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ABSTRACT 
Most hydraulic fracturing simulation approaches ap-
ply propagation criteria to an individual fracture 
along prescribed path(s). In practice, however, the 
modeling of hydraulic fracturing in reservoir stimula-
tion requires handling interactions between multiple 
natural or induced fractures growing along unknown 
paths, and changes in fracture pattern and network. 
 
In this paper, we extend the work of Bourdin et al 
2012 and focus on the effectof in-situ stresses on 
crack path in 2D and 3D, and revisit the verification 
work against analytic solution with more realistic 
units. The approach is based on Francfort and Mari-
go's variational approach to fracture (Francfort and 
Marigo, 1998). The main idea is to recast Griffith's 
criterion for a single fracture growth into a global 
energy minimization problem. The energy we con-
sider consists of the sum of surface and bulk terms 
accounting for the energy dissipated by a growing 
crack and the mechanical energy, including the work 
of residual (in-situ) stresses and pressure force 
against the fracture walls. To be more specific, we 
search the minimum of the total energy under any 
admissible fracture sets and kinematically admissible 
displacement field. Our focus is on quasi-static crack 
propagation propagation encountered during hydrau-
lic fracturing process, which we model as a rate in-
dependent process. This approach does not need any 
a priori knowledge of the crack path, or any addition-
al hypotheses concerning fracture nucleation or acti-
vation. We claim that it provides a mathematically 
rigorous and mechanistically sound unified frame-
work accounting, derived from first principles, and 
accounting for new fractures nucleation, existing 
fractures activation, and full fracture path determina-
tion such as branching, kinking, and interaction be-
tween multiple cracks. It is no surprise that having no 
a priori hypothesis or knowledge on fracture geome-
try comes at the cost of numerical complexity. To 
overcome the complexities associating with handling 
of large and complex fracture patterns, we propose an 

approach based on a regularized model where frac-
tures are represented by a smooth function.  
In this paper, we first show series of comparison cas-
es of the variational fracture simulation against ana-
lytical solutions. We demonstrate our approach's abil-
ity to predict complex behaviors such as turning frac-
ture under in-situ earth stresses and the interactions 
of multiple fractures. 
 

INTRODUCTION 
Hydraulic stimulation or high-pressure injection in 
geothermal reservoir often involves development of 
complex fractures due to the existence of natural 
fracture system and the relatively large thermal ef-
fects. However, conventional hydraulic fracture mod-
eling assumes fracture propagation to be planar and 
perpendicular to the minimum principle stress 
(Adachi et al. 2007), which simplifies fracture propa-
gation criteria to mode-I.  Restricting propagation 
mode search into one direction and prescribing frac-
ture growth plane can greatly reduce computation 
overhead but many of field observations, especially 
EGS experiment, suggest that fracture propagation is 
much more complex than planar (Fehler 1989; Asan-
uma et al. 2000; Gerard et al., 2006). To better de-
scribe complex responses from geothermal field, 
more tractable modeling approaches than ones de-
rived from classical fracture mechanics have been 
increasingly applied such as smeared fracture or 
damage mechanics approach (Zhang et al., 2010) 
where computation elements turns to fractured mass 
when criteria are met, or reactivation of prescribed 
fractures and subsequent rock property modification 
(Moos and Barton, 2008; Rutqvist et al., 2008; 
McClure and Horne, 2011; Rutquivst). Similar efforts 
have been made in stimulation modeling in 
shale/tight gas (Mayerhofer et al. 2010) or waste in-
jection (Moschovidis et al. 2000) to address predic-
tive capabilities of complex fracture propagation 
(Rungamornrat et al. 2005; Gu et al. 2012; Hossain et 
al. 2000). This study is an extension of the previously 
proposed variational approach (Francfort and Marigo 



1998, Bourdin et al. 2008) to hydraulic fracturing 
(Bourdin et al. 2012) accounting for the impact of in-
situ stresses on fracture propagation. One of the most 
appealing aspects of this approach is to account for 
arbitrary numbers of fractures in terms of energy 
minimization without any a priori assumption on 
their geometry, and without restricting their growth 
to specific grid directions. 
 
In this paper, we present early results obtained with 
this method. At this stage, our intent is not to imple-
ment all physical, chemical, thermal, and mechanical 
phenomena involved in the hydraulic stimulation 
process in geothermal reservoirs but to propose a 
mechanistically sound yet mathematically rigorous 
model and to demonstrate the its capabicity to predict 
propagation of fracture in an ideal albeit not unrealis-
tic situation, for which we can perform rigorous anal-
ysis and quantitative comparison with analytical solu-
tions. 
 
Specifically, we neglect all thermal and chemical 
effects and also assume that the fracturing stimulation 
is performed by hydraulic force not by explosives so 
that all inertial effects are negligible (quasi-static). 
Throughout the analyses presented, we consider res-
ervoir as an impermeable perfectly brittle linear for-
mation with no porosity and assume an inviscid fluid 
with no compressibility, which essentially lead to no 
leak-off to the formation and the constant fluid pres-
sure inside the fracture (infinite fracture conductivi-
ty), depending only on the injected fluid volume and 
total fracture opening respectively. This setting is 
also known as toughness dominated case.  

THE VARIATIONAL APPROACH TO 
HYDRAULIC FRACTURING 
The foundation of most quasi-static brittle fracture 
models, is Griffith’s observation that the energy dis-
sipation induced by a propagating crack has to be 
exactly offset by the decay of elastic energy. Typical-
ly, the latter is estimated in terms of the elastic ener-
gy restitution rate G, often derived from the stress 
intensity factors. In the Linear Fracture Mechanics 
framework, a branching criterion identifies crack 
path, based on the local stress configuration, or an 
energetic criterion, and propagation takes place when 
the elastic energy restitution rates reaches a critical 
value Gc. Noticing that the elastic energy restitution 
rate is often defined as the derivative of the total me-
chanical energy with respect to a crack increment 
length, Griffith’s criterion can be described in terms 
of the criticality of a total energy along a prescribed 
path. The basis of the variational approach to brittle 
fracture is to recast Griffith's criterion in a variational 
setting, i.e. as the minimization over any crack set 
(any set of curves in 2D or of surface in 3D, in the 
reference configuration) and any kinematically ad-
missible displacement field u, of a total energy con-

sisting of the sum of the stored potential elastic ener-
gy and a surface energy proportional to the length of 
the cracks in 2D or their area in 3D.  
 
More specifically, consider a domain : in 2 or 3 
space dimension, occupied by a perfectly brittle line-
ar material with Hooke's law A and critical energy 
release rate (or fracture toughness) Gc. Let f(t,x) de-
note a time-dependent1 body force applied to :, 
W(t,x), a surface force applied to a part wN: of its 
boundary, and g(t,x) a prescribed boundary displace-
ment on the remaining part wD:. To any arbitrary 
crack set * and any kinematically admissible dis-
placement set u, we associate the total energy 
 
F u,  ( ) := W e u( )( )d  \  ò   × uds¶N ò

 f × ud  ò +Gc 
N  1  ( )

, (1) 

 
where W is the elastic energy density associated with 
a linearized strain field e(u):=(�u +�Tu)/2, given by 
W(e(u)) := Ae(u), and HN-1(*) denotes the N-1 di-
mensional Hausdorff measure of * i.e. the length of * 
in two space dimensions and its surface area in three 
space dimensions. At any discrete time step ti, we 
look for the displacement field ui and the crack set *I 
as the solution of the minimization problem: 
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Loosely speaking, minimality with respect to the dis-
placement field accounts for the fact that the system 
achieves static equilibrium under its given crack set, 
optimality with respect to the crack set is a generali-
zation of Griffith's stationarity principle G=Gc, and 
the growth constraint * � *j for any j < i accounts for 
the irreversible nature of the fracture process. At this 
point, we insist on the fact that the crack geometry 
itself is obtained through the energy minimization 
problem and not assumed known a priori or comput-
ed with an additional branching criterion, in contrast 
with most classical models. No assumption is made 
on the geometry of the crack set, other than the 
growth condition. In particular, one does not even 
assume that the crack set consists of a single curve or 
surface, or that the number of connected components  
remains constant during the evolution (which would 
preclude nucleation or merging). Indeed, one of the 
strengths of the variational approach is to provide a 
unified setting for the path determination, nucleation, 

                                                           
1 We follow a common abuse of language by 
referring to t as “time”. Rigorously, as we place 
ourselves in the context of quasi-static evolution, t is 
to be understood as an increasing loading parameter. 



activation and growth of an arbitrary number of 
cracks in two and three space dimensions.  
 
The numerical implementation of Eq. 2 is a challeng-
ing problem that requires carefully tailored tech-
niques. The admissible displacement fields are dis-
continuous, but the location of their discontinuities is 
not known in advance, a requirement of many classi-
cal discretization methods. Also, the surface energy 
term in Eq. 1 requires approximating the location of 
cracks, together with their length, a much more chal-
lenging issue. In particular, proper attention has to be 
paid to the issue of anisotropy induced by the grid 
(Chambolle, 1999) or the mesh (Negri, 1999)  
 
The approach we present here is based on the varia-
tional approximation by elliptic functional (Ambrosio 
and Tortorelli, 1990; Ambrosio and Tortorelli, 1992). 
A small regularization parameter H is introduced and 
the location of the crack is represented by a smooth 
“phase field” function v taking values 0 close to the 
crack and 1 far from them. More precisely, one can 
prove (see Braides, 1998; Chambolle, 2004; Cham-
bolle, 2005) for instance) that as H approaches 0, the 
regularized energy 
 
F u, v( ) := v2W e u( )( )d  ò   × uds¶N  ò

 f × ud  ò +
Gc
2

1  v2( )
 

v2 +  Ñv
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approaches F in the sense of *-converges, meaning 
that the minimizers of FH converge as to that of F. 
 
An important feature of the regularized problem, in 
view of its numerical implementation, is that it does 
not require an explicit representation of the crack 
network. Instead all computations are carried out on a 
fixed mesh and the arguments of FH are smooth func-
tions, which can be discretized with standard finite 
elements. Moreover, provided that the discretization 
size and regularization parameter satisfy some com-
patibility properties, it can be shown that the *-
convergence property can be extended to the finite 
element discretization of FH. 
The actual minimization follows the approach origi-
nally devised in (Bourdin, 1999; Bourdin et al., 2000; 
Bourdin, 2007) is achieved by alternating minimiza-
tion with respect to the u and v fields, until conver-
gence. The numerical implementation on parallel 
supercomputers uses the PETSc toolkit (Balay et al., 
1997; Balay et al., 2012a; Balay et al., 2012b). 
 
Extension to hydraulic fracturing 
In order to adapt the variational fracture framework 
to hydraulic fracturing, one has to account for fluid 
pressure forces along the crack surfaces. For any 
point x on the crack set *, we denote by Q* the orient-
ed normal direction to * and by u+(x) and u-(x) the 

traces of the displacement field. With these notations, 
the work of the pressure force p becomes then 
 
 � � � � � �� � � �³* *

�� �� dsxxuxuxp Q , 
 
and the total energy becomes 
 
 � � � � � � � � � �� � � �³* *

�� ���* * dsxxuxuxpuFuE Q,:, .(4) 
 
Accounting for pressure forces in the regularized 
formulation is more technical, as the crack geometry 
is not tracked explicitly, but represented by the 
smooth field v. In the sequel, we propose to modify 
the regularized energy Eq. 3 and consider 
 
 � � � � � � � � � �³: :���* * dxvxuxpuFuE ,:, HH . (5) 
 
Following the lines of the analysis carried out in 
(Chambolle, 2004b; Chambolle 2005), it can be 
proven that the *-convergence property is preserved 
so that again, the minimizers of Eq. 5 converge to 
that of Eq.4. Intuitively, surface forces along the edg-
es of * are replaced with properly scaled body forces 
applied in a neighborhood of the cracks. 
 
In the next sections, we illustrate some of the proper-
ties of this approximation and its ability to properly 
account for pressure forces and deal with unknown 
crack path, multiple cracks and changes in their to-
pology. 
 

NUMERICAL SIMULATIONS 
 
We first revisit an idealized problem where a closed 
form solution can be obtained presented in (Bourdin 
et al, 2012). We consider an infinite two dimensional 
domain consisting of a homogeneous isotropic mate-
rial with Young's modulus E and Poisson ratio Q with 
a single pre-existing crack * of length 2l0 in the y=0 
plane. Assuming that the displacement and stress 
fields vanish at infinity, it is then possible to derive 
an exact formula for the boundary displacement of 
the crack surface subject to a constant pressure force, 
under the plane-stress hypothesis (see Sneddon and 
Lowengrub, 1969, Sec 2.4, for instance). Setting E' = 
E/(1-Q2), we have that for 00 lxl dd�  
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and that � � � �0,0, xuxu ��  . From this, it is easy to 
derive that the total volume of the crack in the de-
formed configuration is 
  



 V =
2 l0

2

E '
. (7) 

 
The elastic energy restitution rate G can also be ob-
tained by computing the work of the pressure forces 
for the displacement field in eq (6), deriving the total 
mechanical energy, and differentiating with respect to 
the crack length. Using this technique, one can easily 
see that if the pressure exceed the critical value 
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 , then satisfying Griffith’s stabil-

ity criterion G=Gc becomes impossible. In the lan-
guage of linear fracture mechanics, one says that the 
propagation becomes unstable. If one prescribes the 
injected volume V, however, it is easy to see that be-
low the critical volume V0, the crack does not grow, 
and the pressure grows linearly until it reaches the 
critical pressure p0. When V exceeds V0, the crack 
grows and the pressure drops. The pressure and crack 
length are given by: 
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As long as the crack remains short enough compared 
to the computational domain, one can expect that the 
solution obtained while forcing all components of the 
displacements to 0 at the boundary of the computa-
tional domain is close to that on an infinite domain 
described above.  We ran a series of numerical simu-
lations for a square domain of size 8 m u 8 m with a 
horizontal crack of length .4 m in its center, discre-
tized by a single layer of 355 u 355 bilinear finite 
elements of size h=2.25E-2 m and thickness 1E-2 m.  
Figure 1 represents the function v representing the 
crack set for an injected “volume” V=.025m2, and 
decreasing values of the regularization parameter H. 
The color blue corresponds to the value 1, red to 0. 
As expected, one observes that the function v is 
smooth and remains close to 1 except on an area 
along a segment where it transitions to 0. Moreover, 
one sees that the width of the transition area decreas-
es with H. Figure 2 represents the the profile of the v-
field along a cross section through x = 0 for the same 
value of h and various values of H. We observe that if 
H is “too small” compared to the mesh size, the 
smooth profile is poorly approximated. This is con-

sistent with the compatibility condition for the *-
convergence of the discretized regularized energy, 
which requires that h ≪ H. 

   

   
Figure 1: The v field associated with an injected vol-
ume of 2.5 the blue color corresponds to the value 1 
(the uncracked material) and the red to 0 (the crack). 
The value of the regularization parameter ε is (left to 
right) 5.6E-2 (2.5h), 4.5E-2 (2h), 2.2E-2 (h), and 
5.6E-3 (.25h). Qualitatively, one observes that the v 
field is a smooth function but becomes sharper as ε 
decreases. 
 

  
Figure 2:Profile of the v-field along the vertical 
cross-section x=4. 
 
Finally, Figure 3 compares the crack pressure and 
length as a function of the injected volume obtained 
for Young's modulus of 10 GPa and fracture tough-
ness of 100 Pa-m with the closed form expressions 
Eqs. 10 and 11. When H is “too large”, the critical 
pressure is underestimated and the critical volume 



overestimated. As the crack starts propagating, the 
computed length and pressures are very close to the 
exact expression. This behavior is explained by the 
softening taking place in the transition layer near the 
crack, which reduces the stresses near the crack tip. 
When H is “too small”, compared to the mesh size, 
the transition profile is poorly approximated, which 
leads to a poor approximation of the surface energy, 
hence of the crack length and pressure. 
 

 
Figure 3: Pressure and crack length as a function of 
the injected volume. The solid lines correspond to 
different values of the regularization parameter H, the 
dashed lines are the exact expressions given by (10) 
and (11). 
 
In Figure 5, we fixed the ratio hH  and refined the 
mesh. Again, we observe that the approach is very 
robust in that the mesh size has almost no influence 
on the numerical solution. The pressure is slightly 
overestimated as the crack grows, which is expected 
given the choice of boundary condition. Indeed, we 
ran another series of experiments (not shown here) 
leaving the boundary of the computational domain 
stress free, which lead to slightly underestimating the 

pressure, as expected. The approximation of the crack 
length also shows little sensitivity to the mesh size, 
and is very close to the expected value. 
 

 
Figure 4: Effect of the discretization size on the injec-
tion pressure and crack length. 
 
Isotropy of the discrete model 
The effect of mesh and grid isotropy on the approxi-
mation of free-discontinuity problems is now well 
understood (see Chambolle 1995, Negri 1999). The 
main issue is that the approximation of the surface 
energy associated with a unit length may exhibit a 
strong dependency on the crack orientation relative to 
the grid directions, when using structured meshes, 
and when the regularization parameter H is of the or-
der of the mesh size. We reproduced the experiments 
from Figure 4 with a ratio hH  of 2, starting from a 
crack forming an angle of 0, 15, 30, and 45 degrees 
with the x-axis. The evolution of the fluid pressure 
and crack length as a function of the injection volume 
are presented in Figure 6. The variations of the meas-
ured quantities due to the crack orientation are mini-
mal, even for such a small  h  ratio. Note that be-
cause of the finiteness of the computational domain, 



some variations should be expected. A more careful 
study would be necessary in order to decouple the 
anisotropy due to the geometry of the computational 
domain from the one induced by its discretization. 
Note also that the results shown later in Figure 8 do 
not exhibit the classical artifact induced by an aniso-
tropic approximation of the surface energy, i.e. 
cracks consisting solely of straight segments along 
the coordinate axes, but instead show cracks consist-
ing of smooth curves. 
 

 

 
Figure 5: Evolution of the injection pressure and 
crack length for cracks with angles of 0,15,30,45 
degrees from the x-axis. 
 
 
Effect of in-situ stresses 
It is well known that during hydraulic fracturing, an 
isolated crack will reorient itself until it becomes 
orthogonal to the direction of least principal stress 
(Weng 1993, Adachi et al. 2007). We repeated the 
previous series of computation while subjecting the 
computational domain to boundary forces simulating 
in-situ stresses. Figure 6 represents the evolution of a 
pre-existing crack forming an angle of 30o (top row) 

and 15 o (bottom row) with the horizontal axis, under 
uniaxial (  11=50MPa, left) and biaxial in-situ stress 
fields (  11=50MPa,  33=25MPa, right). Qualitative-
ly, one observes that cracks reorient themselves along 
the vertical axis. As one would expect, the reorienta-
tion takes place within a smaller area when the do-
main is subject to uniaxial stresses. More surprising-
ly, for a shallow crack under uniaxial stress condi-
tion, asymmetric crack patterns are energetically fa-
vored over symmetric ones. Of course, the pattern 
displayed is one of two equivalent solutions. That our 
numerical algorithm favored one over the other is due 
to multiple factors including round-up error and nu-
merical error of the iterative solvers for the alternate 
minimization algorithm, for instance. This example 
illustrates how even in the case of a symmetric prob-
lem, lack of uniqueness of the minimizer of the total 
energy can lead to a solution set consisting of multi-
ple asymmetric solutions instead of a unique symmet-
ric one. It also highlights how crack path identifica-
tion can be complicated, even in the case of a very 
simple geometry. A better –quantitative– comparison 
with classical solutions is pending and was not avail-
able in time for inclusion in this report. Again, we 
stress that the fact that the pre-existing cracks propa-
gate in the direction orthogonal to the least principal 
stress arises from the energy minimization principle, 
and is not enforced explicitly.  
 

   
 

   
 
Figure 6: Crack path for a slanted crack under in-
situ stresses. 
 
  
Fracture propagation under prescribed injection 
rate in 3D  
The same analysis can be carried out in three space 
dimension in which case, the critical pressure p0 and 
injected volume V0 associated with a pre-existing 
penny shape crack of radius R0 are 
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Just as in the two dimensional case, it is possible to 
show that as long at V < V0, the crack does not grow, 
and that for V > V0, the crack radius and pressure are 
given by 
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Figure 7: Pressure and crack radius as a function of 
the injected volume. Numerical simulations (solid 
lines) and closed form solution (14-15) (dashed line). 

 
We ran a series of three dimensional experiments on 
a cubic domain 10 m u 10 m u 10 m discretized using 
various resolution ranging from 50 u 50 u 50  to 250 
u 250 u 250 bilinear finite elements. The Young's 
modulus is 10 GPa, and the fracture toughness is 191 
Pa-m. We account for a pre-existing penny shape 
crack of radius R0 = 1 m in the plane x = 5 by build-
ing the v-field given by Eq. 8, and prescribe to 0 all 
components of the displacement field on the bounda-
ry of the domain. Figure 7 shows the evolution of the 
fluid pressure and crack surface area as a function of 
the injected volume, compared with different resolu-
tions. The discrepancy in the surface energy for small 
injected volume of fluid is due to the way the initial 
crack is constructed as an approximation of the v 
field associated with a penny-shaped crack, but 
seems to bear no impact on the crack evolution for 
higher injection volume. 
 
Again, the impact of in-situ stresses on crack path 
can be studied by repeating the same computation 
with while varying the orientation of the initial crack. 
We started from a crack with normal vector forming 
an angle φ with the vertical axis (co-latitude) and θ 
with the x-axis (longitude), and varied the form of the 
in-situ stress field 
 

   

   
Figure 8: Crack path for a single slanted penny-
shaped crack propagating under prescribed injection 
volume in a medium subject to anisotropic in-situ 
stresses. 



 Figure 8 show the crack pattern (obtained by taking 
the isosurface 0.1 of the v field). The first row corre-
spond to an initial crack orientation φ=30˚, θ=10˚ and 
a stress field given by σ11=-50MPa, σ22=-25MPa, 
and σ33=-50MPa (left) and σ11=-5MPa, σ22=-
50MPa, and σ33=-50MPa (right).  The second row 
corresponds to orientation φ=30˚, θ=0˚, and σ11=-
5MPa, σ22=-50MPa, and σ33=-50MPa (left) or 
σ11=-50MPa, σ22=-5MPa, and σ33=-50MPa (left). . 
As in the two-dimensional case, we observed that 
asymmetric propagation is sometimes favored of 
symmetric one, and that the area within which crack 
change direction is affected by the anisotropy of the 
in-situ stress field. A quantitative study of this phe-
nomenon is pending.   
 
Interaction between two pressurized cracks in 2D  
Beside its ability to identify complex crack paths in 2 
and 3 dimension, the variational approach to fracture 
is also capable of handling interactions between 
cracks in a simple and efficient way, which we illus-
trate in a final set of numerical experiments. In a two-
dimensional setting, we consider the problem of two 
pressurized cracks close enough from each other to 
interact: in a square domain : = 8m u 8m, we placed 
two straight cracks of length 1m, centered at (3.,4.25) 
and (4.8,4.75) and with polar angle 0 and ‑30o. For 
the sake of simplicity, we only prescribed the total 
injected volume, and assumed that the pressure was 
constant and equal in each crack.  
 

 
 

Figure 9: Evolution of crack geometry. Snapshot of 
the v field for an injected volume of .033, .056, .068, 
and .01 m2. 
 
The evolution of the crack path, using the same con-
vention as before is shown in Figure 9, while Figure 
10 highlight the evolution of the pressure and crack 

length as a function of the injected volume. The sys-
tem evolves as follows:  
1. For V < 3.3E-2 m2, neither of the cracks propa-

gate. As in the case of a single crack, the pres-
sure grows as a linear function of the injected 
volume. 

2. Upon a first critical volume V # 3.3E-2 m2, one 
of the crack tip activates. A crack grows along a 
curved path, heading towards the second crack. 
As expected, as a crack propagates, the fluid 
pressure drops. The critical pressure is p # .066 
MPa, compared to p0 # .79 MPa for an isolated 
crack with the same length. 

3. When V # 5.6E-2 m2, the cracks connect. Notice 
that the handling of the crack merging requires 
no additional work in the variational approach.  

4. From V # 5.6E-2 m2 until V # 6.8E-2 m2, the 
pressure grows linearly, and the crack length re-
mains constant; 

5. Finally, after V # 6.8E-2 m2, another crack tip 
activates, and we observe again a pressure drop. 

We insist again that in this and the above simulations, 
the crack path was not precomputed or enforced 
through a branching criterion. Instead it was obtained 
by minimization of the system’s total energy. Even 
changes in crack topology were handled transparently 
by the regularized model and required no additional 
processing. Finally, in the variational approach, han-
dling multiple interacting cracks or interactions with 
pre-existing cracks is no more complicated or compu-
tationally intensive that handling a simple crack. 
 

CONCLUSIONS 
Through a series of simple numerical verification 
experiments, we show how the variational approach 
to fracture can address some of the challenges en-
countered in the numerical simulation of hydraulic 
stimulation, including the identification of complex 
crack path in 2 and 3 dimensions, the handling of in-
situ stresses, and the interactions between multiple 
cracks. So far, most of our effort has been focused on 
verification numerical experiments under very ideal-
ized situations. A next phase of this work will focus 
on the validation of the model and its implementation 
against real experiments. Further extensions will also 
be required in order to handle flow in the reservoir 
and leak-off, for instance. 
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