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Abstract

The numerical implementation of the model of brittle fracture developed in Francfort
and Marigo (1998. J. Mech. Phys. Solids 46 (8), 1319±1342) is presented. Various

computational methods based on variational approximations of the original functional are
proposed. They are tested on several antiplanar and planar examples that are beyond the
reach of the classical computational tools of fracture mechanics. # 2000 Elsevier Science
Ltd. All rights reserved.

Keywords: A. Fracture; Fracture toughness; C. Energy methods; Variational calculus; Finite elements

1. Introduction

The present work follows in the footsteps of a previous study (Francfort and
Marigo, 1998) where a variational model for quasistatic crack evolution in a
brittle material is proposed. Its merits and drawbacks are elaborated upon in
Francfort and Marigo (1998) and we will presently refrain from any further
comments, so as to concentrate instead on a numerical feasibility study. Our goal
is to convince the reader that the model lives up to its theoretical expectation and
is a useful and manageable predictive tool. To this end, we will confront settings
that are beyond the scope of the usual computational arsenal of the investigator
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in the ®eld; we will demonstrate that a carefully tailored numerical version of the
model does not stall in such hostile environments but delivers crack evolutions
which ®t squarely within the proposed framework.

Of course, we still fall short of the ultimate goal of any predictive theory,
namely the corroboration and prediction of experimental results. Such a goal
cannot be contemplated without prior internal review of the self-consistency of the
model. This is how the present work should be viewed, although we do not turn a
blind eye to experimental results, whenever they are known to us. But, in all
fairness, such comparisons can only be qualitative in the absence of a detailed
experimental/numerical protocol. We do hope to be able, in the not too distant
future, to report on the successÐor failureÐof such an undertaking.

Let us now brie¯y recapitulate the main features of the model in an exemplary
setting: a homogeneous two-dimensional elastic body O with elasticity tensor A
and fracture toughness k is submitted to an imposed displacement ®eld U(t, x ) on
the part @O\N of its boundary and free of tractions on the complementary part
N of that boundary. We further assume that, at time t = 0, the body O is
uncracked and that U(t, x )=tU(x ), where U(x ) is a smooth displacement ®eld. If
G is a crack, a compact in �O (the crack may go to the boundary), its surface
energy is

Es�G� � kH1�GnN�,

where, here and in the remainder of the paper, Hn ÿ 1 denotes the n ÿ 1-
dimensional Hausdor� measure, a measure which coincides with the usual surface
measure for smooth enough hypersurfaces of Rn. Note that the surface energy will
be in®nite for cracks that are too fat, i.e., with in®nite one-dimensional Hausdor�
measure. Note also that this de®nition of the surface energy slightly departs from
that proposed in Francfort and Marigo (1998); the resulting formulation will,
however, be equivalent.

We now de®ne the bulk energy as

Ee�G, t� � inf w

(�
OnG

Ae�w� � e�w�dx;w � U�t� on @On�N [ G�
)
,

where e(w )=1/2(Hw+Hw t). A more precise de®nition is given in Francfort and
Marigo (1998). It is worth emphasizing that the bulk energy is not a minimum,
but merely an in®mum because the in®mum might not be attained if G is not
smooth `enough'.

The total energy is de®ned as

E�G, t� � Es�G� � Ee�G, t�:

The evolution of the crack is then governed by the following law (see Law 2.9 in
Francfort and Marigo, 1998):

1. G(t )W with t with G(t )=;, t<0,
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2. E(G(t ), t )R E(G, t ), for any Gw[ s<tG(s ),
3. E(G(t ), t )R E(G(s ), t ), for all s< t.

As noted in Francfort and Marigo (1998) the ®rst condition forces the crack to
grow with time, the second states that the total energy of the actual crack is
minimal among all cracks that are compatible with the fracture state at the
current time, while the third and surprising condition forces the crack to keep

track of its prior energetic states. The latter condition is shown in Francfort and
Marigo (1998) to amount to a selection criterion among possible crack evolutions
(see Remark 4.18 in Francfort and Marigo, 1998). Remark also that fat cracks are
prohibited by condition (2).

The search for global minimizers might be too di�cult a task for an actual
material whenever energy barriers surround a `metastable state'. In such a

situation, it is certainly more realistic for the material to remain in that
metastable state. In mathematical terms, local minimizers should provide a more
accurate description of crack evolution. This is not taken into consideration in
the proposed model, although it is the object of ongoing research. In any case,
global minimization delivers the worst case scenario for quasistatic crack
growth. Further, note that the lack of convexity of the relevant energies may
lead the numerical schemes to actually detect local rather than global
minimizers.

Whenever time is discretizedÐwhich is certainly the case in any numerical
simulationÐand the time steps are t0=0 R t1 R � � �R tp R � � �, conditions (1)±(3)
degenerate into

1. GiwGi ÿ 1,
2. E(Gi, ti)R E(G, ti), for all GwGi ÿ 1,

which is more readily interpreted than its continuous analogue.

Our goal is to implement the discretized scheme in a realistic setting. A brute
force approach is doomed because we do not a priori know the locus of the
optimal crack at time ti. The two methods detailed in Section 2 address the
aforementioned issue. Both are based on the concept of G-convergence which

describes in mathematical terms how a sequence of functionals depending on a
parameter converges to the desired functional as that parameter tends to 0 (see
Section 2).

The ®rst method introduces a two-®eld functional; the ®rst ®eld
approximates the solution-displacement ®eld for the given boundary
displacement and fore the solution-crack while the second is a ®eld that

varies between 0 and 1, takes the value 0 near the crack and 1 away from it.
This functional, which has been introduced in the context of image
segmentation in Ambrosio and Tortorelli (1990), is a continuous two-®eld
functional. It has to be further discretized, so as to become amenable to
numerical implementation. The functional, its discretization and associated
issues are discussed in Subsection 2.1.

The second method goes directly to the discrete level by introducing a one-®eld
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functional de®ned on a triangulation of the domain. In essence, it is also a two-
®eld functional, but the second ®eld is a triangulation. That functional and
associated issues are discussed in Subsection 2.2.

The short Subsection 2.3 aims at comparing the two methods and refers for
such a task to the example developed in Subsection 3.1.

Subsection 2.4 mentions the additional theoretical hurdles raised by a plane
elasticity setting.

Section 3 is devoted to the computation of three evolutions that illustrate the
¯exibility of the methods introduced in Section 2. Subsection 3.1 investigates the
tearing of a rigid reinforcement in an elastic matrix; Subsection 3.2 looks at crack
growth in a ®ber reinforced rectangular matrix submitted to monotonically
increasing displacements on one of its sides; Subsection 3.3 follows the mixed
mode propagation of a pre-existing crack in a rectangular plate.

Unfortunately, the intricacies of the proposed schemes are, as in all numerical
studies, of a mathematical nature. Although we made every feasible attempt to
keep technicalities to the bare minimum, we could not ignore or bypass notions
such as G-convergence, because those are at the root of a satisfactory handling of
the model. The mechanical soundness of the model cannot be found in its
numerical implementation, but rather in the results that such an implementation
will produce. Therefore, a reader merely interested in confronting the model with
his or her own mechanical intuition is urged to skip Section 2 and to ponder the
examples presented in Section 3; such a reader, as well as others, should however,
refrain from lending mechanical signi®cance to the approximations discussed in
Section 2.

2. Numerical implementation of the model

This section is devoted to an exposition of two numerical methods that are
suited to the implementation of the model presented in the introduction.

Our model of brittle fracture is close to a model of image segmentation, namely
that obtained through the minimization of the Mumford±Shah functional
(Mumford and Shah, 1989); the latter has been thoroughly investigated in recent
years. For a given grey level image (i.e., a real valued function g, de®ned on a
bounded open domain O ), the goal is to minimize the following energy�

OnK
j ru j2 � j uÿ g j2 dx�Hnÿ1�K �,

over each compact subset of Rn, K (the `edge set' of the image) and each real
valued function u (the `segmented image'), continuous on O\K.

From a mathematical standpoint this minimization problem is awkward, mainly
because it is not easy to see how to topologize such compact sets. The remarkable
`trick' used in De-Giorgi et al. (1989) is to resort to an adequate weak formulation
of this problem in a framework that is more classical from the standpoint of the
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calculus of variations, albeit at the expense of using a somewhat exotic functional
space, the space of special bounded variation functions, SBV(O ), a space
introduced in Ambrosio (1990) which allows for jump discontinuities in the ®elds
(the jump set of an element u in SBV(O ) is denoted by Su). The weak functional is
then de®ned as�

O
j rv j2 � j vÿ g j2 dx�Hnÿ1�Sv \ O�:

Using results in Ambrosio (1989a, 1989b, 1990), the latter is shown in De-Giorgi
et al. (1989) to admit a minimum u in SBV(O ), and it is also shown there that the
pair (u, Su) is a solution to the original problem.

The weak formulation provides a good starting point for a numerical
implementation of the Mumford±Shah model. That this is so is not obvious at
®rst glance because functions of SBV(O ) can exhibit jump discontinuities on
arbitrary `smooth' lower-dimensional manifolds. A classical ®nite element
methodÐor ®nite di�erence method, or any other method for that matterÐis
immediately doomed since the locus of the jump set is a priori unknown. The
proposed methods rely on some kind of `regularization' through G-convergence
(see Ambrosio and Tortorelli, 1990, 1992; Chambolle and Dal Maso, 1998 for
di�erent regularizations). There is still the additional task of implementing a
numerical method for the minimization of the regularized problem (Finzi-Vita and
Perugia, 1995; Bourdin, 1999; Chambolle, 1999; Bourdin and Chambolle, in
preparation; Bellettini and Coscia, 1994).

The antiplane isotropic elasticity case with constant elasticity and fracture
toughness is the closest in spirit to the Mumford±Shah functional. In the former
however, non-homogeneous Dirichlet boundary conditions will replace the
fOvuÿgv2 dx term while the set of admissible cracks will be somewhat di�erent
from the set of edges. Indeed, while in the image context, edges are to be detected
inside the domain, cracks are to be accounted for inside and at the boundary of
the domain. As such, the weak formulation cannot be a direct transposition of
that established for the image problem. A similar di�culty has been addressed in
Carriero and Leaci (1990) through the use of an extension of the boundary
condition to the whole space Rn. This method will be slightly modi®ed so as to be
in a position to treat a mixed boundary value problem.

The numerical models used for the isotropic antiplane case with constant
toughness are described below. Their extension to plane elasticity is also discussed.
The mathematical details are kept to the absolute minimum and the interested
reader should refer to the quoted references for a rigorous study. Firstly, we
present the weak formulation and explain how boundary conditions are dealt
with, then we suggest two regularizations of the resulting functional and detail
their implementations. Finally, a comparison between those is conducted on a test
case (see Subsection 3.1).

In what follows, O denotes a bounded open domain of R2 with piecewise
Lipschitz boundary and U, a W 1,1 function. The variational model for brittle
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fracture described in this section is applied to an isotropic antiplane case with
constant fracture toughness and, for the sake of simplicity, we will assume that
the toughness is 1 and that the LameÂ coe�cient m is 2. Note however, that general
values of m can be recovered by a change of scales, because the energy is not scale
invariant. The `strong' problem is given by the functional

E�u, K � �
�
OnK
j ru j2 dx�H1�K \ �O�,

for each admissible crack set K � �O and each admissible function, u $ W 1,2(O\K )
such that u=U on a part of @O, denoted by D, and such that @u/@n = 0 on
N=@O\D. As noted above, the formulation must allow for jumps of u on @O.
Thus, the function E is rede®ned on a `large enough' open set ~O, containing �O (an
estimate of `how large' ~O should be will be given). We are now in a position to
lend a meaning to the Dirichlet boundary condition U upon replacing the set of
admissible functions by the set of W 1, 2� ~OnK �-functions with prescribed value U
on ~On �O: We have, however, lost the traction-free boundary conditions on N.
They are recovered by allowing ~O to experience free cracking wherever the normal
derivative of the function u should be zero. The surface energy is thus computed
on �OnN [i.e., H1(K ) is replaced by H1(K\N)]. The mixed boundary problem is

�P�:

8>>>>><>>>>>:
Find a compact subset K of �O, and

u 2 Us � fv 2W 1,2� ~On�K [N�� such that v � U on ~On �Og,
that minimizes

E�v, K � �
�
On�K[N�

j rv j2 dx�H1�SvnN�:

Note that such a procedure permits us to consider cracked domains with traction-
free crack lips upon letting N be a subset of O- instead of @O.

It can be proved (see Bourdin, 1998) that the `strong' problem is equivalent to
the following `weak' problem:

�P �:

8>>>><>>>>:
Find u 2 SBV� ~O�, such that u � U on ~On �O, minimizing

E�v� �
�
O
j rv j2 dx�H1�SvnN�

on Uw � fv 2 SBV� ~O� such that v � U on ~On �Og:
In other words the problem (P) admits (u, Su\N) as a minimum. Let us merely
recall the main steps in the proof. It is ®rstly shown that if (u, K ) is a minimizer
for (P), then u is an admissible function for (P ) and its weak energy E(u ) is lower
than or equal to its strong energy E(u, K ). Then one establishes the existence of at
least one solution to the weak problem and one shows that the associated jump
set satis®es H1((Su\N)\(Su\N))=0 [i.e., E(u, Su\N)=E(u )] which yields the
existence of a solution to (P).

The weak problem is closer to a standard minimization problem but does not
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yet ®t into an adequate framework for numerical implementation (the set K has
been somehow `arti®cially' removed in E, but the jump set Su is still a problem as
far as the numerical implementation is concerned). But, as will be seen below, a
correct approximation of the weak problem is in turn amenable to numerical
implementation.

The two methods introduced below make use of the same analytical tools.
Formally, we build a sequence of regularized functional {Ec}c and successively
prove its G-convergence to E, the existence of minimizers for each of its terms Ec

and the compactness of the resulting sequence. We merely recall the de®nition of
G-convergence and explain how the above quoted properties can give rise to an
adequate numerical scheme. Let us de®ne a functional G and a sequence {Gc}c on
a functional space X. Then, GcG (t )-converges to G when c 4 0 if the following
properties are met by each function u $X:

1. Each sequence of functions {uc}c in X converging to u for the topology t
satis®es

liminf
c40

Gc�uc�rG�u�:

2. There exists a sequence of functions (uc)c in X that converges to u for the
topology t, such that

limsup
c40

Gc�uc�RG�u�:

If both properties hold true, let {uÄc}c be a sequence of minimizer for {Gc}c. By the
compactness property, there exists uÄ $ X such that, for a subsequence of uÄc, still
indexed by c, ~ucÿÿÿ4t ~u; by the estimate for the lower G-limit, one deduces that lim
infc40Gc (uÄc)rG(uÄ ) and then by applying the estimate for the upper G-limit to the
minimum for G, there exists, for each v $ X, a sequence {vc}c converging to v such
that

G�v�r limsup
c40

Gc�vc�r liminf
c40

Gc� ~uc�rG� ~u�,

so that uÄ is a minimizer for G and Gc� ~uc�ÿÿÿ4c40
G� ~u�:

We are now in a position to introduce two di�erent regularizations of the weak
energy E in the antiplane case. While the ®rst one is a straightforward adaptation
of a well-known regularization of the Mumford±Shah problem (see Ambrosio and
Tortorelli, 1990, 1992)Ðitself in the spirit of a result on the regularization of a
phase transition problem (see Modica and Mortola, 1977)Ðthe approach in the
second one is totally di�erent and extensively uses the mesh adaptation
techniques. We will detail the computation of the ®rst time step, according to the
discrete time scheme introduced in Francfort and Marigo (1998) and extend both
methods to the following time steps.
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2.1. Approximation by an elliptic functional

In this subsection, we adapt the regularized formulation used in Ambrosio and
Tortorelli (1992) to our problem and discuss its implementation.

The main idea in this kind of approximation is to introduce an auxiliary
variable (subsequently denoted by v ) that represents in some sense the jump set in
E. In order to lend a meaning to the G-convergence of a two-®eld functional to a
one-®eld one, it is convenient to extend the de®nition of E by setting

F�u, v� �
(
E�u� if u 2 SBV� ~O�, u � U on ~On �O, and v � 1 a:e: on ~O,
�1 otherwise,

�1�

and to introduce the following regularized functional, for each u 2W 1, 2� ~OnN�
and v 2W 1, 2� ~OnN; �0, 1��,

Ec�u, v� �
�
OnN
�v2 � kc� j ru j2 dx�

�
~OnN

�
c j rv j2 ��1ÿ v�2

4c

�
dx, �2�

where kc is a positive constant depending only on c. We then de®ne

Fc�u,

v� �
(
Ec�u, v� if u 2W 1, 2� ~OnN�, u � U on ~On �O, and v 2W 1, 2� ~OnN;�0, 1��
�1 otherwise:

�3�

Then, if kc<<c when c4 0, the following properties are proved:

1. Fc G(L
2)-converges to F as c4 0.

2. There exists at least one minimizer (uc, vc) for Ec with prescribed value U on
~On �O:

3. The sequence of minimizers for Fc is compact in L 2.

Thus, in the limit the minimization of F and that of Fc are equivalent. The proofs
of the G-limit estimates further demonstrate that the ®rst part of the regularized
energy fO\N(v 2+kc)vHuv2 dx converges to the bulk energy fO\NvHuv2 dx while the
second one converges to the surface energy H1(Su\N). Finally, the auxiliary
function v in Ec converges pointwise to 1 on ~OnSu and to 0 on Su.

The same G-convergence results holds for the discrete functional Ec,h, de®ned by
the projection of Ec over a piecewise a�ne ®nite element space, provided that the
characteristic length of the mesh, h (de®ned as the radius of a circle included in or
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containing an element) tends to zero faster than the in®nitesimals kc and c
(Bellettini and Coscia, 1994). In the following subsection, we discuss the numerical
solving of the discrete minimization problem.

2.1.1. Numerical solving of the discrete problem
We propose to minimize the regularized functional for small c's. Note however,

that the G-convergence result does not provide an error estimate between the
minimizers for E and those for Ec,h, so that we cannot evaluate how close the
computed solution is to that of the original problem.

At this stage, quite a few technical issues are to be addressed. Firstly, in view of
the presence of the term v 2vHuv2, the functional Ec,h is not convex in (u, v ). Then,
even if the existence of a minimizer is proved, it may not be unique (note that
since this is also true of the strong and weak functionals, a regularized functional,
the minimizer of which is unique would be a bad candidate for actual numerical
use). Further, the convergence criterion is rather ambiguous, and does not guide
our choice of the parameters c, kc, h and of the size of
~O: Let us ®rst describe the minimization of the discrete functional, assuming that
the ®xed parameters c, kc and h are already suitable for a good approximation.

Although Ec,h is not convex in general, it is convex and coercive in each
variable, so that, once one of the ®elds is ®xed, the minimization with respect to
the other variable is easy. The idea is then to iterate minimizations in each
variable until the successive minimizers are close enough to one another. This
alternate minimization method is similar to the relaxation algorithm for quadratic
problems (in order to prevent any confusion between the relaxation method for
solving quadratic problems and the functional theory of relaxation, we will keep
calling the method alternate minimization). Again, we are unable to prove the
convergence of this algorithm; the sequence of optimal energies does converge
and, up to a subsequence, the alternate minimizers converge to some critical point
of Ec,h. Both minimization problems are implemented by a standard ®nite element
method, with triangular ®rst-order Lagrange elements. As discussed in the next
section, it is not required nor desirable to use higher order elements. We remark
that the u-problem can be solved in the physical domain O, while the v-problem
needs to be implemented on the logical domain ~O: Note that, for the sake of
simplicity, we use the same triangulation for both problems. The minimization
algorithm is then

. Initialization
Fix the regularization parameter c, the mesh size h and the parameter kc,

build a triangulation of ~O and choose a `good' starting point v0.
. Iteration k

1. Compute uk, minimizing Ec,h (�, vk ÿ 1) on O for the given boundary
conditions.

2. Extend uk by U on ~OnO:
3. Compute vk, minimizing Ec,h (uk, �) on ~O:
4. If kvkÿvk ÿ 1k1rE, perform an additional step; if not, exit.
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. Conclusion
Compute the optimal energies, save data and return to the initialization step

for the next time step.

The implementation of the next load steps in the study of a monotonically
increasing load follows easily. Since it su�ces to add an irreversibility criterion on
the crack set (i.e., that the cracks do not experience self-healing as the load
increases), one should disconnect the nodes where a crack is detected, or,
equivalently, add restrictions on the admissible set for the crack ®eld by imposing
some homogeneous Dirichlet conditions on the detected crack ®eld v. The second
solution is that which has been implemented.

2.1.2. Parameter adjustment
We now discuss the choice of parameters for an actual and e�cient numerical

implementation of the algorithm. The numerical parameters that have to be set
prior to any computation are the logical domain ~O, the regularization parameters
c and kc and the mesh step h. The role of the parameter kc is easy to understand.
It is used to ensure the existence of the minimizers for Ec at ®xed c. As far as the
solving of the discrete problem is concerned, it is used to prevent the problem
from being ill-posed. Assume that kc=0; then, if the v ®eld is numerically equal to
zero for a node and for each of its neighbors, the corresponding line of the ®nite
element matrix and of its right-hand-side are both identically equal to zero and
the solving of the linear system associated with the ®nite element problem will
diverge. On the contrary, if kc is too big, then some rigidity will remain in the
cracked region, and the bulk energy will be overestimated while the energy
restitution of a crack will be underestimated. The choice of this parameter is then
a compromise between numerical stability and e�ciency.

The choice of the other parameters is more subtle and requires the study of
various estimates for the upper and lower G-limits. For the sake of simplicity, we
only investigate the sequence built for the estimate from above in the G-limit in a
one-dimensional case. Assume that the crack is at the section t=0 of the domain,
t being a parameterization of the bar. In that case, the function v, built in the
upper G-limit estimate is equal to 0 for vtv R Ch, and to 1ÿexp(ÿvtv/2c ) otherwise.
Thus, for ®xed h and c, the ®rst term is of the order of h/c, which illustrates the
hypothesis h<<c. Note that this estimate is independent of the order of the ®nite
element method, so that increasing the accuracy of the discrete approximation
through the use of a higher-order interpolation operator will not be bene®cial.
Note also that this criterion is only required `close' to the cracks, so ®ne meshing
is only necessary across the cracks.

The estimate for v `far' from the cracks is useful for understanding how big ~O
should be compared to O. Let us neglect the discretization error. The
approximation of v far from the jumps of the displacement ®eld implies that the
computed surface energy in that region is less than 1/cfT0 exp(ÿt/c )dt, where
T � dist�Su, @ ~O�: So the error on the surface energy term is of the order of
exp(ÿT/c ).
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The last parameter is the regularization constant, c. Its in¯uence on the
computed energy and minimizers has a mechanical interpretation: Ec resembles a
damage model where v is the damage variable. This is however, a mere
mathematical artifact, although it does establish the convergence of a very speci®c
damage model to a fracture model. In this context, the parameter c can be
interpreted as a characteristic damage scale; a softening phenomenon takes place
across the crack, causing the bulk energy to be underestimated.

The previous considerations can be summarized as follows:

. c must be chosen small enough to prevent a softening e�ect that causes the bulk
energy to be underestimated and large enough compared to the discretization
step h near the cracks, so as not to overestimate the surface energy.

. kc must be big enough to prevent the numerical scheme from diverging but
small enough, so as not to overestimate the bulk energy near the crack.

. The logical domain must be tailored to c, so as to adequately estimate the
energy of cracks near the boundary of the physical domain.

Our remarks on the shape of the approximating crack ®eld permit an easy
implementation of an adaptive mesh strategy where the v ®eld is used as an error
estimator in a mesh generator that re®nes the triangulation wherever h is close to
0 (close to the cracks), and possibly enlarges elements elsewhere. This kind of
adaptive approach seems very promising in terms of computational cost. Indeed,
the proposed algorithm forces the solving of an elasticity-like problem (the u-
problem) at each alternate minimization step (we have observed up to 150 such
steps for a single loading step). Thus, any improvement in the ®nite element
process (assembly, linear system solving) could drastically reduce the
computational cost.

The last datum to be set before starting the algorithm is the starting point v0.
For want of uniqueness of the minimizers, the algorithm will be sensitive to the
choice of v0. As ®rst time step in a discrete time scheme, we choose v001. At the
next time step, we can choose either to reuse the last computed ®eld v or to start
again with v001. In the numerical experiments presented below, we initialize v00
1 at each time step.

2.2. Approximation by means of adaptive ®nite elements

In this section, we brie¯y detail the implementation of a second approximation
that makes an extensive use of the mesh adaptation techniques. The method is
based on that developed for the Mumford±Shah problem in Bourdin and
Chambolle (1999), where the numerical implementation and the mathematical
properties of a variant of an approximation proposed in Chambolle and Dal
Maso (1998) is detailed.

The main di�erence between this method and the previous one is that we try to
build a regularized functional de®ned on a ®nite element spaceÐa ®nite
dimensional spaceÐinstead of discretizing a continuous approximation of E.
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Firstly, we de®ne a set of triangulation Th� ~O�, for each kr6 and 0 < y0 R 608
of ~O, the triangles T of which exhibit the following characteristics:

. The length of all three edges of T lies between h and kh.

. The three angles of T are greater than or equal to y0.

We call Vc� ~O�, the set of continuous and piecewise a�ne functions of ~O and, for
u 2 Vc� ~O�, Th�u� �Th� ~O�, the set of all triangulations adapted to u, i.e., such that
u belongs to the Lagrange ®rst-order ®nite element induced by Th� ~O�: Then, we
consider a non-decreasing concave function f: [0, +1)4 [0, +1) such that

lim
t#0

f �t�
t
� 1 and lim

t4�1f�t� � 1=3,

for example f(t )=2 tanÿ1(3pt/2)/3p. For each piecewise constant function v,
de®ned on a triangulation T, we denote by vT its value on the element T $ T and
de®ne the following regularizing operators

�Mv�T �MT�v� �

X
T 02T, T 0\T 6��

j T 0 \ ~O j vT 0X
T 02T, T 0\T 6��

j T 0 \ ~O j
�4�

and its adjoint

�M�v�T �M�T�v� �
X

T 02T, T 0\T 6��

j T 0 \ ~O j
ST 0

vT 0 , �5�

where ST�ST 0\T 6�� j T 0 \ ~O j : Then, for each u 2 L2� ~O� and each T 2Th� ~O�, we
de®ne the functional

Gh�u,

T� �

8><>:
X
T2T

j T \ ~O j 1

hT
f �htM�T�j ru j2��, if u 2 Vh� ~O�, T 2T�u�,

�1, otherwise,

�6�

and

Gh�u� � min
T2Th� ~O�

Gh�u, T�: �7�

It is proved in Bourdin and Chambolle (1999) that there exists Y> 0 such that if
y0rY then as h4 0, Gh G�L2� ~O��-converges to the functional de®ned on L 2 by
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G�u� �

8><>:
�

~O
j ru j2 dx�H1�Su�, if u 2 L2� ~O� \ GSBV� ~O�,

�1, if u 2 L2� ~O�nGSBV� ~O�,
�8�

where GSBV( ~O� is the space of functions such that all their truncates lie in
SBV( ~O).

According to the remarks made in the previous sections, we now wish to
minimize Gh for a small h. Recall that the mesh itself is a minimization variable;
the construction for the estimate from above in the G-limit shows how to build
the optimal triangulation, given the optimal displacement ®eld u, for the
approximated functional (7). This minimizer u being obviously unknown (since it
is exactly what we are trying to compute), we propose to deduce some nearly
optimal triangulation from a previously computed approximation uE, assuming
that it is `close' to u. The following iterative algorithm that can also be seen as a
relaxation algorithm between the two unknowns is proposed for the solving of (6):

. Initialization (background mesh generation):
Given h0, choose an arbitrary (regular) triangulation Th0

.
. Iteration i (minimization process):

1. Find ui solving min u2Vhi
� ~O�Ghi �u, Thi � with prescribed value U on ~On �O:

2. Mesh adaptation: build the mesh Thi + 1
for ui and hi + 1 (possibly equal to

hi).

Note that we do not know how to truly minimize (6) with respect to the
triangulation, and merely estimate a near optimal triangulation, used in the
construction of the upper G-limit.

The minimization with respect to u is addressed through a dualization technique
where an auxiliary variable v, constant on each element, is introduced; it relies on
elementary properties of the Fenchel transform. Assume that f is di�erentiable
and extend it by ÿ1 on ]ÿ1, 0]. The Fenchel transform of ÿf is

c�ÿv� � sup
t2R
ftvÿ �ÿf ��t�g � �ÿf ���v�:

By a classical result (see for example Ekeland and Temam, 1976), (ÿf )��=ÿf, so
that

ÿf�t� � sup
v2R
ftvÿ c�ÿv�g � inf v2Rftv� c�v�g:

Hence,

f�t� � min
v2�0, 1�

ftv� c�v�g

and the minimum is reached for v=f '(t ), so that v(t ) varies between 0 and 1.
Given Th, the minimization of (6) is then equivalent to that of
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X
T2Th

j T \ O j
�
vTM

�
T�j ru j2� �

c�vT�
hT

�
�9�

which is again implemented by an alternative minimization scheme between both
variable u and v. While the u-problem is solved by a ®nite element method, given
u and the triangulation, the optimal value for MT (v ) is given by

MT�v� �MT� f 0�hM��j ru j2��;
thus, we do not explicitly compute c or v.

The boundary conditions on u are taken into account in a way similar to that
of the previous method: the `physical' domain is extended into a `logical' domain,
where the displacement ®eld is ®xed at its boundary value U, and the boundary of
the `physical' domain is cracked (its nodes are disconnected) along its Neumann
part N.

It is easily seen that if u wants to jump across a triangle T then M �T (vHuv2) tends
to +1 with h and thus, vT tends to 0 with h, while otherwise M �T (vHuv2) tends to
1 thus, vT as well, hence, vT plays in the present context, a role similar to that of
the v-®eld in the ®rst approximation method. The irreversibility of the crack ®eld
for an increasing load is addressed by forcing the vT-®eld for the time step i to
remain equal to zero if it is so at the time iÿ 1.

The description of the triangulation adapted to u is the following: `close' to the
jump set of u, the triangles are as ¯at as feasible within the admissible class and
thus `follow' the crack ®eld, while, `far' from the jump, there is no recipe on how
to position the elements. Therefore, we use an anisotropic mesh generator, and
build an estimator de®ned at each node of the triangulation by a metric, itself
built from the value of the v-®eld and the gradient of the displacement ®eld u. For
a detailed discussion on anisotropic mesh adaptation, refer to Borouchaki and
Laug (1996).

2.3. Mutual advantages of both methods

Since we cannot prove convergence, a comparison between results computed by
the two di�erent methods can help to decide on the reliability of the numerical
simulations. We illustrate with an example that the results of both methods seem
satisfactory and refer the reader to Subsection 3.1 where the tearing of a
reinforcement provides a benchmark for that comparison.

In the light of Subsection 3.1 below the following is not without merit: the ®rst
method seems very stable and will, for a sound choice of parameters c, kc and h,
give a good estimate of the di�erent terms of the energy E. On the other hand, the
second method is very fast, because the solution of the v-problem is explicitly
given, and also because after each adaptation step the number of nodes of the
adapted mesh can be reduced [in the example of Fig. 2, the ®rst mesh (2(a)) is
made of 2615 nodes while the last one (2(c)) is made of only 1005].
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2.4. Remarks on the plane elasticity case

The study of the plane elasticity problem is still in its infancy. The equivalence
between strong and weak formulation is not established at this time. Furthermore,
non-interpenetration of the crack lips should be imposed. The numerical
adaptation of the algorithm to a linear isotropic elasticity problem in the absence
of unilateral conditions is similar to that of the antiplane case. The regularized
functional that has to be minimized is�

OnN
�v2 � kc�W�e�u��dx�

�
~OnN

�
c j rn j2 ��1ÿ v�2

4c

�
dx, �10�

where W�x� � 1
2ftr�x�2 � 2e�x� � e�x�g (recall that we have chosen to set all

constants at 1). This is the method that has been used for the computations
shown in Figs. 3 and 4. The results are satisfactory, but can sometimes give results
that are not physically admissible [see for example Fig. 4(f)]. Implementing
unilateral conditions is, however, an open problem as of yet for want of the
proper regularized functional in place of (10).

3. Numerical experiments

In this section three numerical experiments are described and compared with
theoretical predictions, when available. Let us emphasize once again that we do
not try and compare our results with those of true experimentsÐthis will be the
object of a forthcoming collaborative investigation with experimentalistsÐbut
rather strive to test the validity of the presented computations against the
theoretical background developed in Francfort and Marigo (1998). The grey level
®gures presented below represent the v-®eld for both methods. The crack site is
included within the set of points where that ®eld is near zero (shown in dark grey
in the ®gures).

3.1. Tearing of a reinforcement

The tearing of a three-dimensional cylinder of length L can be solved in a
closed form as demonstrated in Francfort and Marigo (1998). A cylinder with an
annular cross section of respective inner and outer radii 1 and 3 is considered [see
Fig. 1(a)]. It is glued on its inner surface to a rigid shaft which is submitted to an
increasing coaxial displacement ®eld d while its outer surface is clamped.
Furthermore, the in-section components of the displacement ®eld, as well as the
normal component of the normal stress, are zero at both ends (u1=u2=s33=0,
x3=0, L ). The analytical result predictsÐwithin our formulationÐthe existence
of a critical displacement dc�

�����������������
2 log 3
p

01:48 such that if d is less than dc, then
no cracks will appear and the solution is that of the elastic problem, while if dr
dc, a crack will appear over the entire inner boundary of the material with a
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Fig. 1. Tearing of a reinforcement, ®rst method. (a) Geometry and loading. (b) Energy plot (x-axis is

the load factor). (c) Mesh. (d) Crack ®eld after failure.

B. Bourdin et al. / J. Mech. Phys. Solids 48 (2000) 797±826812



Fig. 1 (continued)
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Fig. 2. Tearing of a reinforcement, second method. (a) Background mesh. (b) Crack ®eld for the

background mesh. (c) Final mesh. (d) Crack ®eld for the ®nal mesh.
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Fig. 2 (continued)
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surface energy equal to 2p. The computations presented in Fig. 1 are obtained
with the ®rst method. The parameters are h = 10ÿ3, c = 10ÿ1, kc=10ÿ4. In Fig.
1(b), we plot the bulk energy, surface energy and total energy versus the load d.
The computed critical load is underestimated but the surface energy is correct
within 1%. The plot of the crack ®eld [Fig. 1(d)] corresponds to d=1.5. In Fig. 2,
the same simulation is run with the second method. Figs. 2(a) and (b) represent
the ®rst mesh and the corresponding crack ®eld vT, while in Figs. 2(c) and (d) the
mesh has been adapted three times.

Further, both methods yield a continuous dependence of the total energy upon
d (although that dependence is not shown in Fig. 2 in the case of the second
method), which is in agreement with the theoretical predictions. Indeed, it is
shown in Proposition 4.10 of Francfort and Marigo (1998) that the jump of the
elastic energy during brutal crack growth is exactly o�set by that of the surface
energy; hence, at the time of the total brutal debonding, the total energy should
become constantÐand equal to 2pÐwhich is exactly the case here.

3.2. Traction experiment on a ®ber reinforced matrix

A square elastic matrix is reinforced by a rigid circular ®ber as shown in 3(a).
The ®ber remains ®xed while a uniform displacement ®eld d is imposed on the
upper side of the square; the remaining sides are traction-free. The following
evolution is observed as d grows:

1. As long as d < 0.2, the matrix remains purely elastic. Note however, the
presence of spurious surface energy; we are not, after all, computing the G-limit
but only an approximation, so that the v-®eld cannot be expected to be
identically 1.

2. At d00.2, a crack of ®nite length brutally appears near the north pole of the
inclusion [Fig. 3(c)]. This is in agreement with item 4 of Proposition 4.19 in
Francfort and Marigo (1998) (brutal crack growth at ®nite initiation time in the
absence of singular points for the purely elastic solution).

3. When d varies between 0.2 and 0.32, the crack progressively grows in the
matrix [Fig. 3(d)].

4. At d0 0.32, the right-hand-side of the matrix is brutally cut [Fig. 3(e)]. Once
again this feature agrees with the theoretical predictions of Remark 4.21 in
Francfort and Marigo (1998).

5. When d varies between 0.32 and 0.37, the left part of the crack progressively
grows [Fig. 3(f)].

6. At d 0 0.37, the crack brutally severs the remaining ®lament of uncracked
material [Fig. 3(g)]. Remark 4.21 in Francfort and Marigo (1998) equally
applies here.

7. The sample is split into two parts. Note however, some spurious elastic energy
in Fig. 3(g) caused by the coe�cient kc in the functional.

As in the previous computations of Subsection 3.1, there is (nearly) no

B. Bourdin et al. / J. Mech. Phys. Solids 48 (2000) 797±826816



Fig. 3. Traction experiment on a ®ber reinforced matrix. (a) Geometry and loading. (b) Energy plot (x-

axis is the load factor). (c) Crack ®eld, load is 0.2. (d) Crack ®eld, load is 0.31. (e) Crack ®eld, load is

0.32. (f) Crack ®eld, load is 0.36. (g) Crack ®eld, load is 0.37. (h) Check of Gri�th criterion.
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Fig. 3 (continued)
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Fig. 3 (continued)
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Fig. 3 (continued)
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discontinuity in the total energy during the phases 2, 4 and 6 of brutal growth, as
theoretically expected.

Fig. 3(h) is an attempt at checking the validity of the classical Gri�th criterion
during crack growth; elementary considerations yield the following criterion in our
setting:

E 0�d� � 2Ee�d�
d

where E(d ) is the total energy and Ee (d ) the bulk energy for a given value of d.
As clearly demonstrated in that ®gure, the criterion is indeed met during the
progressive phases of the evolution

Remark. The symmetry breaking evolution for d r 0.32 might seem somewhat
disconcerting. We do not have a de®nite explanation as of yet. The actual
minimum could indeed be asymmetric. We could also possibly be unwillingly
trapped around a local minimum; a heuristic solution would then consist in a
random sampling of initial guesses, a rather costly undertaking.

Note that the symmetry breaking direction is purely numerical; the used mesh
has been chosen asymmetric, so as to ascertain the reality of lateral symmetry
whenever an output of the computations.

Remark. Initiation and failure loads, respectively, di=0.2 and df=0.37 fall within
the theoretically predicted range of Proposition 4.6 in Francfort and Marigo
(1998), namely

diR0:222Rdf,

where the value 0.222 has been estimated from the plot [Fig. 3(b)] by noting that
the elastic energy is 0230 when d0 0.195 and thus, that it is 06000 when d=1
because it scales like d 2.

Remark. This numerical experiment is exemplary because of the wide range of
associated crack behaviors throughout the evolution: brutal versus progressive,
edge and bulk fracture, . . . Furthermore, there seems to be good qualitative
agreement between our results and the experimental observations found in Hull
(1981).

3.3. Crack branching

The branching of a crack is one of the conundrums of brittle fracture. The
classical Gri�th theory is inadequate and additional criteria have to be introduced
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Fig. 4. Branching of a pre-existing crack. (a) Geometry and loading. (b) Computed crack angle (x-axis)

vs. load angle ( y-axis). (c) Crack ®eld for y=908. (d) Crack ®eld for y=458. (e) Crack ®eld for y=78.
(f) Crack ®eld for y=08.
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Fig. 4 (continued)
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Fig. 4 (continued)

B. Bourdin et al. / J. Mech. Phys. Solids 48 (2000) 797±826824



(see e.g. Amestoy, 1987; Amestoy and Leblond, 1989; Leblond, 1989; Leguillon,
1993).

In contrast, our formulation permits branching predictions with no added
ingredients as will be demonstrated below. A cracked 2-D rectangular elastic
sample is investigated. The crack is parallel to the upper and lower sides of the
rectangle and a displacement ®eld of increasing intensity d and ®xed orientation y
is applied to those sides [Fig. 4(a)]. The crack evolution is numerically monitored
for several values of y.

1. When y=908, the crack propagates, as expected, along the horizontal axis for a
critical value for d [Fig. 4(c)].

2. When 78< y<908, the crack branches out from the initial crack tip at some y-
dependent angle for a critical value of d [Figs. 4(d) and (e)].

3. When 08 < y < 78, the crack develops two symmetric branches for a y-
dependent critical value for d [Fig. 4(f)]. This result does not conform to
existing predictions (see e.g. Amestoy, 1987). It should be noted however, that
the upper branch of the crack interpenetrates the sample, which is not allowed
in the classical modeling of crack branching. An adequate rendering of the non-
interpenetration condition should hopefully rule out the unrealistic upper
branching, but this is merely wishful thinking at this time.
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