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1 Introduction

At the risk of being unfair, we credit first and foremost A. A. Griffith for developing
the field of brittle fracture. His views were that cracks are the macroscopic manifesta-
tion of putative debonding at the crystalline level, that this process can be accurately
portrayed through an energy density at each point of the crack surface and that crack
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propagation results from the competition between bulk energy away from the crack
and surface energy on the crack. Contemporary fracture mechanics has completely
espoused Griffith’s viewpoint.

Of course, the post-Griffith development of fracture mechanics is paved with
great contributions. Of special note is the link that G. R. Irwin provided between
the bulk energy released during an infinitesimal advance of the crack (the energy
release rate often denoted by G) and the coefficients weighing the singularity of
the displacement field at the crack front (the stress intensity factors usually denoted
by KI, KII or KIII). The celebrated Irwin’s formulae – such as G = K2

I I I/2μ in the
anti-plane setting for linearized and isotropic elasticity – prompted and continue to
prompt an avalanche of literature devoted to the computation of the stress intensity
factors. This, we deem a mixed blessing because, while it is important to understand
the detailed make-up of the elastic field near a singularity, it however drains expert
energy away from the tenet of Griffith’s approach: energetic competition.

We quote from [61], pp. 165–166, italicizing our additions to the quote: “In view
of the inadequacy of the ordinary hypotheses, the problem of rupture of elastic
solids has been attacked by Griffith from a new standpoint. According to the well-
known ‘theorem of minimum energy’, the equilibrium state of an elastic solid body,
deformed by specified surface forces, is such that the potential energy of the whole
system is a minimum. The new criterion of rupture is obtained by adding to this
theorem the statement that the equilibrium position, if equilibrium is possible, must
be one in which rupture of the solid has occurred, if the system can pass from the
unbroken to the broken condition by a process involving a continuous decrease in
potential energy.

In order, however, to apply this extended theorem to the problem of finding the
breaking loads of real solids, it is necessary to take account of the increase in potential
energy which occurs in the formation of new surfaces in the interior of such solids.
. . . . . . For cracks extending several atomic lengths the increase of energy, due to the
spreading of the crack, will be given with sufficient accuracy by the product of the
increment of surface into the surface tension of the material.”

This tract decidedly adopts Griffith’s variational viewpoint and heralds it as the
foundation of fracture analysis. But the bias is rational and the proposed approach is
a natural offspring of rational mechanics, as will be demonstrated hereafter. Actually,
in its primal form, our take on fracture is completely equivalent to the “classical”
viewpoint. The departure, when it occurs, will be a confession of mathematical
inadequacy, rather than a belief in the soundness of additional physical principles,
such as global minimality.

At this early stage, warnings to the reader should be explicit. At no point here
do we contend that we have anything to contribute to “dynamic fracture”. In the
tradition of most works on fracture, kinetic effects are a priori assumed negligible
and will remain so throughout. There will be no discussion of the restrictions on
the loads that could validate such an assumption. Thus, the quasi-static hypothesis
is the overarching non-negotiable feature. We do so after acknowledging that the
intricacies created by hyperbolicity are not to be taken lightly. Here again, we confess
our inadequacy but do not relish it. Quasi-statics view “time” as a synonym for a real
ordered, positive parameter denoted by t and referred to as “time.” All loads are
functions of that parameter; an “evolution” corresponds to an interval of parametric
values; “history” at time t is the remembrance of all parametric values 0 ≤ s ≤ t.
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Also, our tract is not to be construed as any kind of review of “classical” fracture.
We make no effort to assess the existing literature and refrain from quoting even
the most revered books on fracture. Our needs in that regard are modest and do not
require to appeal to any of the highly sophisticated tools that have been developed
since Griffith’s seminal paper. For a general overview of those topics, the reader is
directed to e.g. [26, 73] for a more analytical presentation of the field, or to [72] for a
materials oriented view of fracture.

Without further ado, we now briefly provide a road-map for the study. The ideal
reader is defined as follows: familiar with the basics of continuum mechanics, she
will be accustomed with the rational mechanics formalization of thermo-mechanics
in the sense of C. Truesdell. She will also demonstrate some familiarity with the
classical minimality principles of linearized and hyper-elasticity, as well as some
understanding of distributions, Sobolev spaces, the fundamentals of measure theory,
integration and elliptic partial differential equations. Finally, it would be best if she
also was somewhat versed in the classical theory of fracture mechanics, lest she
should think that the expounded considerations are mere divagations. The actual
reader is invited to consult the Appendix where she will find a self-contained, but
succinct exposition of the necessary mathematical prerequisites. For this reason,
we will not always refer to any particular text when using a “classical” result; the
reader will find the corresponding statement in the Appendix. Although the initial
mathematical investment is greatly reduced, in our opinion, by an attentive reading
of the Appendix, we do not feel that we can provide an adequate exposition of the
necessary mechanical prerequisites in a few pages and prefer to trust the reader’s
fluency in the basic tenet of elasticity, thermodynamics and fracture.

In a first section (Section 2), the classical theory is introduced within the ra-
tional framework. By classical theory, we mean that which Griffith introduced. In
particular, the surface energy is the so-called Griffith’s surface energy; its value is
proportional to the crack area (crack length in 2d). The resulting problem is then
re-formulated in a variational light. The end product may strike the mechanician as
unfamiliar, yet not even the lighting is new if abiding by Griffith’s previously quoted
motto. With hindsight, we have just benefited from eighty years of mathematical
experience since those lines were written. Actually, the analysis is performed for a
larger class of energies, yet one that does not include cohesive type energies. We
baptize those energies “Griffith-like.”

As will be seen, the formulation is two-fold: an energy must remain stationary at
every time among all virtual admissible crack-displacement pairs at that time, and an
energy conservation statement must be satisfied throughout the time evolution. Sta-
tionarity statements are notoriously difficult to enforce without additional features
such as local minimization. Our first and most egregious departure from the classical
theory consists in replacing stationarity with local, or even worse, global minimality.
This is the main price we are willing to pay in exchange for a meaningful theory.
In the case of Griffith-like energies the notions of local and/or global minimality
become notions of unilateral local and/or global minimality. As will become clearer
in the sequel, the arguably labeled unilaterality refers to the unsightly presence of the
local and/or global minimizer in the functional to be minimized. In other words, we
will have to deal with minimization problems for a functional P , where the unknown
local and/or global minimizer u must minimize locally and/or globally P(u, v) for all
admissible v’s!
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The subsidiary price tag is of a topological nature: the natural topology on cracks
is unclear, especially in dimension 3, or when no connectedness is a priori assumed. It
is then more convenient to view cracks as the compound location of all points where
a displacement discontinuity has occurred throughout the history of the loading
process. In other words, the crack-displacement pairs are replaced by displacements
only, but those are in turn allowed to jump. The relevant ambient displacement space
unfortunately allows for discontinuity sets that do not look like cracks at all, because
their closure could be of positive Lebesgue measure. Most of the theoretical results
are born out of this weak formulation, yet the regularity results that would permit
one to recover a bona fide crack are almost non-existent. This should be mitigated
by the riches brought about by the weak formulation; in the end, it is our belief that
“the weak can overcome the strong.”1

It would be ridiculous to a priori prohibit imports from any post-Griffith theory.
In that respect the work of G.I. Barenblatt has particular significance because it
pinpoints the potential deficiencies in Griffith’s surface energy. First among those is
the scaling effect that Griffith’s surface energy imparts upon the formulation. Indeed
that energy is proportional to surface area (or length in 2d), whereas the bulk energy
varies like a volume (or an area in 2d). The ratio of bulk to surface energies is thus
geometry dependent, and not only material dependent. So one should expect, for
example, that the breaking pattern of a 1d-bar should be length-dependent, and this
independently of the specific criterion adopted, provided that the surface energy
is Griffith like (in this simplistic case a bang-bang 0, 1 alternative). This is clearly
nonphysical and can be remedied at once through the consideration of a cohesive
type energy à la Barenblatt. We thus describe at the end of the first section the
modifications to the formulation that accompany a Barenblatt type surface energy.

Section 3 is part of the discovery process in the stationarity vs. minimality
litigation. The advocated departure from pure unilateral stationarity may ban sound
evolutions and the proposed eugenic principle may even be so drastic that extinction
of the evolutions will follow. Any kind of minimality principle in a non convex setting
should raise suspicion; even more so in an evolutionary scheme. The section is but
a timid intrusion into the debate in a minimalist environment: 1d traction, and anti-
plane shear tearing. It is also designed to help the reader familiarize herself with
the variational approach in settings where irreversibility – a delicate notion, see
Section 5 – is automatically enforced. Both Griffith’s and cohesive surface energies
are considered and the existence of stationary evolutions, then locally minimizing
evolutions, and finally globally minimizing evolutions is investigated. Of course any
globally minimizing evolution is also a locally minimizing evolution and any locally
minimizing evolution is also a stationary evolution. The tearing analytical experiment
provides a stationary evolution which is unique, smooth, and also a locally minimizing
and globally minimizing evolution. The case of 1d traction is much more intricate and
a whole slew of evolutions is evidenced.

We would be ill-advised to draw general conclusions from those two examples
and will only remark that well understood local minimality, together with a cohesive
type energy, is very promising. The associated mathematical intricacies are a bit

1Lao Tse – Tao Te King, 78
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overwhelming at present, and much progress should be made before the proposed
combination becomes a viable option in more complex situations, as will be seen
through the remainder of this study.

Three main issues have plagued fracture mechanics in the last hundred years or
so. Those are: initiation, irreversibility and path. By initiation, we mean nucleation of
the crack, as well as further extension of the crack, given an observable pre-existing
crack. Irreversibility is concerned with the definition of a threshold that marks the
unrecoverable advance of the physical crack. Path encompasses all questions related
to predictability of the geometric site of the future crack, given a loading histogram.

The next three sections of the paper revisit those issues in the light of the
formulations developed in Section 2 .

Section 4 tackles initiation through the variational prism. The choice of Griffith’s
surface energy yields too much, or too little. Too much when global minimality rules,
because global minimizers become size-dependent – a straight manifestation of the
already evoked scaling effect – and too little when any kind of local minimality crite-
rion is activated, because generically the energy release G rate is 0 and, consequently,
no cracks will form.

A cohesive type energy fares much better, although the mathematical results are
partial at best. Whenever local minimality – or even simply stationarity – presides, a
critical yield stress (the slope of the surface energy at 0) determines the onset of the
cracking process. If however global minimality is adopted, then a process zone will
experience fine mixtures of large elastic deformations and small jumps. The resulting
macroscopic behavior in the process zone will be plastic. The mechanical significance
is portentous: cohesive brittleness leads to ductility!

In any case, the remarkable array of observed initiation patterns demonstrates the
flexibility of the variational method: once a surface energy is picked, together with a
minimality criterion, then the formulation delivers the initiation rule with no further
ad-hoc import. The classically entertained notion of the original defect is no longer
required.

Section 5 is concerned with irreversibility. In the case of a Griffith type energy,
irreversibility is clear-cut. As already mentioned the crack will be the aggregate of
the sites of all past jumps. We will show how this notion, easily implemented when
the time evolution is made up of step increments in the loads, can be extended
to a general setting where the loads vary arbitrarily with time. This will serve to
illustrate the basic mathematical method in achieving existence results for quasi-
static crack evolution. First the loads are discretized in time, and the ensuing step by
step evolution is referred to as the incremental formulation, then the discretization
step is sent to 0, yielding, in the best case scenario, the time-continuous formulation.

The case of a cohesive energy is more challenging because there is no obvious
threshold for irreversibility. We will review possible choices, zeroing in on the correct
choice if one strives to derive fatigue evolution from fracture evolution, an issue
that will be further discussed in Section 9. As of yet, there is no analogue of the
time-continuous evolution in the cohesive case and this is one of the mathematical
challenges of the theory. We explain why this is so.

Section 6 is shorter and it investigates path. There, the only definitive results
are those coming from the consideration of a global minimality criterion, together
with a Griffith type surface energy. In that setting, path is a byproduct of the time-
continuous evolution in the sense that, for a given solution to that evolution – one
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that satisfies global minimality at each time and energy conservation – there is a
well-determined path that the crack will follow. The troubling issue is uniqueness,
or apparent lack thereof. Indeed, there are at present no uniqueness results to speak
of. In all fairness, this is not unlike many nonlinear, non-convex settings, such as
buckling, where bifurcation branches are expected.

Many path-related issues are outstanding. Our pious wish to adjudicate the
everlasting dispute between the Gmax–clan and the KII = 0–clan, the two main
opponents in the crack-branching conundrum remains exactly that. Our impotence
in this respect is mitigated by numerics. The numerical treatment of the variational
model is a vast topic, whose surface is barely scratched in Section 8. In any case,
numerical evidence of branching is striking, as shown in Section 5, but numerics alone
cannot provide the answer.

The remainder of the paper sits squarely within the confines of the variational
method, because the survivors of the previous sections should by then be well
acquainted with the main tenet of the approach.

Section 7 is our contribution to Griffith vs. Barenblatt. Within the variational
framework the hypothetical convergence of cohesive type models to Griffith’s model
can be easily framed in the language of �-convergence, which we recall. Then, in the
large domain limit, that is when the size of the investigated domain tends to infinity,
the cohesive model with global minimality is shown to behave asymptotically like
the Griffith’s model with global minimality. We have unfortunately no significant
contributions to put forth regarding this issue in the context of local minimality.

Section 8 is a peek through the numerical veil. As already stated, the topic is
immense and our goal here is merely to provide the reader with a taste of the issues.
That finite elements do not cope well with field discontinuities comes as no surprise.
Consequently, the basic idea is to smear the discontinuities by adjoining an auxiliary
field that will concentrate precisely around the discontinuities of the displacement
field. The algorithm is then controlled by the thickness of the smear, which is assumed
to be very small.

Mechanicians may be tempted to lend significance to the resulting model as a
damage gradient model, like those developed in e.g. [77]. For our part, we view
it merely as an approximation and will resist any further discussion of its intrinsic
physical merits.

The numerical study pertains to the global minimality setting, because it is
the only one that allows detailed investigation, and also the only one for which a
complete evolution has been derived. As a corollary, it only addresses Griffith type
surface energies. The ensuing numerics are very stable and compliant, despite the
lack of convexity of the two-field problem. Numerical illustrations are offered.

Section 9, the final section of this study, toys with cyclic loading, a.k.a fatigue. We
demonstrate that, equipped with a Barenblatt type surface energy, an appropriate
notion of irreversibility – that evoked in Section 4 – and global unilateral minimiza-
tion, we can view fatigue, at least incrementally, in the same framework as fracture.

In 1d, the debonding of a thin film from a substrate provides a key to the
derivation of fatigue debonding from cohesive fracture. Paris type laws are derived
from fracture evolution, not a priori postulated.

Formidable mathematical hurdles prevent the consideration of more general
settings, but, in our view, the seeds of the grand unification between fracture and
fatigue are planted.
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A few notational notes and/or cautionary notes follow in no particular order. Also
consult the glossary for additional symbols used in the text.

Throughout, Einstein’s summation convention is used.
The symbol C, whenever it appears, refers to a generic positive and finite constant:

for example, 2C is replaced by C.
The word iff stands for “if, and only if”.
If u : �→ R

N , then the “linearized strain tensor,” e(u) : �→ R
N2

, stands for
1
2 (∇u+ ∇ut).

The symbol �, applied to a set A, i.e., �A, means “restricted to” A, while the
symbol ∨ stands for “supremum,” that is a ∨ b := sup{a, b} for a, b ∈ R.

The symbol # stands for “cardinal of.”
For notational unity, we nearly always denote the kinematic field by ϕ. In most

cases, ϕ should be thought of as the deformation field, but, on occasions, it will
become the displacement field. This will be the case whenever anti-plane shear is
at stake, unless the difference is made explicit as in Subsection 3.2. In this respect,
homogeneity of the bulk energy in a 1d or 3d anti-plane shear setting will always refer
to a property of the energy viewed as a function of the gradient of the displacement
field. This should ease reader’s angst, especially in Subsection 8.2 where homogeneity
plays a crucial role in the “backtracking algorithm.”

Dimensionality will not be set. Although simplicity of exposition dictates that the
skeleton of the notes be two-dimensional, rather than three-dimensional, we will
on occasion stumble into the third dimension or retreat to one dimension, when
“confined in motion and eyesight to that single Straight Line.”2

At the close of this introduction, we wish to dispel the notion that this study is a
compendium of our contributions. Although no references were given as of yet, it
should be self-evident that the sheer amount of results evoked above far exceeds our
mutualized abilities. We will “render unto Caesar the things which are Caesar’s”3

throughout this paper. At this point we merely list, in alphabetical order, those who
have and, for the most part, continue to contribute to the variational effort in the
modeling of fracture: Jean-François Babadjian, Andrea Braides, François Bilteryst,
Antonin Chambolle, Miguel Charlotte, Gianni Dal Maso, Gianpietro Del Piero,
Alessandro Giacomini, André Jaubert, Christopher J. Larsen, Jérôme Laverne,
Marcello Ponsiglione, Rodica Toader and Lev Truskinovsky.

2Edwin A. Abbott –Flatland
3Matthew – 22:21
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2 Going Variational

In this section, the starting premise is Griffith’s model for crack evolution, as
presented in his celebrated paper [61]. Of course, continuum mechanics has seen
and weathered many storms in eighty seven years and it would make little sense to
present fracture exactly as in [61]. The reader will find below what we believe to be a
very classical introduction to brittle fracture within a rational mechanical framework.
Whether this strictly conforms to the tenet of Rational Mechanics is a matter best left
to the experts in the field.

Our starting assumptions are two-fold. First, as mentioned in the introduction,
we do not wish to contribute at this point to the hesitant field of dynamic fracture,
thereby restricting our focus to quasi-static evolution. At each time, the investigated
sample is in static equilibrium with the loads that are applied to it at that time. We use
the blanket label “loads” for both hard devices (displacement type boundary condi-
tions) and soft devices (traction type boundary conditions and/or body forces). In the
former case, we often refer to those boundary conditions as “displacement loads.”
Then, we do not concern ourselves with changes in temperature, implicitly assuming
that those will not impact upon the mechanics of the evolution: in particular, thermal
expansion is not an option in this model, at least to the extent that it couples thermal
and mechanical effects. However, thermal stresses induced by a known temperature
field fall squarely within the scope of the forthcoming analysis.

Also, we only discuss the 2d-case in this section. However, it will be clear that the
resulting formulation applies as well to dimensions 1 and 3.

We consider �, a bounded open domain of R
2. That domain is filled with a brittle

elastic material. At this level of generality, the type of elastic behavior matters little,
as long as it is represented by a bulk energy F �→ W(F) which will be assumed
to be a function of the gradient of the deformation field ϕ; in linearized elasticity
W will become a function of e(u) := 1

2 (∇u+∇ut) with ϕ(x) = x+ u(x). We do not
address invariance, objectivity, or material symmetry in the sequel, although isotropy
will be a recurring feature of the many analytical and numerical examples discussed
hereafter.

Time dependent loads are applied to �. We will assume that the force part of the
load is given in the reference configuration (that is defined on �). Those are

– body forces denoted by fb (t) and defined on �;
– surface forces denoted by fs(t) and defined on ∂s� ⊂ ∂�;
– boundary displacements denoted by g(t) and defined on ∂d� := ∂� \ ∂s�. Pre-

cisely, we assume throughout that g(t) is defined and smooth enough on all of R
2

and that the boundary displacement is the trace of g(t) on ∂d�.

The backdrop is in place and Griffith may now enter the stage.

2.1 Griffith’s Theory

The theory espoused by Griffith is macroscopic in scope and mechanical in essence.
The crack or cracks are geometrically idealized as discontinuity surfaces for the
deformation field of the continuum under investigation. If that continuum behaves
elastically, material response under external loading will be unambiguous once the
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laws that preside over the onset and propagation of the crack(s) are specified. The
construction of such laws – the goal of Griffith’s theory – requires three foundational
ingredients,

1. A surface energy associated with the surfaces where the deformation is
discontinuous;

2. A propagation criterion for those surfaces;
3. An irreversibility condition for the cracking process.

The surface energy adopted by Griffith is simple, even simplistic in the eyes of the
post-modern solid state physicist. Throughout the cracking process, a(n isotropic)
homogeneous material spends an energy amount which remains proportional to the
area of the surface of discontinuity. We take license to call fracture toughness of
the material the proportionality factor, and denote it by k, while being aware that
fracture toughness habitually refers to the mode-I critical stress intensity factor in
isotropic linearized elasticity.

As already noted in the introduction, Griffith eagerly confesses in [61] to the
limits of validity of that energy. Griffith’s energy is the macroscopic manifestation of
the energy spent through the microscopic breaking of inter-atomic bonds. A simple
counting argument demonstrates that, if inter-atomic bonding is ruled by a Lennard–
Jones type interaction potential, then the add-energy spent in moving two atoms
apart while the remaining atoms stay put is additive, which ultimately yields a total
(macroscopic) energy proportional to the separation area. Thus, for Griffith’s energy
to apply the break-up must be final. In macroscopic words, the jump in displacement
on the crack site must have exceeded some threshold. In the absence of contact the
crack lips do not interact and cohesiveness is prohibited.

We observed in the introduction that the propagation criterion is energy based.
The test is a balance between the potential energy released through a virtual increase
of the crack length (area) and the energy spent in creating additional length (area).
The crack will extend only if the balance favors creation.

It will be seen later, most notably in Sections 5 and 9, that irreversibility is not a
straightforward concept in the presence of cohesiveness. However Griffith’s energy
presupposes the absence of cohesive forces. Thus a crack will form where and at the
time at which the displacement field becomes discontinuous. It will then stay so “in
saecula saeculorum,” oblivious to the actual state of displacement at any posterior
time. We emphasize that the approach advocated in this tract treats cohesive forces
as a simple byproduct of the surface energy; see Subsection 5.2. In other words, the
presence of such forces is conditioned by the proper choice of surface energy.

We now formulate Griffith’s view of the crack evolution problem in a(n isotropic)
homogeneous elastic material.

For now, the crack path �̂ is assumed to be known a priori. We wish to include
partial debonding as a possible crack behavior, so that �̂ ⊂ � \ ∂s�. The crack at time
t is assumed to be a time increasing connected subset of �̂; it can thus live partially,
or totally on ∂�. It is therefore completely determined by its length l and denoted
by �(l).

By the quasi-static assumption, the cracked solid (see Fig. 1) is, at each time, in
elastic equilibrium with the loads that it supports at that time; in other words, if the
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path

fs

Fig. 1 The cracked solid

crack length at that time is l, then the kinematic unknown at that time, ϕ(t, l) (the
transformation, or displacement) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
∂W
∂ F

(∇ϕ(t, l)) = fb (t) in � \ �(l)

ϕ(t, l) = g(t) on ∂d� \ �(l)

∂W
∂ F

(∇ϕ(t, l))n = fs(t) on ∂s�

∂W
∂ F

(∇ϕ(t, l))n =0 on � ∩ �(l)

(2.1)

where n denotes the appropriate normal vector.
The last relation in (2.1) calls for several comments. In an anti-plane shear setting,

it merely states, in accord with Griffith’s premise, the absence of cohesive forces
along the crack lips. In a planar situation, it implicitly assumes separation of the
crack lips, hence non-interpenetration. In all honesty, we will systematically skirt
the issue of non-interpenetration in our presentation of Griffith’s evolution; in the
geometrically non-linear setting of hyperelasticity, it is an issue even in the absence of
brittleness [36]. Implementation of a condition of non-interpenetration at the crack
lips, be it in the non-linear or in the linearized context, raises multiple issues that
go beyond the scope of this review. It is also our admittedly subjective view that
non-interpenetration matters little when trying to capture the main features of crack
propagation in a Griffith setting. By contrast, non-interpenetration is, as will be seen
later, an essential feature of cohesive models and we squarely confront the issue in
that setting (see Subsections 4.2, 5.2).

The system (2.1) assumes that the crack length is known. Griffith’s decisive input
is to propose the following criteria for the determination of that length. At time t,
compute the potential energy associated with the crack of length l, that is

P(t, l) :=
∫

�\�(l)
W(∇ϕ(t, l)) dx−F(t, ϕ(t, l)) (2.2)
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with

F(t, ϕ) :=
∫

�

fb (t).ϕ dx+
∫

∂s�

fs(t).ϕ ds. (2.3)

Then, l(t) must be such that it obeys

– The Griffith’s criterion:

a. l
t↗ (the crack can only grow);

b. −( ∂P/∂l) (t, l(t)) ≤ k (the energy release rate is bounded from above by the
fracture toughness);

c. ((∂P/∂l) (t, l(t))+ k) l̇(t) = 0 (the crack will not grow unless the energy release
rate is critical).

From a thermodynamical viewpoint, Griffith’s criterion should be interpreted as
follows. The crack length is a global internal variable, and its variation induces a
dissipation which must in turn satisfy Clausius–Duhem’s inequality.

The attentive reader will object that the definition of the potential energy becomes
specious as soon as the kinematic field ϕ(t, l) fails to be uniquely defined – as is
for instance the case in hyperelasticity – and that, consequently, Griffith’s criterion
is meaningless in such a setting. We readily concede and remark that the very
definition of a global internal variable in the absence of convexity challenges classical
thermomechanics. The reader is thus invited to assume the existence of a solution
path ϕ(t, l(t)) for which the associated potential energy P(t, l(t)) is well-behaved,
lending meaning to the Griffith’s criterion. Section 5, and particularly Theorem 5.4
will hopefully demonstrate that the assumption is not totally without merit, at least
when filtered through the approach proposed in this work.

A convenient enforcement of Clausius–Duhem’s inequality is provided through
the introduction of a convex dissipation potential D(l̇), further satisfying D(0) = 0.
Then, the inequality reduces to

−∂P
∂l

(t, l(t)) ∈ ∂D(l̇(t)). (2.4)

The correct dissipation potential in Griffith’s setting is denoted by DG and given by
(see Fig. 2)

DG(l̇) :=
{

kl̇, l̇ ≥ 0
∞, l̇ < 0,

(2.5)

and (2.4) then yields precisely Griffith’s criteria. So, summing up, Griffith’s modeling
of crack evolution reduces to (2.1), (2.4) with (2.5) as dissipation potential.

As we will see, positive 1-homogeneity is the vital feature of the dissipation
potential, if one is to adopt a variational viewpoint and hope for a time-continuous
evolution. It will become handy in Section 9 to consider potentials for which
1-homogeneity does not hold. We refer to Subsection 2.4 below in that case.

From the thermodynamical standpoint, Griffith’s dissipation potential can be
greatly generalized. The crack may be thought of as depending on several global
internal variables, say (l1, ..., l p). In other words the value of the p-uple l := (l1, ..., l p)

determines the crack length now denoted by �(l), hence the crack itself, which is
still denoted by �(l). Then DG can be replaced by any positive convex potential
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Fig. 2 Griffith dissipation potential

prohibiting crack decrease, that is that (2.4) can be applied to any “Griffith-like”
potential of the form

D(l; l̇) :=
{

D(l̇), if ∇�(l). l̇ ≥ 0
∞, otherwise

(2.6)

with D : Rp �→ R
+ convex, D(0) = 0.

We are now ready to explore the system (2.1), (2.4) with (2.6) as dissipation
potential and ∇lP replacing ∂P/∂l. For completeness, we should add an initial
condition to (2.4); we will thus assume that

l(0) = l0, (2.7)

and denote, from now onward, any pair-solution (l(t), ϕ(t, l(t))), if it exists, by
(l(t), ϕ(t)).

2.2 The 1-Homogeneous Case – A Variational Equivalence

Throughout this subsection, we assume that the Griffith-like potential is positively
1-homogeneous, which amounts to a statement of rate-independence, as explained
at length in various works; see [79] for a general treatment of rate independent
processes, and also [55]. Rate independence is clearly a feature of quasi-static crack
evolution within the framework developed by Griffith.

Assuming suitable – and unstated – smoothness of all relevant quantities, we
propose to establish the equivalence between the original system (2.1), (2.4), (2.7)
and a two-pronged formulation which states that a certain energy must remain
stationary at every time among all virtual admissible crack-displacement pairs at that
time, and that an energy conservation statement must be satisfied throughout the
time evolution. This is the object of the following

Proposition 2.1 Assuming that the potential D in (2.6) is positively 1-homogeneous,
then the pair (l(t), ϕ(t)) (satisfying (2.7)) satisfies (2.1), (2.4) (with appropriate smooth-
ness) on [0, T] iff, for every t ∈ [0, T], it satisfies (with that same smoothness)
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(Ust) (l(t), ϕ(t)) is a stationary point of

E(t;ϕ, l) :=
∫

�\�(l)
W(∇ϕ) dx−F(t, ϕ)+D(l(t); l − l(t)), (2.8)

among all l and all ϕ = g(t) on ∂d� \ �(l) in the sense of (2.11) below;

(Ir) �̇(t) = ∇�(l(t)). l̇(t) ≥ 0;

(Eb)
dE
dt

(t) =
∫

∂d�\�(l(t))

∂W
∂ F

(∇ϕ(t))n.ġ(t) ds− Ḟ(t, ϕ(t))

with

Ḟ(t, ϕ) :=
∫

�

ḟb (t).ϕ dx+
∫

∂s�

ḟs(t).ϕ ds (2.9)

E(t) :=
∫

�\�(l(t))
W(∇ϕ(t)) dx−F(t, ϕ(t))+

∫ t

0
D(l̇(τ ))dτ

= P(t, l(t))+
∫ t

0
D(l̇(τ ))dτ. (2.10)

The unilateral stationarity statement (Ust) is rather unusual because the functional
E(t; ·) that should be stationary at (l(t), ϕ(t)) explicitly depends on l(t); hence the
label unilateral. The energy balance (Eb) can be turned, through various integration
by parts in time, into what is referred to in the literature as the mechanical form of
the second law of thermodynamics; see e.g. [62].

Proof First we should clearly articulate what is meant by (Ust). To this effect, we
introduce a one-parameter family of variations of the kinematic variable ϕ(t) and of
the crack length l(t) as follows. We set

l(t, ε) := l(t)+ εl̂ ; ϕ(t, ε, l) := ϕ(t, l)+ εψ(t, l),

where ψ(t, l) = 0 on ∂d� \ �(l) and ϕ(t, l(t)) = ϕ(t). Then, unilateral stationarity is
meant as

d
dε

E(t;ϕ(t, ε, l(t, ε)), l(t, ε))

∣
∣
∣
ε=0
≥ 0. (2.11)

Recall the expression (2.8) for E , and use positive 1-homogeneity, so that
D(l(t); εl) = εD(l(t); l). Then, the above also reads as

∫

�\�(l(t))

∂W
∂ F

(∇ϕ(t)).∇ψ dx−F(t, ψ)+ ∇lP(t, l(t)). l̂ +D(l(t); l̂) ≥ 0,

where we recall that P was defined in (2.2). Consequently, through integration by
parts, (Ust) is equivalent to

(2.1) and ∇lP(t, l(t)).l̂ +D(l(t); l̂) ≥ 0, ∀l̂. (2.12)

Then, assume that (Ust), (Ir), (Eb) hold. In view of the above, (2.1) is satisfied, so
that (Eb) reduces to

∇lP(t, l(t)). l̇(t)+ D(l̇(t)) = 0. (2.13)
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Subtracting (2.13) from (2.12), we conclude, with (Ir), that

−∇lP(t, l(t)) ∈ ∂D(l(t); l̇(t)),
which is precisely (2.4) (the sub-differential being evaluated with respect to the
second variable l̇).

Conversely, if (2.1) holds true, then

dE
dt

(t) =
∫

∂d�\�(l(t))

∂W
∂ F

(∇ϕ(t)).ġ(t) ds− Ḟ(t, ϕ(t))

+
{
∇lP(t, l(t)). l̇(t)+ D(l̇(t))

}
. (2.14)

But, by 1-homogeneity, D(l̇(t)) = l̇(t)ζ,∀ζ ∈ ∂D(l(t); l̇(t)), so that, if (2.4) also holds,
then the term in brackets in (2.14) cancels out and (Eb) is established. In view of
(2.12), it remains to show that

∇lP(t, l(t)). l̂ +D(l(t); l̂) ≥ 0, ∀l̂.

From (2.4), we get, since l(t), l̇(t) satisfy (Ir) by the definition (2.6) of D,

−∇lP(t, l(t)). λl̂ ≤ D(l̇(t)+ λl̂)− D(l̇(t)), λ ≥ 0.

Dividing by λ, using 1-homogeneity and letting λ tend to∞, we recover the inequality
in (2.12) since D(0) = 0. Hence (Ust). ��

Remark 2.2 In the strict Griffith setting, the expressions for (Ust) and (Eb) simplify
a bit, since D is linear on R

+; in particular , since D(l − l(t)) = k(l − l(t)) as soon as
l ≥ l(t), the explicit dependence of E(t; ·) upon l(t) drops out of that expression; it is
still however a constraint on the admissible lengths. We rewrite (Ust), (Ir) and (Eb)
below for the reader’s convenience:

(Ust) (l(t), ϕ(t)) is a stationary point of

E(t;ϕ, l) :=
∫

�\�(l)
W(∇ϕ) dx−F(t, ϕ)+ kl, (2.15)

among all l ≥ l(t) and all ϕ = g(t) on ∂d� \ �(l);

(Ir) l̇(t) ≥ 0;

(Eb)
dE
dt

(t)=
∫

∂d�\�(l(t))

∂W
∂ F

(∇ϕ(t)).ġ(t) ds− Ḟ(t, ϕ(t)) with

E(t) :=
∫

�\�(l(t))
W(∇ϕ(t)) dx−F(t, ϕ(t))+ kl(t)

= P(t, l(t))+ kl(t). (2.16)

Throughout most of the remainder of this study, (Ust) and (Eb) will refer to the
expressions above.
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Remark 2.3 In the context of Remark 2.2, elimination of the kinematic field in
the variational formulation leads to the sometimes more convenient equivalent
formulation for (Ust) below; however, the reader is reminded to keep in mind
that lack of convexity, or rather of uniqueness challenges the very meaning of the
potential energy.

(Ust) l(t) is a stationary point of P(t, l)+ kl, among all l ≥ l(t).

At this point, we wish to strongly emphasize that, modulo smoothness, Griffith’s
formulation and the variational formulation obtained in Proposition 2.1 and in
Remark 2.2 are strictly one and the same and cannot be opposed on mechanical
grounds anymore than the original formulation. Of course, ill-wishers might object to
the smoothness caveat, but pre-assuming smoothness is universal practice in deriving
a notion of weak solution, so that we feel perfectly justified in doing so, and will be
quite ready to qualify as “weak” the solutions of what we will, from now onward,
label the “variational evolution.”

In any case, Griffith’s formulation is pregnant with smoothness-related issues as
demonstrated in the next subsection.

2.3 Smoothness – The Soft Belly of Griffith’s Formulation

Consider the case of a p > 1-homogeneous elastic energy density and of a monoton-
ically increasing load, that is

W(tF) = tpW(F), F(t, tϕ) = tpF(1, ϕ), g(t) = t g.

Then, by homogeneity,

ϕ(t, l) = tϕ̄(l), P(t, l) = tpP̄(l),

where ϕ̄(l) and P̄(l) are respectively the transformation and the potential energy
associated with a crack of length l and loads corresponding to the value t = 1.
Truly, from a mechanics standpoint, the displacement field u(x) = ϕ(x)− x is the
kinematic variable for which p-homogeneity of the associated energies makes sense.
The conclusions drawn below would remain unchanged in that context.

We assume that P̄ is a sufficiently smooth function of l and focus on the initiation
of an add-crack, starting with a crack of length l0. Then, if P̄ ′(l0) = 0, the crack will
never move forward, so that l(t) = l0, ∀t, whereas if P̄ ′(l0) < 0, the crack will start
propagating for

t0 := p

√
k

−P̄ ′(l0)
.

As will be seen in Section 4, the energy release rate will be 0 for l = l0, unless the
elastic field happens to be sufficiently singular at the initiation point (this is the notion
of “not-weak” singularity). In particular, a crack-free sample with a nice boundary
will never undergo crack initiation, as usually professed in the fracture community.

Assuming thus that P̄ ′(l0) < 0, we proceed to investigate the convexity properties
of P̄ at l0. If P̄ ′′(l0) < 0, then P̄ ′ is a strictly monotonically decreasing function in a
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neighborhood of l0. Any smooth evolution l(t) will then violate Griffith’s criterion
because

−tpP̄ ′(l(t)) > −tp
0 P̄ ′(l0) = k,

for t slightly larger than t0.
In fact, in the restricted context of this subsection, the strict convexity of P̄ is

a necessary and sufficient condition for the existence of a unique smooth crack
evolution, as demonstrated by the following

Proposition 2.4 Given a smooth potential energy P̄ , that energy is a strictly convex
function of l on [l0, l1], iff Griffith’s criterion is satisfied by a unique smooth crack
propagation l(t) on [t0, t1] given by

l(t) = (P̄ ′)−1

(

− k
tp

)

, t1 = p

√
k

−P̄ ′(l1)
. (2.17)

Then, at each time t, −t pP̄ ′(l(t)) = k.

Proof If P̄ is strictly convex, then (2.17) is well defined, smooth, and clearly satisfies
Griffith’s criterion. A solution l̃(t) �≡ l(t) must be such that −tpP̄ ′(l̃(t)) < k on some
sub-interval (a, b) ⊂ [l0, l1]. Then l̃(t) = l(a) for a ≤ t ≤ b , hence k = −apP̄ ′(l̃(a)) <

−t pP̄ ′(l̃(a)) = −tpP̄ ′(l̃(t)) < k on (a, b), which is impossible.
Conversely, if a smooth function l(t) is the only one that satisfies Griffith’s criterion

on [t0, t1], t0 < t1, then, if l(t1) = l0, there is nothing to prove. Otherwise, let l and
l∗ be such that l0 < l < l∗ < l(t1). Those lengths are attained on time intervals [t, t′]
and [t∗, t′∗] with t ≤ t′, t′ < t∗, t∗ ≤ t′∗. Further, −(t′)pP̄ ′(l(t′)) = −(t′∗)pP̄ ′(l(t′∗)) = k,
so that

P̄ ′(l) = − k
(t′)p

< − k
(t′∗)p

= P̄ ′(l∗),

hence the strict convexity of P̄ . ��

This simple proposition has striking consequences. It demonstrates, albeit in a
restrictive setting, that smoothness of the propagation inevitably leads to a reinforce-
ment of the unilateral stationarity principle (Ust). The crack length l(t) must actually
be a minimizer for P(t, l)+ kl, because of the necessary convexity of P .

So Griffith’s criterion, which is ab initio non-sensical for non-smooth crack
evolutions, implicitly pre-supposes the global convexity of the potential energy as
a function of the crack length. “The intimacy of a well-kept secret”4 is unraveled.

As mentioned in the introduction, stationarity is not a very pleasant mathematical
notion from the standpoint of existence and it is tempting to somewhat strengthen
(Ust). Observe that (Ust) amounts to a first order optimality condition for (l(t), ϕ(t))
to be a local unilateral minimizer – in any reasonable topology – of E(t; ·).

4Marguerite Yourcenar – L’Œuvre au Noir
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The preceding analysis strongly militates for the adoption of some kind of min-
imality principle. Consequently, we propose the following two levels of departure
from Griffith’s classical theory:

– Local level – (Ust) is replaced by (Ulm) (l(t), ϕ(t)) is a local minimizer (in a
topology that remains to be specified) for E(t;ϕ, l) among all l ≥ l(t) and all
ϕ = g(t) on ∂d� \ �(l);

– Global level – (Ust) is replaced by (Ugm) (l(t), ϕ(t)) is a global minimizer for
E(t;ϕ, l) among all l ≥ l(t) and all ϕ = g(t) on ∂d� \ �(l).

In so doing, we have in effect selected solution-paths. The use of local minimality
of the energy functional as a selection criterion is common practice for non linear
conservative systems exhibiting a lack of uniqueness . The argument finds its “raison
d’être” in the rigorous equivalence between Lyapunov stability and local minimality
for systems with a finite number of degrees of freedom. Even more to the point, the
search for global minimizers of the potential energy in finite elasticity has largely
overshadowed that of stationary points. Of course, in our setting, the minimization
criterion, be it global or local, must also accommodate irreversibility, hence the
already mentioned notion of unilaterality.

In any case, Newton’s law and Cauchy’s theorem do not and will never imply
minimality and the adopted minimality principles should be seen as postulates.
Similar criteria have proved successful for many a dissipative system – see e.g.
[87] – and we merely extend them to the setting of fracture. In that setting, it would be
presumptuous to assume that any kind of local minimality statement can be derived
from some undefined evolution, the more so because the model is already time-
dependent.

Remark 2.5 In all fairness, the exploration of brittle fracture as the asymptotic
state of a dissipative system can be fathomed within the framework of quasi-static
visco-elasticity. The viscosity is the vanishing parameter. The resulting system is not
conservative, in the sense that energy balance should no longer hold true, some
amount of energy – on top of the surface energy – being dissipated in the zero-
viscosity limit. If successful, that route would lead to locally minimizing energy paths
with a possible decrease in the energy at a point of discontinuity for the crack length
or for the crack path.

The implementation of such a scheme is not straightforward. A first attempt may
be found in [93] in a two-dimensional setting. The crack path is prescribed and the
crack is assumed to be connected. A locally minimizing possibly dissipative path
is then generated, and is proposed as a potential competitor against the globally
minimizing path. The verdict is postponed, pending further investigation.

Our approach will be more pragmatic. We will carefully dissect the consequences
of those minimality principles and attempt to give a nuanced account of their
respective merits.

Before we proceed, we would like to point out that, in the absence of
1-homogeneity, one can still hope for some kind of variational evolution. The
argument will not be pristine, and will be reminiscent of the rate formulations
common in plasticity. This is the object of the very short Subsection 2.4. Once this
is done, we will return to the time-continuous variational evolution and recast it in a
more suitable functional framework in Subsection 2.5.
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2.4 The Non 1-Homogeneous Case – A Discrete Variational Evolution

As we saw previously, the 1-homogeneous character of the dissipation potential
played a pivotal role in the derivation of (Ust), (Ir), (Eb). Absent this restriction, we
cannot hope to prove any kind of equivalence. Any attempt at numerically solving
(2.1), (2.4), (2.7) would certainly take its root in a time-stepping procedure. We
propose now to travel a bit along that path. To that end, we consider a partition
0 = t0 < ..... < tn

i < ... < tn
n = T of [0, T] with �n = tn

i+1 − tn
i .

Finite-differencing (Ust), (Ir), (Eb) (for general convex dissipation potentials D of
the form (2.6)), we obtain, together with (2.7),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
∂W
∂ F

(∇ϕn
i+1) = fb (tn

i+1) in � \ �(ln
i+1)

ϕn
i+1 = g(tn

i+1) on ∂d� \ �(ln
i+1)

∂W
∂ F

(∇ϕn
i+1)n = fs(tn

i+1) on ∂s�

∂W
∂ F

(∇ϕn
i+1)n = 0 on � ∩ �(ln

i+1),

(2.18)

and

−∇�P(tn
i+1, ln

i+1) ∈ ∂D
(

ln
i ;

ln
i+1 − ln

i

�n

)

. (2.19)

In turn, a pair solution (ln
i+1, ϕn

i+1) of the above system with ∇�(ln
i ) · (ln

i+1 − ln
i ) ≥ 0

may easily be seen to be a unilateral stationary point of

En
i+1(v, l) :=

∫

�\�(l)
W(∇ϕ) dx−F(tn

i+1, ϕ)+�nD
(

ln
i ;

l − ln
i

�n

)

,

among all l such that ∇�(ln
i ) · (l − ln

i ) ≥ 0, ϕ = g(tn
i+1) on ∂d� \ �(l), and conversely.

In the case where D is positively 1-homogeneous the �n cancel out and we recover a
discretized version of (Ust). Note that (Eb) seems to have dropped out of the discrete
formulation altogether. We will come back to this point in Section 5.

The next natural step would be to pass to the limit in the discrete variational
evolution as �n↘0. This is unfortunately a formidable task, even in much simpler
settings. For example, there are at present no mathematical results permitting to
pass to the limit in the discrete gradient flow problem for a non-convex functional.
In other words, if W : F ∈ R

d×d �→ R is a typical hyperelastic energy – say a convex
function of the minors of F – then, under appropriate growth and boundary condi-
tions, the global minimization problem

min
ϕ

{∫

�

W(∇ϕ) dx+ 1

2�n

∫

�

(ϕ − ϕn
i )2 dx

}

admits a solution with ϕn
0 = ϕ0 prescribed, and a priori estimates can be obtained on

ϕn(t), constructed as the piecewise constant function ϕn(t) := ϕn
i , t ∈ [tn

i , tn
i+1). Yet

what the appropriate weak limit of ϕn satisfies is unclear. In other words, there is no
well-formulated L2-gradient flow for non-convex functionals.

In Section 9, we will make use of the procedure described above to propose a
time-discretized variational evolution for fatigue. For now, we return to our main
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concern, the variational evolution described in Remark 2.2, and propose a functional
framework that makes its analysis more palatable.

2.5 Functional Framework – A Weak Variational Evolution

The end of Subsection 2.3 emphasized the drawbacks of replacing (Ust) by (Ulm),
or, even worse, by (Ugm). But the strengthened formulation “makes light out of
darkness,”5 because, thanks to the minimality criterion, the preset path constraint
can be abolished. Indeed, the minimality-modified Griffith variational evolution
states that the actual length l(t) of the crack is a local (or global) minimum among
all lengths l greater than, or equal to l(t) along the pre-determined crack path �̂.
But, why should one restrict the future evolution precisely to that curve �̂? We thus
propose to let the crack choose which future path it wishes to borrow, according to
the minimality principle. Thus, denoting by �(t) the crack at time t, we replace (Ulm),
resp. (Ugm) by

(Ulm) (�(t), ϕ(t)) is a local minimizer (in a topology that remains to be specified)
for

E(t;ϕ, �) :=
∫

�\�
W(∇ϕ) dx−F(t, ϕ)+ kH1(�), (2.20)

among all � ⊃ �(t) and all ϕ = g(t) on ∂d� \ �; or, resp.,
(Ugm) (�(t), ϕ(t)) is a global minimizer for E(t;ϕ, �) among all � ⊃ �(t) and all

ϕ = g(t) on ∂d� \ �.

Note that the test ϕ’s depend on the test �’s. Correspondingly, we also replace
(2.7) by

(Ic) �(0) = �0,

and the definition (2.16) of E(t) in (Eb) by

E(t) :=
∫

�\�(t)
W(∇ϕ(t)) dx−F(t, ϕ(t))+ kH1(�(t))

= P(t, �(t))+kH1(�(t)), (2.21)

with an obvious extension of the definition (2.2) of the potential energy P .
This calls for two remarks. First, we keep the same label for those extended

minimality principles, because they will be the only ones we will refer to from now
onward. Then, we allow the test cracks � to be pretty much any closed set in � \ ∂s�

with finite Hausdorff measure H1(�). This allows us to envision very rough cracks,
and will coincide with the usual length when the crack is a rectifiable curve. We do
not allow for the crack to lie on ∂s� for obvious reasons. The crack cannot live where
soft devices are applied, lest those soft devices not be felt.

We shall refer to the above formulation, that is (Ic), (Ulm) or (Ugm), (Eb), as the
strong variational evolution.

5Job – 37:15
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Local minimality directly refers to a topology, whereas global minimality is
topology-independent. But, even if the latter is called upon, the failure to impart
upon test cracks a decent topology would dim the mathematical hope for an existence
result. A natural candidate is the Hausdorff metric, defined for two closed sets A,

B as

dH(A, B) := max{sup
a∈A

d(a, B), sup
b∈B

d(b , A)}.

Examine for instance the initial time in the global minimality context with �0 =
∅, fb (0) = fs(0) = 0. Then, we should minimize

∫

�\�
W(∇ϕ) dx+ kH1(�)

among all pairs (�, ϕ) with ϕ = g(0) on ∂d� \ �. The direct method of the calculus
of variations would have us take an infimizing sequence {(�n, ϕn)}. In particular,
we are at liberty to assume that H1(�n) ≤ C. Say that the sequence �n converges
in the Hausdorff metric to some �; this is not a restriction, thanks to Blaschke’s
compactness theorem [90]. Then we would like to have

H1(�) ≤ lim inf
n

H1(�n).

But, this is generically false, except in 2d and for, say, connected �n’s! Consequently,
that topology seems a bit restrictive, although it has been used with success to
prove existence, in the global minimality framework, for the 2d variational evolution
restricted to connected cracks in [41]. We shall come back to this point in Section 5.

Light will shine from an unexpected direction. In the context of image segmen-
tation, D. Mumford and J. Shah proposed to segment image through the following
algorithm: Find a pair K, compact of � ⊂ R

2 (the picture) representing the contours
of the image in the picture, and ϕ, the true pixel intensity at each point of the picture,
an element of C1(� \ K), which minimizes

∫

�\K
|∇ϕ|2 dx+ kH1(K)+

∫

�

|ϕ − g|2 dx, (2.22)

where g is the measured pixel intensity. The minimization proposed in [80] was then
shown in [43] to be equivalent to a well-posed one-field minimization problem on a
subspace SBV(�) of the space BV(�) of functions with bounded variations on �,
namely,

∫

�

|∇ϕ|2 dx+ kH1(S(ϕ))+
∫

�

|ϕ − g|2 dx, (2.23)

where ∇ϕ represents the absolutely continuous part of the weak derivative of ϕ

(a measure), and S(ϕ) the set of jump points for ϕ.
We recall that a function ϕ : � �→ R is in BV(�) iff ϕ ∈ L1(�) and its distribu-

tional derivative Dϕ is a measure with bounded total variation. Then, the theory
developed by E. De Giorgi (see e.g. [47]) implies that

Dϕ = ∇ϕ(x) dx+ (ϕ+(x)− ϕ−(x))ν(x)H1�S(ϕ)+ C(ϕ),

with ∇ϕ, the approximate gradient, ∈ L1(�) (∇ϕ is no longer a gradient), S(ϕ)

the complement of the set of Lebesgue points of ϕ, a H1 σ–finite and countably
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1-rectifiable set (a countable union of compacts included in C1–hypersurfaces, up
to a set of 0 H1–measure), ν(x) the common normal to all those hypersurfaces at a
point x ∈ S(ϕ), ϕ±(x) the values of ϕ(x) “above and below” S(ϕ), and C(ϕ) a measure
(the Cantor part) which is mutually singular with dx and with H1 (it only sees sets
that have 0 Lebesgue-measure and infinite H1–measure). The subspace SBV(�) is
that of those ϕ ∈ BV(�) such that C(ϕ) ≡ 0. It enjoys good compactness properties
established in [5], namely

ϕn∈SBV(�) with

⎧
⎪⎪⎨

⎪⎪⎩

ϕn bounded in L∞(�)

∇ϕn bounded in Lq(�;R2), q > 1

H1(S(ϕn)) bounded in R

�
�
�

∃{ϕk(n)} ⊂ {ϕn}, ∃ϕ ∈ SBV(�) s.t.
⎧
⎪⎪⎨

⎪⎪⎩

ϕk(n) −→ ϕ, strongly in Lp(�), p <∞
∇ϕk(n) ⇀ ∇ϕ, weakly in Lq(�;R2)

H1(S(ϕ)) ≤ lim infn H1(S(ϕk(n))

(2.24)

Thanks to Ambrosio’s compactness result above, a simple argument of the direct
method applied to (2.23) establishes existence of a minimizer ϕg for that functional.

The further result that the pair
(
ϕg, (S(ϕg))

)
is a minimizer for (2.22) is highly non-

trivial and makes up the bulk of [43].
In De Giorgi’s footstep, we thus reformulate the variational evolution in the

weak functional framework of SBV, or rather of those functions that have all their
components in SBV, the jump set S(ϕ) becoming the union of the jump set of each
component of ϕ. To do this, it is more convenient to view the hard device g(t) as
living on all of R

2 and to integrate by parts the boundary term involving ġ(t) in (Eb).
So, after elementary integrations by parts, we propose to investigate

– The weak variational evolution : Find (ϕ(t), �(t)) satisfying

(Ic) �(0) = �0;
(Ulm) (�(t), ϕ(t)) is a local minimizer (in a topology that remains to be specified)

for

E(t;ϕ, �) :=
∫

�

W(∇ϕ) dx−F(t, ϕ)+ kH1(�), (2.25)

among all � \ ∂s� ⊃ � ⊃ �(t) and all ϕ ≡ g(t) on R
2 \� with S(ϕ) ⊂ �;

or, resp.,
(Ugm) (�(t), ϕ(t)) is a global minimizer for E(t;ϕ, �) among all � \ ∂s� ⊃ � ⊃ �(t)

and all ϕ ≡ g(t) on R
2 \� with S(ϕ) ⊂ �;

(Eb)
dE
dt

(t) =
∫

�

∂W
∂ F

(∇ϕ(t)).∇ ġ(t) dx− Ḟ(t, ϕ(t))−F(t, ġ(t))

with

E(t) = E(t;ϕ(t), �(t)). (2.26)
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The weak formulation calls for several caveats. The attentive reader will have
remarked that, in spite of the previous considerations on SBV, we have not ex-
plicitly indicated where ϕ (or ϕ(t)) should live. This is because, when dealing with
vector-valued SBV-functions (the case of plane (hyper)elasticity, for example), that
space – that is the Cartesian product of SBV for each of the components – is not quite
sufficient. One should really work in GSBV [40]. Our narration of the variational
evolution is mathematically precise, but an overload of technicalities would serve no
useful purpose and the curious reader may wish to consult [40] on this issue.

Likewise, it is not so that the crack should belong to � \ ∂s�. Any rigorous analysis
will actually require ∂s�, the site of application of the surface forces, to be part of the
boundary of a non-brittle piece of the material. In other words, we should in truth
single out a thin layer around ∂s� with infinite fracture toughness. This also will be
overlooked in the sequel.

Also, for the mathematically-minded reader, the test cracks � do not have to be
even essentially, i.e., up to a set of H1-measure 0, closed subsets of � \ ∂s�, but only
countably 1-rectifiable curves. Whether the actual crack �(t) that could be produced
through the weak variational evolution is closed or not will be deemed a question
of regularity and briefly commented upon in Paragraph 5.1.4 in the setting of global
minimization.

Then, observe that, when dealing with plane (hyper)elasticity, the surface en-
ergy does not force non-interpenetration of the crack lips, but counts all jumps,
whether interpenetrating or not. As mentioned at the onset of this section, non-
interpenetration is a delicate issue in Griffith’s setting. We will stay clear of it for
the remainder of these notes and be forced to accept the potential occurrence of
interpenetration.

Finally, as before, the same labels have been kept. The context will clearly indicate
if the relevant formulation is weak or strong.

Remark 2.6 In practice, the reader should feel entitled to identify the crack �(t) with
�0 ∪⋃s≤t S(ϕ(s)), although caution should be exercised in finite elasticity, in which
case it is unclear whether that identification remains legitimate.

A few transgressions notwithstanding, the recasting of Griffith’s evolution model
in a variational framework is complete. Its success or failure hinges on its ability
to perform when confronted with initiation, irreversibility and path. It will fail,
more often than not, although the failure becomes a resounding success when
gauged by the standards of the classical theories. The villain is easily identified:
Griffith, or rather the form of the surface energy that was proposed by Griffith. The
shortcomings of that energy have long been acknowledged and the idea of a cohesive
type surface energy has since emerged, most notably in [11, 82].

In the next subsection, we examine how to import a Barenblatt type energy into
the variational evolution.

2.6 Cohesiveness and the Variational Evolution

Early on, it was recognized that inter-atomic bonds of the underlying lattice of
an crystalline solid will “stretch” before they break, and thus that some degree of
reversibility near the crack tip should precede the advance of a crack. In other words



28 B. Bourdin et al.

there is a barrier to bond break and that barrier can be thought of as a macroscopic
manifestation of the elasticity of the underlying inter-atomic potential. In any case,
such considerations have prompted the replacement of Griffith’s surface energy by
various surface energies that all share common defining features. They often read as

∫

crack
κ (|[ϕ(s)]|) ds,

where [ϕ(s)] stands for the jump of the field ϕ at the point with curvilinear abscissa s
on the crack and κ is as in Fig. 3.

Note the main ingredients. A concave increasing function which takes the value 0
at 0 and asymptotically converges to the value k of the fracture toughness. The slope
at 0, σc is positive and finite.

Here, non-interpenetration is not addressed in the vector-valued case since the
Euclidean norm of the jump enters the expression for the surface energy. As
previously announced, the issue will be tackled in Subsections 4.2, 5.2.

In the context of the weak variational evolution, we suggest to replace the term
kH1(�) in (2.25) by

∫

�
κ(|[ϕ] ∨ ψ(t)|)dH1, where ψ(t) is the cumulated jump, up to

time t, at the given point of �. Otherwise said,

ψ(t) = ∨τ≤t[ϕ(τ)].

Also, the term kH1(�) in (2.26) is replaced by
∫

�(t) κ (|ψ(t)|) dH1. Let us explain our
reasons. We postulate that the energy dissipated by the creation of discontinuities
is only dissipated once for a given value of the jump, and that additional dissipation
will only occur for greater mismatches between the lips of the incipient part of the
crack. This is of course one of many plausible phenomenological assumptions; it all
depends on what irreversibility means in a cohesive context! We will return to this
issue in Section 5.

Fig. 3 A typical cohesive surface energy
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In any case, the ensuing formulation reads as follows:

– The weak cohesive variational evolution : Find, for every t ∈ [0, T], (ϕ(t), �(t))
satisfying, with

ψ(t) := ∨τ≤t[ϕ(τ)], (2.27)

(Ic) �(0) = �0;

(Ulm) (�(t), ϕ(t)) is a local minimizer (in a topology that remains to be specified)
for

E(t;ϕ, �) :=
∫

�

W(∇ϕ)dx−F(t, ϕ)+
∫

�

κ
(∣
∣
∣[ϕ] ∨ ψ(t)

∣
∣
∣

)
dH1 (2.28)

among all � \ ∂s� ⊃ � ⊃ �(t) and all ϕ ≡ g(t) on R
2 \� with S(ϕ) ⊂ �; or,

resp.,

(Ugm) (�(t), ϕ(t)) is a global minimizer for E(t;ϕ, �) among all � \ ∂s� ⊃ � ⊃ �(t)
and all ϕ ≡ g(t) on R

2 \� with S(ϕ) ⊂ �;

(Eb)
dE
dt

(t) =
∫

�

∂W
∂ F

(∇ϕ(t)).∇ ġ(t) dx− Ḟ(t, ϕ(t))−F(t, ġ(t))

with

E(t) =
∫

�

W(∇ϕ(t)) dx−F(t, ϕ(t))+
∫

�(t)
κ(|ψ(t)|)dH1. (2.29)

The weak cohesive variational evolution formally resembles the weak variational
formulation obtained in Subsection 2.5 (take κ(0) = 0, and κ ≡ 1, δ �= 0), yet it
is mathematically more troublesome. Examine once again the initial time in the
global minimality context with �0 = ∅, fb (0) = 0 and ∂d� = ∂�, and also assume,
for simplicity that W(F) = 1/2|F|2 (see Fig. 4).

F

W

c

Fig. 4 Original bulk energy density
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Then, in the case of anti-plane shear, one should minimize

1/2
∫

�

|∇ϕ|2 dx+
∫

S(ϕ)

κ
(∣
∣
∣[ϕ]

∣
∣
∣

)
dH1

among all ϕ’s with ϕ = g(0) on R
2 \� (it is enough here to take � = S(ϕ)). In contrast

to what was encountered when using Griffith’s energy, the above functional does
not admit a minimizer in SBV(R2). A relaxation process occurs whereby, for high
enough gradients, it is energetically cheaper to replace those by many infinitesimally
small jumps; see [15, 16, 24]. We will return to this point in Subsection 4.2 below. For
now, we merely observe that the relaxed functional – that minimized at the limits of
minimizing sequences for the original functional – will be of the form

∫

�

Ŵ(∇ϕ) dx+
∫

S(ϕ)

κ
(∣
∣
∣[ϕ]

∣
∣
∣

)
dH1 + σc|C(ϕ)| (2.30)

with (see Fig. 5)

Ŵ(F) =
{

1/2|F|2, if |F| ≤ σc

1/2(σc)
2 + σc(|F| − σc) otherwise ,

and where |C(ϕ)| stands for the total variation of the measure C(ϕ) (see e.g. [7],
Section 5.5). The resulting functional has linear growth at infinity and it does not live
on SBV but on BV (because of the reappearance of a Cantor part)!

The output of the minimization is no longer a crack, because the Cantor part
corresponds in effect to some kind of “diffuse cracking process” with overall
dimensionality higher than 1 in 2d. It is not so clear how one should proceed onward,
unless minima of the relaxed functional are actually in SBV. This is true in 1d, as
demonstrated in [24], but only wishful thinking in higher dimensions.

As we see, the introduction of cohesive surface energies enriches the model, but
it also bears its share of misfortunes. The subsequent developments will attempt in
part to weigh the respective merits of both Griffith and cohesive approaches within
the adopted framework.

F

W

c

Fig. 5 Relaxed bulk energy density
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3 Stationarity versus Local or Global Minimality – A Comparison

Before embarking on the variational journey, we wish to explore the ramifications
of minimality in the context of both Griffith and cohesive fracture. The adopted
setting, or rather settings, for such an analysis are designed so that the “crack path”
is not at stake. Nor is irreversibility a concern here because the monotonicity of the
loads combined with the geometry of the problems result in an increase of both the
measure of the discontinuity set and the magnitude of the discontinuities on that set.
The focus is squarely on minimality, although, at times energy balance (Eb)will come
to the rescue.

The two settings are

1. A 1d-traction experiment under a hard or a soft device;
2. A 2d-tearing experiment.

In the first setting, cracks are merely points of discontinuity along the bar; in
the second setting, symmetry of the geometry and of the loads suggests a straight
crack path in mode III. In both settings, we assess the potential existence of weak
variational evolutions satisfying unilateral stationarity (Ust), unilateral minimality
(Ulm), or still unilateral global minimality (Ugm), together with energy balance (Eb),
this for both Griffith, or cohesive fracture energies. The resulting picture is a dizzying
labyrinth, but maybe it is because we have “realized that [fracture] and the labyrinth
were one and the same.”6

3.1 1D Traction

A “crack-free” homogeneous linearly elastic bar of length L, cross-sectional area �,
Young’s modulus E, toughness k is clamped at x = 0 and subject to a displacement
load εL, ε ↗ (hard device), or to a force load σ�, σ ↗ (soft device) at x = L.
The parameters σ, ε play the role of the time variable. Thus, all evolutions will be
parameterized by either σ , or ε.

The results are concatenated in Conclusions 3.2, 3.3, 3.4, 3.6 and do support the
labyrinthine paradigm. Those of the cohesive case were first partially obtained in [44]
and also analyzed in [24].

3.1.1 The Griffith Case – Soft Device

Assume that ϕ is an admissible deformation field for a value σ of the loading
parameter; that field may have jumps S(ϕ) ⊂ [0, L), or it may correspond to the
elastic state, in which case it lies in W1,2(0, L). In any case we view it as a field defined
in SBV(R) and such that ϕ ≡ 0 on (−∞, 0). Its associated energy is

E(σ, ϕ) = 1

2

∫

(0,L)

E�(ϕ′ − 1)2 dx− σ�ϕ(L+)+ k�#(S(ϕ)), (3.1)

and that energy will only be finite if S(ϕ) is finite and ϕ′ ∈ L2(0, L), which we assume
from now onward. This in turn implies that we may as well restrict the admissible
fields to be in SBV(R) ∩ L∞(R).

6Adapted from: Jorge Luis Borges – The Garden of Forking Paths
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Consider the perturbation ϕ + hζ with ζ admissible. The corresponding energy is

E(σ, ϕ + hζ ) = E(σ, ϕ)+ k�#(S(ζ )\S(ϕ))− hσ�ζ(L+)

+ h
∫

(0,L)

E�(ϕ′ − 1)ζ ′ dx+ h2

2

∫

(0,L)

E�ζ ′2 dx. (3.2)

Then E(σ, ϕ + hζ ) > E(σ, ϕ) as soon as S(ζ ) \ S(ϕ) �= ∅ and h is small enough. Thus
both unilateral stationarity or unilateral minimality need only be checked when
S(ζ ) ⊂ S(ϕ).

Then, (Ust) yields

0 ≤
∫

(0,L)

E�(ϕ′ − 1)ζ ′ dx− σ�ζ(L+),

for all admissible ζ ’s, or still

E(ϕ′ − 1) = σ in (0, L), E(ϕ′ − 1) = 0 on S(ϕ).

Whenever σ > 0, only the elastic deformation ϕe(σ )(x) = x+ σ x/E satisfies unilat-
eral stationarity. In turn, (3.2) yields

E(σ, ϕe(σ )+hζ )−E(σ, ϕe(σ ))= h2

2

∫ L

0
E�ζ ′2 dx+�

{
k#(S(ζ ))−hσ

∑

S(ζ )

[ζ ]
}
≥0,

provided that h is small compared to any norm that controls
∑

S(ζ )

[ζ ] (the sup norm,

or the BV norm for example). This ensures local minimality of the elastic solution in
any topology associated with such norms.

The elastic solution cannot be a global minimum when σ > 0, because the energy
given by (3.1) is not bounded from below: just take ϕ(x) = x in [0, L/2) and ϕ(x) =
x+ n in (L/2, L]. Global minimality behaves very erratically when confronted with
soft devices. This major drawback will be further dissected in Paragraph 4.1.1.

Remark 3.1 Testing the elastic solution against non-interpenetrating jumps is easy,
since it suffices to restrict test jumps to be non-negative. In this context, the elastic
solution is checked to be a global minimum for σ < 0, if non-interpenetration is
imposed.

In conclusion, under a soft device, the elastic configuration is the only one that
satisfies (Ust) and/or (Ulm). Because energy balance is automatic in the case of a
purely elastic evolution, we thus conclude that

Conclusion 3.2 In a 1d traction experiment with a soft device, the elastic evolution is
the only one that satisfies the weak variational evolution with either (Ust), or (Ulm),
and (Eb). There is no solution to the weak variational evolution with (Ugm) and (Eb).
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3.1.2 The Griffith Case – Hard Device

The admissible deformations are still in SBV(R) and they satisfy ϕ ≡ 0 on (−∞, 0)

and ϕ ≡ (1+ ε)L on (L,∞). The associated energy is

E(ε, ϕ) = 1

2

∫

(0,L)

E�(ϕ′ − 1)2 dx+ k�#(S(ϕ)), (3.3)

and, once again it is only finite if #(S(ϕ)) is finite and ϕ′ ∈ L2(0, L), which we assume.
The argument is very close to that of the previous paragraph and uses similar test

functions. Unilateral stationarity (Ust) yields

E(ϕ′ − 1) = σ in (0, L), E(ϕ′ − 1) = 0 on S(ϕ),

where σ is now an unknown constant.
If σ �= 0, then S(ϕ) = ∅ and ϕ ≡ ϕe(ε), the elastic response; ϕe(ε)(x) = (1+ ε)x

and σ = Eε. The associated energy is E(ϕe(ε)) = E�Lε2/2 and, as in the case of a
soft device, it is a local minimum for similar topologies.

If now σ = 0, then S(ϕ) �= ∅, otherwise ϕ ≡ ϕe(ε). For a given number j of jumps,
the field ϕ j(ε) must be such that

(ϕ j(ε))′ = 1 in [0, L] \ S(ϕ j(ε));
∑

S(ϕ j(ε))

[ϕ j(ε)] = εL,

and the associated energy is E(ϕ j(ε)) = kj�.
Further, for any admissible ζ ,

E(ε, ϕ j(ε)+ hζ )− E(ε, ϕ j(ε)) = h2

2

∫

(0,L)

E�ζ ′2 dx ≥ 0,

which ensures that ϕ j(ε) is a local minimum for similar topologies.
This time, the energy is bounded from below and a global minimum ϕg(ε) exists.

An immediate computation shows that

ϕg(ε) =
{

ϕe(ε) if 0 < ε ≤ √2k/EL

ϕ1(ε) if ε ≥ √2k/EL.
(3.4)

As far as the energy balance (Eb) is concerned, the elastic solution satisfies it
automatically. Since the energy associated with any of the fields ϕ j(ε) is constant,
while the associated stress is 0 throughout the bar, (Eb) is also satisfied by ϕ j(ε), since
there are no contributions of (2.3), (2.9). Finally ϕe

g satisfies (Eb) for similar reasons.

Conclusion 3.3 In a 1d traction experiment with a hard device, the elastic evolution,
and all admissible evolutions with a set finite number of jumps satisfy the weak
variational evolution with (Ulm) – and also (Ust) – and (Eb). Only ϕg(ε) defined in
(3.4) satisfies the weak variational evolution with (Ugm) and (Eb).

Also, all evolutions that are elastic, up to ε = √2ik/EL, then have i jumps satisfy
(Ulm) – and also (Ust) – and (Eb).



34 B. Bourdin et al.

3.1.3 Cohesive Case – Soft Device

The surface energy κ has to be specified. We assume that
⎧
⎪⎪⎨

⎪⎪⎩

κ ∈ C∞, is strictly monotonically increasing, strictly concave on R
+

(κ ′)−1 is convex

κ(0) = 0, κ(∞) = k, κ ′′(∞) = 0, κ ′(0) := σc > 0.

(3.5)

As will be further dwelt upon in Subsection 4.2, non-interpenetration is readily
imposed in the cohesive setting, so that, in analogy with Paragraph 3.1.2, the
admissible fields ϕ will be elements of SBV(R) ∩ L∞(R) such that ϕ ≡ 0 on (−∞, 0),
S(ϕ) ⊂ [0, L), [ϕ] ≥ 0 on S(ϕ). The energy reads as

E(σ, ϕ) = 1

2

∫

(0,L)

E�(ϕ′ − 1)2 dx− σ�ϕ(L)+
∑

S(ϕ)

κ([ϕ])�. (3.6)

Take an admissible test field ζ ∈ SBV(R) ∩ L∞(R); it satisfies ζ ≡ 0 on (−∞, 0),
S(ζ ) ⊂ [0, L), [ζ ] > 0 on S(ζ ) \ S(ϕ). Unilateral stationarity (Ust) then is easily seen
to be equivalent to
∫

(0,L)

E�(ϕ′ − 1)ζ ′ dx− σ�ζ(L+)+�
∑

S(ζ )∩S(ϕ)

κ ′([ϕ])[ζ ] + σc�
∑

S(ζ )\S(ϕ)

[ζ ] ≥ 0.

(3.7)

This is in turn equivalent to

E(ϕ′ − 1) = σ in (0, L),

κ ′([ϕ]) = σ on S(ϕ)

σ ≤ σc. (3.8)

We borrow the derivation of (3.8) from [24], Section 6. First, assume that
E(ϕ′−1) �=cst. on (0, L). Then, there exist c<d such that Ac :={E(ϕ′−1)≤c} and
Ad :={E(ϕ′−1)≥d} have positive measure. Take ζ :=∫ x

0

{|Ad|χAc−|Ac|χAd

}
(s)ds,

so that, replacing in (3.7), we get

|Ac||Ad|(c− d) ≥ 0,

a contradiction, hence the first condition.
Now, take ζ(x) := − x

L
, x < x0 and ζ(x) := 1− x

L
, x > x0 with x0 ∈ [0, L]. From

(3.7), we get, in view of the already established first condition in (3.8),

σ ≤ κ ′([ϕ(x0)]),
whenever x0 ∈ S(ϕ). But then, −ζ is also an admissible test, so that we get the
opposite inequality, hence the second condition in (3.8). Consequently, as soon as
σ �= 0, there can only be a finite number of jump points. The third condition is
obtained similarly, taking a point x0 /∈ S(ϕ).
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For 0 < σ < σc, the above conditions are met by infinitely many configurations,
the elastic solution ϕe(σ ) for one, then any solution ϕi(σ ) with

⎧
⎪⎪⎨

⎪⎪⎩

ϕi(σ ))′ = 1+ σ

E
#(S(ϕi(σ )) = i

[ϕi(σ )](x) = (κ ′)−1(σ ), x ∈ S(ϕi(σ )).

(3.9)

The average deformation ε̄ of the bar – in mathematical terms, the total variation
of (ϕi(σ )− x) – is given by

ε̄L =
∫

(0,L)

((ϕi(σ ))′ − 1) dx+
∑

S(ϕi(σ ))

[ϕi(σ )] = L
σ

E
+ i(κ ′)−1(σ ).

Hence,

ε̄ = σ

E
+ i

(κ ′)−1(σ )

L
, (3.10)

which represents a one-parameter family of curves indexed by i, see Fig. 6.
The elastic evolution satisfies (Ulm) for many reasonable topologies. Indeed, since,

for many admissible test field ζ ,

ζ(L)− ζ(0−) =
∫

(0.L)

ζ ′dx+
∑

S(ζ )

ζ,

a straightforward computation leads to

E(σ, ϕe(σ )+ hζ ) = E(σ, ϕe(σ ))+
∑

S(ζ )

(κ(h[ζ ])− hσ [ζ ])� + h2

2

∫ L

0
E�ζ ′2 dx.

We conclude that E(σ, ϕe(σ )+ hζ ) ≥ E(σ, ϕe(σ )) for h small enough compared to any
norm that controls

∑
S(ζ )[ζ ], as long as σ < σc.

Fig. 6 1d traction – stationary solutions – i denotes the number of discontinuity points
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Take an evolution ϕi(σ ). For some x ∈ S(ϕi(σ )), choose the test field ζ with
ζ ′ = 0 in (0, L), ζ(0−) = 0 and [ζ ](x) = −L. Then, for h small enough,

E(σ, ϕi(σ )+ hζ )− E(σ, ϕi(σ )) = hσ�L+ κ([ϕi(σ )+ hζ ](x))�

−κ([ϕi(σ )](x))� = h2 L2�

2
κ ′′((κ ′)−1(σ ))+ o(h2) < 0.

Consequently, ϕi(σ ) is not a local minimizer in any reasonable norm.
The term −σ�ϕ(L) in (3.6), together with the upper bound k on the surface

energy prevent the total energy from being bounded from below; no evolution
satisfies (Ugm).

As always, the elastic evolution satisfies (Eb). The total energy associated with
ϕi(σ ) is given by

E(σ, ϕi(σ )) = −1

2

σ 2�L
E

−�σ L+ i�
{
κ
(
(κ ′)−1(σ )

)− σ(κ ′)−1(σ )
}

,

while the only non-zero term in the right hand side of (Eb), Ḟ(σ, ϕi(σ )) (see (2.9))
reduces to

�L(1+ ε̄) = �

{

L+ σ L
E
+ i(κ ′)−1(σ )

}

.

From this, equality in the balance of energy becomes immediate by e.g. derivation of
E(σ, ϕi(σ )) with respect to σ .

Conclusion 3.4 In a 1d traction experiment with a soft device and as long as σ < σc,
the elastic evolution is the only one that satisfies the weak variational evolution with
(Ulm) and (Eb). During that time interval, all evolutions given by (3.9) satisfy the weak
variational evolution with (Ust) and (Eb). There are no evolutions satisfying (Ugm)
and (Eb).

It is not possible in the present context to jump from the elastic solution to one of
the evolutions given by (3.9), or from one of those to one with a different number
of jumps because the total energy does not remain continuous at such a jump, but
increases brutally through that jump; thus (Eb) is not satisfied.

Remark 3.5

a. Note that the evolution branches corresponding to (3.9) for j �= 0 start with
infinite average deformation at σ = 0! But this is not admissible from the
standpoint of the ambient space. Since our self-imposed rule is to start within
a space of functions with bounded variations, we thus have to reject those
solutions, unless we agree that, at initial time, σ > 0. Further, it is not possible
to jump onto one of those branches without contravening energy balance. So,
the alternative in the case of a cohesive evolution with a soft device is clear. If
starting from an unloaded configuration, the elastic evolution is the only one that
respects (Eb) for σ < σc. Transgression is punished by an increase in total energy;

b. The ever attentive reader will wonder, with some cause, what happens when
σ ≥ σc. We share her interrogations and merely refer her to Remark 4.10 as a
ground for possible future investigations of the post-critical case.
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3.1.4 Cohesive Case – Hard Device

The surface energy is again described by (3.5). The admissible fields ϕ will be
elements of SBV(R) ∩ L∞(R) such that ϕ ≡ 0 on (−∞, 0), ϕ ≡ (1+ ε)L on (L,∞),
S(ϕ) ⊂ [0, L], [ϕ] ≥ 0 on S(ϕ). The associated energy is

E(ε, ϕ) = 1

2

∫

(0,L)

E�(ϕ′ − 1)2 dx+
∑

S(ϕ)

κ([ϕ])�. (3.11)

As in the case of a soft device treated in Paragraph 3.1.3, unilateral stationarity (Ust)
is equivalent to (3.8), although σ , which is still a constant, is not a datum anymore.
Since ε is the average deformation, that is ε̄ = ε, an evolution ϕi(ε) with i jumps must
be such that σ satisfies (3.10). The point (ε̄ = ε, σ ) is still on one of the curves in
Fig. 6. But, in such a case, the evolution cannot start with ε = 0, because it would not
satisfy (3.10). It has to start at

ε ≥ εi0 := min
{
ε; (ε, σ ) satisfies (3.10)

}
. (3.12)

That minimum exists because ε(σ ) given by (3.10) is convex, since, by assumption
(3.5), (κ ′)−1 is convex, ε(σ = 0) = ∞ and ε(σ = σc) = σc/E =: εc. Note that it may
be the case that εi0 = εc.

The elastic evolution ϕe(ε)(x) = (1+ ε)x/L, for which σ = Eε, satisfies (Ulm) for
many reasonable topologies, as long as ε < σc/E. Indeed, for any admissible test
field ζ ,

0 =
∫

(0.L)

ζ ′dx+
∑

S(ζ )

[ζ ],

so that

E(ε, ϕe(ε)+ hζ )− E(σ, ϕe(ε)) =
∑

S(ζ )

(κ(h[ζ ])− hEε[ζ ])�

+h2

2

∫

(0,L)

E�ζ ′2 dx.

This last expression remains non-negative for h small enough, provided that ε <

σc/E.
Now, any evolution with 2 discontinuity points or more cannot satisfy (Ulm).

Indeed, take x1 �= x2 to be in the jump set of the evolution ϕi(ε) corresponding
to i ≥ 2 discontinuity points. Take ζ to be such that ζ ′ = 0 in (0, L), ζ(0−) = 0 et
[ζ ](x1) = −[ζ ](x2) = −L/2. Then, for h small enough,

E(ε, ϕi(ε)+ hζ )− E(ε, ϕi(ε)) = �

⎛

⎝
∑

i=1,2

κ([(ϕi(ε)+ hζ )(xi)])− κ([ϕi(ε)(xi)])
⎞

⎠

= h2�L2

4

∑

i=1,2

κ ′′((κ ′)−1(σ ))+ o(h2) < 0.
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The local minimality of ϕ1(ε) with discontinuity point x1 will be ensured, provided
that, for h small enough,

E(ε, ϕ1(ε)+ hζ )− E(ε, ϕ1(ε)) = h
∑

S(ζ )\{x1}
(σc − σ)�[ζ ] + h2

2

∫

(0,L)

E�ζ ′2dx

+ h2

2
κ ′′((κ ′)−1(σ ))�[ζ(x1)]2 + o(h2) ≥ 0.

If σ < σc, the only possible challenge to local minimality will be from the term∫

(0,L)
Eζ ′2 dx+ κ ′′((κ ′)−1(σ ))[ζ(x1)]2, which must remain non-negative for all admis-

sible ζ ’s with S(ζ ) = {x1}. Let us compute

λ = min

{∫

(0,L)

Eζ ′2dx | ζ ∈ SBV ∩ L∞(R);

ζ(0−) = ζ(L+) = 0; [ζ(x1)] = 1, S(ζ ) = {x1}
}

.

It is easily checked that λ = E/L, so that ϕ1(ε) is a local minimizer, for σ < σc if, and
only if

E
L
+ κ ′′((κ ′)−1(σ )) ≥ 0.

The graphic interpretation is simple. In view of (3.10) specialized to i = 1,

L
dε

dσ
= L

E
+ 1

κ ′′((κ ′)−1(σ ))
, (3.13)

so, since κ ′′ < 0, local minimality is equivalent to
dε

dσ
≤ 0, or still, in view of (3.12)

to ε ≥ ε10. For example, points close to σ = σc are local minima if L < −E/κ ′′(0)

and are not local minima if L > −E/κ ′′(0); observe that the minimality condition is
length-dependent!

In any case the local minima correspond to evolutions that stay on the continuous
lines in Fig. 7.

Once again, the elastic evolution automatically satisfies (Eb). The total energy
associated with ϕi(ε), which only makes sense for ε ≥ εi0 (see (3.12)) is given by

E(ε, ϕi(ε)) = 1

2

σ 2�L
E

+ i�
{
κ
(
(κ ′)−1(σ )

)}
,

with σ related to ε by (3.10), while the only non-zero term in the right hand side of
(Eb) is �L

∫ ε

εi0
σdε.

In view of (3.10), the derivatives in ε of the two quantities are seen to be equal.
Equality in the balance of energy from εi0 to ε is established. The fact that the
relation between ε and σ in (3.10) can be inverted, and thus that σ is a well-defined
function of ε has been implicitly used. This amounts to choosing a branch of the curve
corresponding to i jumps in Fig. 6 and to remain committed to it for the remainder
of the evolution.

It is sometimes possible in the current context to jump from the elastic evolution
to one of the evolutions ϕi(ε). This will happen whenever there is a snap-back in the
curve for ϕi(ε) – that is whenever εi0 < εc – and the jump will occur at ε = ε∗i > εi0.
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Fig. 7 Locus of possible evolutions satisfying local minimality – at most 1 discontinuity point

Indeed in such a case the total energy will remain continuous at such a jump, thus
(Eb) is satisfied, being satisfied for each branch. To see this, just observe that the total
energy corresponding to the evolution ϕi(ε), in the case of a snap-back, corresponds
to the area “under the curve,” a quantity which is computed graphically as shown in
Fig. 8; see [33].

Then see Fig. 9 for the determination of ε∗i in the case where εi0 < εc.

Conclusion 3.6 In a 1d traction experiment with a hard device and as long as σ < σc,
all evolutions given by (3.9), with σ related to ε by (3.10) satisfy the weak variational
evolution with (Ust) and (Eb). The elastic evolution is the only one that always satisfies
the weak variational evolution with (Ulm) and (Eb). The evolution ϕ1(ε) satisfies (Ulm)

and (Eb) provided that
dε

dσ
≤ 0, see Fig. 7.

It is possible to jump from the elastic branch to a branch with i discontinuity points,
provided that εc > εi0.

Fig. 8 The total energy viewed as the area under the curve
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Fig. 9 Determination of the jump deformation ε∗i – the shaded surfaces have equal area

Remark 3.7 The difference with the case of a soft device is striking because, here,
we may start elastically with 0-deformation load, then jump onto an evolution with
one, or more discontinuities, and this may be done even in the context of reasonable
local minimality. Then we can keep on stretching the sample ad infinitum. Softening
occurs as σ ↘ 0 when ε ↗∞.

Note that we have not broached global minimality issues in this subsection. They
are best left alone until Paragraph 4.2.3. However, it should be noted that it is proved
in [24], Section 6, that the stationary points, local, or global minimizers of the original
functionals E(σ resp. ε, ϕ) are also those of its relaxation Ê given by replacing the
bulk term

∫

(0,L)
E�(ϕ′ − 1)2 dx in (3.6), (3.11) by

∫

(0,L)
Ŵ(ϕ′ − 1) dx, with

Ŵ( f ) :=

⎧
⎪⎨

⎪⎩

1

2
E�| f |2, if | f | ≤ σc

E
1

2

(σc)
2�

E
+ σc�

(
| f | − σc

E

)
otherwise.

3.2 A Tearing Experiment

Consider a thin semi-infinite homogeneous, linearly elastic slab of thickness 2H,
� = (0,+∞)× (−H,+H). Its shear modulus is μ and its toughness k. Tearing
amounts to a displacement load tHe3 on {0} × (0,+H) and −tHe3 on {0} × (−H, 0).
The upper and lower edges are traction free and no forces are applied (see Fig. 10).

We assume throughout that all solutions respect geometric symmetry, emphasiz-
ing that doing so cannot be justified; see in this respect the numerical experiment in
Paragraph 8.3.2. The symmetry assumption permits one to look for a anti-plane shear
solution, antisymmetric with respect to y = 0 and for a crack along that axis. We seek
a displacement solution field of the form

u(x, y, t) = sign(y)u(t, x)e3 with u(t, 0) = tH (3.14)

and note that such a displacement cannot be the exact solution, because it fails to
ensure the continuity of the normal stress at the points (l(t), y), y �= 0 (see (3.15)).
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x

y

z

Fig. 10 Tearing

The true symmetric solution can only be evaluated numerically, but it will be close
to the proposed approximate solution as H becomes large or small.

The deformation ϕ(t) = x+ u(t) will be discontinuous at the points x on the y =
0-axis where u(x, t) �= 0, that is

S(ϕ(t)) = {x ≥ 0 : ϕ(t, x) �= x}.
Then, the energy has the form

E(ϕ) =
∫ ∞

0
μH(ϕ′(x)− 1)2dx+

∫ ∞

0
κ(2|ϕ(x)− x|)

)
dx,

where κ is the surface energy density. For Griffith’s model, κ is discontinuous at zero
and is k elsewhere, while the cohesive model calls for a differentiable, monotonically
increasing κ with

κ(0) = 0, κ(δ) > 0 when δ > 0, κ(∞) = k.

In both settings, k represents the (tangential) toughness of the interface. For the
Barenblatt model τc := κ ′(0) is the ultimate shear stress, either finite (“initially rigid”
cohesive response) or zero (“initially elastic” cohesive response).

The kinematically admissible test fields u (ϕ = x+ u) at time t are elements of
W1,2(0+∞) and satisfy u(t, 0) = tH. A global minimum for E exists for each t by
elementary lower semi-continuity properties. We propose to show that (Ust), (Eb)
has a unique solution, which identifies with the global minimum for E at t, which is
thus unique.

Fix t. First, if ϕ(t) = x+ u(t) is solution to (Ust), then u(t) is monotonically
decreasing in x. Indeed, assume that a and b with 0 ≤ a < b are such that u(t, a) =
u(t, b). Take v with v = −u(t) in (a, b) and v = 0 otherwise. For h ∈ (0, 1), ϕ + hv is
an admissible test function and

E(ϕ + hv)− E(ϕ) = (−2h+ h2)

∫ b

a
u′(t, x)2 dx

+
∫ b

a
(κ(2(1− h)|u(t, x)|)− κ(2|u(t, x)|)) dx

≤ (−2h+ h2)

∫ b

a
u′(t, x)2 dx,



42 B. Bourdin et al.

since κ is monotonically increasing. Thus, invoking (Ust),

0 ≤ d
d h

E(ϕ + h v)

∣
∣
∣
∣
h=0

≤ −2
∫ b

a
u′(t, x)2dx ≤ 0,

so that u(t) = u(t, a) = u(t, b) in (a, b). But u(t) is continuous in x; thus, there exists
∞ ≥ l(t) > 0 such that S(u(t)) = [0, l(t)) with u(t, 0) = tH and u(t, l(t)) = 0.

We now perform an inner variation in E . Take v be in C∞0 (0,∞). When |h|
is sufficiently small, x �→ φh(x) = x+ hv(x) is a direct diffeomorphism onto R

+.
Moreover, if ϕ(0) = tH, the equality also holds for ϕh = ϕ ◦ φ−1

h , and ϕh converges
to ϕ when h goes to 0. The change of variables y = φh(x) in the energy yields

E(ϕ(t) ◦ φ−1
h ) =

∫ ∞

0

(
μH

u′(t, x)2

φ′h(x)
+ φ′h(x)κ(2u(t, x))

)
dx,

which in turn leads to

d
dh

E(ϕ(t) ◦ φ−1
h )

∣
∣
∣
∣
h=0

=
∫ ∞

0

(
− μHu′(t, x)2 + κ(2u(t, x))

)
v′(x)dx.

Thus, invoking (Ust), μHu′(t, x)2 − κ(2u(t, x)) = c, for some constant c. In partic-
ular, u′(t) is continuous on (0,∞).

Now, take v in C∞0 (0, l(t)). Then,

d
dh

E(ϕ(t)+ hv)

∣
∣
∣
∣
h=0

=
∫ l(t)

0

(
− 2μHu′′(t, x)+ 2κ ′(2u(t, x))

)
v(x)dx.

Thus, invoking (Ust) again, we get that, on (0, l(t)), u′′ ≥ 0, that is that u′ is monoton-
ically increasing there; since, if l(t) is finite, u′ ≡ 0 on (l(t),∞), we conclude that, in
any case, u′, like u, tends to 0 at infinity, so c = 0. From the monotonicity of u(t), we
finally get

u′(t, x) = −
√

κ(2u(t, x))

μH
, x > 0, u(0) = tH. (3.15)

We then conclude that the solution ϕ(t) = x+ u(t) to (Ust) is unique and that it is
given by

S(ϕ) = [0, l(t)) with l(t) =
∫ tH

0

√
μH

κ(2v)
dv, (3.16)

while
∫ tH

u(t,x)

√
μH

κ(2v)
dv = x for x ∈ S(ϕ). (3.17)

Elementary O.D.E. arguments based on (3.17) would also show that u(t) ∈
C1([0,∞); C0(0,∞)).

The derivation of (3.16), (3.17) only used the monotonicity of κ and its regularity
on (0,∞). In particular, it applies to both the Griffith, and the cohesive setting.

Also note that l(t) and u(t), hence ϕ(t), increase with t, so that irreversibility is
automatic, while energy balance is guaranteed by the evoked smoothness of u(t).
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This setting offers a striking contrast to that of Subsection 3.1. Here, unilateral
stationarity, unilateral local, or unilateral global minimality are indistinguishable, at
least for an increasing load.

Remark 3.8

a. Of course, a reasonable amount of deception cloaks the analysis. Indeed, we
have surreptitiously introduced inner variations in the argument as valid tests
for stationarity. This is fine as long as stationarity is understood as including
those kind of variations as well. In the presentation of Section 2, stationarity
was introduced in the form of a combination of outer and inner variation (see
(2.11)). It is in that sense that the re-formulated problem of Proposition 2.1 was
equivalent to the original problem (2.1), (2.4) and an investigation of possible
additional constraints on that problem resulting from the introduction of inner
variations should be undertaken. But “let he who has not sinned throw the first
stone.”7

b. The results are very different when the slab is not homogeneous; a jump in length
will occur and it will occur at times which depend on the selected criterion; see
(Marigo, ‘Tearing of a heterogeneous slab’, 2005, unpublished).

We end the analysis with a more detailed examination of the explicit form of u(t)
for different forms of κ . In Griffith’s case,

l(t) = tH

√
μH

k
, u(t, x) = tH

(

1− x
l(t)

)+
. (3.18)

Here, for a given length l of the tear (crack), the total energy at time t is imme-
diately seen to be μH3t2/ l + kl, hence strictly convex in l, so that, according to
Proposition 2.4, the smoothness of the evolution l(t) is hardly surprising.

For a Dugdale-type energy, that is a streamlined Barenblatt-type energy of the
form κ(δ) = min{σcδ; k} first introduced in [46], two regions of the jump set S(ϕ(t))
should be distinguished: the cohesive zone where 2u(t) < δc := k/σc and the cohesive
forces are σc; the non-cohesive zone where 2u(t) > δc and the cohesive forces
vanish. The monotone and continuous character of u imply that both zones are
open intervals (0, λ(t)) and (λ(t), l(t)), the tip λ(t) corresponding to the point where
2u(t) = δc. For times such that t ≤ δc/2H, there is only a cohesive zone, namely

l(t) =
√

2tH2μ

σc
, u(t, x) = tH

((

1− x
l(t)

)+)2

.

For t > δc/2H, both zones coexist, namely,

λ(t) =
√

μH
k

(

tH − δc

2

)

, l(t) =
√

μH
k

(

tH + δc

2

)

7John – VIII, 7
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2 H

t

c

Griffith
Dugdale
Dugdale

Fig. 11 A Dugdale type energy – continuous line, evolution of the cohesive tip; dashed line, evolution
of the non-cohesive tip; thin line, evolution of the tip of the tearing according to Griffith’s model

and

u(t, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tH − x
√

μH
k

[0, λ(t)]

(l(t)− x)2

2 μH
k δc

[λ(t), l(t)];

see Fig. 11.
Note that, for t > δc/2H , the width of the cohesive zone, l(t)− λ(t), is independent

of t and proportional to δc.

Remark 3.9 If κ is e.g. smooth and κ ′(0) = 0, then the integral
∫

0 dv/
√

κ(2v) diverges.
Thus l(t) ≡ ∞ for t > 0. In other words, initiation is instantaneous and the resulting
crack has infinite length! The displacement evolution is still given by (3.17). This
remark should be revisited in the light of item e in Remark 4.10 below.
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4 Initiation

In this section, we also remain in a 2d setting, but will explicitly mention those results
that do not generalize to dimension 3.

Recall the classical example. A semi-infinite 2d homogeneous and isotropic
linearly elastic half-plane contains a crack of length l perpendicular to its boundary.
In mode I, for a self-equilibrated load of intensity r at∞, the energy release rate, as
computed through Irwin’s formula [67], is proportional to lr2 and Griffith’s criterion
consequently requires r to be of the order of 1/

√
l for the crack to move forth. So, as

l ↘ 0, r ↗∞ and no crack will ever appear in the absence of an initial crack.
The mechanics community is of two minds when it comes to crack initiation, or the

lack thereof. It claims loud and clear that crack initiation is not within the purview
of fracture, because the onset of the cracking process is impurity or imperfection
related, yet it relentlessly seeks to predict crack initiation, appealing to extraneous
ingredients. Such is one of the motivations of the theory of damage [75] which,
in essence, substitutes damaged areas for cracks. The thickness of the damaged
area – the “process zone” – is controlled by a damage parameter which is in turn
assumed to follow an a priori postulated evolution law. A careful tailoring of the
damage parameters permits one to control the thickness of the process zone and
to collapse it, in the limit, into cracks. The associated phenomenology is however
troublesome: What do the damage variables represent and why do they care to follow
the postulated evolution laws?

With the refinement of homogenization techniques, modern damage tends to live
at a more microscopic scale, the phenomenology being assigned to micro-cracks. The
process zone then emerges through averaging and can be tuned in to look like a
crack. But then the motion of that “crack” has to be prescribed, and this signals
Griffith’s return at the macroscopic scale. The reader is invited to reflect upon the
validity of introducing damage in any kind of brittle composite such as concrete,
where the growth of micro-cracks of the typical inclusion size is controlled by some
damage parameter, whereas one should reasonably expect a head-on confrontation
with the rather well-defined cracking process. But the result of such a confrontation is
predictable because Griffith’s classical theory presupposes the presence of the cracks,
thus grinding to a halt in such a setting.

And yet how could it be that cracks with length scales of the order of 1/10th of the
grain size should obey laws that are unrelated to those that govern cracks with length
scales of the order of 10 grain sizes?

Unfettered by ideological bias, we propose to examine the impact of our model
upon that issue. Subsection 4.1 investigates the Griffith setting while Subsection 4.2
investigates its cohesive counterpart.

4.1 Initiation – The Griffith Case

4.1.1 Initiation – The Griffith Case – Global Minimality

We first address the global minimality setting and recall to that end the weak
variational evolution of Subsection 2.5. An important weakness of that evolution
is its inability to actually deal with soft devices (at least the kind that were used in the
exposition of the formulation). Indeed recalling (2.25) at time 0, it is immediate that,
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provided that either fb (0) or fs(0) are not 0, E(0; ·) has no infimum. For example,
if fb (0) = 0 and fs(0) �= 0 on ∂s�, just take �, so as to cut out ∂s� away from
�. Sending the excised part to ±∞ (for a large constant ϕ on that part) ensures
that − ∫

∂s�
fs(t).ϕ ds ↘ −∞, while, if W(0) = 0,

∫

�
W(∇ϕ) dx = 0 and kH1(�)=̃

kH1(∂s�).
As illustrated above, this unfortunate byproduct of global minimization cannot

be avoided, even if non-interpenetration was accounted for (there is no risk of
interpenetration in the example above). A class of body and surface forces for which
this does not happen can be evidenced [40] in the framework of finite elasticity. But
that class does not contain the important case of dead loads (see [40], Remark 3.4).

So, in the case of soft devices, the answer to the initiation issue is simple albeit
wrong and useless: initiation is immediate as soon as loads are not identically 0 ! The
reader should not ridicule the global minimization setting yet. As we shall see later,
it yields very reasonable results when hard devices are used, and provides at the least
qualitative fits with experimental data in complex settings (see Paragraph 5.1.4).

Consider now the case where fb ≡ fs ≡ 0. The only load is the boundary defor-
mation g(t, x)) which we take to be of the form tg(x). We baptize proportional loads
these kinds of displacement loadings .

Assume that W is p-homogeneous, p > 1. Merely looking at (Ugm), we get that
(�(t), ϕ(t)) is a global minimizer for

E(t;ϕ, �) =
∫

�

W(∇ϕ) dx+ kH1(�) (4.1)

among all �̄ \ ∂s� ⊃ � ⊃ �(t) and all ϕ ≡ g(t) on R
2 \ �̄ with S(ϕ) ⊂ �. So, as long

as the body remains purely elastic, ϕ(t) has no jumps outside �0, which we assume
closed for simplicity. Then it is the solution of the elastic minimization problem

min
ϕ

{∫

�\�0

W(∇ϕ) dx : ϕ = tg on ∂d� \ �0

}

.

Assume that the energy W has the correct functional properties, say smooth, strictly
convex and strictly positive for non-zero fields. Note that, although convexity is
prohibited by the nonlinear theory of elasticity, it is a natural assumption in the
setting of anti-plane shear; it is of course even more acceptable within the linear
theory. In any case, the solution ϕ(t) is of the form tϕg with ϕg unique minimizer of
(4.1) for t = 1. But then, by p-homogeneity,

E(t;ϕ(t), �0) = Ctp +H1(�0).

A competitor to the elastic solution is ϕ =
{

0, x ∈ �̄

g(t), otherwise
, � = �0 ∪ ∂d�. For

such a test,

E(t;ϕ, �) = kH1(�0 ∪ ∂d�).

Clearly, if t is large enough, it is energetically favorable to crack (barring exceptional
settings where C = 0). We conclude that

Proposition 4.1 In the global minimality framework, the weak variational evolution
for monotonically increasing pure displacement loads will always produce initiation in
finite time, provided that the energy is homogeneous.
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We will denote from now on the initiation time by ti, that is the largest time for
which �(ti) = ∅. Now that we know that ti <∞, we would like to understand the cir-
cumstances, if any, for which ti = 0. Also, from the global minimality standpoint, the
minimum �(t), t > ti does not have to satisfy H1(�(t))↘ 0 as t ↘ ti. We introduce a
definition, valid for any τ ∈ [0, T].

Definition 4.2 The crack motion is brutal at time t iff

lim
s↘t

H(�(s)) > H1(�(t)).

Otherwise the crack motion is progressive at time t.

In other words, the crack motion is brutal at t when the crack experiences a sudden
jump in length at that time.

In the case of proportional loads, the singularities of the elastic field lie at the
root of the initiation process (see [54], Subsection 4.4). In that analysis it is assumed
that W is a quadratic function of the linearized strain, we denote by u0 the elastic
displacement associated with �0 (the maybe empty initial crack) for the load g.
We also assume that the field is singular say at only one point x and that, in a
neighborhood of that point,

u0(y) = rαv(θ)+ û(y), 0 < α < 1,

where (r, θ) are polar coordinates with a pole at x. The points x can be thought of as
a crack tip (that of �0), or a singular point of the boundary. It is finally assumed that
the crack (or add-crack if there is a crack to start with) may only start from x, that the
crack (add-crack) �(l) is a rectifiable curve with a small (but maybe non-zero) length
l and that it does not de-bond the domain from ∂d� . We then use an expansion of
the bulk energy in terms of the length of a small add-defect; see [74]. It is given by

P(1, �0 ∪ �(l)) = P(1, �0)− {Cl2α + o(l2α)},C > 0, (4.2)

where the potential energy P is that introduced in (2.21). Let us emphasize that the
preceding expansion is formal, so that the argument that we put forth is also formal
at this point. A rigorous argument will be outlined a bit later. In view of (4.2), the
minimal energy associated with a small (add-)crack of length l, that is

min
u=tg on ∂d�

E(t; u, �0 ∪ �(l))

is

t2P(1, �0)− Ct2l2α + k{l +H1(�0)} + t2o(l2α), (4.3)

whereas that associated with no (add-)crack is

t2P(1, �0)+ kH1(�0). (4.4)

If α < 1
2 , then for any t > 0 a(n) (add-)crack of length less than Ct

2
1−2α will carry

less energy than no (add)-crack, hence ti = 0 and the crack grows continuously with
t, starting with 0 length; this is progressive growth. If α > 1

2 , then denote by l(t)(↗
with t) the length of the possible (add-)crack. If ti = 0, then l(t) �= 0 for t > 0. But that
contradicts the minimality principle if t is very close to 0 because, clearly in such case
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the expression given by (4.4) is smaller than that given by (4.3). Thus ti > 0. We can
apply the same expression (4.3) at time t = ti. Then, if the crack growth is progressive
at ti, l(t)↘ 0 as t ↘ ti. But then l(t), by minimality, must stay 0 in a neighborhood of
ti, a contradiction! This is brutal growth.

Pausing for a moment, we contemplate the implications. The instantaneous cre-
ation of a crack of finite length, whether physical or not, is a forbidden feature of the
classical theory because it invalidates the very notion of energy release, computed
as a derivative. What we witness here is akin to a shock in fluid flow. In truth the
necessity of allowing for such events had previously been acknowledged in e.g. [65],
where Rankine–Hugoniot like conditions are suggested, should such a thing happen.
In our approach, there is no need to impose additional conditions; they are part of
the variational formulation which envisions a much broader collection of test cracks,
and, in particular, allows add-cracks with non zero length.

Using similar arguments, we would show that, when α = 1
2 , the crack growth will

have a non zero initiation time, and, if there are no singular points, then, either there
is no crack growth, or the crack growth will be brutal with a non zero initiation time.

Summing up, we obtain the following

Proposition 4.3 Assume proportional displacement loads g(t) = tg. Assume that W is
a quadratic function of the linearized strain and that the elastic field is singular say at
only one point x, with a singularity in rα, 0 < α < 1. Finally assume that the crack (or
add-crack) may only start from x, and that the crack (add-crack) �(l) is a rectifiable
curve with a small (but maybe non-zero) length l and that it does not de-bond the
domain from ∂d�.

– If α < 1
2 (strong singularity), then ti = 0 and the crack growth is progressive;

– If α > 1
2 (weak singularity), then ti > 0 and the crack growth is brutal;

– If α = 1
2 (critical singularity), then ti > 0;

– If there are no singularities, then no crack growth or ti > 0 and the crack growth is
brutal.

The progressive-brutal dichotomy will permeate even the most remote corners of
this study. It is one of the cairns that mark the variational approach, in this and other
contexts; see e.g. [51].

Proposition 4.3 is encumbered with regularity. The strong or weak variational
evolutions do not however presuppose any kind of regularity. This is a delicate
analytical issue and the first results in that direction were obtained in [32]. In that
2d study, the cracks are constrained to remain connected, a restriction that we have
previously mentioned as necessary if the strong formulation is to be retained. Since
the arguments in the global minimality setting derive from arguments that only use
local minimality, we do not elaborate any further on the analysis at this point, but
merely state the obtained results. We will return to this topic in greater details in
Paragraph 4.1.2 below.

Theorem 4.4 Assume a 2d setting. Assume that

W : R2 �→ R is strictly convex, C1

γ | f |p ≤ W( f ) ≤ 1

γ
(| f |p + 1), 1 < p <∞, for some γ > 0, (4.5)
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and that the strong variational evolution, with for only load a displacement load g(t) =
tg, has a solution �(t) closed, connected, ϕ(t) ∈ W1,p(� \ �(t)).

Call ψ the elastic deformation field associated with g.

– If, for some 1 < α,

sup
x∈�̄

{

sup
r

1

rα

∫

B(x;r)
|∇ψ |p dx

}

≤ C, (4.6)

then ti > 0 and the growth is brutal, that is H1(�(t)) > l∗, t > ti, with l∗ > 0;
– If ∃x ∈ � s.t.

lim sup
r↘0

1

r

∫

B(x;r)
|∇ψ |p dx = ∞ (4.7)

and on �̄ \ {x}, the condition of the first item is satisfied, then ti = 0, the crack starts
at {x}, i.e., x ∈ ∩t>0�(t) and

lim
t↘0

H1(�(t))
t

= 0.

The same result holds in the setting of linearized elasticity (with e(u) replacing ∇ϕ)
for a quadratic energy density.

This theorem is a generalization of Proposition 4.3 to wilder cracks and more
general energies. Under suitable regularity assumptions on the load g, existence of
a strong variational evolution for connected cracks holds true in 2d. This has been
established in [41] and will be discussed in greater details in Section 5.

We end this paragraph with an analytical example from [54] Section 3.1, which
demonstrates brutal initiation (and failure) in the global minimality setting; see
Proposition 4.5 below. The reader should note the dependence of the initiation
(failure) time ti upon the length of the strip, an unfortunate byproduct not of the
minimization problem, but rather of the presence of a length-scale in Griffith’s
energy.

Assume that � = (0, β)×(0, L), that the material is linearly isotropic and ho-
mogeneous with Young’s modulus E, Poisson’s ratio ν, and fracture toughness k
(see Fig. 12). Assume also that �0 = ∅, that u2 = σ12=0, x2=0 while u2= t, σ12 = 0,

x2 = L, and that σ11 = σ12 = 0, x1 = 0, β.
It is easily seen that the elastic solution ue(t), σe(t) is given by

⎧
⎪⎪⎨

⎪⎪⎩

ue(t)(x) = −
(
νt

x1

L
+ C

)
e1 + t

x2

L
e2

σe(t)(x) = E
t
L

e2 ⊗ e2.

The corresponding energy is

E(t; ue, ∅) = P(t,∅) = 1

2
E

t2

L
β.

Let � be an arbitrary crack and denote by P(�) its projection onto [0, β]; P(�) is
H1-measurable because it is compact.
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Fig. 12 Traction of a homogeneous, isotropic cylinder

For an arbitrary crack �,

P(t, �) ≥
(

1− H1(P(�))

β

)

P(t,∅). (4.8)

Indeed, the inequality is obvious if P(�) = [0, β]. Otherwise, by quadratic duality,

P(t,∅) ≥ P(t, �)

≥ inf
v.e2=0,t on x2=0,L

1

2

∫

�\�
Ae(v).e(v)dx

≥ inf
v.e2=0,t on x2=0,L

∫

�\�

(
σ(t).e(v)− 1

2
A−1σ(t).σ (t)

)
dx, (4.9)

where A is the elastic tensor and we choose σ(t) = 0, if x ∈ P(�)×(0, L) and σ(t) =
σe(t) otherwise. Note that the normal vector to the boundary of P(�)×(0, L) is e1,
except at x2 = 0, L where it is e2; thus it is a statically admissible stress field for
the purely elastic problem, as well as for that on (0, β) \ P(�)× (0, L). Then, by
elementary application of the divergence theorem,

∫

�\�
σ (t).e(v) dx =

∫

(0,β)\P(�)×(0,L)

σe(t).e(ue(t)) dx.

Thus,

P(t;�) ≥
∫

(0,β)\P(�)×(0,L)

(

σe(t).e(ue(t)− 1

2
A−1σe(t).σe(t)

)

dx

=
(

1− H1(P(�))

β

)

P(t,∅)

as announced. We are now in a position to prove the following
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Proposition 4.5 For t < ti =
√

2kL/E, the strip � remains elastic, while for t > ti, a
solution of the strong variational evolution consists in cutting the strip into two pieces
along an arbitrary transverse section. Furthermore this is the only type of solution in
the class of cracks for which the infimum is attained.

Proof Since, according to (4.8)

P(t;�)+ kH1(�) ≥
(

1− H1(P(�))

β

)

P(t,∅)+ kH1(P(�)),

then, provided that H1(P(�)) �= 0 and P(t,∅) < kβ, the elastic solution is the only
global minimizer, which yields the first result in view of the expression for P(t,∅),
except if H1(P(�)) = 0, that is except if the crack is parallel to e2. In that case, (4.8)
implies that

P(t;�) = P(t,∅),
and consequently, P(t;�)+ kH1(�) > P(t,∅), unless H1(�) = 0.

If t > ti, P(t,∅) > kβ, so that, according to (4.8),

P(t;�)+ kH1(�) > kβ,

except if P(�) = [0, β], H1(�) = β, and P(t;�) = 0. The associated displacement
field must then be a rigid body displacement on � \ � which satisfies the boundary
displacement conditions at x2 = 0, L, which is impossible unless � = [0, β]×{z}, z ∈
[0, L]. ��

As mentioned before, initiation and failure coincide in the example above. This
will not be the case in most examples.

4.1.2 Initiation – The Griffith Case – Local Minimality

We now replace the global minimality principle (Ugm) by the local minimality
principle (Ulm), and, rather than focus on the strong or weak variational evolutions,
merely address initiation in the following sense. Consider a Lipschitz domain � and
investigate the local minima of

∫

�\�
W(∇ϕ) dx+ kH1(�), ϕ = g on ∂d� \ �. (4.10)

This view of initiation, while apparently completely in agreement with the strong
variational evolution, prohibits the pre-existence of a crack because that would
contradict the Lipschitz character of the domain. This is because the results exposed
below, due to Chambolle, Giacomini and Ponsiglione and found in [32] stall in the
presence of a critical singularity of the elastic field (a

√
r-singularity in the case of

quadratic energies).
Those results hinge on the following theorem that we reproduce here without

proof, but not without comments, inviting the interested reader to refer to [32].

Theorem 4.6 Assume a 2d setting. If W satisfies (4.5), and ψ , the elastic solution,
satisfies (4.6) (the singularities are uniformly weaker than the critical singularity), then,
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∃l∗ > 0 s.t., for all connected �, closed in �̄, with H1(�) < l∗, and all ϕ ∈ W1,p(� \ �)

with ϕ = g on ∂d� \ �,
∫

�

W(∇ψ)dx <

∫

�(\�)

W(∇ϕ) dx+ kH1(�).

Note that it matters not whether the integral on the right is taken over � or � \ �.
Because of the growth assumption contained in (4.5), (4.6) may be viewed as

stating that (uniformly in x) the bulk energy on a small disk is energetically more
favorable than the surface energy associated with a crack along the diameter of that
disk. Then, the conclusion is that the elastic response to the load g is energetically
better than that associated with a connected crack, if that length is less than l∗. In
the case of a quadratic energy and in the terminology used in Proposition 4.3, this
is saying that, in the case of uniform weak singularities, crack initiation can only be
brutal.

As an immediate corollary of the theorem above, we obtain the following local
minimality result.

Corollary 4.7 In the setting of Theorem 4.6, the elastic solution ψ is a local minimum
for (4.10) for the L1–distance.

Proof Take �n, ϕn ∈ W1,p(� \ �n) with ‖ ϕn − ψ ‖L1(�)↘ 0 and assume that
∫

�

W(∇ψ)dx >

∫

�

W(∇ϕn) dx+ kH1(�n).

By a lower semi-continuity result due to Ambrosio (see [6], or Theorem D in the
Appendix),

∫

�

W(∇ψ)dx ≤ lim inf
n

∫

�

W(∇ϕn) dx, (4.11)

which is impossible unless lim infn H1(�n) = 0. But, then, for a subsequence {k(n)}
of {n},

H1(�k(n)) ≤ l∗,

in which case, according to Theorem 4.6,
∫

�

W(∇ψ)dx <

∫

�

W(∇ϕk(n)) dx+ kH(�k(n)),

in contradiction with the starting assumption. ��

The strong L1-topology is least intrusive in terms of locality, in the sense that
closeness in that topology will be implied by closeness in any reasonable topology.
The corollary thus states that – modulo the connectedness restriction – the elastic
solution is always a local minimizer whenever the associated field exhibits at most
weak singularities. In this respect, local minimality is closer to the classical theory
than global minimality because, as partially discussed at the onset of the section, the
classical theory cannot initiate a crack without a pre-crack (a critical singularity), or
a strong singularity.
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Remark 4.8 Here, the energy release rate associated with the elastic solution is a
meaningful notion. Indeed, take any connected crack �(l) of length l; then, for any
fracture toughness k′, and provided that l is small enough,

∫

�

W(∇ψ)dx <

∫

�(\�(l))
W(∇ϕ(l)) dx+ k′l,

where ϕ(l) is the elastic solution on � \ �(l). Hence

lim sup
l↘0

{∫

�

W(∇ψ)dx−
∫

�(\�(l))
W(∇ϕ(l)) dx

}

≤ 0.

But the quantity above is always non-negative and we conclude that the limsup is a
limit and that limit is 0. In other words, the energy release rate in such a setting is 0,
which comforts the intuition provided by the classical theory.

The case of a strong singularity, i.e., of points x s.t.

lim sup
r↘0

1

r

∫

B(x,r)
|∇ψ |p dx = ∞,

is easier to handle, because, clearly, in such a case, it is energetically more advanta-
geous to replace ψ in a small ball around x by 0.

All results quoted in this paragraph extend to the vectorial case (plane hyperelas-
ticity) and to the setting of linearized elasticity [32].

The classically trained mechanician will sigh in relief: no initiation with local
minimality; the elastic solution remains meta-stable as it should. “And then this
’should’ is like a spendthrift sigh, That hurts by easing.”8 Indeed, the lack of
uniqueness may still produce crack initiation as the load increases. In other words,
the only conclusion to draw from the preceding analysis is that a departure from the
elastic solution will necessitate the nucleation of a crack of non-zero length. But the
energetic barrier might be arbitrarily small, much smaller than that for which such a
nucleation may be rejected as unphysical.

As will be seen in the next subsection, the introduction of a cohesive energy leads
to a very different panorama.

4.2 Initiation – The Cohesive Case

Griffith’s indictment usually mentions unbounded stresses as a prime culprit. Indeed,
stress singularity is a by-product of the absence of cohesiveness, at least in a linear
setting, because the elastic solution on the uncracked part of the domain must then
blow up near the crack tip. Barenblatt then suggests local cohesiveness near the crack
tip as a correcting term preventing stress singularities. But he falls short of addressing
the impact of cohesiveness on initiation.

Del Piero [44] is, to our knowledge, first in his attempt to include cohesiveness
in a variational approach of crack initiation. His approach, which is energy based
and one-dimensional merges with ours in that setting. In this respect, the analysis

8Shakespeare – Hamlet – IV,7
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presented in Paragraph 3.1.4 is essentially his. We acknowledge it now so as to
emphasize his contributions to cohesive initiation.

Initiation in the cohesive setting is more easily grasped as a local minimality issue,
because, as will be seen below, global minimality in that setting entails relaxation,
whereas local minimality may not. Actually, reneging on earlier commitments, we
do not even resort to local minimality. Our argument is based solely on the use
of unilateral stationarity, hence, according to the arguments put forth in Section 2,
completely in agreement with Griffith’s view of fracture, albeit for a Barenblatt type
energy. The treatment of irreversibility in Section 5 will mirror this and also use
unilateral stationarity.

Consequently, we first address the stationarity issue. In a first paragraph the 1d
problem is thoroughly dissected. Higher dimensional settings are discussed in the
following paragraph. Finally, global minimality and its link to relaxation will be the
topic of the last paragraph.

4.2.1 Initiation – The Cohesive 1d Case – Stationarity

Consider a homogeneous bar of length L, clamped at x = 0, subject to a load fb along
its length and to a force fs at x = L. The deformation map is ϕ(x), with possible jumps
S(ϕ) ∈ [0, L]. As already mentioned, non-interpenetration is much easier to handle
when dealing with cohesive models, so that, we impose non-negative jumps for ϕ.
The analysis follows closely that developed in Paragraph 3.1.3. The ambient space
for probing initiation is (roughly)

S :={ϕ ∈ SBV(R) : S(ϕ) ⊂ [0, L), ϕ ≡ 0 on (−∞, 0);ϕ ≥ 0 on S(ϕ)}.

The work of the external loads is given by

F(ϕ) :=
∫ L

0
fb (x)ϕ(x) dx+ fsϕ(L).

We assume a strictly convex energy W(F). The “surface” energy density κ(δ) is
defined for δ ≥ 0, with κ(0) = 0. It is C1 and σc, its right-derivative at 0, is the maximal
value of the derivative κ ′. The total energy of the bar is

E(ϕ) =
∫ L

0
W(ϕ′) dx+

∑

S(ϕ)

κ([ϕ])−F(ϕ).

Denote by σe the stress field associated with its elastic response ϕe, that is that with
no jumps. Then,

ϕe(0) = 0, ϕ′e = W ′−1
(σe), σ ′e + fb = 0 in (0, L), σe(L) = fs.

Note that ϕe and σe are uniquely determined.
Assume that ϕe satisfies (Ust); then,

d
dε

E(ϕe + εζ )

∣
∣
∣
∣
ε=0

≥ 0, ∀ζ such that

{
ζ(0−) = 0

[ζ ] > 0 on S(ζ ).
(4.12)
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But

d
dε

E(ϕe + εζ )

∣
∣
∣
∣
ε=0

=
∫

(0,L)

σeζ
′ dx+

∑

S(ζ )

σc[ζ ] −F(ζ )

=
∑

x∈S(ζ )

(σc − σe)[ζ(x)].

Thus, if (4.12) is satisfied, then

sup
x∈[0,L]

σe(x) ≤ σc.

The elastic stress must be everywhere smaller than the critical stress σc.
The elastic solution may not be the only unilateral stationarity point. Thus, assume

that ϕ satisfies unilateral stationarity; here unilateral sationarity means

d
dε

E(ϕ + εζ )

∣
∣
∣
∣
ε=0

≥ 0, (4.13)

for all ζ ’s such that ζ(0−) = 0 and ζ > 0 on S(ζ ) \ S(ϕ). Note that ζ may be arbitrary
on S(ϕ) since [ϕ + εζ ] ≥ 0 for ε small enough. Then, upon setting σ = W ′(ϕ′), we get,
for any ζ with [ζ ] > 0 on S(ζ ) \ S(ϕ),

0 ≤
∫

(0,L)

σ ζ ′ dx−F(ζ )+
∑

S(ζ )\S(ϕ)

σc[ζ ] +
∑

S(ϕ)

κ ′([ϕ])[ζ ].

Smooth test functions yield
{

σ ′ + fb = 0 in (0, L)

σ (L) = fs,

so that σ is continuous on (0, L), and non-smooth test functions yield in turn

0 ≤
∑

S(ζ )\S(ϕ)

(σc − σ)[ζ ] +
∑

S(ϕ)

(κ ′([ϕ])− σ)[ζ ].

Thus, for all x ∈ [0, L],
σ(x) ≤ σc in [0, L] \ S(ϕ), σ (x) = κ ′([ϕ](x)) on S(ϕ). (4.14)

Since σ is continuous and S(ϕ) at most countable, the first condition in (4.14) forces

σ(x) ≤ σc,∀x ∈ [0, L],
whereas the second condition links the (normal) stress at a discontinuity point to the
cohesive force – the derivative of the surface energy – at that point.

We have established the following

Proposition 4.9 (1d - cohesive initiation) In the cohesive 1d context, whether starting
from the elastic solution or from an already discontinuous solution, initiation – that is
the non-stationarity of the solution – will occur if the stress field at any point becomes
greater than the critical stress, defined as the slope at 0 of the cohesive surface energy.

This calls for several remarks.
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Remark 4.10

a. The initiation condition in the above proposition is obtained without invoking
any kind of minimality criterion; it is thus directly in the spirit of Griffith’s
formulation;

b. The finiteness of the right derivative of the surface energy density is the essential
feature that allows to adjudicate initiation in terms of a critical stress criterion. In
the setting of a Griffith’s type surface energy, that derivative is infinite (σc = +∞
if you will) and the criterion is moot;

c. The other features of the surface energy are irrelevant to the issue of initiation;
d. There is no lower bound on σ , or, in other words, compressive stresses can be as

large as they wish, as expected from the condition of non-interpenetration;
e. The slope of the surface energy at 0 cannot be 0. Indeed, it would then be

impossible to find a solution to unilateral stationarity (4.12), (4.13) with a
countable number of discontinuity points, lest the critical stress criterion be
violated away from those points.
This apparently innocuous observation delivers, in our opinion, a devastating
blow to a whole slew of models – especially popular among numerical me-
chanicians – that propose to tackle fracture through the introduction of surface
energies with 0-slopes; see [27, 94]. In view of the above, such models are
doomed.

f. Haziness seems to surround the true nature of initiation, that is when σ(x) > σc

for some point x ∈ [0, L]. Clearly, in view of (4.14), stationarity will not be met
anymore. We conjecture that, at such a time, dynamical effects will upstage our
usual variational partners but, in truth, this amounts to little more than hearsay
at this point.

The 1d result may be generalized to a multi-dimensional setting. This is the object
of the following paragraph.

4.2.2 Initiation – The Cohesive 3d Case – Stationarity

The setting and notation are those of Section 2, adapted to 3d. We further assume,
for simplicity, homogeneity and isotropy of the material properties and denote by ϕe

the – or at least an – elastic response and by σe the associated stress field. Thus,

σe = ∂W
∂ F

(∇ϕe), div σe + fb = 0 in �, σen = fs on ∂s�. (4.15)

We also impose the following a priori regularity on σe:

σe is the restriction to � of an element of C0(R3;R3). (4.16)

The surface energy density is a function � of both the jump ψ and the orientation
ν at each point of the discontinuity set. Isotropy requires that

�(Qν, Qψ) = �(ν, ψ), ∀Q ∈ SO3,∀ν ∈ S2,∀ψ ∈ R
3.

Hence � is a function of the invariants of the 2×3-matrix (ν, ψ) [35]. But ν is a
unit vector so that the only invariants are ψ · ν and |ψ |, or equivalently, ψ · ν and
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|ψ − ψ · ν ν|. Further, non-interpenetration demands that ψ · ν ≥ 0. Define κ on
[0,∞)2 such that

�(ν, ψ) = κ(ψ · ν, |ψ − ψ · ν ν|), ∀ν ∈ S2,∀ψ ∈ R
3 : ψ · ν ≥ 0.

We further impose that κ(0, 0) = 0, κ ≥ 0, that κ be continuous, and also that κ be
directionally differentiable at 0, that is that

(DirD) There exists a (positively 1-homogeneous) function κ0 such that 0 < κ0(α, β) =
limh→0+ 1/h κ(hα, hβ). In particular, σc and τc respectively denote κ0(1, 0) > 0 and
κ0(0, 1) > 0.

When κ is differentiable at (0, 0), then κ0 is linear and κ0(α, β) = σcα + τcβ.
If the field ϕe is a unilateral stationary point, then, for any ζ̄ ≥ 0 ∈ C∞0 (�) and for

any ν, δ ∈ S2 with δ · ν ≥ 0, take ζ = ζ̄ χ{x:(x−x0).ν≥0}δ (so that [ζ ]·ν ≥ 0 on S(ζ ) ⊂ {x :
ν.(x− x0) = 0}; see Fig. 13).

We obtain

d
dε

E(ϕe + εζ )

∣
∣
∣
∣
ε=0+

=
∫

�

σe · ∇ζ dx−F(ζ )

+
∫

S(ζ )\∂s�

κ0

(
[ζ ]·ν, |[ζ ] − [ζ ]·ν ν|

)
dH2,

which in view of (4.16), (4.15), yields

0 ≤
∫

S(ζ )

(
κ0

(
[ζ ]·ν, |[ζ ] − [ζ ]·ν ν|

)
− σeν ·[ζ ]

)
dH2.

Because ζ̄ is arbitrary and κ0 1-homogeneous, this yields, H2-a.e. on {x ∈ � : (x−
x0).ν = 0},

κ0(δ ·ν, |δ − δ ·ν ν|) ≥ σe(x)ν ·δ.

Fig. 13 Test jump set



58 B. Bourdin et al.

Varying x0 and recalling assumption (4.16), we conclude that, at least when the
elastic solution is unique,

Proposition 4.11 (3d- cohesive initiation) In the cohesive 3d context and under
assumption (4.16), initiation starting from the elastic solution will occur if the stress
field at any point is such that there exists ν ∈ S2, ψ ∈ R

3 – with ψ · ν ≥ 0 – satisfying

σeν ·ψ > κ0(ψ ·ν, |ψ − ψ ·ν ν|).
We call this condition the yield stress condition.

As in the 1d case, the yield stress condition is not specific to the elastic state, but
rather it appears as a yield stress condition for any state. The interested reader is
invited to consult [34] for a proof.

Such a simple trove hides many riches, which we unwrap in the following two
remarks.

Remark 4.12 Whenever the surface energy density κ is differentiable at the origin,
the yield stress criterion becomes

σν · ψ > σcψ ·ν + τc|ψ − ψ ·ν ν|,
for some pair (ν, ψ) of unit vectors with ψ ·ν ≥ 0. Let τ be a unit vector orthogonal
to ν. Decomposing ψ into its normal and tangential part:

ψ = cos θ ν + sin θ τ,−π/2 ≤ θ ≤ π/2,

we then get, for some (ν, τ ) ∈ S2 × S2 with τ ·ν = 0,

(σν · ν − σc) cos θ + σν · τ sin θ − τc|sin θ | > 0,

or, equivalently,

max
ν∈S2

σν ·ν > σc, or max
(ν,τ )∈S2×S2 : ν·τ=0

σν · τ > τc. (4.17)

This means that the stress field σ violates the criterion of maximal traction or maximal
shear. Whenever σ is symmetric (in linearized elasticity for example) these criteria
can be written solely in terms of the eigenvalues (σ1, σ2, σ3) of the stress tensor. They
read as

max
i

σi > σc, or max
i, j

(σi − σ j) > 2τc.

Remark 4.13 The initiation criteria of maximal traction or maximal shear – see
Remark 4.12 – assume isotropy and differentiability of the surface energy density.
In this long remark, we relax the differentiability condition and assume an isotropic
directionally differentiable surface energy density. We decompose the stress vector
σν into its normal and tangential parts

σν = �ν + Tτ, τ ∈ S2 with τ · ν = 0.

Then, the yield stress criterion is satisfied if and only if the stress vector (�, T) lies
outside the following convex set of the Mohr diagram, that is

� > σc or |T| > κ�(�) (4.18)
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with

κ�(�) = inf
λ≥0
{κ0(λ, 1)− λ�}.

The function κ� – which gives rise to the so-called intrinsic curve |T| = κ�(�) – is such
that

a. The function κ� is defined for � ∈ (−∞, σc), concave, continuous, decreasing and
lim�→−∞ κ�(�) = τc = κ0(0, 1). κ� is non negative for � ∈ (−∞, σc

�] with σc
� ≤

σc = κ0(1, 0); consequently,
b. The domain of the admissible (�, T) delimited by the intrinsic curve is convex,

symmetric with respect to the axis T = 0, unbounded in the direction of negative
normal stress and bounded by σc

� in the direction of positive normal stress, see
Fig. 14.

To see this, we decompose ψ ∈ S2 with ψ · ν ≥ 0 into its normal and tangential
parts

ψ = cos θν + sin θτ ′, τ ′ ∈ S2 : τ ′ · ν = 0, θ ∈ [0, π/2].
Then, the yield stress criterion reads as: ∃θ ∈ [0, π/2], and ∃τ ′ ∈ S2 with τ ′ · ν = 0
such that

Tτ · τ ′ sin θ > κ0(cos θ, sin θ)−� cos θ.

This will happen provided that, for some θ ∈ [0, π/2],
|T| sin θ > κ0(cos θ, sin θ)−� cos θ.

If θ = 0, this gives � > κ0(1, 0) = σc. If θ �= 0, then |T| > κ0(λ, 1)− λ� for some
λ ≥ 0. Condition (4.18) follows.

We now investigate the properties of κ�. Define

κ̄0(λ) =
{

κ0(λ, 1) if λ ≥ 0

+∞ otherwise.

Fig. 14 The set of the admissible stress vectors in the Mohr diagram
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Then κ� = −κ̄�
0 , the Legendre transform of κ̄0, which proves that κ� is concave

and continuous. If � > σc, take λn = n; then κ�(�) ≤ n(κ0(1, 1/n)−�) . Since
limn→∞ κ0(1, 1/n) = σc, κ�(�) = −∞. If � < σc, then λ �→ κ0(λ, 1)− λ� is contin-
uous and tends to +∞ as λ tends to +∞. Thus the infimum is reached (and finite).

To prove that κ� is decreasing, consider �1 < �2 < σc and let λ1 and λ2 be points
where the infimum is reached. Then

κ�(�1) = κ0(λ1, 1)− λ1�1,

while

κ�(�2) = κ0(λ2, 1)− λ2�2 ≤ κ0(λ1, 1)− λ1�2,

hence κ�(�1)− κ�(�2) ≥ (�2 −�1)λ1 ≥ 0.
To prove that lim�→−∞ κ�(�) = τc, first note that κ�(�) ≤ κ0(0, 1)− 0 ·� = τc for

all �. Then take �n = −n and let λn be the associated sequence of minimizers. In
turn, κ�(−n) = κ0(λn, 1)+ nλn ≤ τc, and, since κ0 is positive, limn→∞ λn = 0. Conse-
quently, since τc ≥ κ�(−n) ≥ κ0(λn, 1), we get limn→∞ κ�(−n) = τc.

The function κ� may be negative at � = σc; see the example below. If κ�(σc) ≥
0, then the domain of admissible stress vectors is {(�, T) : −∞ < � ≤ σc, |T| ≤
κ�(�)}. Otherwise, by continuity and monotonicity, there exists σc

� such that
κ�(σc

�) = 0 and κ�(�) < 0,∀� > σc
�. In that case, the domain of admissible stress

vectors is {(�, T) : −∞ < � ≤ σc
�, |T| ≤ κ�(�)}.

In the case where κ0 is linear, we obtain

κ�(σ ) =
{

τc if � ≤ σc

−∞ otherwise

and recover the criteria (4.17) of maximal traction and maximal shear.
All of the above holds true for a fixed vector ν. We must now vary ν along the unit

sphere S2. Assume once again symmetry of the stress field σ , and denote by σ1 ≤
σ2 ≤ σ3 the ordered eigenvalues of σ . The point (�, T) spans the domain bounded by
the three Mohr circles. So, σ will satisfy the yield stress criterion if and only if either
σ3 > σc, or the greatest Mohr circle reaches outside the convex hull of all greatest
Mohr circles lying inside the domain bounded by the intrinsic curve, that is

σ3 − σ1

2
> κ∗

(
σ1 + σ3

2

)

,

where

κ∗(s) := inf
0≤θ≤π/2

{κ0(cos θ, sin θ)− s cos θ}

As in 1d, the asymmetric behavior between traction and compression is a byprod-
uct of the non-interpenetration condition. The convexity of the domain of admissible
stress tensors is a direct consequence of the stationarity condition. That it should be
obtained from an intrinsic curve in the Mohr diagram – and consequently that it does
not depend upon the intermediary stress eigenvalue σ2 – is a consequence of both
stationarity and isotropy. As such, this may be no longer apply when anisotropy is
considered.
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We end the reader’s initiation with three examples that illustrate Remark 4.13.
Here, κ is taken to be

κ(α, β) = k
(

1− exp

(

−κ0(α, β)

k

))

,

with κ0 positive, continuous and one-homogeneous. Then κ is not Fréchet differen-
tiable at (0, 0), but its directional derivative is just κ0.

If κ0 is convex, say for example

κ0(α, β) = 2
√

σ 2
cα

2 + τ 2
cβ

2 − σcα − τcβ,

then, a straightforward computation leads to

κ�(�) =

⎧
⎪⎪⎨

⎪⎪⎩

τc if � ≤ −σc

τc

⎛

⎝

√

4−
(

1+ �

σc

)2

− 1

⎞

⎠ if − σc ≤ � ≤ σc.

Thus, κ� is positive if and only if � ≤ (
√

3− 1)σc ≡ σc
� and σc

� is the maximal traction
that the material can sustain. The intrinsic curve is represented on Fig. 14.

If κ0 is concave, then the minimum of κ0(λ, 1)− λ� is reached at λ = 0 (since, as
previously observed, the infimum is reached at a finite λ) and we recover the maximal
traction and the maximal shear criteria, as in the case of a linear κ0.

If finally κ0 is neither concave nor convex, say for example

κ0(α, β) = τc
β

2
+
√∣
∣
∣
∣σ

2
cα

2 − τ 2
c
β2

4

∣
∣
∣
∣,

then κ0(λ, 1) is neither convex nor concave, and its convex envelop λ �→ κ��
0 (λ, 1) is

made of two line segments, see Fig. 15.
Then the minimization of λ �→ κ0(λ, 1)− λ� on [0,∞) is equivalent to the mini-

mization of its convex envelope λ �→ κ��
0 (λ, 1)− λ�, see [37]. Then

κ�(�) =
⎧
⎨

⎩

τc if � ≤ −σc

τc

2

(

1− �

σc

)

if |�| ≤ σc ,

Fig. 15 a the graphs of the function λ �→ κ0(λ, 1) and of its convex envelop λ �→ κ��
0 (λ, 1). b the

corresponding intrinsic curve
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σc
� = σc and the domain bounded by the intrinsic curve is represented on Fig. 15.

When considering the envelop of the greatest Mohr circle that lies inside that domain,
the corners (−σc,±τc) disappear and finally the domain of the admissible stress
tensors is given by

κ∗(�) =
⎧
⎨

⎩

τc if � ≤ σc −
√

4σ 2
c + τ 2

c

τc
σc −�

√
4σ 2

c + τ 2
c

if σc −
√

4σ 2
c + τ 2

c ≤ � ≤ σc .

4.2.3 Initiation – The Cohesive Case – Global Minimality

We now address the global minimality setting. It was intimated in Subsection 2.6 that
the weak variational evolution was ill-posed even at the initial time, and that the
minimization problem at t = 0 had to be relaxed. This is easily understood through a
simple energetic comparison. Assume, in e.g. 1d, that, on (0, L), the gradient of the
field ϕ is

dϕ

dx
=
{

f, 0 < x ≤ a < L

f + g, a < x < L.

Then the total energy paid on (0, L) is the bulk energy paid on that interval,
i.e., W( f )a+W( f + g)(L− a). Between a and L, ϕ − f x has increased by g(L−
a). Thus take instead n small jumps of amplitude g(L− a)/n for x ∈ (a, L). The
associated energy is then nκ (g(L− a)/n); as n becomes large the latter goes to
σcg(L− a) (recall that κ ′(0) := σc). Consequently, the total energy paid is then
W( f )L+ σcg(L− a).

Comparing both energies reduces to an investigation of the sign of

(W( f + g)−W( f ))− σcg.

Letting g go to 0, we get that the first energy is smaller than the second one iff

W ′( f ) ≤ κ ′(0) = σc.

So, for gradients larger than
(
W ′)−1

(σc), it is energetically more favorable to use
jumps. The relaxation will thus truncate the bulk energy at that level and replace it
with an linearly growing energy (recall that we are assuming throughout that W has
p–growth with p > 1) as announced in Subsection 2.6.

Now, the a priori bounds on the minimizing sequences for
∫ L

0
W
(

dϕ

dx

)

dx+
∑

x∈S(ϕ)

κ([ϕ(x)]),

do not permit application of Ambrosio’s compactness theorem (2.24), mainly
because

lim
t↘0

κ(t)
t
= σc �= ∞,

and the limit field might thus live, not in SBV(0, L), but only in BV(0, L). Indeed,
any Cantor function can be approximated by e.g. SBV-functions with very small
jumps only; see [7], Section 3.2. This explains the appearance of the term σcC(ϕ)

in the relaxed functional (2.30). In other words, the original energy can promote
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through micro-cracking some kind of energetically charged “diffuse crack” with zero
bulk and surface energies.

This simple 1d-example is generic in the sense that the 2 or 3d settings reproduce
the same features as demonstrated in [15], Section 3. An anti-plane shear result is
immediately deduced from the results in that work. If the bulk energy W is isotropic
(a function of the norm only), with p-growth (p > 1), and satisfies W(0) = 0, then, in
the notation of Subsection 2.6, the lower semi-continuous envelope of

F(ϕ) :=
∫

�

W(∇ϕ) dx+
∫

S(ϕ)

κ
(∣
∣
∣[ϕ]

∣
∣
∣

)
dH1

is given (see (2.30)) by

F∗(ϕ) =
∫

�

Ŵ(∇ϕ) dx+
∫

S(ϕ)

κ
(∣
∣
∣[ϕ]

∣
∣
∣

)
dH1 + σc|C(ϕ)|, (4.19)

where Ŵ(F) is the inf-convolution of W with the linear mapping F �→ σc F, that is

Ŵ(F) := inf
G,H
{W(G)+ σc H : G+ H = F}. (4.20)

By lower semi-continuous envelope, or relaxed energy, we mean – see e.g. the
Appendix – the greatest function below F which is lower semi-continuous for the
weak-* convergence in BV, i.e.,

F∗(ϕ) = inf{ϕn} lim infn { F(ϕn) :‖ϕn‖BV(�)≤ C,

ϕn → ϕ strongly in L1(�)
}

.

(The BV-norm of a BV-function ϕ is given by ‖ϕ‖L1(�)+
∫

�
|∇ϕ| dx+∫S(ϕ)

|[ϕ]|dH1+
|C(ϕ)|).

Note that it is immediate from the definition of the relaxed energy that , if {ϕn} is
such that

ϕn is a sequence of quasi-minimizers, i.e., F(ϕn) ≤ infϕ F(ϕ)+ O
(

1

n

)

;

ϕn → ϕ strongly in L1(�) with |ϕn|BV(�) ≤ C,

then ϕ is a minimizer for F∗.
In view of the above, the relaxed bulk energy always grows linearly at infinity!

Mechanicians are used to linearly growing energies. They come about in plasticity
because the energy – as a function of the deformation – is the inf-convolution of the
support function of the convex set of admissible stresses – the convex conjugate of
the indicatrix function of that set, a linear function – with the elastic energy; see [92].
In this light, σc is a yield stress and relaxation induces bounded stresses, an essential
component of plasticity.

We postpone until Section 7 a more detailed discussion of the exact relaxation in
the cohesive setting (we have conveniently forgotten so far the presence of boundary
conditions).
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5 Irreversibility

Following the pattern adopted in the previous section, we address the case of a
Griffith surface energy in a first subsection, then investigate its cohesive analogue
in a second subsection.

5.1 Irreversibility – The Griffith Case – Well-posedness of the Variational Evolution

In a Griffith setting, irreversibility is a simple notion: the crack can only extend
with time,

�(t) ⊃ �(s), s < t.

With that notion in mind, we now discuss the variational evolution in a global
minimality setting, noting that existence in such a context will automatically provide
existence of that evolution for any kind of local minimality criterion. Once again,
the argument put forth at the start of Paragraph 4.1.1 prohibits a wide range of force
loads. We thus assume throughout this subsection that the only load is a displacement
g(t) defined on ∂d�, or rather, as we saw earlier in Subsection 2.5, on R

2, while fs ≡ 0
on ∂s� = ∂� \ ∂d�.

5.1.1 Irreversibility – The Griffith Case – Discrete Evolution

As mentioned in the Introduction, the basic tool is also the natural computational
tool: time discretization over the interval [0, T]. We thus consider

t0 = 0 < tn
1 < ...... < tn

k(n) = T with k(n)
n↗∞, �n := tn

i+1 − tn
i

n↘ 0.

Time-stepping the strong or weak minimality condition (Ugm), we obtain

(Sde) The strong discrete evolution: Find (�n
i+1, ϕn

i+1) a minimizer for

min
ϕ,�

{∫

�\�
W(∇ϕ) dx+ kH1(� \ ∂s�) : ϕ = g(tn

i+1)

on ∂d� \ �; � ⊃ �n
i

}

;

resp.
(Wde) The weak discrete evolution: Find ϕn

i+1 a minimizer for

min
ϕ

{∫

�

W(∇ϕ) dx+ kH1(S(ϕ) \ (�n
i ∪ ∂s�)) : ϕ = g(tn

i+1)

on ∂d� \ S(ϕ)

}

;

then, �n
i+1 = �n

i ∪ (S(ϕn
i+1) \ ∂s�).

The balance (Eb) seems to have been forgotten all together in the discrete
evolution, yet it will reappear in the time-continuous limit of those evolutions.

The first mathematical issue to confront is the existence of a solution to those
discrete evolutions. As we mentioned before in Subsection 2.5, we cannot expect,
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even in 2d, a direct existence proof for the strong discrete evolution without imposing
further restrictions on the class of admissible cracks. This is easily understood
through the Neumann sieve example [81].

A Neumann sieve (see Fig. 16) situation occurs when boundaries close up at a
critical speed that creates channels of non–zero capacity in the domain. For example,
consider � = (−1, 1)2 and assume, in a linear anti-plane shear setting, that the crack

�n is given as {0}×[−1, 1] \
(⋃

p=−n,...,n(
p
n−e−n,

p
n+e−n)

)
with

ϕn =
{

0
1

, on
{x1 = −1}
{x1 = 1}.

Then ϕn satisfies

−�ϕn = 0 on �n := (−1, 1)2 \ �n,

with ∂ϕn/∂ν = 0 on all boundaries of � \ �n, except {x1 = ∓1}. According to the
results in [81] ϕn → ϕ strongly in L2(�), with � = [(−1, 0) ∪ (0, 1)] × (−1, 1) and ϕ

is the solution, for some μ �= 0 of

−�ϕ = 0 on �,

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ϕ

∂x2
= 0 on ∂� ∩ {x2 = ±1}

ϕ = 0, resp. 1 on {−1} × (−1, 1), resp. {1} × (−1, 1)

∂ϕ

∂x1
= μ[ϕ] on {0} × (−1, 1).

Hence ϕn does not converge to the solution

ϕ̂ = 0 on (−1, 0)× (−1, 1); 1 on (0, 1)× (−1, 1)

of the Neumann problem on � \ �, with � = {0} × (−1, 1).
The Neumann sieve must thus be prevented so as to ensure the very existence

of a pair-solution to the strong discrete evolution at each time step. A possible exit
strategy consists in “prohibiting” disconnected cracks. A result in [31] – see also [25]
– states that, if � is a Lipschitz two dimensional domain and {�n} is a sequence

Fig. 16 The Neumann sieve
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of compact connected sets with H1(�n) ≤ C and such that it converges – for the
Hausdorff metric – to �, the solution to a Neumann problem of the form

⎧
⎪⎨

⎪⎩

−�ϕn + ϕn = g in � \ �n

∂ϕn

∂ν
= 0 on ∂[� \ �n],

is such that ϕn, ∇ϕn
n−→ ϕ,∇ϕ, strongly in L2(�), with ϕ the solution to

⎧
⎪⎨

⎪⎩

−�ϕ + ϕ = g in � \ �

∂ϕ

∂ν
= 0 on ∂[� \ �],

An adaptation of that result in [41] proves the existence of a minimizer to the strong
discrete evolution at each time step under the restriction that the cracks have an a
priori set number of connected components. In turn, an analogous result is proved in
[28] for plane elasticity.

Note that the connectedness restriction can be weakened to include cracks with
an a priori set number of connected components [41].

The discrete weak evolution behaves better as far as existence is concerned.
Indeed, existence is a direct consequence of Ambrosio’s compactness and lower
semi-continuity results (2.24), (4.11) (see also Theorem D in the Appendix), or at
least of a slight modification which consists in replacing H1 by H1�(�n

i ∪ ∂s�)c in
(2.24). To be precise, existence is established in

– The anti-plane shear case: ϕ is scalar-valued and W is convex with p-growth,
p > 1;

– The case of non-linear elasticity: ϕ is vector-valued and W is quasi-convex with p-
growth, p > 1. We refer the reader to the abundant literature on quasi-convexity
(see e.g. [10]) and also to the Appendix for details on that notion; for our
purpose, it suffices to remark that quasi-convexity, plus growth implies sequential
weak lower semi-continuity on the Sobolev space W1,p(�;R2) [10], but also, see
[6], for sequences {ϕn} in SBV(�;R2) with

⎧
⎨

⎩

ϕn
L1

−→ϕ ∈ SBV(�;R2)

H1(S(ϕn)) ≤ C.

It should be noted that the growth assumption prevents the energy density
W(F) from blowing up as det F ↘ 0. But the latter is a desirable feature in
hyperelasticity, at least according to popular wisdom. Once again, as in the
comments following (2.26) in Subsection 2.5, we remain deliberately vague in
this setting because of the subtle issues raised by the necessity of securing
a supremum bound on the minimizing sequences, so as to apply Ambrosio’s
compactness result.

Existence will not however be achieved in the setting of linearized elasticity which
thus seems confined, for the time being, to the strong formulation.
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Consider any setting for which the discrete evolution is meaningful. Then, for a
given n (a given time step), we define the piecewise in time fields

⎧
⎪⎪⎨

⎪⎪⎩

ϕn(t) := ϕn
i

�n(t) := �n
i

gn(t) = g(tn
i )

on [tn
i , tn

i+1), and, for i = −1, �n
−1 := �0.

Note that irreversibility is guaranteed at the discrete level because of the definition
of �n

i in terms of its predecessors. In other words,

�n(t)↗ with t.

Summing up, we have constructed, for each time t ∈ [0, T], a pair (�n(t), ϕn(t))
such that

(Sde) The strong discrete evolution: (�n(t), ϕn(t)) is a minimizer for

min
ϕ,�

{∫

�\�
W(∇ϕ) dx+ kH1(�\∂s�) :

ϕ = gn(t) on R
2 \ �̄ ; S(ϕ) ⊂ � ;� ⊃ �n(t−�n)

}

;

resp.
(Wde) The weak discrete evolution: ϕn(t) is a minimizer for

min
ϕ

{∫

�

W(∇ϕ) dx+ kH1(S(ϕ)\(�n(t−�n) ∪ ∂s�)) :

ϕ=gn(t) on R
2 \ �̄

}

and then �n(t) = �n(t−�n) ∪ S(ϕn(t)).

Note that the time-discrete cracks in the previous formulation live on all of �̄ and
not only on �̄ \ ∂s�, but that there is no energy associated with the part of the crack
that would live on ∂s�, as it should be. Also, here again, the functional dependence
of ϕn(t) is eschewed because it heavily depends upon the scalar/vectorial nature of
the specific problem, as well as on the coercivity and growth properties of the bulk
energy density W.

Note also that, at time t = 0, generically, it is not true that �n
0 ≡ �0, but merely

that �n
0 ⊃ �0. There is an increase in the initial condition. Also, �n

0 is independent
of n.

The goal is to pass to the limit in n and hope that the limit fields will be solutions
to the strong/weak variational evolutions. As will be seen below, this is not a
straightforward proposition.
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5.1.2 Irreversibility – The Griffith Case – Global Minimality in the Limit

A usual first step in a limit process is to obtain n-independent a priori estimates on
the fields. This will be obtained here upon testing the strong/weak discrete evolutions
(Sde), (Wde) at each time by appropriate test fields. The two choice test fields
are (�n(t), gn(t)) in the strong formulation , resp. gn(t) in the weak formulation,
and (�n(t −�n), ϕn(t −�n)+ gn(t)− gn(t −�n)) in the strong formulation, resp.
ϕn(t −�n)+ gn(t)− gn(t −�n) in the weak formulation (the addition of the terms
involving gn are so that the test deformations satisfy the boundary conditions at
time t).

Then, provided we impose decent regularity on g, namely

g ∈ W1,1(0, T;W1,p(�(;R2)) ∩ L∞((0, T)×�(;R2)), (5.1)

for an energy with p>1-growth, we obtain the following a priori bounds:
{ |∇ϕn(t)|Lp(�(;R2)) ≤ C

H1(S(ϕn(t)) ≤ C (weak formulation) ,
(5.2)

and
H1(�n(t)) ≤ C, (5.3)

together with the following upper bound on the total energy

En(t) :=
∫

�

W(∇ϕn(t)) dx+ kH(�n(t)\ ∂s�)

≤ En(0)+
∫ τ n(t)

0

∫

�

∂W
∂ F

(∇ϕn(s)).∇ ġ(s) dx ds+ Rn, (5.4)

where τ n(t) := sup{tn
i ≤ t} and Rn → 0. Note that the derivation of (5.4) actually

requires a bit of care; see [40], Section 6.
Can we pass to the n-limit in the minimality statements (Sde),(Wde) under the

above convergences? And if so, is the result the expected variational evolution, or
is the enterprise doomed by the specter of the Neumann sieve as more and more
crack components accumulate at a given time when n ↗? For the strong formulation
and under the connectedness restriction, the strong variational evolution is indeed
obtained in the limit, as shown in [41]. We refer the interested reader to that
reference and focus, from now onward in this paragraph, on the weak formulation.

To this effect, we first remark that the Neumann sieve phenomenon is merely a
specter because the circumstances that presided over its appearance in Paragraph
5.1.1 were somewhat fallacious, for they failed to account for the role played by the
surface energy. Indeed, assume that n is large enough; the pair (ϕn, �n) considered in
that example cannot be a joint minimizer of

1

2

∫

�\�
|∇ϕ|2 dx+H1(�), � ⊃ �n

with the same boundary conditions. By lower semi-continuity,

lim inf
n

{
1

2

∫

�\�
|∇ϕn|2 dx+H1(�n)

}

≥ 1

2

∫

�\�
|∇ϕ|2 dx+ 1,
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with ϕ, the solution to the Neumann sieve. Now, ϕ has non zero bulk energy
1
2

∫

�\�|∇ϕ|2 dx, say C > 0, so that, for n large enough,

1

2

∫

�\�
|∇ϕn|2 dx+H1(�n) ≥ 1+ C

2
.

But the energy associated with the pair ({0}×[−1, 1], ϕ̂) is exactly 1, a strictly smaller
value, while {0}×[−1, 1] ⊃ �n. For n large enough, closing the holes of the sieve and
taking the crack to be {0}×[−1, 1] is the energetically sound choice. This observation
made Larsen and one of us (G.F.) hopeful for a derivation of the global minimality
condition (Ugm) in the weak variational evolution from (Wde) under refinement of
the time step.

That this is by no means a trivial endeavor can be illustrated as follows. We note
first that, since H1(B \ A) ≥ H1(B)−H1(A), (Wde) implies in particular that ϕn(t)
is a minimizer for its own jump set, that is

1

2

∫

�

W(∇ϕn(t)) dx ≤ 1

2

∫

�

W(∇ϕ) dx+H1(S(ϕ) \ (S(ϕn(t)) ∪ ∂�s)). (5.5)

If (Ugm) is to be obtained in the limit, then ϕ(t) should also in particular be a
minimizer for its own jump set. In view of (5.2) and of the already quoted lower
semi-continuity result of [6], the left hand side of (5.5) is well behaved and the result
would follow easily, provided that

lim sup
n

H1(S(ϕ) \ S(ϕn(t))) ≤ H1(S(ϕ) \ S(ϕ(t))).

Consider however ϕ such that S(ϕ) ⊂ S(ϕ(t)), while the jump set of ϕn(t) does not
intersect that of ϕ(t) (which would surely happen if S(ϕn(t)) ⊂ Kn, with Kn ∩ K = ∅
and the Hausdorff distance from Kn to K goes to 0). Then H1(S(ϕ)) must be 0!

The stability of the “own jump set minimality condition” cannot be established
without a modification of the test fields ϕ. This is the essence of the jump transfer
theorem [52], Section 2. We now quote it without proof in its simplest version, em-
phasizing its decisive role in establishing existence of the weak variational evolution
(see Theorem 5.5 below).

Theorem 5.1 Let ϕn, ϕ ∈ SBV(�) with H1(S(ϕ)) <∞, be such that

– |∇ϕn| weakly converges in L1(�); and
– ϕn → ϕ in L1(�).

Then, for every ζ ∈ SBV(�) with ∇ζ ∈ Lp(�), 1 ≤ p <∞, and H1(S(ζ )) <∞,
there exists a sequence {ζ n} ⊂ SBV(�) with ∇ζ n ∈ Lp(�), such that

– ζ n → ζ strongly in L1(�);
– ∇ζ n → ∇ζ strongly in Lp(�); and
– lim supn H1�A (S(ζ n) \ S(ϕn)) ≤ H1�A (S(ζ ) \ S(ϕ)) , for any Borel set A.

We fix a time t and recall (5.2). Ambrosio’s compactness result permits one to
assert the existence of a t-dependent subsequence {ϕnt (t)} of {ϕn(t)} and of ϕ(t) such
that the assumptions of Theorem 5.1 – or rather of a corollary of Theorem 5.1
which takes into account the boundary conditions on the test fields at t, namely
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ϕnt (t) = gnt (t) on R
2 \ �̄ – are met. The conclusion of that theorem then allows for a

corresponding sequence {ζ nt } that is an admissible test in (Wde), so that
∫

�

W(∇ϕnt (t)) dx ≤
∫

�

W(∇ζ nt ) dx+H1 (S(ζ nt ) \ (S(ϕnt (t)) ∪ ∂s�)
)
,

and then, from the convergences obtained in the theorem, together with the assumed
p-growth of the energy, we pass to the limit in nt and obtain that the limit ϕ(t) is a
minimizer for its own jump set, that is

∫

�

W(∇ϕ(t)) dx ≤
∫

�

W(∇ζ ) dx+H1 (S(ζ ) \ (S(ϕ(t)) ∪ ∂s�)) .

We are inching ever closer to the global minimality statement (Ugm) in the weak
variational evolution, but are not quite there yet, because we would like to remove

not only S(ϕ(t)) ∪ ∂s� but �(t) ∪ ∂s� in the minimality statement above. To do this,
we need to define the limit crack �(t). There are various setting-dependent paths
to a meaningful definition of the limit crack. An encompassing view of that issue is
provided by the notion of σp-convergence introduced in [40], Section 4, a kind of set
convergence for lower dimensional sets.

Definition 5.2 �n σp-converges to � if H1(�n) is bounded uniformly with respect to
n, and

(1) whenever ϕ j, ϕ ∈ SBV(R2) are such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ j weak−∗
⇀ ϕ, in L∞(R)

∇ϕ j weak
⇀ ∇ϕ, in Lp(R2)

S(ϕ j) ⊂ �n j

for some sequence n j ↗∞, then S(ϕ) ⊂ �;
(2) there exist a function ϕ ∈ SBV p(R2) with S(ϕ) = � and a sequence ϕn with the

properties of item (1).

Remark 5.3 Note that it is immediate from item (2) in the above definition and from
(2.24) that

H1(�) ≤ lim infnH1(�n).

Then, the following compactness result proved in [40], Section 4.2, holds true:

Theorem 5.4 Let �n(t) be a sequence of increasing sets defined on [0, T] and con-
tained in a bounded set B. Assume that H1(�n(t)) is bounded uniformly with respect
to n and t. Then there exist a subsequence �n j(t) and a �(t) defined on [0, T] such that

�n j(t) σp-converges to �(t), ∀t ∈ [0, T].

The estimate (5.3) permits one to apply the theorem above and thus to define
a meaningful crack �(t) such that, for a subsequence still labeled �n(t), �n(t) σp–
converges to �(t), hence also �nt (t). Because of item (2) in Definition 5.2, we can
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construct ϕ with S(ϕ) = �(t) and ϕnt satisfying the assumptions of Theorem 5.1 with
S(ϕnt ) ⊂ �nt (t). But (Wde) implies in particular that

∫

�

W(∇ϕnt (t)) dx ≤
∫

�

W(∇ζ ) dx+ kH1(S(ζ )\(�nt (t) ∪ ∂s�))

≤
∫

�

W(∇ζ ) dx+ kH1(S(ζ )\(S(ϕnt ) ∪ ∂s�)).

and the jump transfer Theorem 5.1 delivers the required minimality property (Ugm).
Having obtained global minimality, we are still faced with the question of the

validity of the energy conservation statement (Eb). This is the object of the next
paragraph.

5.1.3 Irreversibility – The Griffith Case – Energy Balance in the Limit

Inequality (5.4) derived at the onset of Paragraph 5.1.2 hints at the possibility of an
energy inequality. To obtain such an inequality in the limit, it suffices, in view of
Remark 5.3, to ensure that, as nt ↗∞,

∫

�

W(∇ϕnt (t)) dx →
∫

�

W(∇ϕ(t)) dx (5.6)

and that

lim sup
nt

∫ τ n(t)

0

∫

�

∂W
∂ F

(∇ϕnt (s)).∇ ġ(s)dx ds

≤
∫ t

0

∫

�

∂W
∂ F

(∇ϕ(s)).∇ ġ(s) dx ds. (5.7)

Equality (5.6) is nearly immediate; one inequality holds true by lower semi-
continuity as seen several times before. The other is obtained upon applying the jump
transfer Theorem 5.1 to ϕ(t) itself and inserting the resulting test sequence in (5.5).
This yields the other inequality, namely

lim sup
nt

∫

�

W(∇ϕnt (t)) dx ≤
∫

�

W(∇ϕ(t)) dx.

The derivation of (5.7) is more involved in the non-quadratic case. Indeed, it
amounts, modulo application of Fatou’s lemma for the time integral, to showing that
the stresses (∂W/∂ F) (∇ϕnt (t)) converge weakly to the limit stress (∂W/∂ F) (∇ϕ(t)).
Although a surprising result, this is indeed the case in view of the convergences
announced for ϕnt (t) to ϕ(t) and of (5.6); we omit the proof and refer the interested
reader to [40], Section 4.3. The following energy inequality is established:

E(t) :=
∫

�

W(∇ϕ(t)) dx+ kH1(�(t)\ ∂s�)

≤ E(0)+
∫ t

0

∫

�

∂W
∂ F

(∇ϕ(s)).∇ ġ(s) dx ds, (5.8)
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The other energy inequality is a byproduct of the minimality statement (Ugm).
Simply test global minimality at time s by ϕ(t)+ g(s)− g(t), t > s. Then, since
S(ϕ(t)) ⊂ �(t),

∫

�

W(∇ϕ(s)) dx ≤
∫

�

W(∇ϕ(t)+ g(s)− g(t)) dx+H1(S(ϕ(t)) \ (�(s) ∪ ∂s�))

≤
∫

�

W(∇ϕ(t)+ g(s)− g(t)) dx+H1(�(t) \ (�(s) ∪ ∂s�))

=
∫

�

W(∇ϕ(t)) dx+H1(�(t) \ (�(s) ∪ ∂s�))

−
∫

�

∂W
∂ F

(

∇ϕ(t)+ ρ(s, t)
∫ t

s
∇ ġ(τ ) dτ

)

.

∫ t

s
∇ ġ(τ ) dτ dx,

for some ρ(s, t) ∈ [0, 1]. Hence

E(t)− E(s) ≥
∫

�

∂W
∂ F

(

∇ϕ(t)+ ρ(s, t)
∫ t

s
∇ ġ(τ ) dτ

)

.

∫ t

s
∇ ġ(τ ) dτ dx.

We then choose a partition 0<sn
1 <....<sn

k(n)
= t of [0, t], with �′

n :=sn
i+1 − sn

i ↘ 0;
summing the contributions, we get

E(t)− E(0) ≥
k(n)∑

i=0

∫

�

∂W
∂ F

(

∇ϕ(sn
i+1)+ ρ(sn

i ,sn
i+1)

∫ sn
i+1

sn
i

∇ ġ(τ ) dτ

)

.

∫ sn
i+1

sn
i

∇ ġ(τ )dτdx.

A uniform continuity type result – already implicitly used in the derivation of
(5.4) – permits us to drop the term depending on ρ(sn

i ,sn
i+1) in the previous inequality

in the limit �′
n ↘ 0; see [40], Section 4.3. Thus

E(t)− E(0) ≥ lim sup
n

{
k(n)∑

i=0

∫ sn
i+1

sn
i

∫

�

∂W
∂ F

(∇ϕ(sn
i+1)
)
.∇ ġ(τ ) dx dτ

}

.

The expression on the right hand-side of the previous inequality looks very much
like a Riemann sum. A not so well-known result in integration asserts that Riemann
sums of a Lebesgue integrable function do converge to the integral of that function,
but only for carefully chosen partitions [63]. Since we enjoy complete liberty in our
choice of the partition {sn

j } of [0, t], we conclude that

E(t)− E(0) ≥
∫ t

0

∫

�

∂W
∂ F

(∇ϕ(s)) .∇ ġ(τ ) dx dτ,

which, together with (5.8), provides the required equality (Eb).
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5.1.4 Irreversibility – The Griffith Case – The Time-continuous Evolution

Here, the results obtained in the previous paragraphs are coalesced into an existence
statement to the weak variational evolution. The result is expressed in a 2d setting,
but it applies equally in a 3d setting, upon replacing H1 by H2. We also recall similar
existence results obtained in [28, 41] in the 2d connected case.

In what follows, the energy density W is a nonnegative convex – in the anti-plane
shear setting – or quasiconvex – in the plane setting – C1 function on R

2 with

(1/C)|F|p − C ≤ W(F) ≤ C|F|p + C, ∀F, 1 < p <∞.

Note that the assumptions on W immediately imply that (see e.g. [37])

|DW(F)| ≤ C(1+ |F|p−1).

The domain � under consideration is assumed throughout to be Lipschitz and
bounded , and the function g, which appears in the boundary condition on ∂�d, is
assumed to be defined on all of R

2; actually, each of its components is taken to be in
W1,1

loc ([0,∞);W1,p(R2)).
The traction-free part ∂s� of the boundary is assumed to be closed. Finally, the

pre-existing crack �0 is a closed set in �, with H1(�0) <∞.

Theorem 5.5 ∃�(t) ⊂ �̄ and ϕ such that

(1) Each component of ϕ(t)∈SBV(R2), with ∇ϕ p-integrable;
(2) �(t) ⊃ �0 increases with t and H1(�(t)) < +∞;
(3) S(ϕ(t)) ⊂ �(t) ∪ ∂s� and ϕ(t) = g(t) a.e. on R

2 \�;
(4) For every t ≥ 0 the pair (ϕ(t), �(t)) minimizes

∫

�

W(∇ϕ) dx+H1(� \ ∂s�)

among all � ⊃ �(t) and ϕ with components in SBV(R2) s.t. S(ϕ) ⊂ � and ϕ =
g(t) a.e. on R

2 \ �̄;
(5) The total energy

E(t) :=
∫

�

W(∇ϕ(t)) dx+H1(�(t) \ ∂s�)

is absolutely continuous, DW(∇ϕ) · ∇ ġ ∈ L1
loc([0,∞); L1(R2)), and

E(t) = E(0)+
∫ t

0

∫

�

DW(∇ϕ(s)) · ∇ ġ(s) dx ds.

As remarked before in Subsection 4.1, we did not wish to incorporate in this study
body or surface loads because of the complex structure of the allowed class of soft
devices introduced in [40], Section 3. Also, in the vector-valued setting, it is assumed
that somehow, the deformations are always capped in sup-norm by some set number.
This is an a priori assumption which can be verified for certain classes of quasi-convex
energies [76]. Note that there is no need for such an assumption in the anti-plane
shear case, provided that the displacement load g is also bounded in sup-norm.

In 2d only and in the case where the cracks are a priori assumed to be connected
– or to have a pre-set number of connected components – then the same existence
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result for the strong variational evolution is obtained in [41] in the quadratic case
and in [28] in the case of linearized elasticity. The statement is identical to that
of Theorem 5.4 at the expense of replacing

∫

�
by
∫

�\� , and considering ϕ’s with
components in L1,2(� \ �) := { f ∈ L2

loc(� \ �) : ∇ f ∈ L2(� \ �)}, resp. ϕ ∈ LD(�\
�) := {ζ ∈ L2

loc(� \ �;R2) : e(ζ ) ∈ L2(� \ �;R4)}, in the case of linear elasticity.
This existence result calls for comments. First and foremost, it is an existence

result, not a uniqueness result. As in other non-convex problems in mechanics,
uniqueness should not be expected: just think of the example of the elastic strip in
Proposition 4.5 where the cracked section can be any vertical section of the sample.

Then the regularity of the field ϕ(t), or lack thereof, is precious information. It
indicates that time jumps could appear in the various fields. Indeed, still referring
to that same example, we witness there a brutal decrease to 0 at time ti of the bulk
energy with a corresponding increase of the surface energy. This is precisely what
(Eb) is about: a conspiracy of jumps that will remain undetected by the total energy.

Third, an implicit change of initial conditions may occur, since it might happen
that �(0) contains, but does not equal �0. It is our belief, substantiated by the results
of Proposition 4.3, that such a brutal event will not take place, but we have no proof
at present.

Finally, the weak evolution might just turn out to be a strong evolution in disguise,
as was the case for image segmentation in the light of the results of [43], in which case
there would be no need for the strong variational evolution. But wishing it so does
not make it so, and the task at hand is forbidding.

Remark 5.6 The unilateral global minimality condition (item 4. in Theorem 5.5) can
actually be strengthened as follows:

For every t ≥ 0 the pair (ϕ(t), �(t)) minimizes
∫

�

W(∇ϕ) dx+H1(� \ ∂s�)

among all � ⊃ ∪s<t�(s) and ϕ with components in SBV(R2) s.t. S(ϕ) ⊂ � and ϕ =
g(t) a.e. on R

2 \ �̄.
This states that the admissible test cracks do not have to contain the current crack,

but only those up to, but not including the current time, a clearly stronger minimality
condition. The two conditions are actually equivalent because, for s < t, unilateral
global minimality implies in particular that
∫

�

W(∇ϕ(s)) dx+H1(�(s) \ ∂s�) ≤
∫

�

W(∇ϕ + ∇g(s)− ∇g(t)) dx+H1(� \ ∂s�),

for any ϕ with components in SBV(R2) s.t. ϕ = g(t) a.e. on R
2 \ �̄, S(ϕ) ⊂ � and any

� ⊃ ∪s<t�(s). Let s ↗ t and use item 5. (the continuity of the total energy) to pass to
the limit in the left hand-side of the inequality above. The stronger minimality result
is then obtained by dominated convergence (since W has p–growth).

To conclude this section, we refer the reader to the numerical example developed
in Paragraph 8.3.3, which illustrates the issues that we have tackled so far – initiation
and irreversibility – in the context of global minimality. The brutal onset of the
cracking process evidenced in Fig. 32b, page 92, agrees with the result obtained in
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Proposition 4.3 because the crack appears at a non-singular point, thus the initiation
time must be positive and the onset brutal. Also note from Fig. 31, page 92, that
the energy is conserved during the phases of brutal growth, as theoretically expected
because the total energy should in particular be continuous in time.

5.2 Irreversibility – The Cohesive Case

In the Griffith case, irreversibility is a purely geometric issue: the crack at the current
time is in essence the union of all discontinuities of the kinematic variable throughout
its past. By contrast, in the cohesive case, the cohesive forces should somehow reflect
the complete history of the deformation undergone by the material up to the present
time. Cohesive forces are affected by the magnitude of those discontinuities, and not
only by their mere presence. Thus, the choice of the right memory variable is crucial.

Our benchmark example throughout this Subsection is the square pre-cracked
sample � in Fig. 17. It is filled with an isotropic material with energy density W
(endowed with the usual properties) and loaded in mode-I by a displacement load
f (t) as shown in Fig. 17. The surface energy κ(λ, τ ) is as in Paragraph 4.2.2, and
it is assumed to be differentiable, with partial derivatives respectively denoted by
∂κ/∂λ, ∂κ/∂τ . Symmetry implies that the crack – understood as the locus of the
possible discontinuities of the kinematic field – will live in �̂ := [0, L]×{0} and that
[ϕ] is parallel to #e2, so that we will identify ϕ with its vertical component. Note that,
if σ denotes the stress field DW(∇ϕ(t)), then σ12 = 0 for x2 = 0.

Adopt as memory variable the maximal opening, that is

ψ(t, x) := sup
s≤t
[ϕ(s, x)], on �̂. (5.9)

The surface energy at t is
∫

�̂
κ(ψ(t), 0) dH1. In the spirit of Paragraph 5.1.1, we now

investigate an incremental evolution of the crack. As mentioned in Subsection 4.2,
we do not have to invoke minimality here, and simply impose unilateral stationarity,

Fig. 17 Sample loaded in mode I
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a notion defined in Section 2. The problem becomes, with notation that should be
familiar to the reader at this stage,

Find a unilateral stationary point ϕi for
∫

�\�̂
W(∇ϕ) dx+

∫

�̂

κ(max{ψi−1, [ϕ]}, 0) dH1.

The associated stress field σi must satisfy
⎧
⎨

⎩

div σi = 0 in � \ �̂

σi e1 = 0 on the part of ∂� with normal ± e1.
(5.10)

We need to compute the cohesive forces. To this effect define

�̂+i = {x ∈ �̂ : [ϕi(x)] > ψi−1(x)}
�̂−i = {x ∈ �̂ : [ϕi(x)] < ψi−1(x)}
�̂0

i = {x ∈ �̂ : [ϕi(x)] = ψi−1(x)},
and assume that both ψi−1 and ϕi are smooth enough to lend meaning to the
expressions below; this will be the case if e.g. W has p > 2-growth, in which case
those quantities will be continuous on �̂.

Because of the equilibrium equations (5.10), unilateral stationarity implies that,
for all ζ ’s with ζ ∈ L∞(�;R2) and S(ζ ) ⊂ �̂,

∫

�̂

(σi)22[ζ2]dx1 ≤
∫

�̂+i

∂κ

∂λ
(ψi, 0)[ζ2]dx1 +

∫

�̂0
i

∂κ

∂λ
(ψi, 0)[ζ2]+ dx1.

Then, by the arbitrariness of ζ ,

(σi)22 = ∂κ

∂λ
(ψi, 0) on �̂+i

(σi)22 = 0 on �̂−i

0 ≤ (σi)22 ≤ ∂κ

∂λ
(ψi, 0) on �̂0

i .

Consequently, irreversibility in the form of a maximal opening criterion cancels all
cohesive forces as long as the current opening does not exceed that at all previous
times.

Remark 5.7 In [42], the existence of a time-continuous evolution in a cohesive setting
with the maximal opening as memory variable is established under the assumption
(Ugm) and provided that the crack site is constrained to live on a smooth manifold
of co-dimension 1. The proof is based, once again, on a time-stepping process. This
justifies, at least in the case of global minimality, the incremental framework adopted
in this subsection.

We propose to investigate the response of the material during cyclic loading, that
is when f (t) has a seesaw-type time variation as in Fig. 18. This is the litmus test
for fatigue. During the first loading phase, the opening [ϕ(x, t)] will monotonically
increase with time throughout �̂, as will be proved in Section 9, at least in a simplified
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f(t)

t

cyclic load

Fig. 18 Seesaw-type cyclic load

context. Denote by (ϕ1, σ1, ψ1) the respective values of the kinematic field, the stress
field and the maximal opening at the end of the first loading phase. As unloading
occurs, intuition, corroborated by the results of Section 9, strongly militates for a
decrease in maximal opening, so that the surface energy will remain unchanged
during that phase. The second loading phase will merely result in a maximal opening
ψ1, so that the material response will be that experienced during the first cycle. And
this ad nauseam, thus forbidding the onset of fatigue.

In the framework of maximal opening “summon[ing] up remembrance of things
past, [we] sigh the lack of many a thing [we] sought.... and moan the expense of many
a vanished sight.”9

Adopt then as memory variable the cumulated opening, that is, in lieu of (5.9),

ψ(x, t) =
∫ t

0
(

◦[ϕ(x, s)])+ ds on �̂, (5.11)

where the dot denotes the time derivative and the+ -sign stands for the positive part.
The surface energy at t is

∫

�̂
κ(ψ(t), 0)dH. The incremental cumulated opening

then becomes

ψi = ψi−1 + ([ϕi] − [ϕi−1])+,

and the total energy at time ti may be written as
∫

�\�̂
W(∇ϕ) dx+

∫

�̂

κ(ψi−1 + ([ϕ] − [ϕi−1])+, 0) dH.

Unilateral stationarity requires once more to partition �̂ into various parts that
compare [ϕi] to [ϕi−1] and the following conditions are derived:

(σi)22 = ∂κ

∂λ
(ψi, 0) on �̂+i = {x ∈ �̂ : [ϕi](x) > [ϕi−1](x)}

(σi)22 = 0 on �̂−i = {x ∈ �̂ : [ϕi](x) < [ϕi−1](x)}
0 ≤ (σi)22 ≤ ∂κ

∂λ
(ψi, 0) on �̂0

i = {x ∈ �̂ : [ϕi](x) = [ϕi−1](x)}.

9Shakespeare – Sonnet XXX
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At first glance, these conditions are similar to those obtained for a maximal
opening criterion. However, the definition of the various domains has changed and a
more careful examination shows that irreversibility only cancels the cohesive forces if
the opening actually decreases. Each time the opening increases, the surface energy
evolves and the cohesive forces are obtained as derivatives of that surface energy.

During cyclic loading (see Fig. 18) the sample’s behavior will be drastically altered.
Indeed, during the first loading phase the opening grows and ψ(t) = [ϕ(t)]. The
material response is indistinguishable from that previously obtained. The same holds
true of the second part of the first cycle which corresponds to a phase of unloading.
But, during the second loading phase, the opening increases again and the surface
energy will evolve, in contrast to what takes place for the maximal opening criterion.
Thus, with the cumulated opening as memory variable, we at least “stand a ghost of
a chance”10 with fatigue.

Remark 5.8 The specific geometry and loading of the imaginary sample used in this
subsection has allowed us to focus on the normal component of the displacement at
the site of the possible discontinuities. Further, non-interpenetration was automat-
ically enforced because the displacement load f (t) forces the lips of the potential
crack to open. In a more general setting, such would not be the case.

Non-interpenetration could be systematically imposed by only allowing non-
negative normal jumps. The issue of the correct choice for a memory variable should
be raised for the tangential jumps as well. If contemplating cumulated opening as
the correct memory variable for sliding, then all slides, whatever their signs, should
contribute, so that the positive part of the derivative of the jump in (5.11) should be
replaced by the absolute value of that derivative.

Assuming only sliding occurs, then all test fields will be such that ϕ ⊥ ν, with ν

normal to �̂ and the incremental cumulated sliding is

γi = γi−1 + |ϕi − ϕi−1|,

while the surface energy for a test slide is
∫

�̂
κ(0, γi−1 + |ϕ − ϕi−1|) dH1. Unilateral

stationarity then yields, strictly as before,

(σi)12 = sign (ϕi − ϕi−1)
∂κ

∂τ
(0, γi) on �̂±i = {x ∈ �̂ : ϕi(x) �= ϕi−1(x)}

|(σi)12| ≤ ∂κ

∂τ
(0, γi) on �̂0

i = {x ∈ �̂ : ϕi(x) = ϕi−1(x)}.

The reader, gently prodded by the previous arguments, will now undoubtedly
acquiesce to cumulative opening as the correct measure of irreversibility in a cohesive

10Victor Young – composer, 1932
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setting. She will consequently not object to the general setting for cohesive crack
growth proposed below in the 2d case.

– The weak cohesive variational evolution revisited : Find, for every t ∈ [0, T],
(�(t), ϕ(t)) satisfying

(Ulm) (�(t), ϕ(t)) is a local minimizer (in a topology that remains to be
specified) for

E(t;ϕ, �) :=
∫

�

W(∇ϕ)dx−F(t, ϕ)+
∫

�

κ(ψ(t)

+ [(ϕ − ϕ(t)) · ν]+, γ (t)+ |[(ϕ − ϕ(t))×ν]|)dH1

among all �̄ \ ∂s� ⊃ � ⊃ �(t) and all ϕ ≡ g(t) on R
2 \ �̄ with S(ϕ) ⊂ �;

or, resp.,
(Ugm) (�(t), ϕ(t)) is a global minimizer for E(t;ϕ, �) among all �̄ \ ∂s� ⊃ � ⊃

�(t) and all ϕ ≡ g(t) on R
2 \ �̄ with S(ϕ) ⊂ �;

(Eb)
dE
dt

(t) =
∫

�

∂W
∂ F

(∇ϕ(t)).∇ ġ(t) dx− Ḟ(t, ϕ(t))−F(t, ġ(t))

with

E(t) =
∫

�

W(∇ϕ(t)) dx−F(t, ϕ(t))+
∫

�(t)
κ(ψ(t), γ (t))dH1.

Above, the undefined quantities are

ψ(t) :=
∑

{ti} partitions of [0,t]
[(ϕ(ti+1)− ϕ(ti)) · νi+1]+,

γ (t) :=
∑

{ti} partitions of [0,t]
|[(ϕ(ti+1)− ϕ(ti))×νi+1]|

(where νi is the normal (at a given point) to the jump set S(ϕ(ti))).

Remark 5.9 Once the crack path has been unconstrained, the issue of stationarity
versus minimality pops up again. Our statement of the weak cohesive variational
evolution adopts minimality. This is rather inconsequential, because, as explained
several times before, our mathematical grasp of that kind of evolution is rudimentary
at best. If initiation could be discussed with some rigor in Subsection 4.2, irreversibil-
ity and the ensuing evolution is not even understood in the time-incremental context.
All further considerations are purely speculative at this juncture.

In particular, global minimality, which, as we saw earlier in Paragraph 4.2.3,
entails relaxation even at the initial time, seems out of reach, because of our poor
understanding of the interplay between relaxation and irreversibility. An attempt
at reconciling relaxation and irreversibility was recently made in [51] and in [39]
in the much more pliant contexts of damage evolution and plasticity with softening
respectively.
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6 Path

Path, or rather the crack path, is in our view a byproduct of the time-continuous
evolution. The weak variational evolution automatically delivers a crack path �(t)
for the time interval of study [0, T]. Since the only available existence result
(Theorem 5.4) comes from the consideration of a global minimality criterion, to-
gether with a Griffith type surface energy, it only makes sense to discuss the path in
that setting. This is the goal of this section.

An example of such a path was shown in the evolution computed at the end of
Paragraph 5.1.4. Unfortunately, as mentioned before, we come woefully short on
the issue of regularity of the obtained path. In the context of image segmentation
(see Subsection 2.5), the existence result for the functional introduced in [80] was
obtained by [43]. It is based on the following regularity statement,

H1(S(ϕg) \ S(ϕg)) = 0.

This result has been duplicated by the first author in his Ph.D. Thesis [17]
for the weak discrete evolution described in Paragraph 5.1.1. He showed that

H1
(
�n

i+1 \ �n
i+1

)
= 0 where �n

i+1 is the crack defined in the weak discrete evolution

(Wde) of Paragraph 5.1.1 at time tn
i+1. It is then a simple task to conclude that

the pair
(
ϕn(t), �n(t)

)
is a solution to the strong discrete evolution (Sde). The

computed crack – an output of computations based on the weak discrete evolution
– inherits “smoothness”; in other words, the components of the field ϕn(t) are in

W1,p
(
� \ �n(t)

)
.

For want of a similar regularity result at the time-continuous level, the closure
of the theoretical crack, whose existence is shown through Theorem 5.4, could
potentially be much bigger than the crack itself.

Besides, the evolution fails to assert uniqueness of the path, and, as in buckling,
uniqueness should not be generically expected. Note that, in the context of image
segmentation, uniqueness is but a conjecture even for the simplest geometries.
Consider for example the functional

F(ϕ; A) :=
∫

A
|∇ϕ|2 dx+H1(S(ϕ) ∩ A).

pre–crack

d

–d

Fig. 19 Pre-cracked sample
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Fig. 20 Mode I loading; θ = π/2

Then ϕ is said to be a global minimizer for F on R
2 iff F(ϕ; A) ≤ F(ψ; A),∀ψ with

{ψ �= ϕ} ⊂⊂ A,and ∀A open. It is still a conjecture (due to De Giorgi) that ϕ(r, θ) :=√
2r/π sin(θ/2), with θ ∈ (−π, π), is the unique global minimizer for F (see [14] for

the proof that ϕ is a global minimizer).
Summing up, the weak variational evolution delivers a crack path, in contrast

to the Griffith formulation which postulates the crack path, or, in its post-modern
version, imports additional ingredients of debatable universality for path prediction
like the conflicted crack branching criteria (that of maximal energy release, still called
Gmax, versus that of mode I propagation, still called KII = 0). The predicted crack
path may not be smooth or unique. It is however readily amenable to numerics
through the weak discrete evolution. Lacking a better grasp on the theoretical
properties of the path(s), “we should be apprehensive and cautious, as if on the
brink of a deep gulf, as if treading on thin ice”11 when attempting to weigh on
the outstanding Gmax versus KII = 0 debate. And cautious we will be, contenting
ourselves with a simplistic computation taken from [22] which demonstrates that
branching of the path generated by the weak variational evolution may occur.

A pre-cracked 2d rectangular elastic plate is subject to a displacement load d as in
Fig. 19. The pre-crack is parallel to the horizontal sides of the rectangle. The angle θ

that the displacement load makes with the horizontal line is set to a given value for
each computation, while the intensity of the displacement is monotonically increased.

The next figures show the direction of the add-crack, whenever it appears, for a
given value of the displacement angle θ .

In Fig. 20, pure mode I propagation is observed, as expected.
In Fig. 21, the crack branches at an angle which increases as θ decreases. In Fig. 22,

two add-crack branches appear numerically. Here, when θ is small enough (and thus
when the experiment gets closer and closer to a mode II experiment), the crack
forks, which is not physical; indeed, interpenetration occurs along the upper branch
of the fork. This is because our model does not forbid interpenetration as it should,
as already emphasized in Subsection 2.1.

11Confucius – The Analects –VIII. 3. (191)
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Fig. 21 Mixed mode loading; 7π/180 < θ < π/2

It is clear that such a numerical experiment, while providing evidence of branch-
ing, cannot be precise enough to allow for even a conjecture as to the nature of the
relationship between θ and the branching angle.

So our contribution to the outstanding path issues is minimal at best. From
an engineering standpoint, we do provide a computable path, which should then
be compared to experiments. Branching does occur numerically, but cannot be
quantified at present.

We complete this section with a multi-cracking example which further demon-
strates the flexibility of the proposed method. Consider a cylindrical composite
domain of length L (along the x-axis) and circular cross-section of area S made of an
elastic unbreakable core (with cross-sectional area cS, 0 < c < 1, Young’s modulus
E f , and Poisson’s ratio ν f ) of circular-cross section, surrounded by a brittle elastic
annulus (with cross-sectional area (1− c)S, Young’s modulus Em, Poisson’s ratio νm,
and fracture toughness km).

The annulus is perfectly bonded to the core. The sample is clamped at its far left
cross-section and submitted to a monotonically increasing displacement load δ at its
far right cross-section, as illustrated in Fig. 23.
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Fig. 22 Mixed mode loading; 7π/180 > θ
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L

e1
brittle matrix

e1unbreakable core

Fig. 23 Composite tube in traction

Figure 29 on page 89 shows snapshots of the deformed state of the cylinder at
increasing values of the parameter δ. These are very large 3d-computations obtained
using the method presented in Section 8. The Poisson coefficients of both material
are assumed to equal to .2. The ratio E f /Em is 10. The diameter of the cylinder is
2, that of the inner core 1. The length of the domain is L = 20. The computations
are performed on 1/4 of the domain, so as to enforce symmetry of the solution with
respect to the planes xy and xz. As the load increases, annular cracks appear brutally.
The crack planes are equidistant, and the cracks seem to propagate from the end
pieces toward the middle of the cylinder. However, the interval of loads within which
this happens is so small that it is hard to identify the relation between the number of
cracks and the load from the numerical experiments.

A theoretical derivation of the main features of the observed evolution from the
only consideration of the weak variational evolution is a daunting task. As a first step
in that direction, we provide below a partial analysis which demonstrates that, at the
expense of a few educated guesses (see (6.1), (6.2)), several non trivial features of the
numerically observed pattern – its periodicity, the increase in the number of cracks
with the load,... – seems to be a natural consequence of the variational evolution. In
truth, the theoretical/numerical fit is far from perfect as witnessed by e.g. the lack of
periodicity of the crack distribution for small δ’s, so that barring stronger evidence,
we could have embarked “on a fool’s errand from the outset.”12

In any case, we assume first that, throughout the purported evolution,

The only possible crack states are annular cracks

with same thickness as that of the matrix.
(6.1)

Remark 6.1 Our foolishness might be plain for all to see, were de-bonding to prove
energetically more convenient than the annular cracking process envisioned in (6.1).
A more detailed study, not undertaken in this tract, would strive to energetically
confront those two obvious competitors and show that annular cracks are at first the
favored mechanism, while de-bonding will take over for large enough values of the
“load” δ. This is intuitively plausible because de-bonding of a region along the core
between two annular cracks completely shields the said region from bulk energy,
with an energetic price proportional to the length (along the x-axis of that region).
Quantification of this remark is quite a challenge.

12Lord Byron – Correspondence with the Hon. Augusta Leigh
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Assume n cracks with a first crack �1 at a distance l0 from the far left, the
subsequent cracks �i+1 being at a distance li from its predecessor; ln is the distance
from �n to the section {x = L}. The Griffith surface energy is n(1− c)Skm, while the
spacings must satisfy

L =
n∑

0

li.

The computation of the elastic energy is the main obstacle to a rigorous analysis.
Denoting by u the displacement field throughout the sample and by σ the Cauchy
stress, we assume that, on the fiber cross-section alined with the cross-section of
crack �i,

u1 := u · e1 = Ui(cst.), with U0 = 0, Un+1 = δ; σe1 ‖ e1. (6.2)

So, generically, we denote by 1
2A(l) the elastic energy associated with the

problem illustrated in Fig. 24. For i �= 0, n the elastic energy associated with the
piece of the sample located between �i and �i+1 is, by reason of homogeneity,√

S/2A(li/
√

S)(Ui+1 −Ui)
2, while for i = 0, n, it is, by reason of symmetry,√

SA(2l0/
√

S)U2
1 , resp.

√
SA(2ln/

√
S)(δ −Un)

2.
The reader should manipulate units with caution in the example discussed here

because 1 has the dimension of a surface area in Fig. 24. Also note that, except when
ν = 0, it is not so that u2 = 0 at x2 = y2 in Fig. 24, so that we may have underestimated
the elastic energy associated with the first material segment (i=0).

For a fixed number n of cracks with set spacings l0, l1, ...., ln, the elastic energy
for the problem is obtained by minimizing

1/2
n−1∑

i=1

A(li/
√

S)(Ui+1 −Ui)
2 +A(2l0/

√
S)U2

1 +A(Sln/
√

S)(δ −Un)
2,

among all U1, ...., Un (recall that U0 = 0, Un+1 = δ). We set εi := Ui+1 −Ui,

i �= 0, n, and ε0 := U1, εn := δ −Un. Then

n∑

i=0

εi = δ,

cross–sectional area=1–c

cross–sectional area=c

Fig. 24 Cross-section between to cracks
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and we must minimize

1/2
n−1∑

i=1

A(li/
√

S)ε2
i +A(2l0/

√
S)ε2

0 +A(2ln/
√

S)ε2
n.

The minimum value of the elastic energy is given by

E(n; l0, ..., ln)= δ2
√

S
2

(
1

2A(2l0/
√

S)
+ 1

2A(2ln/
√

S)
+

n−1∑

i=1

1

A(li/
√

S)

)−1

. (6.3)

Now, for a given number n of cracks, the surface energy is fixed. Thus, to minimize,
at n fixed, the total energy, it suffices to minimize E(n; ·) among all (l0, l1, ..., ln), or
still, in view of (6.3), to compute

max
l0,...,ln

{
1

2A(2l0/
√

S)
+ 1

2A(2ln/
√

S)
+

n−1∑

i=1

1

A(li/
√

S)
:

n∑

i=0

li = L

}

.

Set

S(l) := 1

A(l)
.

The variation of the maximization problem yields, with classical notation,
{∑n

i=0 dli = 0

dl0S ′(2l0/
√

S)+ dlnS ′(2ln/
√

S)+∑n−1
i=1 dliS ′(li/

√
S) = 0.

Thus,

S ′(2l0/
√

S) = S ′(l1/
√

S) = ... = S ′(ln−1/
√

S) = S ′(2ln/
√

S). (6.4)

We lack at present a good grasp of the properties of A as a function of l.
Elementary Reuss–Voigt type bounds [71] immediately yield

l
(cE f + (1− c)Em)

≤ S(l) = 1

A(l)
≤ l
(

c
E f

+ (1− c)
Em

)

,

while an asymptotic analysis of the cell problem defining A(l) would demonstrate
that, at least when ν f = νm =: ν,

A(l) = E f c
l
+ O(1) near 0

A(l) = E f c+ Em(1− c)
l

− K
l2
+ o(l−2) near∞,

where K depends on E f , Em, ν, c; see [1, 13] for a detailed study of the asymptotic
properties of A(l) near l = ∞ in a similar setting. Thus S(l) monotonically increases
in l from 0 to∞, with 1/(E f c) as slope at 0 and

S(l) ≈ K
(E f c+ Em(1− c))2

+ l
E f c+ Em(1− c)

, l →∞, (6.5)

hence 1/(E f c+ Em(1− c)) as asymptotic value for S ′(l).
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Fig. 25 Concavity of S for
E f

Em
= 10, ν = 0.2, c = 0.25

Numerical evidence for its part – see Fig. 25 – suggests that, for large enough
values of E f /Em, S(l) is a strictly concave function of l.

Then, by virtue of (6.4), the cracks must be periodically distributed except at the
end sections, that is 2l0 = l1 = ... = 2ln! This result agrees with the experimental
results of [56] on composites.

The minimum value of the elastic energy in (6.3) becomes

E(n) =
√

S
2n

A
(

L

n
√

S

)

δ2 + n(1− c)Skm,

which should be minimized in n, for fixed δ. Set η := n
√

S/L, so that

E(n) = E0(η) := S
2L

B(η)δ2 + η(1− c)
√

SLkm,

with

B(η) := 1

η
A
(

1

η

)

.

e1

Fig. 26 Transverse periodic cracking
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Fig. 27 Non-concavity of S for
E f
Em
= 2, ν = 0.2, c = 0.25

Note that, near η = 0, that is for a small number of transverse cracks, E0 becomes, by
virtue of (6.5),

E0(η) = S
2L

(E f c+ Em(1− c))δ2 +
(
(1− c)

√
SLkm − KSδ2

2L

)
η + o(η).

The convexity properties of B become the determining feature of the evolution.
For all tested values of the parameters, B is found to be decreasing and convex. Thus,
initiation of the transverse cracking process will occur when δ = δi with

δi

L
:=
√

2km(1− c)

K
√

S
.

Fig. 28 Transverse periodic cracking with period l#
√

S on part of the plate
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Fig. 29 Multi-cracking example of Section 6, Ef /Em = 10, δ =31.7, 32.4, 35.4. The top three figures
represent the geometry of the crack set. The bottom three figures represent the domain in its
deformed configuration. The color coding represents the smeared crack field v that replaces the
actual crack in the numerical approximation (see Section 8 for details)

Then, the crack density will increase (cf. Fig. 26) with increasing δ according to

η = (B′)−1

(

−K
(

δi

δ

)2
)

.

Numerical evidence – see Fig. 27 – also suggests that, for values of E f /Em close
enough to 1, S(l) is not a concave function of l.

Assume, as is the case on Fig. 27, that S ′ decreases on (0, l�), crossing the
asymptote at l#, then grows back to the asymptote. Then a more detailed study,
under the numerically tested assumption that B is still decreasing and convex, would
show the following evolution: an elastic phase, up to a value δ0, a periodic cracking
process with a fixed period p on an increasing volume fraction of the cylinder when
δ0 < δ < δ1, and finally a periodic cracking process with an increasing crack density
when δ > δ1; the parameters δ0, δ1, p are explicit functions of the mechanical and
geometric parameters, as well as of l#, l�; see Fig. 28.

The reader is spared the detailed derivation of the evolution in the non-
concave case.

At the close of this section, we hope to have convincingly argued that the proposed
variational approach “stands a ghost of a chance” when it comes to capturing
complicated crack paths.

In the spirit of the previous computation, we ran the following variant. In Fig. 30
on page 91, the total length of the cylinder is now 30 while the material parameters
are those of the previous experiment. We wished to break the implicit symmetry
hypothesis on the cracking process. To this effect, we created a half disk-shaped
hairline crack of radius .4 centered on the outer edge of the brittle cylinder, along
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its middle cross-section. As the load increases, the existing crack grows smoothly
through the cross-section of the brittle cylinder, until it reaches the interface of the
inner reinforcement at which point it simultaneously grows along the interface, and
along a helix-shaped path (see the top two figures in Fig. 30). As the load increases,
the behavior changes. The following cycle repeats multiple times along the left side,
then the right side of the domain: brutal propagation describing nearly one revolution
along an helix-shaped path, then stagnation (or very slow growth). The jump in crack
length between the third and fourth frames in Fig. 30, page 91, corresponds to the
brutal phase in one cycle. In the final configuration, an helix-shaped crack spans the
entire length of the domain.

Increasing the load beyond what is depicted here would result in the crack
propagating along the matrix-reinforcement interface until total de-bonding, as in
Fig. 3 in [20].

Needless to say, we did not attempt to study the convexity of S(l) in this case!
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Fig. 30 Non symmetric multi-cracking example of Section 6, E f /Em = 1, δ =28, 42, 45, 48, 65.5,
69.5, 86.5
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Fig. 31 Energies vs. time for the plate of Paragraph 8.3.3

Fig. 32 Snapshots of the crack evolution for the plate of Paragraph 8.3.3



The variational approach to fracture 93

7 Griffith vs. Barenblatt

Mechanical folklore has it that, for a given brittle sample, cohesive models à la
Barenblatt will behave asymptotically like Griffith’s model as the internal length
shrinks to 0. By internal length, we mean the ratio between the fracture toughness
and the yield stress; see e.g. Fig. 3 in Subsection 2.6. Provided that cohesive forces
are only triggered near the crack tip, similar views were already espoused by [61],
page 166 : “it may therefore be said that the application of the mathematical theory
of elasticity on the basis that the crack is assumed to be a traction-free surface, must
give the stresses correctly at all points of the body, with the exception of those near
the ends of the crack. In a sufficiently large crack the error in the strain energy so
calculated must be negligible.”

Our purpose in what follows is to quantify this within our framework of choice,
the variational framework. We visit this issue in the context of global minimality and
report on Giacomini’s significant contribution [58]. We forego a general investigation
of local minimality because of the current lack of any kind of meaningful results, but
refer the reader to [78] in the case of a pull-out problem, or to Section 9 in the context
of fatigue.

At first glance, the investigation of the asymptotic behavior of the cohesive
variational evolution may seem oxymoronic in view of our failure – reported in
Subsections 4.2, 5.2 – to secure a meaningful notion of evolution in the cohesive
setting. This is indeed so, if we insist on viewing the existence of a time-continuous
evolution in the cohesive case as a prerequisite.

The viewpoint espoused in [58] is slightly different. We propose to describe his
work in this subsection. Giacomini starts, as we did in Paragraph 5.1.1 with a time
discretization of a hypothetical relaxed variational evolution for the cohesive model
in the global minimality context that we introduced in Subsection 2.6. In other
words, taking the simplest available framework, that of anti-plane shear in linearized
elasticity, he considers a finite set of energies constructed after the model relaxed
energy (4.19) obtained in Paragraph 4.2.3, each element of this set corresponding to
a time in the discretization of the interval [0, T] of study.

As in Subsection 5.1, we assume throughout this subsection that the only load is
a displacement g(t) defined on ∂d�, or rather, as we saw earlier in Subsection 2.5,
on R

2 \ �̄. Suppose that ϕn
j and �n

j are known for j = 0, . . . , i− 1, and define, in the
notation of Subsection 2.6, Paragraph 4.2.3 (see (4.20)), ϕδ

i to be a minimizer for

min

{∫

�

Ŵ(∇ϕ) dx+
∫

(S(ϕ)\∂s�)∪�n
i−1

κ
(∣
∣
∣[ϕ]

∣
∣
∣ ∨ ψn

i−1

)
dH1+σy|C(ϕ)| :

ϕ = g(tn
i+1) on ∂d� \ (S(ϕ) ∪ �n

i−1)

}

(7.1)

where ψn
i−1 := |[ϕn

0 ]| ∨ · · · ∨ |[ϕn
i−1]| and set �n

i := �n
i−1 ∪ (S(ϕn

i ) \ ∂s�). Note that, in
this approach, the irreversibility constraint is encoded in ψn

i−1, and it consists – as first
introduced through (2.27) in Subsection 2.6 and then revisited in Subsection 5.2 –
in assuming that the surface energy increases only when the crack lip displacement
increases. Other choices, such as that of a cumulative increment, could be made (see
Subsection 5.2); that latter choice will be used in going from fracture to fatigue in
Section 9.
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Although the functional introduced in (7.1) is close to that in (4.19), it differs
on two grounds: first, irreversibility has been introduced via ψn

i−1; then boundary
conditions have been imposed on ∂d�. Consequently, the relaxation result of [15]
does not directly apply and a first task consists in showing, see [58], Section 9, that ϕn

i
exists and that it is such that

∫

�

Ŵ(∇ϕn
i ) dx+

∫

�n
i

κ(ψn
i ) dH1 + σy|C(ϕn

i )|

= inf
ϕ

{∫

�

W(∇ϕ) dx+
∫

(S(ϕ)\∂s�)∪�n
i−1

κ
(∣
∣
∣[ϕ]

∣
∣
∣ ∨ ψn

i−1

)
dH1

}

,

or, as explained in Paragraph 4.2.3, that, at each time step,

E∗i (ϕ) :=
∫

�

Ŵ(∇ϕ) dx+
∫

(S(ϕ)\∂s�)∪�n
i−1

κ
(∣
∣
∣[ϕ]

∣
∣
∣ ∨ ψn

i−1

)
dH1 + σy|C(ϕ)|

is the relaxed energy (for the weak-* topology in BV(�)) of

Ei(ϕ) :=
∫

�

W(∇ϕ) dx+
∫

(S(ϕ)\∂s�)∪�n
i−1

κ
(∣
∣
∣[ϕ]

∣
∣
∣ ∨ ψn

i−1

)
dH1.

The BV-bound on quasi-minimizers for Ei will be easily obtained, provided that
W(F) ≥ C(|F| − 1/C).

So, at this point, we have derived a discrete cohesive relaxed weak variational
evolution in the global minimality setting!

Now is the time to introduce the varying parameter for the asymptotic analysis,
namely the internal length. With h ↗∞, we replace Ŵ and κ by, respectively Ŵh

and κh given by

Ŵh(F) := inf{W(G)+ σyh|H|; G+ H = F},
and

κh(s) := κ(hs),

while we replace the Cantor contribution σy|C(ϕ)| – that related to “diffuse crack-
ing,” see Subsection 2.6 – by σyh|C(ϕ)|. The corresponding fields minimizing (7.1)
are denoted by ϕn

hi, ψn
hi, �n

hi.

We then specialize the discretization parameter n to be of the form n(h)
h↗∞.

Assuming decent regularity (see (5.1)) on the boundary displacement g(t) as in
Subsection 5.1, we define the piecewise in time fields

⎧
⎪⎪⎨

⎪⎪⎩

ϕh(t) := ϕ
n(h)

hi

�h(t) := �
n(h)

hi

ψh(t) = ψ
n(h)

hi

on [tn(h)

i , tn(h)

i+1 ), and, for i = −1, �n
h(−1) := �0.

We obtain the following a priori bounds:

||ϕh(t)||BV(�) ≤ C, |C(ϕh(t))| ≤ C/h, (7.2)
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and, providing that the energy density W(F) behaves like |F|p,

|∇ϕh(t)| is equi-integrable, uniformly on [0, T]. (7.3)

An energy upper bound similar to (5.4) can also be derived. It reads – with
notation borrowed from (5.4) – as

Eh(t) :=
∫

�

Ŵh(∇ϕh(t)) dx+
∫

�h(t)
κh

(∣
∣
∣[ψh(t)]

∣
∣
∣

)
dH1 + σyh|C(ϕh(t))|

≤ Eh(0)+
∫ τh(t)

0

∫

�

∂W
∂ F

(∇ϕh(s)).∇ ġ(s) dx ds+ O(1/h).

Then, a variant of Ambrosio’s compactness theorem (see (2.24)), proved in
[58] establishes in particular that if ϕ(t) is the weak limit of (a time-dependent
subsequence of) ϕh(t), then ϕ(t) ∈ SBV(�).

Following a path similar to that in Subsection 5.1, the next step consists in showing
that ϕ(t) satisfies the global minimality statement (Ugm) in the weak variational
evolution. In Paragraph 5.1.2, this was achieved with the help of two essential
ingredients: the jump transfer result, Theorem 5.1, and a meaningful definition of
a limit crack through σ p-convergence, Definition 5.2 and Theorem 5.3. This same
path is followed in [58].

The jump transfer theorem is adapted to the situation at hand by replacing

lim sup
h

H1�A (S(ζh) \ S(ϕh)) ≤ H1�A (S(ζ ) \ S(ϕ))

in that theorem with

lim sup
h

[∫

A∩(S(ζh)∪S(ϕh))

κh(|[ζh]| ∨ |[ϕh]|) dH1−
∫

A∩(S(ϕh))

κh(|[ϕh]|) dH1

]

≤ H1�A (S(ζ ) \ S(ϕ)) ,

while Definition 5.2 and Theorem 5.3 are correspondingly adapted (see Subsection
5.2 in [58]).

From that point on, the argument follows closely that outlined in Subsection
5.1. The resulting theorem, stated in [58] in the case where W(F) = 1/2|F|2, but
generalizable to the setting of Theorem 5.4 – at least in the anti-plane shear
setting – is as follows:

Theorem 7.1 There exists a t-independent subsequence of {h ↗∞} – still denoted
{h} –and a weak quasi-static evolution pair (ϕ(t), �(t)) satisfying all conclusions of
Theorem 5.4 such that, for all t ∈ [0, T],
– ϕh(t) ⇀ ϕ(t) weak-* in BV(�);
– ∇ϕ(t) ⇀ ∇ϕ(t) weakly in L1(�;R2);
– Every accumulation point χ of ϕh(t) (in the weak-* topology of BV(�)) is in

SBV(�) and such that S(χ) ⊂ �(t), ∇χ = ∇ϕ(t);
– Eh(t)→ E(t), the total energy associated with the evolution pair;

–
∫

�

Wh(∇ϕ(t)) dx →
∫

�

W(ϕ(t)) dx; and

–
∫

�h(t)
κh(ψh(t)) dH1 → H1(�(t).
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The above result firmly anchors folklore in reality. As the size of the process zone
shrinks, the time-discrete cohesive evolution – the admittedly pale substitute for a

bona fide evolution in the cohesive setting – will converge (for a time-step which
goes to 0 with the size of the process zone) to a weak evolution for the associated
asymptotic Griffith state of the surface energy. A litigious reader might, rightfully,
object to the arbitrary nature of the description of irreversibility/dissipation in this
subsection. We will see in Section 9 below that the same is expected with a different
choice for the dissipation, and it is sheer laziness that has prevented us from revisiting
Giacomini’s arguments in the latter setting.
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8 Numerics and Griffith

At first glance, numerical implementation of the variational approach advocated
in this tract is hopeless and “all goes wrong when our unhappy cause becomes
connected with it. Strength becomes weakness, wisdom folly”13 as the variational
approach attempts to free the crack path because the “classical” numerical methods
dealing with discontinuous displacement fields rely on some non-negligible amount
of a priori knowledge of that path. This includes the extended finite element method
and other enrichment-based variants. A proper discretization scheme for the total
energy needs to both approximate potentially discontinuous displacement fields –and
thus the position of their discontinuity sets – and lead to an accurate and isotropic
approximation of the surface energy. Such a scheme does not easily accommodate
cohesive finite element methods or discontinuous Galerkin methods. Note that this
is partially addressed by a careful estimate of the anisotropy induced by the mesh
in [83, 84] or still through the use of adaptive finite element methods [21].

Further, if the variational framework contends that it addresses crack initiation
and crack propagation in a unified framework, the same should be true of the numeri-
cal method. In particular, methods based on considering energy restitution caused by
small increments of existing cracks are ruled out. In view of Proposition 4.3, “small”
cracks will never lead to descent directions for the global minimization of the total
energy in the absence of strong singularities in the elastic field.

Non-convexity of the total energy is yet another major obstacle to overcome. The
typical size of the discrete problems prohibits appeal to global or non-deterministic
optimization techniques. As seen in details in previous sections, global minimization
of the energy is an arguable postulate, but it is at present the only one theoretically
suitable for a thorough investigation of any numerical implementation.

As mentioned in the Introduction, and as also suggested by the title of this section,
the scope of the numerics does not extend beyond the Griffith setting. Indeed, as seen
several times before, global minimization, the only numerically viable option, does
not lead as of yet to a well understood evolution in the cohesive setting, so that any
numerical incursion into the cohesive territory would be hazardous. Also, recalling
the argument put forth at the start of Paragraph 4.1.1, it will then come to no surprise
that the only loads considered throughout this section are displacement loads.

The numerical method that will be described below finds, once again, its inspira-
tion in the Mumford–Shah functional for image segmentation (see Subsection 2.5).
The main ingredients were first introduced in the latter context in [8, 9, 12, 17, 18, 85]
and later adapted to fracture in [22, 29, 30, 57, 59, 60].

The method allows for an isotropic and mesh independent approximation of the
total energy. It copes rather successfully with both initiation and propagation as
seen through the various numerical experiments presented in Subsection 8.3. Like
the actual variational model, it applies to the one, two, or three dimensional cases
without alteration.

Finally, as first suggested in the Introduction, time dependence will be approached
through time discretization, and all computations will be performed for a sequence

of times t0 = 0 < t n
1 < ...... < t n

k(n)
= T with k(n)

n↗∞, �n := t n
i+1 − t n

i

n↘ 0. We will

13Sir Walter Scott – Anne of Geierstein
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mostly drop the n-dependence, unless explicitly referring to the putative convergence
of the time-discrete evolution to the time-continuous evolution.

8.1 Numerical Approximation of the Energy

The essence of the numerical implementation is to be found in the concept of
variational convergence. Specifically, the first step consists in devising a good ap-
proximation of the total energy in the sense of �–convergence. We refer the reader
to [23, 38] for a complete exposition of the underlying theory.

Consider a R-valued functional F defined over, say a metrizable topological space
X, and a sequence Fε of the same type. Then, Fε �–converges to F as ε ↘ 0 iff the
following two conditions are satisfied for any u ∈ X:

1. for any sequence (uε)ε ∈ X converging to u, one has

lim inf
ε→0

Fε(uε) ≥ F(u);

2. there exists a sequence (uε)ε ∈ X converging to u, such that

lim sup
ε→0

Fε(uε) ≤ F(u).

The interest of �–convergence from the standpoint of numerics lies in the following
elementary theorem in �-convergence:

Theorem 8.1 If Fε �–converges to F and u∗ε is a minimizer of Fε and if, further, the
sequence u∗ε is compact in X, then there exists u∗ ∈ X such that u∗ε → u, u∗ is a global
minimizer for F , and Fε(u∗ε)→ F(u∗).

Stability of global minimizers under �–convergence is indeed a powerful numer-
ical tool. Rather than attempting to minimize the total energy – thus having to
reconcile discretization and discontinuous functions – we propose to construct, at
each time step ti, a family of regularized energies E i

ε that �-converge to E i, the energy
for the weak variational evolution at that time step (see (2.25)). In the footstep of
[8, 9], we will approximate the potentially discontinuous field ϕi and its crack set �i by
two smooth functions. The implementation of the first time step, which is very close
to that of the original approximation in the context of the Mumford-Shah functional,
is presented in Paragraph 8.1.1. while Paragraph 8.1.2 shows how to account for
irreversibility and approximate the weak discrete time evolution (Wde).

8.1.1 The First Time Step

Consider the first time step of the weak discrete evolution under the unilateral global
minimality condition (Ugm). The irreversibility condition is trivially satisfied, so that
it suffices to minimize the total energy

E(ϕ) =
∫

�

W(∇ϕ)dx+H1(S(ϕ))

with respect to any kinematically admissible ϕ. In all that follows, �̃ denotes a
“large enough” open bounded set such that � ⊂ �̃, and the Dirichlet boundary
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conditions are enforced on �̃ \ �̄, not on R
2 \ �̄ because, as will be seen below, the

computations are performed on that larger domain, and not only on �.
Following [8, 9], we introduce a secondary variable v ∈ W1,2(�̃ \ ∂s�) and two

small positive parameters ε, and ηε = o(ε), and define, for any kinematically
admissible ϕ,

F(ϕ, v) =

⎧
⎪⎨

⎪⎩

∫

�

W(∇ϕ) dx+ kHN−1(S(ϕ) \ ∂S�) if v = 1 a.e.

+∞ otherwise,
(8.1)

and

Fε(ϕ, v) =
∫

�

(v2 + ηε)W(∇ϕ) dx+ k
∫

�̃\∂s�

{
(1− v)2

4ε
+ ε|∇v|2

}

dx. (8.2)

In the anti-plane case, proving the �–convergence of Fε to F is a simple adaptation
of Ambrosio and Tortorelli’s result (see [17]) while it is more involved in that of
linearized elasticity [29]. We limit the analysis to the former case. The proof of the
lower inequality of Theorem 8.1 is technical and does not shed much light on the
proposed numerical method. By contrast, the construction of an attainment sequence
in Theorem 8.1 provides valuable insight and we propose to detail it, at least when
the target is a mildly regular kinematically admissible field for E . Actually, deriving
the lim-sup inequality for minimizers can easily be seen to be no restriction. But for
those, the mild regularity assumption below holds true, at least in anti-plane shear
and energy densities of the form |F|p with p > 1.

It is thus assumed that |ϕ(x)| ≤ M for a.e. x ∈ �̃ and for some M > 0. By the
maximum principle, this is equivalent to imposing a similar bound on the initial load
because a simple truncation at level M of |ϕ| will then decrease the energy. It is also
assumed that ϕ is a solution to the minimization of E that satisfies

H1(S(ϕ)) = H1(S(ϕ)). (8.3)

For minimizers of the Mumford–Shah functional, this mild, albeit difficult regularity
property was established in [43]. In the scalar-valued setting, the case of a certain
class of convex bulk energies which includes p > 1-homogeneous energies was
investigated in [50]. The regularity result was generalized to our setting in [17], at
least for minimizers in anti-plane shear with a quadratic elastic energy density. The
closure property (8.3) is not so clearly true in more general settings, and different
approximation processes must be used in such cases; the interested reader is invited
to consult e.g. [23].

The energy will be assumed quadratic in the field, i.e., W(F) := 1/2μ|F|2,
although more general convex energies would be permitted. The given construction
does not account for the Dirichlet boundary condition and the interested reader is
referred to [17] for the corresponding technicalities. As a corollary, we may as well
take �̃ ≡ � in the construction of the attainment sequence that follows. In truth,
we are just considering an approximation of the weak form (2.23) of the Mumford–
Shah functional in the derivation. In the case of interest to us, i.e., that with Dirichlet
boundary conditions on a part ∂d� = ∂� \ ∂s� it will be enough to reintroduce
�̃ \ ∂�s in lieu of � in the second integral in (8.2).



100 B. Bourdin et al.

Consider a kinematically admissible field ϕ – an element of SBV(�) – satisfying
(8.3). Define

d(x) := dist(x, S(ϕ)).

The volume of the area bounded by the s-level set of d is

�(s) := ∣∣{x ∈ R
2 ; d(x) ≤ s

}∣
∣ .

The distance function is 1-Lipschitz, i.e., |∇d(x)| = 1 a.e., while, by the co-area
formula for Lipschitz functions (see e.g. [7]),

�(s) =
∫ s

0
H1 ({x ; d(x) = t}) dt,

so that, in particular,

�′(s) = H1 ({x ; d(x) = s}) . (8.4)

Also, see [48]-3.2.39,

lim
s→0

�(s)
2s

= H1(S(ϕ)).

We choose αε such that αε = o(ε), ηε = o(αε), which is possible since ηε = o(ε), and
define the functions

vε(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if d(x) ≤ αε

1− exp

(

−d(x)− αε

2ε

)

otherwise,

(8.5)

and

ϕε(x) :=

⎧
⎪⎨

⎪⎩

d(x)

αε

ϕ(x) if 0 ≤ d(x) ≤ αε

ϕ(x) otherwise.

Note that it is easily seen that ϕε ∈ W1,2(�). Further, ϕε → ϕ in L2(�), and vε → 1
almost everywhere. Since vε ≤ 1,

∫

�

(
v2

ε + ηε

)|∇ϕε|2dx ≤
∫

d(x)≤αε

ηε|∇ϕε|2dx+
∫

d(x)≥αε

(1+ ηε)|∇ϕ|2dx.

Observe now that, for d(x) ≤ αε, ∇ϕε = (d(x)/αε)∇ϕ + (1/αε) ϕ∇d, so, in view of the
1-Lipschitz character of d and of the L∞-bound on ϕ,

∫

�

(v2
ε + ηε)|∇ϕε|2 dx ≤ 2

(

ηε

∫

d(x)≤αε

|∇ϕ|2 dx+ M2 ηε

α2
ε

�(αε)

)

+
∫

d(x)≥αε

(1+ ηε)|∇ϕ|2dx.

Since
∫

�
|∇ϕ|2 dx <∞, the first term in the parenthesis on the right hand side above

converges to 0 as ε → 0. Recalling that �(αε)/αε = O(1), while ηε/αε = o(1) permits
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one to conclude that the limit of the second term in that parenthesis also converges
to 0 with ε. We conclude that

lim sup
ε→0

∫

�

(
v2

ε + ηε

) |∇ϕε|2 dx ≤
∫

�

|∇ϕ|2 dx. (8.6)

Let us examine the surface energy term. Using once again the 1-Lipschitz
character of d, together with the co-area formula, we get

∫

�

{

ε|∇vε|2+ (1− vε)
2

4ε

}

dx ≤ �(αε)

4ε
+
∫

d(x)≥αε

1

2ε
exp

(

−d(x)− αε

ε

)

dx

≤ �(αε)

4ε
+ 1

2ε

∫ ∞

αε

exp

(

− s− αε

ε

)

H1({d(x)=s}) ds. (8.7)

Recalling (8.4),

1

2ε

∫ ∞

αε

exp(− s− αε

ε
)H1 ({d(x) = s}) ds = e

αε

ε

2ε

∫ ∞

αε

e−s/ε�′(s) ds

= e
αε

ε

2

∫ ∞

αε/ε

e−t�′(tε) dt. (8.8)

Since �′(0) = lims→0 �(s)/s = 2H1(S(ϕ)), αε = o(ε) and
∫∞

0 e−t dt = 1, insertion of
(8.8) into (8.7) and application of Lebesgue’s dominated convergence theorem yields

lim sup
ε→0

∫

�

{

ε|∇vε|2 + (1− vε)
2

4ε

}

dx ≤ H1(S(ϕ)). (8.9)

Collecting (8.6), (8.9) gives the upper �–limit inequality.

Remark 8.2 The form of the field vε in (8.5) may seem somewhat ad-hoc. It is not.
The choice of the profile for the field vε is derived from the solution of an “optimal
profile” problem (see [4]). Consider, in e.g. 2d, a point x on the crack and a line
orthogonal to the crack and passing through x, parameterized by the variable s.
Consider the restriction of the regularized surface energy to this line

Fε,x(s) = k
∫ ∞

0

{
(1− v(s))2

4ε
+ ε|v′(s)|2

}

ds.

Then the profile

vε(s) = 1− exp

(

− (s− αε)

2ε

)

corresponds to the minimizer of Fε,x under the following boundary conditions:

vε(αε) = 0; lim
s→∞ vε(s) = 1.

Indeed, it is also possible to construct the field vε for the upper �-limit along lines
intersecting the crack set at 900 angles, using the solution to the optimal profile
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problem on each of those. Integration of the result along the crack set will also permit
one to recover the upper �-limit.

The �–convergence result above can be extended to the restriction Fε,h of Fε to
a linear finite element approximation, provided that the discretization parameter h
is such that h = o(ε) (see [12, 18]). A closer look at the construction for the upper
�–limit and at its adaptation to Fε,h provides some useful insight into possible error
estimates.

The construction of the sequence (ϕε,h, vε,h) for the upper �–limit for Fε,h can be
obtained from that above. Let Th be a conforming mesh of �̃ \ ∂�s and Sh be the set
of all elements in Th intersecting S(ϕ). Let πh be a linear finite element projection
operator associated with Th, and consider

vε,h(x) :=
{

0 if x ∈ Sh;
πh (vε) otherwise,

(8.10)

and

ϕε,h(x) := πh (ϕε) . (8.11)

Following a path similar to that developed in the computation of the upper �-limit
above, the first term �(αε)/4ε on the right hand-side of inequality (8.7) becomes
|Sh|/4ε & H1(S(ϕ))h/4ε, which converges to 0 only if h = o(ε). The consideration
of quadratic finite elements in lieu of linear ones would still induce an error on the
surface energy of the order of h/ε, albeit with a different constant. This is why the
proposed implementation only resorts to piecewise linear finite elements for ϕ and v.

In a different direction, this term links the anisotropy of the mesh to the quality
of the approximation of the surface energy. In [83], M. Negri studied the effect of
various types of structured meshes on the surface energy for the Mumford–Shah
problem. In the numerical experiments, the isotropy of the surface term is ensured
through the use of “almost” isotropic Delaunay meshes.

From the construction above, it is deduced that the relation h = o(ε) only needs
to be satisfied “close” to S(ϕ). Of course, barring prior knowledge of S(ϕ), uniformly
homogeneous fine meshes are a must. However, a posteriori re-meshing the domain
will then improve the accuracy of the energy estimate. Note that a priori mesh
adaption – or setting mesh adaptation as an integral part of a minimization algorithm
– can prove slippery. Because the local size of the mesh affects the quality of the
approximation of the surface energy, such a process could potentially create spurious
local minimizers. So, a posteriori mesh refinement around the cracks shields the
computations from artificial cracks that would correspond to local minima created
by a priori mesh refinement!

The sequence for the upper �–limit is also admissible for the lower �–limit, so
that, if ϕ if a minimizer for the total energy, the sequence (ϕε,h, vε,h) constructed
above approximates a minimizing sequence for Fε,h and this asymptotically in h, that
is in particular

k
∫

�̃\∂�s

{
(1− vε, h)

2

4ε
+ ε|∇vε,h|2

}

dx ∼= k
(

1+ h
4ε

)

H1(S(ϕ)). (8.12)
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In practice, it is as if the fracture toughness k had been amplified by a factor
1+ h/(4ε), yielding an effective toughness keff = k(1+ h/(4ε)) which has to be ac-
counted for when interpreting the results. The experiments in Section 8.3.2 highlight
the effect of mesh isotropy on the results, and show how the fracture toughness is
overestimated.

8.1.2 Quasi-static Evolution

The approximation scheme devised in Subsection 8.1 should now be reconciled with
the evolutionary character of the weak discrete formulation. Irreversibility of the
crack growth is enforced at the time-discrete level in the manner described below.

Consider a fixed ε and a fixed conforming mesh Th of �̃ \ ∂�s with characteristic
element size h. Introduce a small parameter η > 0, and at each step ti, the set of
vertices

Ki
ε,h,η :=

{
s ∈ Th ; vi

ε,h(s) ≤ η
}

, i > 0; K0
ε,h,η := ∅.

In the light of the �-convergence properties of Fε,h, the crack growth condition
translates into a growth condition on the sets Ki

ε,h,η
and leads to the following fully

spatially and temporally discrete evolution scheme:

(Fde) Find a sequence
(
ϕi+1

ε,h , vi+1
ε,h

)

i=0,...,n
of global minimizers for Fε,h under the

constraints

ϕ = g(ti+1) on �̃ \�

and

v = 0 on Ki
ε,h,η. (8.13)

Recently, Giacomini conducted a rigorous analysis of a slightly different ap-
proach to the time evolution for Fε. In [57], crack growth is enforced through the
monotonicity of v in time, i.e., by successively minimizing Fε among all (ϕ, v) such
that ϕ = g(ti+1) on �̃ \�, and v ≤ vε

i almost everywhere on �. In that setting, as both
the time discretization parameter (�n) and ε go to 0 (in a carefully ordered fashion),
the discrete evolution converges to a continuous evolution satisfying the conclusions
of Theorem 5.5.

In the forthcoming numerical experiments, the monotonicity constraint is imposed
as described in (8.13). Implementing Giacomini’s constraint in its place would not
generate additional difficulties, but would increase the computational cost.

Remark 8.3 The �-convergence based approach to minimization is not so easily
amenable to the treatment of local minimization. If (ϕ, 1) is an isolated L1-local
minimizer for F (see (8.1)), then Theorem 2.1 in [70] can be adapted to the current
setting to prove the existence of a sequence of L1-local minimizers (ϕε, vε) for Fε

converging to (ϕ, 1) in L1. Unfortunately, the isolation hypothesis is generically false:
see for instance the 1d-traction experiment with a hard device in Paragraph 3.1.2.

Even when the isolation hypothesis applies, the above-mentioned theorem grants
the existence of a sequence of local minimizers for Fε converging to a local minimizer
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of F , but does not however guarantee that a converging sequence of local minimizers
for Fε converges to a local minimizer for F .

For further considerations on the convergence of local minimizers and/or station-
ary points, see (Francfort et al. [53]).

8.2 Minimization Algorithm

Recall that Fε,h is the restriction of Fε defined in (8.2) to a linear finite element
approximation. Also note that, although Fε is separately convex in its arguments ϕ

and v, it is not convex in the pair (ϕ, v).
In the numerical experiments below, we fix the regularization parameter ε and

generate a mesh with characteristic size h. We do not try to adapt the values on ε and
h during the numerical minimization of Fε,h. Thus, the numerical implementation
reduces to a sequence of minimizations for Fε,h, each corresponding to a separate
time step. All presented experiments have been tested on meshes of various size and
with different values of the parameter ε and/or of the time discretization length; the
results seem impervious to such changes, at least for reasonably small choices of the
parameters ε, h, �n.

Unfortunately, contrary to the adage, you can tell a functional by its cover and
the lack of convexity of Fε,h, inherited from that of Fε, promptly dashes any hope
for a fool-proof minimization scheme. As per Section 8.1, we should choose a mesh
size h which remains “small” compared to the regularization parameter, which in
turn needs to be “small.” In a 2d setting, this typically results in meshes with (10)5

elements, while in three dimensions, the mesh used in the experiment shown on
Fig. 30, page 91, consists of over 1.7 (10)6 elements. Although the analysis of such
large problems can be tackled thanks to the wider availability of massively parallel
computers, there are, to our knowledge, no global minimization algorithms capable
of handling them. At best, the algorithms will asymptotically satisfy necessary
optimality conditions for minimality.

8.2.1 The Alternate Minimizations Algorithm

The first building block in the numerical implementation is an alternate minimization
algorithm, leading to evolutions satisfying a first set of necessary conditions for
optimality.

The functional Fε – and therefore Fε,h – is Gâteaux-differentiable around any
(ϕ, v). We compute the first order variation of Fε,h around any kinematically admis-
sible (ϕ, v) in the directions (ϕ̃, 0) and (0, ṽ), where ϕ̃ and ṽ are admissible variations
(ϕ̃ = 0 on �̃ \� and ṽ = 0 on Ki

ε,h,η
) and obtain that the solution (ϕi+1

ε,h , vi+1
ε,h ) of the

fully discrete evolution at time step ti+1 satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

(
(vi+1

ε,h )2 + ηε

)
DW(∇ϕi+1

ε,h ).∇ϕ̃ dx = 0

∫

�

(
vi+1

ε,h ṽ
)

W(∇ϕi+1
ε,h ) dx+ k

∫

�̃\∂�s

{
vi+1

ε,h ṽ

4ε
+ ε∇vi+1

ε,h · ∇ṽ

}

dx

= k
∫

�̃\∂�s

ṽ

4ε
dx.

(8.14)
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This leads to the following algorithm, where δ is a fixed tolerance parameter:

Algorithm 1 The alternate minimizations algorithm:

1: Let p = 0 and v(0) := vi
ε,h.

2: repeat
3: p ← p+ 1
4: Compute ϕ(p) := arg minϕ Fε,h(ϕ, v(p−1)) under the constraint ϕ(p) = g(ti+1) on

�̃ \�.
5: Compute v(p) := arg minv Fε,h(ϕ

(p), v) under the constraint v(p) = 0 on Ki
ε,h,η

6: until |v(p) − v(p−1)|∞ ≤ δ

7: Set ϕi+1
ε,h := ϕ(p) and vi+1

ε,h := v(p)

Since Fε,h is separately convex in each of its arguments, the algorithm constructs
at each time step a sequence with decreasing total energy; it is therefore uncondi-
tionally convergent in energy. A more detailed analysis conducted in [19] proves
that, whenever the cracks are a priori known to propagate smoothly, the alternate
minimization algorithm converges to the global minimizer of Fε,h for fine enough
time discretization steps. In cases where cracks propagate brutally, this algorithm can
only be proved to converge to critical points of Fε, which may be a local (or global)
minimizers, but also saddle points for Fε. As per Remark 8.3, local minimizers of Fε

can sometimes be proved to converge to local minimizers of F . Similar results in the
case of saddle points are for now restricted to the 1d setting (Francfort et al. [53]).
The detection of saddle points require a detailed stability study. Because of the
typical size of the problems, this is a difficult task which has yet to be implemented.
In its stead, we shift our focus on the derivation of additional necessary conditions
for minimality and propose to devise compatible algorithms.

8.2.2 The Backtracking Algorithm

When cracks propagate brutally, the alternate minimizations algorithm, or any other
descent-based algorithm for that matter, cannot be expected to converge to the
global minimizer of Fε,h. Indeed, a numerical method that relies solely on (8.14)
will lead to evolutions whose total energy E(t) is not an absolutely continuous (or
even continuous) function (see Figure 11 in [84] or Figure 3(b) in [22]). This is
incompatible with the convergence of the time – discretized to the time – continuous
one, culminating in Theorem 5.5. So, since (8.14) is satisfied at each time step, those
evolutions have to correspond to local minimizers or saddle points of the regularized
energy. Such solutions – spurious from the standpoint of global minimization – can
actually be eliminated by enforcing an additional optimality condition.

Consider a monotonically increasing load, as in Section 2.3, and suppose the elastic
energy density W to be 2-homogeneous (adapting this argument to p-homogenous W
is trivial). If (ϕi

ε,h, vi
ε,h) is admissible for a time step ti, then

(
t j/tiϕi

ε,h, vi
ε,h

)
is admissible

for all time steps t j with 0 ≤ j ≤ i, and

Fε,h

(
t j

ti
ϕi

ε,h, vi
ε,h

)

= t2
j

t2
i

Fb
ε,h(ϕ

i
ε,h, vi

ε,h)+F s
ε,h(v

i
ε,h),
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Fb
ε,h and F s

ε,h denoting respectively the bulk and surface terms in Fε,h. But if the

sequence {(ϕi
ε,h, vi

ε,h)} is a solution of the fully discrete evolution, (ϕ
j
ε,h, v

j
ε,h) must

minimize Fε,h among all admissible pairs (ϕ, v), and in particular, for 0 ≤ j ≤ i ≤ n,

Fb
ε,h

(
ϕ

j
ε,h, v

j
ε,h

)
+F s

ε,h

(
v

j
ε,h

)
≤ t2

j

t2
i

Fb
ε,h(ϕ

i
ε,h, vi

ε,h)+F s
ε,h(v

i
ε,h). (8.15)

Note that in establishing this condition, we used the global minimality of the
evolution {(ϕi

ε,h, vi
ε,h)}, so that (8.15) is a necessary condition for global minimality but

it is neither necessary nor sufficient for local minimality. Since t j ≤ ti, the total energy,
that is {Fε,h(ϕ

i
ε,h, vi

ε,h)}, associated with an evolution satisfying (8.15) is monotonically
increasing. In the time continuous limit, any such evolution produces an absolutely
continuous total energy, in accordance with Theorem 5.4.

Algorithmically, we check condition (8.15) against all previous time steps t j,
with j varying from 0 to i. If for some t j, (8.15) is not satisfied, then (ϕ

j
ε,h, v

j
ε,h)

cannot be the global minimizer for the time step t j, and (t j/tiϕi
ε,h, vi

ε,h) provides an
admissible field with a strictly smaller energy at time t j. In this case, we backtrack
to time step t j, and restart the alternate minimizations process, initializing the field
v with vi

ε,h. Because the alternate minimizations algorithm constructs sequences with
monotonically decreasing energy (at a given time step), repeated backtracking will
converge to a solution such that (8.15) is satisfied for this particular choice of i and j.

The backtracking algorithm can be summarized as follows, with δ a small
tolerance:

Algorithm 2 The backtracking algorithm:
1: v0 ← 1, 1 ← i
2: repeat
3: Compute (ϕi

ε,h, vi
ε,h) using the alternate minimization algorithm initialized

with v0.
4: Compute the bulk and surface energies Fb

ε,h(ϕ
i
ε,h, vi

ε,h), F s
ε,h(v

i
ε,h)

5: for j = 1 to i− 1 do

6: if Fε,h(ϕ
j
ε,h, v

j
ε,h)−

(
t j

ti

)2
Fb

ε,h(ϕ
i
ε,h, vi

ε,h)− kF s
ε,h(v

i
ε,h) ≥ δ

then
7: v0 ← vi

ε,h
8: i ← j
9: return to 3:

10: end if
11: end for
12: v0 ← vi

ε,h
13: i ← i+ 1
14: until i = n

Remark 8.4 The backtracking algorithm is not refined enough to avoid local min-
imizers. It merely selects, at each time step, the proper critical point among all
previously identified potential solutions. In the following subsection, “large” enough
loads force bifurcation and crack creation, but other avenues should certainly be
explored. As possible alternative, we mention time refinement, i.e., a first set of
computations with a coarse time discretization, then a refinement of the time step,
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or still topology generation, i.e., an initialization with a v field that would represent
many “small” cracks constructed using the optimal profile (8.5).

8.3 Numerical Experiments

This subsection describes in detail various numerical experiments: 1d traction, anti-
plane shear tearing, and 2d tearing of a plate. The first two experiments mirror
and expand on the theoretical predictions of Paragraph 3.1.2 and Subsection 3.2
respectively, while the third example is a theoretical “terra incognita.”

Computational convenience, rather than mechanical realism guides the choice of
the various mechanical quantities. Even worse, we do not specify the units for those
quantities; the reader is at liberty to check the dimensional consistency of the various
expressions below.

8.3.1 The 1D Traction (Hard Device)

At this point, the confusion sown in the reader’s mind by the many detours of
the proposed algorithm will undoubtedly make her doubt our numerical predictive
ability when it comes to fracture. We now propose to put her mind to rest and, to
this end, consider the very simple benchmark example of the 1d traction experiment
(hard device) from Section 3.1.2.

A long beam of length L and cross section � = 1 is clamped at x = 0, and subject
to a displacement load tL at its right extremity x = L. With W(a) ≡ 1/2E(a− 1)2 in
(8.2), the pair (ϕe, vε

e ) defined as

ϕe := (1+ t)x, vε
e :=

k
k+ 2εEt2

is immediately seen to be a critical point for Fε for any t, i.e., a solution to the
associated Euler–Lagrange equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
(v2 + ηε)ϕ

′)′ = 0

1
2 vE(ϕ′ − 1)2 − εv′′ − k

(1− v)

4ε
= 0

ϕ(t, 0) = 0, and ϕ(t, L) = (1+ t)L.

Further,

Fε(ϕe, vε
e ) =

t2 EkL
2(k+ 2εEt2)

,

where, for algebraic simplicity, the term ηε has been dropped from the expression
(8.2) for Fε. The �-limit result of Subsection 8.1 guarantees the existence of a
sequence {(ϕε

1, vε
1)} such that

ϕε
1 → ϕ1 :=

{
x, x < x1

x+ tL, x > x1
for some x1 ∈ [0, L]

vε
1 → 1 a.e. in (0, L),
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provided that t >
√

2k/EL (see (3.4) with t replacing ε in that expression). It also
guarantees that

Fε(ϕ
ε
1, vε

1)→ k,

the energy associated with the solution with one jump.
It is immediate that the alternate minimization initiated with v ≡ 1 converges to

(ϕe, vε
e ) in one iteration. The same analysis applies to any problem whose elastic

solution has constant gradient. Indeed, it seems preposterous to expect that the
proposed numerical method should ever converge towards a solution with cracks!

The solution of this conundrum requires a detailed study of the stability of the
critical point (ϕe, vε

e ); see [19, Section 3.1]. It is shown there that, given any admissible
ϕ̃ such that ϕ̃ �= 0, there exist ṽ �= 0 and tε(ϕ̃) such that

Fε(ϕe + αϕ̃, vε
e + αṽ) < Fε(ϕe, vε

e ),

when t ≥ tε(ϕ̃), and for small enough α. In other words, any direction will become
a direction of descent for the energy past a direction-dependent critical load tε, and
(ϕe, vε

e ) will then become a saddle point. In the context of the alternate minimizations
algorithm, the discretization error is sufficient to induce the bifurcation of the
minimization algorithm away from (ϕe, vε

e ). Numerically, this is exactly what is being
observed; the critical load at which the numerical solution bifurcates from the
elastic to the cracked solution increases when ε → 0 or h → 0. Once the bifurcation
occurs, and the alternate minimizations identify (ϕε

1, vε
1) as another critical point,

the backtracking algorithm leads to the proper detection of the critical load and the
reconstructed evolution matches (3.4).

Figure 33 follows the evolution of the energy for this experiment. The parameters
are L = 10, E = 4 (10)−2, k = 1, the mesh size is h = 1.5 (10)−2, and ε = 8 (10)−2.
For those parameters, the critical load at which fracture occurs is tc =

√
5 & 2.24,

according to (3.4). Without backtracking, the critical load upon which the solution
bifurcates from the uncracked to the cracked solution is approximately 7.85, and the
total energy is clearly not continuous.

Using the backtracking algorithm (see Fig. 34) allows one to recover the proper
evolution. The reader is reminded of the note of caution offered in the Introduction:
the backtracking algorithm is used here with u(x) := ϕ(x)− x, the displacement field,
as variable, because the bulk energy is 2-homogeneous in ϕ′ − 1 and not in ϕ′. At
first, the computed solution is similar to that obtained without backtracking. When t
reaches 7.85, the alternate minimizations algorithm bifurcates towards the cracked
solution, and the total energy decreases (step (d) in Fig. 34). At that point, the
optimality condition (8.15) is violated for all 2.4 ≤ t ≤ 7.85 (marked (c)).

The alternate minimization is then restarted from t = 2.4 (marked (b)). The
final evolution closely matches the theoretical solution. The critical load in the
experiments is approximately 2.4 (vs. a theoretical value of 2.24), and the surface
energy of the cracked solution is approximately 1.08 (vs. a theoretical value of 1).

8.3.2 The Tearing Experiment

The second numerical simulation follows along the lines of the tearing experiment
investigated in Section 3.2. We consider a rectangular domain � = (0, L)× (−H, H).
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Fig. 33 Evolution of the total, bulk and surface energies for the 1d traction experiment (hard-device)
without backtracking

The analysis in Subsection 3.2 still applies and the field constructed there under
assumption (3.14) is an admissible test field for this problem, provided of course that
0 ) l(t) ≤ L.

However, when the domain has finite length, a crack splitting the whole domain
is a minimizing competitor. Let ϕc represent that solution. Following the notation in
Section 3.2, we set

{
S(ϕc) = (0, L)× {0}

uc(t, x) = tH,

so that

E(S(ϕc)) = kL.

A comparison of the energy of both types of evolutions demonstrates that,
under assumption (3.14), the global minimizer for the tearing problem is such that
u(x, y, t) = sign(y)u(t, x)e3 and S(ϕ) = [0, l(t))× {0}, with

u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

tH
(

1− x
l(t)

)+
if t ≤ L

2H

√
k

μH

tH otherwise,

(8.16)
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Fig. 34 Evolution of the total energy for the 1d traction experiment (hard-device) with backtracking

where

l(t) =

⎧
⎪⎪⎨

⎪⎪⎩

tH

√
μH

k
if t ≤ L

2H

√
k

μH

L otherwise.

(8.17)

This corresponds to a crack that propagates at constant speed

dl
dt
= H

√
μH

k

along the symmetry axis, until its length reaches L/2, and then jumps along the
x-axis until the end point of that axis in the domain. Note that, during the smooth
propagation phase, the bulk and surface energies of the sample are equal, and that,
throughout the evolution, the total energy of the solution is

E(t) = min
(

2tH
√

μHk, kL
)
. (8.18)

We wish to illustrate the ability of the advocated numerical approach to capture
the proper evolution for a known crack path. As a first step in that direction, the
anti-plane tearing problem is numerically solved by a method developed in [45], then
compared to the crack evolution analytically obtained above.
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Fig. 35 Tearing experiment: l �→ W(1, l)

We consider a domain with dimensions H = 1, L = 5. The material properties are
E = 1, ν = .2 (corresponding to μ & .4167), k = 1.25 (10)−2 (corresponding to the
value of keff in (8.12); in the case where ε = h, the “material” fracture toughness is
k = 10−2). Following Subsection 3.2, the analysis is restricted at first to symmetric
solutions consisting of a single crack of length l(t) propagating along the x–axis,
starting from the left edge of the domain, with l(0) = 0. In order to estimate l(t),
we compute the equilibrium deformation ϕ(1, l) corresponding to a unit load and
a crack of length l, using finite element meshes consisting of approximately 70,000
nodes, automatically refined around the crack tip. For various choices of l ∈ [0, L],
we estimate the elastic energy Eb (1, l) associated with ϕ(1, l), as well as the energy
release rate G(1, l) = −∂ Eb /∂l(1, l), using classical formulae for the derivative of W
with respect to the domain shape. Figures 35, 36 respectively represent the evolution
of Eb (1, l) and G(1, l) as a function of l.

From now onward, we refer to the analytical solution as the “1d solution” in all
figures, as well as in the text.

A quick analysis of the numerical results shows that G(1, l) is strictly decreasing
(and therefore that W is strictly convex) for 0 ≤ l < l∗c , with l∗c & 4.19. For l∗c ≤ l ≤ 5,
G is an increasing function of l. Following Proposition 2.4 in Section 2, we deduce
that the crack will first propagate smoothly, following Griffith’s criterion. When it
reaches the length l∗c , it will then jump brutally to the right edge of the domain
because not doing so would violate the constraint that G ≤ k. It could be argued that
such an evolution satisfies (necessary conditions for) (Ulm). We will comment further
on this evolution in Remark 8.5 and Fig. 41.

The numerical values of W(1, l) lead to an estimate of the position of the crack tip
as a function of the load. Let ϕ(t, l) be the equilibrium deformation associated with
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the load t, and Eb (t, l) := t2 Eb (1, l) the associated bulk energy. If the crack keeps on
propagating smoothly, then

−t2 ∂ Eb

∂l
(1, l) = k. (8.19)

That relation is used to compute the load t for which the crack length is l, and
thereafter l(t).

Once again, a crack splitting the whole domain along the x–axis is a minimizing
competitor. Consider tc and lc := l(tc) such that Eb (tc, lc)+ klc = kL. For t > tc,
splitting the domain is energetically preferable. The value of tc can be estimated from
the computations of Eb (1, l). Using the finite element computations described above,
we get tc & .47. The critical length lc is such that

Eb (1, lc) = −(L− lc)
∂ Eb

∂l
(1, lc).

Numerically, we obtain lc & 2.28. That value is strictly less than the length l∗c for
which the constraint G ≤ k can no longer be met, as expected when global energy
minimization presides. Indeed, the energetic landscape is explored in its entirety
through global minimization, allowing the crack to adopt a better energetic position
at lc, rather than waiting for G to stumble upon the constraint k at l∗c .

As an aside, note that the critical length lc does not depend upon the fracture
toughness k!

The attentive reader will have noticed the sudden jump introduced in Griffith’s
evolution – that satisfying (8.19) – at tc. Strict orthodoxy would not allow for such a
jump to take place, and the resulting evolution might be indicted for revisionism. In
all fairness, Griffith’s evolution would grind to a halt at l∗c in any case.
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Fig. 36 Tearing experiment: l �→ G(1, l)
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Fig. 37 Evolution of the bulk surface and total energies following (Ugm), as a function of the load t.
They are computed using a classical finite element analysis and compared to the 1d solution

Figure 37 represents the numerically computed globally minimizing evolution
of the bulk, surface, and total energies (thin lines), together with the analytically
computed energies of the 1d solution – see (8.16), (8.17) – obtained in Section 3.2
and above (thick lines).

The computed evolution has the crack propagating smoothly for 0 ≤ t < tc, until it
reaches the critical length lc, then cutting brutally through the domain. For small
loads, the one-dimensional analysis overestimates the crack length; note that as
l → 0, G(1, l)→∞, and that the accuracy of our finite element computations cannot
be guaranteed. When t, and therefore l, become large enough, the values of dEb (t)/dt
and dEs(t)/dt become very close to those obtained in Section 3.2. Numerically we
obtain dEb (t)/dt & 7.43 (10)−2 and dEs(t)/dt & 6.83 (10)−2 while the 1d result is
dEb (t)/dt = dEs(t)/dt = H

√
kμH & 7.22 (10)−2.

Next, a numerical experiment that uses the algorithms developed in this section is
conducted. We unabashedly reassert our bias towards symmetric solution, resorting
to a structured mesh obtained by a split of each square in a structured grid into two
right triangles. It consists of 154,450 nodes and 307,298 elements. The mesh size is
(10)−2; the regularization parameters are ε = (10)−2 and ηε = (10)−9. We consider
100 equi-distributed time steps between 0 and 1. As already noted, the effective
toughness in the computations is keff = (1+ h/4ε) k = .0125.

Figure 38 represents the computed bulk, surface and total energy, as well as their
values obtained via the proposed algorithm, as a function of t. Once again, the
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Fig. 38 Evolution of the bulk surface and total energies following (Ugm), as a function of the
load t. Comparison of values obtained through the variational approximation with backtracking and
through finite element analysis

backtracking algorithm leads to an evolution with a monotonically increasing and
continuous total energy.

Figure 39 represents the location of the crack set in the domain for t = .49 and
t = .5. The area of the domain with v ≥ (10)−1 has been blackened while that where

Fig. 39 Position of the crack set in the tearing experiment for t = .49 (top) and t = .50 (bottom)
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Fig. 40 Profile of the v–field along a cross section of the domain parallel to the y-axis and intersecting
the crack

v ≤ (10)−1 has been whitened, so as to clearly indicate the location of the crack.
Figure 40 represents the profile of v on a cross section of the domain parallel to
the y-axis intersecting the crack. It is similar to that described in the construction for
the upper �–limit, i.e., v = 0 on a band of width h centered on the crack and grows
exponentially to 1 outside that band.

The agreement with the classical solution is remarkable. The bulk energies are
within 1% of each others, and the surface energies within 10%. For long enough
cracks, the surface and bulk energies grow at a constant rate, and dEb (t)/dt &
6.95 (10)−2 and dEs(t)/dt & 7.03 (10)−2. The critical load upon which the crack
propagates brutally is .49 ≤ tc ≤ .5 (vs. a estimated value of .47), and the critical
length is lc := l(.49) & 2.46 which, again, is in agreement with the finite element
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Fig. 41 Evolution of the bulk surface and total energies following (Ulm), as a function of the load
t, computed using a classical finite element analysis. Comparison to the variational approximation
without backtracking
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analysis presented above (lc & 2.28). The final surface energy is 6.38 (10)−2, which
is consistent with the estimate we gave in Section 8.1.1 (k(1+ h/4ε)L = 6.25 (10)−2).

Remark 8.5 As noted before, the first evolution computed above using finite element
analysis – that is that following Griffith until it jumps at l∗c & 4.19 – can be argued to
be one satisfying (necessary conditions for) (Ulm). It propagates smoothly until it
reaches l∗c & 4.19 at t = t∗c & .75, then brutally to the right end-side of the domain.
Figure 41, represent the bulk, surface and total energies of this solution, compared to
an experiment using the variational approximation and the alternate minimization,
but without backtracking. Following the analysis in [19], we expect that, as long as the
crack propagates smoothly following local minimizers, the alternate minimization
will provide the right evolution. When the crack propagates brutally, nothing can
be said. However, once again, the agreement between our experiments is striking.
Using the variational approximation, we obtain t∗c & .82 (instead of .75 using the
finite element analysis). The estimate for the critical length is l∗c & 4.08 (vs. 4.19 for
the finite element computations). Serendipitous or fortuitous?

The symmetry assumption about the x-axis was instrumental in deriving the
theoretical results in Subsection 3.2; it was also imposed as a meshing restriction in
the previous computation. In its absence, a bona fide theoretical prediction is difficult
to make, but an educated guess based on the analogy with e.g. the pre-cracked 2d
plate numerically investigated at the onset of Section 6 may provide insight into the
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Fig. 42 Evolution of the bulk surface and total energies as a function of the load t. Numerical and
expected values (tc & .17)
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Fig. 43 Position of the crack set in the tearing experiment for t = .18 (top) and t = .19 (bottom)

possible crack path. We thus introduce a third class of solutions: a crack propagating
along the symmetry axis with length l(t) until some critical tc at which it brutally
bifurcates, reaching one of the sides of the domain. The crack for t ≥ tc is assumed
L- shaped, i.e., of the form (0, l(tc))× {0} ∪ {l(tc)} × (0,−H) or its mirror image with
respect to the x–axis. It then remains to minimize in tc. Appealing to (8.18), (8.17)
and comparing the energy associated with the straight crack, i.e., 2tH

√
μHk, to that

associated with the bifurcated crack, i.e., k
(

tH
√

μH/k+ H
)

, yields

tc =
√

k
μH

,

and

l(tc) = H.

The total energy of this branch of solution as a function of the loading parameter t is

E(ϕ) = min
(

2tH
√

μHk, 2kH
)

.

If L > 2H, this asymmetric solution has a lower energy than its symmetric counter-
part as soon as t ≥ √k/μH.

We propose a second set of experiments that use a non-symmetric Delaunay–
Voronoi mesh. The mesh size is still h = (10)−2, and the other parameters are those
of the previous experiment.

The energy plot Fig. 42 shows that the evolution is qualitatively as expected, i.e.,
smooth propagation of the crack tip, then brutal propagation.

Once again, the position of the crack tip lags behind its theoretical position and
the comparison between the numerical and theoretical energies is difficult.

Figure 43 shows the crack tip just before (top) and after (bottom) brutal propaga-
tion. The evolution is clearly not globally minimizing: connecting the tip of the crack
for t = .18 to the upper edge of the domain at a near 90◦ angle would cost less surface
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Fig. 44 2d traction experiment

energy. It would be unwise at present to view the perhaps more realistic numerical
solution as an outcome of the true minimization. Rather, numerical prudence dictates
that it be considered as a lucky bug! This provides a clear illustration of the difficulties
of global minimization.

8.3.3 Revisiting the 2D Traction Experiment on a Fiber Reinforced Matrix

The numerical experiments above provide ground for a thorough check of the
proposed numerical method. However they fall woefully short of target, in that they
do not illustrate two of the main tackled issues, initiation and irreversibility in the
context of global minimality.

The following example revisits a numerical experiment originally presented in [22,
Section 3.2], and illustrates the improvements brought about by the backtracking
algorithm.

A square 2d, brittle and elastic matrix with edge-length 3 is bonded to a rigid
circular fiber of diameter 1 as shown in Fig. 44. The fiber remains fixed, while
a uniform displacement field te2 is imposed on the upper side of the square; the
remaining sides are traction free. This is a plane stress problem. The elastic moduli
of the matrix are k = 100, E = 4000, and ν = .2. The domain is partitioned in
293,372 elements and 147,337 nodes, and 125 time steps are used over the interval
0 ≤ t ≤ .615. The mesh size is h = .01, and the regularization parameters are ε = .02,
ηε = (10)−6 (see Paragraph 8.1.1).14

The thin lines in Fig. 31 on page 92 show the evolution of the bulk, surface and
total energies with respect to t computed without the backtracking algorithm. It is
essentially similar to Fig. 3b in [22]. As predicted by the convergence analysis of the
alternate minimization algorithm, the total energy is increasing and continuous when
the crack propagate smoothly – just correlate the zones where the total energy is
continuous with those where the surface energy increases smoothly – but it jumps
when the evolution become brutal as witnessed by the total energy restitution
associated with the jumps in surface energy at t = .44, t = .47, and t = .51. The

14The total computation time is under 2 h, using a 32 processors-1.8 GHz Xeon cluster
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critical load at which the alternate minimization bifurcates away from an elastic-type
solution is higher than in the experiment in [22], since the regularization parameter
ε is smaller. This is consistent with the stability analysis alluded to in Section 8.3.1.

The thick lines in Fig. 31 on page 92 show the outcome of the same computation,
using the backtracking algorithm. The violations of the optimality condition (8.15)
were successfully detected and the post-bifurcation solutions used as starting point
when restarting the alternate minimization algorithm. The resulting evolution is
monotonically increasing and continuous, as predicted by the theory. It is described
as follows and shown on Fig. 32, page 92.

– For t < .28, the matrix remains purely elastic, the v field remains close to 1 on
the entire domain, and the total energy is a quadratic function of the time;

– At t & .28, a curved crack of finite length brutally appears near the top of the
inclusion. The increase of the surface energies at that load is exactly balanced by
the decrease of bulk energy. The brutal onset of the cracking process agrees with
the result obtained in Proposition 4.3 because the crack appears at a non-singular
point, thus the initiation time must be positive and the onset brutal;

– For .28 < t < .38, the crack grows progressively. The surface energy increases
smoothly, while the bulk energy is nearly constant. The propagation is
symmetric;

– At t & .38, the right ligament breaks brutally, and once again the total energy
is conserved. Despite the symmetry of the problem, we obtain an asymmetric
solution, which is consistent with the lack of uniqueness of the solution for the
variational formulation. Of course, the configuration corresponding to a mirror
symmetry of Fig. 32d is also a solution for this time step. That the numerical
experiment should favor one solution over the other is purely numerical, and it
depends on several factors, including mesh effects – the symmetry of the mesh
was not enforced – or rounding errors;

– For .38 < t < .40, the remaining crack does not grow, or its propagation is too
slow to be detected in the computation. The body stores bulk energy;

– Finally, at t & .40, the remaining bulk energy accumulated in the body is released,
and the remaining ligament breaks brutally. The domain is split into two parts,
and no further evolution takes place.

This numerical experiment, which exemplifies various growth pathologies, com-
pares favorably with an actual experiment reported in [66]. Of course the experi-
mental nod of approval is just that, because the observed agreement is qualitative;
a quantitative comparison would require the design and execution of a carefully
tailored experiment, a task which far exceeds our abilities.
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9 Fatigue

Engineering etiquette dictates that a Paris’ type phenomenology replace Griffith’s
model whenever “long” time crack propagation is contemplated; see [88]. The
substitution remains unmotivated in the literature, with the exception of a few
numerical experiments in the cohesive framework, as in [86] or in [89]. The Paris’
type models are difficult to calibrate and the apportionment of the relevant quantities
among such contributing factors as material properties, geometry and loads is at best
a perilous exercise.

In contrast, we propose to derive Paris’ type fatigue laws as a time asymptotics
of the variational model. The three necessary ingredients are by now familiar to
all surviving readers: a minimality principle, a cohesive type surface energy and
irreversibility. The argument is most easily illustrated on a one-dimensional peeling
test; the proofs of all statements in this section can be found in great details in [68, 69].
More general settings could be envisioned at the expense of mathematical rigor.

An inextensible and flexible thin film with unit width and semi-infinite length is
perfectly bonded at initial time to a rigid substrate with normal vector e2. A constant
tension −Ne1, N > 0, and a deflection Vte2 are applied at its left end (x = 0); see
Fig. 45.

The displacement of each point x at t is denoted by Ut(x) = ut(x)e1 + vt(x)e2;
ut(∞) = vt(∞) = 0 and vt(0) = Vt. The deflection Vt periodically oscillates between
0 and V. The potential energy of the film reduces to the tensile work of N and can be
expressed solely in terms of vt. In a geometrically linear setting, it is of the form

P(vt) = N
2

∫ ∞

0
v′t(x)2dx. (9.1)

1

2

Vt

N

t

Vt

V
1 2 3 4 5 6

Fig. 45 Geometry and loading
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Debonding is assumed irreversible, so that, in the spirit of Subsection 5.2, we
introduce the cumulated opening ψt as memory variable (see (5.11)), that is here

ψt(x) =
∫ t

0
(v̇τ (x))+dτ. (9.2)

The perfectly bonded part of the interface at time t corresponds to those points where
ψt = 0, or still where vτ = 0,∀τ ≤ t.

The selected surface energy density κd is that of Dugdale, namely κd(ψ) =
min{σcψ; k}. The resulting surface energy is thus

S(ψt) =
∫ ∞

0
κd(ψt(x))dx.

As hinted at in Subsection 5.2, it is always simpler to investigate the incremen-
tal evolution. Although passing to the time-continuous evolution is generally a
non-trivial task, as illustrated in the case of Griffith in Subsection 5.1, it can be carried
out in the present one-dimensional setting; the interested reader is referred to [49].
For the loading at hand, that is for a periodic displacement load Vt as represented on
Fig. 45, it is shown in [69] that the incremental evolution admits a unique solution,
and this independently of the time step, provided that the sequence of discrete times
contains all maxima and minima of Vt.

With

Ei(v) := P(v)+ S(ψi−1 + (v − vi−1)
+),

the incremental problem may be stated as

v0 = ψ0 = 0

Ei(vi) = min
v;v(0)=0, v≥0

Ei(v), i ≥ 1

ψi = ψi−1 + (vi − vi−1)
+.

9.1 Peeling Evolution

As demonstrated in [69], the cumulated opening ψ remains unchanged during the
unloading part of each cycle, while the opening v actually cancels at the bottom of
the unloading phase. Consequently, the analysis focusses on the loading part of each
cycle and the index i will henceforth refer to the top point of the loading phase of
each cycle.

The incremental problem above is easily solved in the case of Griffith’s surface
energy, that is whenever

κ0(ψ) :=
{

k, if ψ �= 0
0, if ψ = 0

is used in lieu of κd. Specifically, during the first loading phase, the debond length l
grows according to

l(t) = ηVt,
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0

Fig. 46 The three zones in the case of the Dugdale model

where

η :=
√

N
2k

.

Then, it stops at

l0
1 = ηV, (9.3)

that is at the top of the first loading phase, not to ever grow again during the
subsequent loading phases.

There is “no hope without trouble, no success without fatigue,”15 and Griffith’s
model well publicized failure is unequivocal in spite of our modest import of the
cumulated opening as memory variable.

In the case of Dugdale’s model, the cohesive force at x vanishes once the
cumulated opening ψi(x) is greater than the critical value

d := k
σc

.

Since the field x �→ ψi(x) is decreasing (see [69], Proposition 4), three zones are
present at the end of the ith loading half-cycle. Those are (see Fig. 46)

1. The perfectly bonded zone, that is the interval (λi,+∞) where the cumulated
opening field ψi vanishes;

2. The partially debonded zone, also known as process zone, that is the interval
(li, λi) where the cumulated opening field ψi takes its values in the interval (0, d);

3. The completely debonded zone, also known as the non cohesive zone, that is the
interval (0, li) where the cumulated opening field ψi is greater than d.

Since the cumulated opening at the end x = 0 is ψi(0) = iV, the completely
debonded zone will eventually appear as the load keeps cycling. For simplicity, we
assume that V > d, which implies the presence of a completely debonded zone at the
end of the first half-cycle. At the end of the ith loading phase, the opening field vi,

15Xavier Marmier – Récits Américains
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the cumulated opening field ψi and the tips λi, li of the process and debonded zones
are given through the following system of equations

Nv′′i =
{

0 in (0, li)

σc in (li, λi)
(9.4)

vi(0) = V, [vi](li) = [v′i](li) = 0, vi(λi) = v′i(λi) = 0 (9.5)

ψi(li) =
i∑

j=1

v j(li) = d. (9.6)

Equation (9.4) is the Euler equation in the process and debonded zones; the first
three equations in (9.5) translate the boundary condition at the end of the film and
the continuity conditions at the tips of the zones, while the fourth one is an optimality
condition on the position λi; (9.6) ensures that the cumulated opening is equal to the
critical value d at the tip of the debonded zone and can equally be viewed as an
optimality condition on the position li. By virtue of (9.4), (9.5),

vi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(λi − li)
2

4η2d
+ (λi − li)

2η2d
(li − x) if 0 ≤ x ≤ li;

(λi − x)2

4η2d
if li ≤ x ≤ λi.

(9.7)

Inserting (9.7) into (9.5) and (9.6) yields in turn

(λi − li)
2 + 2(λi − li)li = 4η2Vd, (9.8)

i∑

j=1

(
λ j − li

)+2 = 4η2d2. (9.9)

From (9.8) we get

λi =
√

l2
i + 4η2Vd

while (9.9) implies that the tip li of the debonded zone at the ith cycle depends on all
previous cycles j which are such that the corresponding tip of the process zone λ j lies
inside the process zone of the ith cycle. The number of such cycles depends on the
different parameters η, V, d and it evolves with the number of cycles. Consequently,
(9.9) is a genuinely nonlinear equation for li which can only be solved through
numerical methods; see Fig. 47. The sequences i �→ li and i �→ λi are increasing and
“ordered” in that

li−1 < li < λi−1 < λi, ∀i ≥ 2.

From this, the onset of fatigue is established in [69]. Specifically,

Proposition 9.1 For any value V > 0 of the cycle amplitude, the debond length li

grows to ∞, the potential energy Pi = P(vi) decreases to 0 and the surface energy
Si = S(ψi) grows to∞ as the number of cycles i tends to∞.
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Fig. 47 Evolution of the tips of the process and debonded zones for V = 0.2, d = 0.1 and η = 1

A cohesive energy and an appropriate memory variable are the key ingredients in
producing fatigue. Yet the traditional models of fatigue do not appeal to any kind of
yield stress, so that cohesiveness should be flushed out of the model. This is what we
propose to achieve in the next subsection. Inspiration will be drawn from Section 7,
whose main feature was to view Griffith’s model as a limit of cohesive models for
very large yield stresses, or still, in the notation of this section, for d ↘ 0.

9.2 The Limit Fatigue Law when d ↘ 0

As d ↘ 0, we assume that the two remaining parameters of the problem, η and V,
are set to fixed values. The tips of the debonded zone and of the process zone at the
end of the ith loading phase are now denoted by ld

i and λd
i , respectively. At the end

of the first half-cycle, the position of the tips are given by

ld
1 = η(V − d), λd

1 = η(V + d). (9.10)

Note that, when d = 0, the result of the Griffith model, that is (9.3), is recovered. For
a fixed number of cycles, Dugdale’s model “converges” to Griffith’s model with d.
Indeed (see [69]),

Proposition 9.2 For a given number of cycles i ≥ 1 and when d → 0, the tips λd
i and

ld
i tend to l0

1, i.e., to the debond length given by the Griffith model. Moreover the
opening field vd

i , the potential energy Pd
i and the surface energy Sd

i tend to their Griffith
analogues at the end of the first half-cycle. In other words,

lim
d→0

ld
i = lim

d→0
λd

i = ηV,

lim
d→0

vd
i (x) =

(

V − x
η

)+
, lim

d→0
Pd

i = ηkV, lim
d→0

Sd
i = ηkV.
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Remark 9.3 The reader will readily concede that the above result – which, by the
way, agrees in the specific context at hand with Giacomini’s cohesive to Griffith
analysis of Section 7 – does not contradict Proposition 9.1. Indeed, in that propo-
sition, d is set and the number of cycles goes to infinity, while here the number of
cycles is set and d goes to 0. Straightforward estimates would show that the tip growth
at each cycle is of the order of d. Thus, at the ith cycle, the tips are at a position
which only differs from that of the first cycle by a distance of the order of d and that
difference tends to 0 when d goes to 0.

Consequently, fatigue is a second order phenomenon with respect to the small
parameter d. Any hope for fatigue in the non-cohesive limit hinges on a rescaling of
the number of cycles of the order of 1/d, which is precisely what is attempted below.

The number of cycles necessary to debond the film along a given length L is of the
order of L/d. Consequently we introduce the positive real parameter T and define
the number of cycles id(T) by the relation

T �−→ id(T) =
[

T
d

]

(9.11)

where [·] denotes the integer part. (Note that T has the dimension of a length.) We
also consider numbers of cycles like id(T)+ k, with k ∈ Z independent of d.

Figure 48 represents the debonded zone tip ld
id(T) versus T for different values of

d. A Newton–Raphson method is used to compute the solution to (9.9). The graph
of T �→ ld

id(T) is seen to converge to a limit curve l(T) when d → 0. The analytical
identification of that curve is the main goal of the remainder of this section.

To that end, we fix T > 0 and analyze the asymptotic behavior of the solution at
the true number of cycles id(T) when d goes to 0. Then (see [69]),
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Fig. 48 Numerical verification of the convergence to a limit curve when d → 0 for V = 0.2, η = 1
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Proposition 9.4 At T > 0 fixed, when d → 0, the tips λd
id(T) and ld

id(T) tend to the same
limit l(T). Moreover, the opening field vid(T), the potential energy Pid(T) and the surface
energy Sid(T) tend to their Griffith analogues, that is

lim
d→0

ld
id(T) = lim

d→0
λd

id(T) = l(T) ≥ l 0
1 ,

lim
d→0

vid(T)(x) =
(

1− x
l(T)

)+
V,

lim
d→0

Pid(T) = κη2V
2

l(T)
, lim

d→0
Sid(T) = κl(T)

The process zone is energetically negligible at first order. In other words, the
debonding state at T is that of a non cohesive crack of length l(T) with potential
energy P(T) and energy release rate G(T) given by

P(T) = η2 V
2

l(T)
k, G(T) = η2 V

2

l2(T)
k. (9.12)

Remark 9.5 In view of (9.12), the asymptotic behavior of the film “has the color
of [Griffith], tastes like [Griffith], yet it is not [Griffith]”16 because the value of
the debond length l(T) is not that predicted by Griffith’s model! Indeed, Griffith’s
criterion would require G(T) = k and hence that the debond length be l 0

1 = ηV,
which it is clearly not in view of Fig. 48.

Also, the function l(T) is monotonically increasing in T. Thus, it admits a limit
as T ↘ 0+. Since, by virtue of Proposition 9.2, for fixed d, limT↘0+ ld

id(T) = l0
1 = ηV, a

diagonalization argument would show that limT↘0+ l(T) = l0
1.

We assume that the macroscopic debond length l = l(T) > l 0
1 is known, and thus

also the macroscopic energy release rate G = G(T), with 0 < G < κ . A blow-up of
the solution around the tip of the process zone is implemented at the true cycle id(T)

through the introduction of the rescaled coordinate y = (x− λd
id(T))/d. The following

is shown to hold in [69] for all j ∈ Z (in what follows, the dependence in T of G, and
l̇ j defined below is implicit):

a. There exists l̇ j ∈ R such that

lim
d→0

1

d

(
ld
id(T)+ j − ld

id(T)

) = l̇ j; (9.13)

b. limd→0
1

d

(
λd

id(T)+ j − ld
id(T)+ j

) = 2η

√
G
k

;

16Adapted from the French Canada Dry Ginger Ale commercial
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c. For an arbitrary y, limd→0 vd
id(T)+ j(λ

d
id(T) + dy)/d = v̇(y− l̇ j) with v̇ defined by

v̇(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−G
k
− y

η

√
G
k

if y ≤ −2η

√
G
k

y2

4η2
if −2η

√
G
k
≤ y ≤ 0

0 if y ≥ 0

and
d. The sequence {l̇ j} j∈Z satisfies the following family of non linear equations

∞∑

m=0

(

2η

√
G
k
− l̇ j + l̇ j−m

)+2

= 4η2. (9.14)

Then, the evolution is said to be stationary if there exists l̇ > 0, such that the
sequence {l̇ j = jl̇} j∈Z is a solution of (9.14). Note that for each potential energy
release rate G, such that 0 < G < κ , there exists a unique stationary regime, given
by the implicit non linear equation

∞∑

m=0

(

2η

√
G
k
−ml̇

)+2

= 4η2. (9.15)

Given a stationary regime, l̇ is given by (9.15) and conversely, a stationary regime
can be associated with any solution l̇ of (9.15) by l̇ j = jl̇, j ∈ Z. But (9.15) admits a
unique solution. Indeed, the function

(0,+∞) * l̇ �→
∞∑

m=0

(

2η

√
G
k
−ml̇

)+2

− 4η2

is strictly decreasing from+∞ to−4η2(1−G/k) < 0 when l̇ goes from 0 to 2η
√

G/k,
and it is constant and equal to −4η2(1−G/k) < 0 as soon as l̇ ≥ 2η

√
G/k. Hence it

only vanishes once.

Remark 9.6 If the evolution is stationary, then in view of (9.13) – with id(T)+ j
rewritten as id(T + dj) – a diagonalization argument would show, as in Remark 9.5,
that the quantity l̇(T) is also dl/dT(T), provided the latter exists.

We will assume henceforth that

(Stat) The stationary regime is the unique solution of (9.14).

On Fig. 49, for a set value T = 15, we plot
(
ld
id(T)+ j+1 − ld

id(T)+ j)
)
/d versus j for

different values of d. The numerical values are obtained by solving the “true” non
linear system (9.8, 9.9) by a Newton–Raphson method. As seen on the represented
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Fig. 49 Numerical check of stationarity

curves, the growth rate is almost constant, i.e., independent of j, when d = 10−4. The
regime seems indeed to be asymptotically stationary.

We now propose to establish a few simple properties of the limit law l̇ = f(G), the
unique solution of (9.15). This is the object of the following

Proposition 9.7

1. l̇ cannot exist unless G ≤ k ;
2. When G = k any value of l̇ ≥ 2η is solution of (9.15);
3. When 0 < G < k, f is continuously differentiable and increases from 0 to 2η when

G goes from 0 to k;

4. Set Gn := 6nk
(n+ 1)(2n+ 1)

. In the interval [Gn+1, Gn), f(G) is given by

f(G) = 6η

2n+ 1

√
G
k
− 2η

2n+ 1

√
6(2n+ 1)

n(n+ 1)
− 3(n+ 2)

n
G
k

. (9.16)

Proof The first item is immediate, once it is noted that equation (9.15) also has the
form

∞∑

j=1

(

2η

√
G
k
− jl̇

)+2

= 4η2

(

1− G
k

)

.

When G = k, the right hand side vanishes and the left hand side equals 0 if and only
if l̇ ≥ 2η, hence the second item.
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When 0 < G < k, we have previously established that (9.15) admits a unique
solution l̇ := f(G). For G ∈ (0, k) and l̇ > 0, define F by

F(G, l̇) :=
∞∑

j=0

(

2η

√
G
k
− jl̇

)+2

− 4η2.

F is continuously differentiable, strictly increasing in G, given l̇, and strictly de-
creasing in l̇, given G. The implicit function theorem implies that f is continuously
differentiable and increasing. For a given G, define n(G) so that

n(G)∑

j=0

(

2η

√
G
k
− jl̇

)+2

= 4η2.

Then, n(G) = n when

2η

n+ 1

√
G
k
≤ f(G) <

2η

n

√
G
k

. (9.17)

Consequently,

4
G
Gn

− 4 = F

(

G,
2η

n

√
G
k

)

< 0 = F(G, f(G))

≤ F

(

G,
2η

n+ 1

√
G
k

)

= 4
G

Gn+1
− 4.

In other words, to find n(G), it is enough to determine the interval [Gn+1, Gn) in
which G lies. Once n(G) is found, l̇ is given as root of the following quadratic
equation:

0 =
n(G)∑

j=0

(

2η

√
G
k
− jl̇

)2

− 4η2

= 1

6
n(G)(n(G)+ 1)(2n(G)+ 1)l̇2 − 2ηn(G)(n(G)+ 1)

√
G
k

l̇

+4η2(n(G)+ 1)
G
k
− 4η2.

The only relevant root is such that (9.17) is satisfied, hence (9.16). ��

The graph of the function f is plotted on Fig. 50.
When G ↗ k = G1, then n(G) = 1 and l̇ → 2η. If G is near k, n(G) = 1 and

f(G) = 2η

√
G
k
− 2η

√

1− G
k

.

The slope of f is infinite at G = k, the graph of f becomes tangent to the half-line
[2η,∞), i.e., the set of solutions of (9.15) when G = k.
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Fig. 50 Graph of the fatigue limit law f(G)

When G ↘ 0, then n(G)→∞ and l̇ → 0. Actually, the behavior near 0 is
described through the following

Remark 9.8 When G/k is small, the fatigue limit law is like a Paris law with exponent
3/2, that is

f(G) ≈ 2η

3

(
G
k

) 3
2

. (9.18)

Indeed, from Gn/k = 6n/(n+ 1)(2n+ 1), we get n(G) ≈ 3k/G. Inserting this into
(9.16) yields (9.18).

We recall (Stat) from page 128, Remarks 9.5, 9.6, together with the fact that G(T)

is given by Proposition 9.4. This establishes the following

Proposition 9.9 Under the a priori assumption that l(T) is differentiable, the evolution
T ∈ (0,+∞) �→ l(T) of the debond length satisfies

dl
dT

(T) = f(G(T))

G(T) = η2V
2

l(T)2
k

l(0+) = ηV.

The mechanically versed reader cannot fail to recognize in the above result a
typical fatigue law à la Paris, and in (9.18) a typical functional shape for such a
law, albeit one “genitum non factum,”17 in contrast to what is, to the best of our
knowledge, currently available in the existing literature.

The next subsection attempts to incorporate the result obtained in Proposition 9.9
in the general framework developed in Section 2, and, specifically, in Subsection 2.4.

17Council of Nicea –325 A.D
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9.3 A Variational Formulation for Fatigue

9.3.1 Peeling Revisited

First, we shall view T as the time variable and V as a load applied as soon as
T = 0+. This instantaneous load (with respect to the variable T) generates a jump
(debonding) at x = 0, that given by Griffith’s model at the end of the loading part of
the first cycle, i.e., according to Proposition 9.9, ηV.

In view of the first item in Proposition 9.7, the fatigue law obtained in Proposi-
tion 9.9 encompasses both a Paris type law and a Griffith type law. We now rewrite
it, in the thermodynamical language of e.g. [64], as a generalized standard law of the
form

l̇ ∈ ∂D∗(G) or G ∈ ∂D(l̇),

where D is convex and D∗ its conjugate. Specifically,

D(l̇) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ l̇

0
f−1(λ)dλ if l̇ ≤ 2η

∫ 2η

0
f−1(λ)dλ+ κ(l̇ − 2η) if l̇ ≥ 2η.

(9.19)

The dissipation potential D is linear with slope k at large enough propagation speeds,
and, because of (9.18), follows a power law with exponent 5/3 for small propagation
speeds (see Fig. 51).

An equivalent statement of the generalized standard law is that l̇ is a minimizer,
among non-negative λ’s, for D(λ)−Gλ. By virtue of (9.12), discretizing time – with
time increments �T – then permits us to write the following discretized version of
the generalized standard law:

�l
�T

= argminλ≥0

{
1

�T

(
P(l + λ�T)− P(l)

)+D(λ)

}

,

or still, denoting by lI the debond length at the Ith time step, and setting l0 = 0,

lI+1 = argmin{l≥lI }

{

P(l)+�T D
(

l − lI

�T

)}

. (9.20)

The latter formulation falls squarely within the setting developed in Subsection 2.4.
Fatigue is indeed an evolution problem of the type discussed throughout, albeit for a
non 1-homogeneous dissipation potential.

Fig. 51 Dissipation potential D
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9.3.2 Generalization

Peeling is but one example for which the above analysis can be carried out. Of course,
more complex settings may map into hostile terrain which would jeopardize the
analytical subtleties that were key to the successful completion of the analysis of
the second order limit in the peeling case. The ensuing dissipation potential for the
limit fatigue problem will then be completely out of reach. However, we do expect
similar qualitative behavior, at least for preset crack paths and simple cyclic loads.

In the absence of a well-defined crack path, the hostility scale tips towards chaos.
First, the parameter l must be replaced by the crack set � at a given time. The add-
crack at each time step is of the form � \ �I .

The potential energy P(�) associated with � is still obtained as an elasticity
problem on the cracked structure submitted to the maximal amplitude load (see
(9.12)), but the computation of the dissipation potential becomes very tricky. In
particular, each connected component of the add-crack must be counted separately
in that computation, because, since that potential is no longer linear in the length, a
different result would be achieved when considering e.g. a structure made of two
identical connected components, both submitted to the same load, according to
whether we view the resulting two cracks as one crack or two cracks!

Consequently, the dissipation potential becomes

�T
∑

k∈K(�\�I )

D
(H1((� \ �I)

k)

�T

)
,

where K(γ ) denotes the number of connected components of a set γ and γ k its
kth-component. The generalized incremental problem may thus be stated as

Find �I+1 (local) minimizer on {� : � ⊃ �I} of

P(�)+�T
∑

k∈K(�\�I )

D
(H1((� \ �I)

k)

�T

)

with �0 given.
Summary dismissal of the above formulation on the grounds of vagueness cannot

be argued against at present. The authors readily concede that Paragraph 9.3.2
amounts to little more than a discourse on “known unknowns”;18 but, in all fairness,
this alone is a marked improvement over the “unknown unknowns”19 of classical
fatigue.

18Donald Rumsfeld – Feb. 12, 2002, U.S. Department of Defense news briefing
19idem
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Appendix

As announced in the Introduction, this short Appendix consists of a self-contained,
but succinct exposition of the necessary mathematical prerequisites for a successful
reading of the material presented in this tract. Redundancy, while not favored, is not
avoided either in that quite a few definitions or properties may be found here as well
as in the main body of the text. We thus favor fluidity over strict logics.

Two measures on R
N play a pivotal role throughout the text, the Lebesgue

measure, denoted by dx, and the (N−1)-Hausdorff measure, denoted by HN−1, and
defined in e.g. [47], Section 2.1. The unfamiliar reader may think of the latter as
coinciding with the (N−1)-surface measure on smooth enough hypersurfaces.

As in most papers in applied analysis, derivatives are generically weak derivatives;
these are meant as distributional derivatives, which make sense as soon as the field v

that needs differentiation is locally integrable. The weak derivative is denoted by ∇v.
Also, we systematically use weak and/or weak-* convergence (both being denoted by
⇀), appealing to the following weak version of Banach–Alaoglu’s theorem found in
e.g. [91], Theorem 3.17:

Theorem A If X is a separable Banach space, then any bounded sequence in X∗ has
a weak-* converging subsequence.

Spaces Denoting by B(x, ρ) the ball of center x and radius ρ, we recall that a
Lebesgue point of a function u ∈ L1

loc(R
N) is a point x such that

lim
ρ↓0

1

|B(x, ρ)|
∫

B(x,ρ)

|u(y)− u(x)| dx = 0,

and that Lebesgue-almost every point of R
N is a Lebesgue point for u.

The space X will often be a Sobolev space of the form W1,p(�), with � a bounded
(connected) open set of R

N and 1 < p ≤ ∞. We adopt the following definition for
W1,p(�):

W1,p(�) = {v ∈ Lp(�) : ∇v ∈ Lp(�;RN)
}

,

and use the notation W1,p(�;Rm) for R
m-valued functions whose components are in

W1,p(�). The same applies to (S)BV(�;Rm); see below.
We will use the classical imbedding and compactness theorems for Sobolev

spaces – see e.g. [3], Theorems 4.12 and 6.3 – most notably that, provided that the
boundary of � is smooth enough, say Lipschitz, then, for p < N,

W1,p(�)→ Lq(�), resp. W1,p(�) ↪→ Lq(�); 1/q ≥ resp. > 1/p− 1/N,

where ↪→ stands for “compact embedding.”
The space BV(�) is of particular relevance to the study of fracture. It is

defined as

BV(�) =
{

v ∈ L1(�) : sup
ϕ

{∫

�

u divϕ dx : ϕ ∈ C∞0 (�; B̄(0, 1))

}

<∞
}

.

Thanks to the Riesz representation theorem (see e.g. [47], Section 1.8), for any u ∈
BV(�), there exists a nonnegative bounded Radon measure μ and a μ-measurable



136 B. Bourdin et al.

function σ with σ(x) = 1, μ-a.e. such that ∇u = σμ. The variation measure μ is
denoted by |Du| and |Du|(�) is the total variation of u.

The beauty of BV-functions is epitomized by the following structure theorem (see
e.g. [7], Sections 3.7–3.9):

Theorem B Consider u ∈ BV(�). Then

Du = ∇u dx+ (u+ − u−)ν H1�S(u)+ C(u),

where

– ∇u ∈ L1(�;RN) is the approximate differential of u, i.e.,

lim
ρ↓0

1

|B(x, ρ)|
∫

B(x,ρ)

|u(y)− u(x)− ∇u(x).(y− x)|
ρ

dy = 0;

– S(u) is the complement of the set of Lebesgue points for u, a countably 1-rectifiable
set, i.e., the countable union of compact subsets of C1-hypersurfaces, up to a set of
HN−1-measure 0;

– ν(x) is the normal at a point x of S(u) to that set;

– limρ↓0
1

|B±ν (x, ρ)|
∫

B±ν (x,ρ)

|u(y)− u±(x)| dy = 0, with

B±ν (x, ρ) := {y : (y− x).ν ∈ (0,±ρ)};
and

– |C(u)|(B) = 0 if HN−1(B) <∞; C(u) and dx are mutually singular.

Finally |Du(�)| =
∫

�

|∇u|dx+
∫

S(u)

|u+ − u−|dHN−1 + |C(u)|(�)|.

BV(�) enjoys the following injection and compactness properties, for Lipschitz
bounded �’s:

BV(�)→ L
N

N−1 (�); BV(�) ↪→ Lp(�), p <
N

N − 1
.

The Cantor part C(u), which can be seen as a diffuse measure should be a priori
avoided in fracture, so that the correct space for fracture is

SBV(�) := {v ∈ BV(�) : C(v) = 0} .
That space is manageable because of Ambrosio’s compactness theorem, detailed on
page 26, which states a compactness result for weak-* convergence in SBV(�).

Minimization The so-called direct method of the Calculus of Variations always
revolves around some variant of the same basic minimization result, namely,

Theorem C Consider X a reflexive Banach space, or the dual of a separable Banach
space. Let I : X �→ R̄ be such that

– I is weak(-*) lower semi-continuous; and

– lim supn I(un) = ∞ when ‖un‖
n↗∞.

Then, I admits a minimizer over X.
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Recall that, if I is convex, then, for any minimizer u∗ of I, 0 is in the sub-differential
of I at u∗,

0 ∈ ∂ I(u∗),

where, for any v ∈ X,

∂ I(v) := {v∗ ∈ X∗ : I(w)− I(v) ≥ 〈v∗, w − v〉, ∀w ∈ X
}

.

For functionals of the form I(u) := ∫
�

W(∇u) dx with � ∈ R
N and W : RN �→ R

nonnegative and continuous, convexity is equivalent to lower semi-continuity in the
scalar case, i.e., whenever u : � �→ R or when N = 1, as explained in e.g. [37].

If departing from the scalar case, one should replace convexity of W with a
less pleasant notion, that of quasiconvexity; see [37]. A continuous non-negative
functional W : RN2 �→ R is quasiconvex iff, for any F ∈ R

N2
,

W(F) ≤ inf
ϕ

{∫

C
W(F + ∇ϕ) dx : ϕ ∈ W1,∞

0 (�;RN)

}

,

where C stands for the unit cube centered at 0. Note that the definition is independent
of the choice of the base domain C – which can be replaced by any bounded open
set – and also note that, for the choice of C as base domain, W1,∞

0 (�;RN) can be
replaced by W1,∞

per (�;RN), as seen in [10].
So, except in the anti-plane shear case, quasi-convexity of the bulk energy will

replace convexity for functionals of ∇ϕ, with ϕ : � �→ R
2,3, the deformation field.

In this context, various results of Ambrosio, found in e.g. [7], Section 5.4, lead to
the following

Theorem D Let φ(i, j, p) := γ (|i− j|)ψ(p), with

– i, j ∈ K, compact of R
N, p ∈ R

N;
– γ lower semi-continuous, increasing and sub-additive (i.e., γ (i+ j ) ≤ γ (i)+

γ ( j));
– ψ even, convex and positively 1-homogeneous.

Let W : RN2 �→ R be continuous and satisfy

1/C|F|p ≤ W(F) ≤ C(1+ |F|p), 1 < p <∞.

Then, the functional

I(u) :=
∫

�

W(∇u)dx+
∫

S(u)

φ(u+, u−, ν)dHN−1, u ∈ SBV(�;RN),

is lower semi-continuous on SBV(�;RN), i.e.,

I(u) ≤ lim inf
n

I(un)

whenever un ∈ SBV(�;RN) converges strongly in L1(�;RN) to u ∈ SBV(�;RN),
with HN−1(S(un) ≤ C ′ <∞.
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This theorem leads to the existence of a minimizer for the weak discrete evolution

(Wde) defined in Paragraph 5.1.1. It suffices to note that γ (t) =
{

0, t = 0

1, otherwise
and

ψ ≡ 1 satisfy the assumptions of Theorem D.
Now, whenever a functional I is not lower semi-continuous, then, in the context

of Theorem C,

inf I(u) = min I∗(u),

where I∗ is the lower semi-continuous envelope of I, i.e., the greatest lower semi-
continuous functional below I. It is defined as

I∗(u) := inf
{

lim inf
n

I(un) : {un} such that un ⇀ u
}

.

In the context of functionals of the form I(u) := ∫
�

W(∇u) dx with W : RN2 �→
R nonnegative, continuous and such that W(F) ≤ C(1+ |F|p), 1 ≤ p <∞, it was
established in [2], Statement [III.7], that

I∗(u) =
∫

�

QW(∇u)dx,

where QW, the quasiconvexification of W is defined as

QW(F) := inf
ϕ

{∫

C
W(F + ∇ϕ) dx : ϕ ∈ W1,∞

0 (�;RN)

}

.

For functionals defined on BV(�;RN), the results are more recent and are evoked
on page 62.

Approximation The computation of minimizers for a functional of the Mumford-
Shah type is not trivial, as illustrated in Section 8. The idea is to approximate
the functional by a sequence of functionals, such that the corresponding minimizers
converge to a minimizer of the original functional. The relevant definition is that of
�-convergence given on page 98.

The following equivalent definition of �-convergence is very useful (see [23],
Remark 1.6):

Theorem E In the notation of page 98, Fε �–converges to F iff

� − lim infFε = � − lim supFε,

with

� − lim infFε(u) ( resp. � − lim supFε(u))

:= inf
{
lim infε Fε(uε)

(
resp. lim supε Fε(uε)

) : {uε} such that uε → u
}

.

From the standpoint of �-convergence, computing the lower semi-continuous
envelope of a functional I is the same as computing the � − lim inf ofFε withFε ≡ F !
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We do not dwell any further on that notion, noting however that, in a separable
metric space, any sequence F ε of R̄-valued functionals admits a �-converging
subsequence.
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Glossary

BV(�): the space of functions defined on � with bounded variation, Appendix, 25,
136

F: the deformation gradient, 13, 20, 29, 54, 67, 73, 94, 95, 99, 137, 138

G: the energy release rate. In 2d, it is minus the derivative of the potential energy of
the body with respect to the crack length, 6, 9, 15, 45, 52, 82, 110, 127–129

G ∈ ∂D(l̇): reads G belongs to the subdifferential of D at l̇. The notion of sub-
differential generalizes that of derivative for non differentiable but convex
function. Formally, it is equivalent to the inequality G(λ− l̇) ≤ D(λ)−D(l̇), ∀λ,
Appendix, 18, 19, 137

Lp(�): the space of functions defined on � and whose p-th power is Lebesgue-
integrable, 67, 135

S(ϕ): the jump set of ϕ, i.e., the set of points where ϕ is discontinuous, Appendix, 25

SBV(�): the subspace of functions of BV(�) with no Cantor part, Appendix, 25,
136

W(F): the bulk (elastic) energy density, 13, 20, 29, 54, 67, 74, 94, 95, 99, 138

W1,p(�): the subspace of functions of Lp(�) the first weak derivative of which is also
in Lp(�), Appendix, 67, 135

[ϕ]: the jump of ϕ, Appendix, 28

�(l): the crack set corresponding to a crack of length l in the case of a predefined
crack path, 14–16, 18, 19, 21, 23, 47, 48, 52

�(t): the crack state at time t, i.e., roughly the set of material points where the
deformation ϕ is or has been discontinuous, 24

�̂: the predefined crack path, i.e., the given set of material points where the deforma-
tion ϕ can be discontinuous, 14, 24

↪→: compact embedding, Appendix, 135

κ : the surface energy density for cohesive force models. In the case of the Dugdale
model: κ(δ) = max{σcδ, k}, 28

�A: restricted to the set A, 11, 25, 66, 70, 95, 136

D: the convex dissipation potential, 16, 17–19, 23, 132
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E : the total energy of the body: the sum of the potential energy and of the surface
energy, 17–19, 23, 24, 26, 29, 46, 80, 98, 122

F : the energy due to the work of the external forces, 15, 18–20, 23, 24, 26, 29, 35, 54,
55, 57, 80

Hn(A): the n-dimensional Hausdorff measure of the set A. For a sufficiently smooth
set, H1(A) corresponds to the length of A and H2(A) corresponds to its area,
74, 99–102, 136

P : the potential energy of the body: the difference between the elastic energy and
the work of the external forces, 7, 15, 16

⊗: tensor or dyadic product, 49

∂d�: part of the boundary where the displacements are prescribed, 13

∂s�: part of the boundary where the surface forces are prescribed, 13

→: strong convergence, 70, 98, 100, 108, 126, 136

⇀: weak(-*) convergence, 23, 26, 63, 70, 71, 94, 95, 136, 137

σc: the maximal traction stress – yield stress –for cohesive models, 28, 34, 58, 123

τc: the maximal shear stress for cohesive models, 58

ϕ: the deformation or the displacement field, 10

a ∨ b : sup{a,b}, 11, 28, 93–95

d or δc: the internal length in the cohesive models, 43, 124

fb (t): the body forces at time t, 13

fs(t): the applied surface forces at time t, 13

g(t): prescribed displacements or deformations at time t, 13

k: the critical energy release rate or the surface energy density in Griffith’s theory
(also called fracture toughness), 14

t: the time – or loading – parameter of the rate-independent processes, 6

Eb: the energy balance. It is a principle of conservation of the total energy of the
body. This requirement complements the unilateral condition (Ust), (Ulm) or
(Ugm). Their concatenation induces the propagation law for the evolution of
the crack, 18, 19, 26, 29, 80
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Griffith’s theory: the theory of fracture mechanics in which the surface energy is
proportional to the area of the crack and the propagation law is based on the
critical energy release rate criterion, 8, 13

Sde: the strong discrete evolution. After time discretization, the minimization prob-
lem which yields the crack �i and the deformation ϕi at each step i, 65, 68,
69, 81

Strong formulation: the variational formulation is said to be strong when the
deformation and the crack are considered as independent variables, 24, 27, 48–
51, 65–69, 74, 75, 82

Ugm: Unilateral global minimality condition: it requires that the given state be
that with the smallest energy among all admissible states with a larger crack
state. The corresponding mathematical statement depends on whether the
formulation is weak or strong, on whether the crack path is prescribed or free,
and on whether the surface energy is of a Griffith or cohesive kind, 22, 24, 26,
29, 80

Ulm: Unilateral local minimality condition: it requires that the given state have
the smallest total energy among all admissible states in its neighborhood
with a larger crack set. The corresponding mathematical statement depends
on whether the formulation is weak or strong, on whether the crack path is
prescribed or free, and on whether the surface energy is of a Griffith or cohesive
kind. It is also topology dependent in that the neighborhood refers to a specific
topology, 22, 24, 26, 29, 80

Ust: Unilateral stationarity condition: it requires that the first derivative of the
total energy at an actual state be non negative in any admissible direction that
increases the crack set in the body. The corresponding mathematical statement
depends on whether the formulation is weak or strong, on whether the crack
path is prescribed or free, and on whether the surface energy is of a Griffith or
cohesive kind, 17–20

Wde: the weak discrete evolution. After time discretization, the minimization prob-
lem which yields the deformation ϕi at each step i, 65, 67–70, 72, 82, 98, 138

Weak formulation: the variational formulation is said to be weak when the configu-
ration is the unique independent variable, the crack being considered as the set
where the deformation is or has been discontinuous, 8, 19, 23, 26, 27, 29, 31–33,
36, 39, 45, 46, 48, 51, 61, 65, 66–69, 71, 74, 75, 79, 80, 82, 84, 93–96, 98, 103, 138

#: the cardinal of a set, 11, 31, 33, 35

cumulated opening: the variable memorizing the additional opening of the crack at
a given point, up to the present time. It is used to enforce irreversibility in a
cohesive model, 28, 78, 123
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debonded zone: the part of the crack lips where the cohesive forces vanish. In the
Dugdale model, it corresponds to the points where the (cumulated) opening is
greater than d, 123–125, 127

global minimizer: the global or absolute minimizer of a real-valued function f over a
set X is the smallest value that the function takes on the whole set. This concept
is independent of the ambient topology in the set X, 6, 7–10, 22–26, 29, 31–33,
39–41, 45, 46, 48, 49, 52, 53, 62, 65, 69, 72, 75, 80–82, 93, 97, 102, 105, 106, 109,
112, 117

local minimum: a real-valued function f admits a local or relative minimum at a point
x of a set X, if there exists a neighborhood of x in which f (x) is a minimum. This
concept depends on the ambient topology of X, 7–10, 21, 22, 24–26, 29, 31–33,
35, 37–40, 48, 51–54, 65, 80, 93, 102–108, 115, 133

maximal opening: the variable memorizing the maximal value of the crack opening
at a given point, up to the present time. It is used to enforce irreversibility in a
cohesive model, 76–78

opening: the jump of the normal displacement across the crack, 77, 79, 122–124, 127

process zone or cohesive zone: the part of the crack lips where the cohesive forces
are active. In the Dugdale model, it corresponds to the points where the
(cumulated) opening is less than d, 9, 45, 96, 123–125, 127

unilateral: In the definitions (Ust), (Ulm) and (Ugm), the word unilateral is intro-
duced so as to emphasize that the tested configuration has to be compared only
to configurations with a larger crack set. Moreover, the stationarity condition
in (Ust) is an inequality and can be seen as a first order optimality condition,
7, 18, 22
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