with the following free discontinuity problem:

inf
D admissible

F (D) + λHN−1(∂D), (3)

where λ is an arbitrary parameter andHN−1 represents the N−1–dimensional
Haussdorf measure i.e. the length of ∂D in two dimensions, or its area in three
dimensions (see Federer, 1969; Evans and Gariepy, 1992, for instance).

In the absence of an efficient numerical implementation, this method has
not been widely accepted. The phase–field approach introduced in Bourdin
and Chambolle, 2000; Bourdin and Chambolle, 2003 provides such a thing.

1. The phase-field method
The numerical implementation of (3) and in particular the approximation

of the perimeter term are challenging. If D is a set of finite perimeter, then
HN−1(∂D) is equal to the total variation of χD. If one uses material interpo-
lation schemes, and replaces the characteristic function with a smooth material
density ρ, with values in [0, 1], then the total variation of ρ is given by

TV (ρ) =
∫
Ω
|∇ρ| dx, (4)

which raises two issues. Numerical minimization of an equivalent of (3) re-
placing the perimeter term with TV (ρ) is challenging. If one tries to avoid in-
termediate material densities, using material penalization, for instance, then (4)
becomes very stiff, and its numerical approximation non-isotropic (see Peters-
son et al., 1999; Chambolle, 1999).
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Our approach is different. We consider a small parameter ε and introduce
the functional

Pε(ρ) =
1

cW

∫
Ω

ε

2
|∇ρ(x)|2 +

1
ε
W (ρ(x)) dx (5)

where W is a l.s.c potential such that W (0) = W (1) = 0, W (x) > 0 if x 6∈
{0, 1}, W (x) ≥ c1|x|2−c2 for some c1 > 0 and c2, and cW =

∫ 1
0

√
2W (t) dt.

We also extend the objective function F by a F , defined for any density field
ρ(x) ∈ L1(Ω), and such that

F(χD) = F (D), (6)

for any set D of finite perimeter, and such that F(ρ) depends continuously
on ρ. Then, we consider the following regularization of the optimal design
problem:

inf
ρ∈DA

F(ρ) + λPε(ρ), (7)

where the set of admissible designs is

DA =
{

ρ ∈ H1(Ω), ρ(x) = 1 a. e.in D0, and θ1|Ω| ≤
∫
Ω
|ρ(x)| dx ≤ θ2|Ω|

}
.

It is well-known (see Alberti, 2000; Modica and Mortola, 1977a; Modica and
Mortola, 1977b; Dal Maso, 1993; Braides, 2002 for instance) that if for any
small ε there exists a subsequence ρεj of the sequence ρε of minimizers of (7)
and a subset D ∈ Ω, such that ρεj → χD almost everywhere in Ω, then D is a
solution of (3). Practically, this means that solving the regularized problem (7)
for a "small enough" ε will lead to a good approximation of the solution of (3).

This approach has several advantages over the classical ones. It is indepen-
dent of the choice of F , provided that condition (6) is satisfied. In the case of
structural optimization, for instance, this means that the debate over the me-
chanical soundness of various material interpolation law is unrelevant in our
case (although it might be used in the numerical implementation as in Bourdin
and Chambolle, 2003). From the expression of Pε, it is clear that for a given ε,
the minimizing sequences of designs are bounded in H1(Ω). Classical numer-
ical methods, finite elements or finite differences can be applied without fear
of mesh-dependency, checkerboards, or anisotropy for instance.

One of the drawback of the method, which is indeed true of all perimeter
controlled optimal design method, is that the solution of (3) may not be an
open set and regular set. Optimal sets for the penalized problems are sets of
finite perimeter, a very wide class of sets that contains very "pathological" sets.
If one wishes to carry out a very rigorous analysis of the method applied to a
specific objective function, one has to study the regularity of the solutions. This
is done in Ambrosio and Buttazzo, 1993 for the thermal conductivity problem
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and in Chambolle and Larsen, 2003 in the case of compliance optimization,
for instance.

Lastly, the penalization term in (7) takes into accounts only the part of the
perimeter of D inside the computational domain. In other words, it does not
account for the part of the boundary of D that lies along ∂Ω. This can eas-
ily addressed (see Bourdin and Chambolle, 2003 or Bourdin et al, 2000 for a
similar problem in fracture mechanics). For the sake or simplicity, we do not
discuss this issue in this paper.

In the following section, we describe the application of the phase field in the
classical context of compliance optimization, then extend it to a multi-phase
problem with design-dependent loads. Note that it has already been used in
more complicated problems (Burger and Stainko, 2003) and that extension to
more general problems involving multiple materials and multiple physics are
in progress.

2. A classical example: compliance optimization
We consider here the classical problem of the design of structure with max-

imal stiffness under given loads. Let Γ0 and Γf ∈ ∂Ω be disjoint subsets of
the boundary of Ω standing at strictly positive distance from each other. Let f ,
be a given force on Γf , and A be the linear Hooke’s law of an elastic material
occupying a subset D ⊂ Ω. The compliance of D under the load f is defined
by

F (D) = − inf
u=0 on Γ0

∫
D

Ae(u) : e(u) dx− 2
∫
Γf

f · u dx, (8)

where and e(u) is the symmetrized gradient of u. It is easy to show that the
perimeter-controlled optimal design associated with this objective function is
well-posed, in the class of sets of finite perimeter. A little more care has to
be taken while applying the phase–field regularization, however. Indeed, the
straightforward extension of F to characteristic functions χD is not continuous.
Following a now classical approach, we introduce an arbitrarily weak fictitious
material with Hooke’s law δA (δ > 0), and extend the compliance as

Fδ(D) = − inf
u=0 on Γ0

∫
Ω

((1− δ)χD + δ)Ae(u) : e(u) dx− 2
∫
Γf

f · u dx.

(9)

Note that this step is not strictly related to the phase-field method, but sim-
ply about gaining continuity of the objective function with respect to design
changes. In Bourdin and Chambolle, 2003, it is shown using Γ–convergence,
that when δ → 0, the minmizers of Fδ(D) + λP(D) converges to that of
F (D) + λP(D).
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A trivial way to extend Fδ to arbitrary density functions ρ(x) is to con-
sider any function continuous monotonous function S such that S(0) = 0 and
S(1) = 1, and

Fδ(ρ) = − inf
u=0 on Γ0

∫
Ω

((1− δ)S(ρ) + δ)Ae(u) : e(u) dx− 2
∫
Γf

f · u dx.

(10)

Once again, it is shown in Bourdin and Chambolle, 2003 that when ε → 0,
the minimizer ρδε of Fδ(ρ) + λPε(ρ) converge to a χEδ

, where Eδ minimizes
Fδ(D) + λP(D) among all admissible designs D. Sending then δ to 0, one
obtains convergence of vδ,ε to the minimizers of F (D) + λP(D).

Figure 1 presents a numerical example obtained by Arnaud Anantharaman
and Alain Griveau under Antonin Chambolle’s supervision, at École Polytech-
nique. It corresponds to a beam clamped on its lower-left and lower-right cor-
ners, and loaded in its center. The density of gray corresponds to the value of
the phase field ρ. The function W used here is

W (t) =
{

t(t− 1)/2 if 0 ≤ t ≤ 1
+∞ otherwise,

and the material interpolation law is S(t) = t2.
Note that the density function ρ, has very little intermediate values. Indeed,

the second term in (5) penalizes them. The transition of ρ from 0 to 1 along
the edges of the designs is still smooth, meaning that piecewise linear finite
element, for instance, will provide a good interpolation. It is known indeed
that the with of the transition layer around the edges of the designs is of the
order of επ, for any ε > 0. This gives an estimate on how small shall one set
the regularization parameter, in relation with the mesh size, for example.

Figure 1. Optimal design of a beam using the phase field method.
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3. Extension to design-dependent loads
Another strength of our approach is that the phase field also provides a sim-

ple way to represent the edges of the designs, and is easy to extend to the case
of more than two phases.

In Bourdin and Chambolle, 2003, we consider the problem of the minimiza-
tion of the compliance of structures submitted to fixed pressure loads on parts
of their boundary. We consider a domain Ω partitioned in three subsets S (the
structure), L (some liquid under a give pressure p), and V the void. The com-
pliance of this system is given by

F (S, L, V ) = inf
u

∫
S

Ae(u) : e(u) dx−2
∫

∂L
pu(x) ·νL(x) dHN−1(x), (11)

where νL is the outer normal to the set L, and u varies among kinematically
admissible displacement fields which we do not explicit here. A generalization
of the perimeter energy to this three phase case would is

Λ(S, L, V ) = HN−1(∂S∩∂L)+HN−1(∂S∩∂V )+HN−1(∂L∩∂V ). (12)

Intuitively, however, it is clear that if the interface in between the liquid and the
void sets has length > 0, then the compliance (11) is infinite. Indeed, we show
(in 2D only) that if F (S, L, V ) < ∞ then HN−1(∂L ∩ ∂V ) = 0, in which
case we have

Λ(S, L, V ) = HN−1(∂L) +HN−1(∂V ). (13)

Another consequence of that is that it allows the use of a scalar phase field:
following the analysis of the previous section, we introduce a fictitious material
of Hooke’s law δA, a phase field ρ, and three material interpolation functions
S, L, V such that 

V (−1) = 1, V (0) = V (1) = 0
S(−1) = 0, S(0) = 1, S(1) = 0
L(−1) = L(0) = 0, L(1) = 1

(14)

In this case, one can approximate F (S, L, V ) by a function Fε(ρ) similar to (5)
where W is now a three-well function such that W (−1) = W (0) = W (1) = 0
and W (x) > 0 if x 6∈ {−1, 0, 1}. Lastly, the compliance F (S, L, V ) becomes

Fδ,ε(S, L, V ) = inf
u

∫
Ω

((1− δ)S(ρ) + δ) Ae(u) : e(u) dx−2
∫
Ω

pu(x)·∇L(ρ) dx.

(15)
Note in particular how the surface intergral over ∂L was approximated in terms
of ∇L(ρ). Again using Γ–convergence with respect to δ first and then ε, one
can show that the minimizers of Fδ,ε + λPε converge to that of F (S, L, V ) +
λΛ(S, L, V ).
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Figure 2 represents the design of a piston subject to pressure forces in its
lower side, and clamped along the black rectangle on the top left corner. The
black colored region correspond to ρ = 1, i.e. the liquid, the gray area to
ρ = 0 (the structure), and the white are to the void (ρ = −1). The white line
correspond to the level line 1/3 of ρ and the black one to ρ = −1/3. The three
design correspond to decreasing parameters λ. As expected, the complexity of
the topology of the designs increases when λ decreases.

Figure 2. Optimal design of a piston.
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