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Abstract
One of the most critical capabilities of realistic hydraulic fracture simulation is the prediction of complex (turning,

bifurcating, or merging) fracture paths. In most classical models, complex fracture simulation is difficult due to the need
for a priori knowledge of propagation path and initiation points and the complexity associated with stress singularities at
fracture tips.

In this study, we follow Francfort and Marigo’s variational approach to fracture, which we extend to account for hydraulic
stimulation. We recast Griffith’s criteria into a global minimization principle, while preserving its essence, the concept of
energy restitution between surface and bulk terms. More precisely, to any admissible crack geometry and kinematically
admissible displacement field, we associate a total energy given as the sum of the elastic and surface energies. In a quasi-
static setting, the reservoir state is then given as the solution of a sequence of unilateral minimizations of this total energy
with respect to any admissible crack path and displacement field. The strength of this approach is to provide a rigorous
and unified framework accounting for new cracks nucleation, existing cracks activation, and full crack path determination
(including complex behavior such as crack branching, kinking, and interaction between multiple cracks) without any a priori
knowledge or hypothesis.

Of course, the lack of a priori hypothesis on cracks geometry is at the cost of numerical complexity. We present a
regularized phase field approach where fractures are represented by a smooth function. This approach makes handling large
and complex fracture networks very simple yet discrete fracture properties such as crack aperture can be recovered from the
phase field. We compare variational fracture simulation results against several analytical solutions and also demonstrate the
approach’s ability to predict complex fracture systems with example of multiple interacting fractures.

Introduction
Conventionally, in most numerical modeling strategy of hydraulic fracturing, fracture propagation is assumed to be

planar and perpendicular to the minimum reservoir stress (Adachi et al. 2007), which simplifies fracture propagation criteria
to mode-I and aligns the propagation plane to the simulation grid. Restricting propagation mode search into one direction and
prescribing fracture growth plane can greatly reduce computation overhead and make practical numerical modeling tractable.
However, recent observations suggest creation of nonplanar complex fracture system during reservoir stimulation (Mayerhofer
et al. 2010) or waste injection (Moschovidis et al. 2000). To address predictive capabilities of complex fracture propagation,
several different approaches, namely, mixed-mode fracture growth criterion with a single fracture (Rungamornrat, Wheeler,
and Mear 2005), multiple discrete fractures that grow with empirical correlations (Gu et al. 2012), and implicit fracture
treatment with the idea of stimulated reservoir volume where averaged properties are estimated over an effective volume
(Hossain, Rahman, and Rahman 2000) have been proposed. In this study, we propose to apply the variational approach to
fracture (Francfort and Marigo 1998; Bourdin, Francfort, and Marigo 2008) to hydraulic fracturing. One of the strengths
of this approach is to account for arbitrary numbers of pre-existing or propagating cracks in terms of energy minimization,
without any a priori assumption on their geometry, and without restricting their growth to specific grid directions.

The goal of this paper is to present early results obtained with this method. At this stage, we are not trying to account for
all physical, chemical, thermal, and mechanical phenomena involved in the hydraulic fracture process. Instead, we propose
a mechanistically sound yet mathematically rigorous model in an ideal albeit not unrealistic situation, for which we can
perform rigorous analysis and quantitative comparison with analytical solutions. In particular, we neglect all thermal and



chemical effects, we assume that the injection rate is slow enough that all inertial effects can be neglected, and place ourself
in the quasi-static setting. Furthermore, we consider a reservoir made of an idealized impermeable perfectly brittle linear
material with no porosity and assume that the injected fluid is incompressible. These assumptions imply that no leak-off can
take place and that the fluid pressure is constant throughout the fracture system (infinite fracture conductivity), depending
only on total injected fluid volume and total cracks opening respectively. Also, throughout the analyses presented, we only
deal with dimensionless parameters, which are normalized by the Young’s moduli for mechanical parameters and by the total
domain volume for volumetric parameters.

The variational approach to hydraulic fracturing
In classical approaches to quasi-static brittle fracture, the elastic energy restitution rate, G, induced by the infinitesimal

growth of a single crack along an a priori known path (derived from the stress intensity factors) is compared to a critical
energy rate Gc and propagation occurs when G = Gc, the celebrated Griffith criterion. The premise of the variational
approach to fracture is to recast Griffith’s criterion in a variational setting, i.e. as the minimization over any crack set (any
set of curves in 2D or of surface in 3D, in the reference configuration) and any kinematically admissible displacement field u,
of a total energy consisting of the sum of the stored potential elastic energy and a surface energy proportional to the length
of the cracks in 2D or their area in 3D.

More specifically, consider a domain Ω in 2 or 3 space dimension, occupied by a perfectly brittle linear material with
Hooke’s law A and critical energy release rate (also often referred to as fracture toughness) Gc. Let f(t, x) denote a
time-dependent1 body force applied to Ω, τ(t, x), the surface force applied to a part ∂NΩ of its boundary, and g(t, x) a
prescribed boundary displacement on the remaining part ∂DΩ. To any arbitrary crack set Γ and any kinematically admissible
displacement set u, we associate the the total energy

F (u,Γ) :=

∫
Ω\Γ

W (e(u)) dΩ−
∫
∂NΩ

τ · u ds−
∫

Ω

f · u dΩ +GcHN−1(Γ), (1)

where f and τ denote surface and body forces applied to Ω, W is the elastic energy density associated with a linearized
strain field e(u) := (∇u+∇Tu)/2, given by W (e(u)) := Ae(u) : e(u), and HN−1(Γ) denotes the N −1–dimensional Hausdorff
measure of Γ, i.e. the length of Γ in two space dimensions and its surface area in three space dimensions.

In the setting of variational fracture, the criticality of the elastic energy release rate is replaced with unilateral minimality
of the total energy F with respect to any admissible displacement field u and any crack set satisfying a crack growth condition.
More specifically, at any discrete time step ti, we look for the solution (ui,Γi) of the minimization problem:

inf u kinematically admissible
Γ ⊂ Γj for all j < i

F (u,Γ). (2)

Loosely speaking, minimality with respect to the displacement field accounts for the fact that the system achieves static
equilibrium under its given crack set, optimality with respect to the crack set is a generalization of Griffith’s stationarity
principle G = Gc, and the growth constraint Γ ⊂ Γj for any j < i accounts for the irreversible nature of the fracture process.

We insist that in (2), no assumption is made on the geometry of the crack set, other than the growth condition. In
particular, one does not even assume that Γ consists of a single crack curve or surface, or that the number of cracks remains
constant during the evolution (which would preclude nucleation or merging). Indeed, one strength of the variational approach
is to provide a unified setting for the path determination, nucleation, activation and growth of an arbitrary number of cracks
in two and three space dimensions.

The numerical implementation of (2) is a challenging problem that requires carefully tailored techniques. The admissible
displacement fields are discontinuous, but the location of their discontinuities is not known in advance, a requirement of many
classical discretization methods. Also, the surface energy term in (1) requires approximating the location of cracks, together
with their length, a much more challenging issue (see the studies of anisotropy induced by the grid (Chambolle 1999) and
the mesh (Negri 1999).)

The approach we present here is based on the variational approximation by elliptic functionals (Ambrosio and Tortorelli
1990; Ambrosio and Tortorelli 1992). A small regularization parameter ε is introduced and the location of the crack is
represented by a smooth “phase field function” v taking values 0 close to the crack and 1 far from them. More precisely, one
can prove (see (Braides 1998; Chambolle 2004; Chambolle 2005) for instance) that as ε approaches 0, the regularized energy

Fε(u, v) :=

∫
Ω

v2W (e(u)) dΩ−
∫
∂NΩ

τ · u ds−
∫

Ω

f · u dΩ +
Gc
2

∫
Ω

(1− v)2

ε
+ ε|∇v|2 dΩ. (3)

1We follow a common abuse of language by referring to t as “time”. Rigorously, as we place ourselves in the context of quasi-static evolution, t
is to be understood as an increasing loading parameter.
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approaches F in the sense of Γ–converges, which implies that the minimizers of Fε converge as to that of F .
The main feature of the regularized problem is that it does not require an explicit representation of the crack network.

Instead all computations are carried out on a fixed mesh and the arguments of Fε are smooth functions which can be
approached using standard finite elements. Moreover, provided that the discretization size and regularization parameter
satisfy some compatibility properties, it can be shown that the Γ–convergence property can be extended to the finite element
discretization of Fε. The actual minimization follows the approach originally devised in (Bourdin 1999; Bourdin, Francfort,
and Marigo 2000; Bourdin 2007) is then achieved by alternating minimization with respect to the u and v field, until
convergence. Numerical implementation is carried out on parallel supercomputers and is based on the PETSc toolkit (Balay
et al. 1997; Balay et al. 2012b; Balay et al. 2012a).

Variational approach to hydraulic fracturing In order to adapt the variational fracture framework to hydraulic frac-
turing, one has to account for fluid pressure forces along the crack surfaces. For any point x on the crack set Γ, we denote by
νΓ(x) the oriented normal direction to Γ and by u+(x) and u−(x) the traces of the displacement field. With these notations,
the work of the pressure force p becomes then∫

Γ

p(x)
(
u+(x)− u−(x)

)
· νΓ(x) ds,

and the total energy becomes

E(u,Γ) := F (u,Γ) +

∫
Γ

p(x)
(
u+(x)− u−(x)

)
· νΓ(x) ds. (4)

Accounting for pressure forces in the regularized formulation is more subtle as the crack geometry is not tracked explicitly,
but represented by the smooth field v. In the sequel, we propose to modify the regularized energy (3) and consider

Eε(u, v) = Fε(u, v) +

∫
Ω

p(x)u(x) · ∇v(x) dΩ. (5)

Following the lines of the analysis carried out in (Chambolle 2004; Chambolle 2005), it can be proven that the Γ–convergence
property is preserved so that again, the minimizers of (5) converge to that of (4). Intuitively, surface forces along the edges
of Γ are replaced with properly scaled body forces applied in a neighborhood of the cracks.

In the next sections, we illustrate some of the properties of this approximation and its ability to properly account for
pressure forces and deal with unknown crack path, multiple cracks and changes in the cracks topology.

Application to a straight crack in 2d.
Static case: computation of the crack opening displacement: We first focus on a classical two dimensional static
case in plane stress: we consider an infinite domain filled with a homogeneous isotropic material with Young’s modulus E
and Poisson ratio ν with a single pre-existing crack Γ of length 2`0 in the y = 0 plane. Assuming that the displacement and
stress fields vanish at infinity, it is then possible to derive an exact formula for the boundary displacement of the crack surface
subject to a constant pressure force (see (Sneddon and Lowengrub 1969, Sec 2.4), for instance). Setting E′ = E/(1− ν2), we
have that for −`0 ≤ x ≤ `0

u+(x, 0) =
2p`0
E′

(
1− x2

`20

)1/2

, (6)

and that u−(x, 0) = −u+(x, 0). From this, it is easy to derive that the total volume of the crack in the deformed configuration
is

V =
2πp`20
E′

. (7)

In order to compare the analytical expression of the crack opening displacement, we built a v field corresponding to the
problem above, then minimized the total energy with respect to the displacement field. Following (Bourdin, Francfort, and
Marigo 2008, Sec. 8.1.1), we reproduced the optimal profile constructed for the recovery sequence of Γ–convergence:

vε(x, y) = 1− e−dΓ(x,y)/ε, (8)

where dΓ(x, y) denotes the distance from a point of coordinate (x, y) to Γ. From the Γ convergence construction, it is also
possible to see that for any −`0 ≤ x ≤ `0, the crack opening displacement is given by∫ ∞

−∞
u(x, y) · ∇v(x, y) dy. (9)
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Figure 1: Crack opening displacement obtained by applying (9) to a synthetical v field compared to the analytical solution.

h 1.E-2 6.7E-3 5.7E-3 5.0E-3
Crack volume 2.40E-06 2.47E-06 2.49E-06 2.51E-06

Table 1: Total computed crack volume.

We ran a series of experiments for a crack of length 2`0 = .4 centered in a finite square domain of size 4 × 4 with unit
Young’s modulus and fracture toughness. The size of Ω was chosen so that the choice of boundary condition on ∂Ω has no
practical impact on the displacement field near the crack. Figure 1 represents the crack opening displacement obtained by (9)
after minimization (plain lines) and compared with expression (6) (dashed line) for an injected fluid pressure of 1E-3. We
performed computations for mesh sizes h ranging from 1E-2 to 5E-3, keeping ε equal to 1E-2. We observe a slight discrepancy
near the crack tips (mostly due to softening effect induced by the smooth crack field v), but away from the crack tip, the
approximation of the opening displacement is very good, and insensitive to changes of the mesh size. Table 1 presents the
computed total crack volume. The theoretical value obtained from (6) is 2.513E-6.

Propagation under prescribed injected volume: We then focussed on the quasi-static crack evolution in this situation.
In this situation, the elastic energy release rate can easily be be derived from the crack opening displacement (6), and the
quasi-static evolution following Griffith criterion obtained. From this analysis, one can see that if the pressure exceed the

critical value p0 :=
√

GcE′

π`0
corresponding to an injected volume V0 :=

√
4πGc`30
E′ , then stable crack propagation becomes

impossible. If one prescribes the injected volume V , however, it is easy to see that below the critical volume V0, the crack
does no grow, and the pressure grows linearly until it reaches the critical pressure p0. For V > V0, the crack growth is
accompanied by a pressure drop. The pressure and crack length are given by:

p(V ) =

[
2E′Gc
πV

]1/3

, (10)

and

`(V ) =

[
E′V 2

4πGc

]1/3

. (11)

Figures 2, illustrate the effect of the regularization parameter ε. We consider a square (0, 8) × (0, 8) with a horizontal
crack of length .4 in its center, and discretized by a single layer of 355 × 355 bilinear finite elements of size h=2.25E-2 and
thickness 1E-2, . All components of the displacements are forced to 0 along the boundary of the domain. One observes that
as expected, the crack geometry is represented by a smooth function v taking values near 0 close to crack and gradually
increasing to 1 away from the crack. The thickness of the transition zone from 0 to 1 is given by the regularization parameter
ε, and in the limit of ε → 0, the v-field becomes sharper. The profile of the v field along a cross section through x = 0 for
the same value of h and various values of ε is shown in Figure 3. We observe that if ε is “too small” compared to the mesh
size, the smooth profile is poorly approximated. This is consistent with the compatibility condition for the Γ–convergence of
the discretized regularized energy which requires that h� ε.

Finally, Figure 4 compare the crack pressure and length as a function of the injected volume obtained for the same
parameters as above with the closed form expressions (10) and (11). When ε is “too large”, the critical pressure is underes-
timated and the critical volume overestimated. As the crack starts propagating, the computed length and pressures are very
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close to the exact expression. This behavior is explained by the softening taking place in the transition layer near the crack
which reduces the stresses near the crack tip. When ε is “too small”, compared to the mesh size, the transition profile is
poorly approximated, which leads to a poor approximation of the surface energy, hence of the crack length and pressure.

Figure 2: The v field associated with an injected volume of 2.5 the blue color corresponds to the value 1 (the untracked
material) and the red to 0 (the crack). The value of the regularization parameter ε is (left to right) 5.E-3 (2.5h), 3E-3 (1.5h),
and 5E-2 (.25h). Qualitatively, one observes that the v field is a smooth function but becomes sharper as ε decreases.

x

v

Figure 3: Profile of the v field along the vertical cross section x = 4.

In Figure 5, we fixed the ratio ε/h and refined the mesh. Again, we observe that the approach is very robust in that the
mesh size has almost no influence on the numerical solution. The pressure is slightly overestimated as the crack grows, which
is expected given the choice of boundary condition. Conversely, we ran another series of experiments (not shown here) leaving
the boundary of the computational domain stress free, which lead to slightly underestimating the pressure, as expected. The
approximation of the crack length shows very little sensitivity to the mesh size, and is very close to the expected value.

Propagation of a penny shape crack in 3d.
The same analysis can be carried out in three space dimension in which case, the critical pressures and injected volume

associated with a pre-existing penny shape crack of radius R0 are

p0 =

[
E′Gcπ

4R0

]1/2

, (12)

and

V0 =

[
64R5

0Gcπ

9E′

]1/2

. (13)
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Figure 4: Pressure and length as a function of the injected volume. The solid lines correspond to different values of the
regularization parameter ε, the dashed line are the exact expression given by (10) and (11).
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Figure 5: Pressure and length as a function of the injected volume.

Just as in the two dimensional case, it is possible to show that as long at V < V0, the crack does not grow, and that for
V > V0, the crack radius and pressure are given by

p(V ) =

[
G3
cE
′2π3

12V

]1/5

, (14)

and

R(V ) =

[
9E′V 2

64πGc

]1/5

. (15)

We ran a series of three dimensional experiments on a cubic domain (0, 1) × (0, 1) × (0, 1) discretized using various
resolution ranging from 50 × 50 × 50 to 250 × 250 × 250 finite elements. The Young’s modulus is E′ = 1, the fracture
toughness Gc = 1.91E-9. We account for a pre-existing penny shape crack of radius R0 = 0.1 in the plane x = 0.5 by
building the v field given by (8), and prescribe to 0 all components of the displacement field on the boundary of the domain.
Figure 6 represent the evolution of the fluid pressure and crack surface area as a function of the injected volume, compared
with different resolutions.

Interaction between two pressurized cracks in 2d:
The strengths of the variational approach to hydraulic stimulation can be better highlighted in more complicated sit-

uations. In a two-dimensional setting, we consider the problem of two pressurized cracks close enough from each other to
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Figure 6: Injection ressure and crack radius as a function of the injected volume. Numerical simulation (solid line) and (14)
and (15) (dashed line).
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Figure 7: Evolution of the pressure (left) and total crack length (right) for two interacting cracks

interact: in a square domain Ω = (0, 8)× (0, 8), we place two straight cracks of length 1, centered at (3.,4.25) and (4.8,4.75)
and with polar angle 0 and −30◦. For the sake of simplicity, we only prescribe the total injected volume, and assume that
the pressure is constant and equal in each crack.

As the injected volume V increases, we obtain the following evolution (see Figure 7 for the evolution of the pressure and
crack length, and Figure 8 for the evolution of the crack geometry):

1. For V < 3.3E-2, the cracks do not propagate and the pressure grows as a linear function of the injected volume.
2. At V ' 3.3E-2, one of the crack tip activates. A crack grows along a curved path, heading towards the second crack.

As expected, crack propagation is accompanied by a fluid pressure drop. The critical pressure is p ' .66E-1, compared
to p0 ' .79 for a single crack.

3. At V ' 5.6E-2, the cracks connect.
4. From V ' 5.6E-2 until V ' 6.8E-2, no growth is observed, so that again, the pressure grows linearly;
5. Finally, after V ' 6.8E-2, another crack tip activates, and we observe again a pressure drop.

We insist that the crack path is not precomputed or enforced through a branching criterion, but is given as a the result
of energy minimization, and that changes in crack topology are handled transparently by the regularized model. Moreover,
handling multiple cracks, or interactions with pre-existing cracks is no more complicated that handling a simple crack.

Conclusions
We have extended Francfort and Marigo’s variational approach to fracture in order to account for the the work of pressure

forces occurring during the hydraulic fracturing of reservoirs by fluid injection. The resulting model recasts Griffith’s criterion

7



Figure 8: Evolution of the crack geometry. Snapshot of the v field for an injected volume of .033, .056, .068, and .01.

into a sequence of unilateral minimization problems amongst all possible sets of cracks. It does not require without a priori
knowledge of crack geometry, path, or topology, and is applicable in two and three space dimensions. The numerical
implementation is based on a regularization similar to a “phase–field” model.

The method was applied to two and three–dimensional problems. In the static case, we obtained values of the crack
volume and crack opening displacement along the crack length in good agreement with values calculated from the classical
expressions in (Sneddon and Lowengrub 1969, Sec 2.4). In the quasi-static setting of prescribed injected volume, we performed
qualitative comparison of the evolution of the cracks size and injection pressure with that derived from the aforementioned
reference. We illustrated the method’s robustness with respect to mesh size, and effect of the size of the regularization
parameter, in two and three dimensions.

Finally, we presented qualitative results of two interacting cracks in a 2d medium, highlighting the capability of the
method to handle multiple cracks and their interactions and to predict complex crack path without any additional branching
criterion or computational overhead.

This work is the first major step in showing the potential of the variational fracture framework for hydraulic fracturing
of petroleum reservoirs. In subsequent works, we intend to couple the fracture model with fluid flow model to capture the
essential details relevant in a practical hydraulic fracture application.
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Nomenclature
u displacement field.
Γ: unknown crack set.
v: the smooth function representing the crack set Γ in (3).
Ω: computational domain.
A: Hooke’s law.

e(u): linearized strain tensor: e(u) := ∇u+∇Tu
2 .

Gc: the fracture toughness.
HN−1: the Hausdorff N − 1 dimensional measure, i.e. HN−1(Γ) is the length of Γ in 2d, and its surface area in 3d.
p(x): the pressure of the injected fluid
ε: the regularization parameter in (3), homogeneous to a length.
`0: the length of a preexisting straight crack.
R0: the radius f a preexisting penny-shaped crack.
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