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We present a mechanistically faithful and mathematically sound approach to the nu-

merical simulation of secondary thermal cracks propagation in EGS based on the varia-
tional approach to fracture [1-4]. While remaining compatible with classical theories, 
this approach provides a unified framework to crack nucleation, full path identification, 
including interaction between multiple cracks, branching or kinking in 2 and 3D. We pre-
sent large scale numerical experiments, and compare our results with the literature. 

1. Introduction: 
The concept of Enhanced Geothermal System relies on the ability to artificially gen-

erate optimally connected fracture networks in hot dry rocks, maximizing heat transfer. A 
predictive understanding of the mechanisms used in creating a fracture network, of its 
evolution over time, and of its heat transfer properties is therefore essential to predicting 
and optimizing the performance of Enhanced Geothermal Systems. 

As cold water is circulated through a reservoir, rock contract, creating tensile stresses, 
and potentially leading to the nucleation of new cracks, typically normal to existing fault 
lines. This effect is usually referred to as secondary thermal fracture. Because of the lim-
ited penetration of the heat front, secondary cracks usually do not penetrate very far into 
the reservoir, and the elastic energy release must be achieved through the nucleation of 
many short cracks. This mechanism can be taken advantage of in the setting of reservoir 
stimulation. In the longer term, it can also potentially lead to dramatic changes in the heat 
transfer characteristics of an existing reservoir. 

2. The variational approach to fracture: 
In classical approaches to quasi-static brittle fracture, the elastic energy restitution 

rate 

€ 

G = −∂E /∂l  induced by the infinitesimal growth of a single crack along an a priori 
know path (derived from the stress intensity factors) is compared to a critical energy rate 

€ 

Gc and propagation occurs when 

€ 

G =Gc , the celebrated Griffith criterion. The essence of 
the variational approach [4] is to recast the Griffith criterion in a variational setting, 
namely as the minimization over any crack set 

€ 

Γ (i.e. any curve in 2D or surface in 3D) 
and any kinematically admissible displacement field 

€ 

u  of a total energy consisting of the 
sum of the stored potential elastic energy and a surface energy proportional to the length 
of the cracks in 2D or their area in 3D. This model can be formulated in a time continu-
ous manner but for the sake of simplicity, we restrict our exposition to a discrete in time 
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formulfieldation: we consider a discretization of the time interval (0,T) into N intervals 
  

€ 

0 = t0 < t1 <… < tN = T . We consider a body occupying a region 

€ 

Ω of space. On a part 

€ 

∂dΩ⊂∂Ω, we prescribe a displacement 

€ 

g(t)  while the remaining part of 

€ 

∂Ω is traction 
free. Then for any displacement and crack configuration 

€ 

(u,Γ)  one defines the total ener-
gy 
 

€ 

E u,Γ( ) = Π e(u)( ) +Gc H
N −1 Γ( ) , (1) 

 

where 

€ 

Π e(u)( )  denotes the stored potential elastic energy of the considered system sub-
ject to a displacement u and cracked along 

€ 

Γ, 

€ 

HN −1 Γ( )  denotes the N−1–dimensional 
Hausdorff measure of Γ, i.e. its length in 2D and its surface area in 3D, and 

€ 

e(u)  the line-
arized strain field. We the depart from Griffith by postulating that at each time step 

€ 

ti , the 
displacement and crack sets 

€ 

(ui,Γi)  are given by the global minimizers of 

€ 

E  satisfying 
the boundary condition 

€ 

ui = g(ti)  on 

€ 

∂dΩ , and under the irreversibility  condition 

€ 

Γi ⊃ Γi−1. We insist that in this approach, the reliance on small increment of a single pre- 
existing crack growing along a pre-existing path of Griffith’s classical theory has been 
fully replaced with global minimization. In particular, at each time step, nucleation of 
new cracks or changes in cracks topology are allowed, if they lead to a sufficient elastic 
energy release. We also note that the formulation applies identically to the two and three 
dimensional cases, and that evolutions computed through this approach satisfy Griffith’s 
widely accepted criterion. Lastly, we refer to the wealth of literature dealing with such 
free discontinuity approaches from a mathematical, mechanical or numerical standpoint 
compiled in [4]. 

Numerical implementation 
The numerical implementation of (1) is a challenging problem. The admissible dis-

placement fields are discontinuous, but the location of their discontinuities is not known 
in advance, a requirement of many classical discretization methods. Also, the incremental 
fracture or surface energy term in (1) requires approximating the location of cracks, to-
gether with their length, a much more challenging issue (see the studies of anisotropy in-
duced by the grid [5] and the mesh [6].) 

The approach we present here is based on the variational approximation by elliptic 
functionals [2, 3]. A small regularization parameter 

€ 

ε  is introduced and the location of 
the crack is represented by a smooth “crack regularization function” 

€ 

v  taking values 0 
close to the crack and 1 far from them. More precisely, one can prove (see [7] for in-
stance) that as 

€ 

ε →0, the regularized energy   

 

€ 

Eε u, v( ) = v 2Π e(u)( ) dx
Ω

∫ +Gc
(1− v)2

4εΩ

∫ +ε ∇v 2 dx  (2) 

approaches 

€ 

E  in the sense of Γ–converges, and that the sequence of minimizers for 

€ 

Eε  is 
compact, which implies that the minimizers of 

€ 

Eε  converge as 

€ 

ε →0 to that of E. 
The main feature of the regularized problem is that it does not require an explicit rep-

resentation of the crack network. Instead all computations are carried out on a fixed mesh 
and the arguments of 

€ 

Eε  are smooth functions which can be approached using standard 
finite elements. Indeed, in the antiplane case, one can show that the restriction 

€ 

Eε ,h  of 

€ 

Eε  
to a linear finite element space Γ–converges to 

€ 

E , provided that the mesh size h is such 
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that 

€ 

h = o(ε) . These two convergence results combined show that the solutions of the 
variational fracture model can be approximated by solving a linear finite elements dis-
cretization of (2) for “small” 

€ 

ε  and 

€ 

h . 
The actual minimization of (2) can be challenging, due to its stiffness and non-

convexity. The key observation is that while it is not convex, the regularized energy is 
convex in each of the 

€ 

(u, •) and 

€ 

(•, v)  directions. We make full use of this property by 
implementing an alternate minimizations algorithm in which the regularized energy is 
successively minimized with respect to u and v until convergence is reached. This ap-
proach is similar to a block Newton or a multi-physic preconditioner. It is globally con-
vergent and each minimization step can be achieved using a fully implicit scheme, there-
fore avoiding the issue encountered while using explicit schemes on stiff problems. 

The numerical implementation is based on a fully parallel object-oriented unstruc-
tured finite element library developed by the authors. By design, it separates unstructured 
mesh management, evaluation of the variational forms, discretization scheme (i.e. ele-
ment types), and solvers. The mesh management and solver layers of the code are based 
on sieve [8]. The parallel linear algebra is implemented using PETSc [9, 10] while the 
scalable constrained and unconstrained optimization routines are provided by TAO [11]. 

3. A classical experiment 
We illustrate the strength of our approach by revisiting a now classical experiment 

[12-14] dealing with convective cooling of a heated glass slab using a mechanistically 
faithful and mathematically variational formulation of brittle fracture which we extend to 
account for thermal cracks. We consider a rectangular glass slab of width 

€ 

W  and height 

€ 

L  with Hooke’s law 

€ 

A  associated with a Young’s modulus 

€ 

E  and a Poisson ratio 

€ 

ν . 
The thermal expansion tensor is 

€ 

α , the thermal diffusivity 

€ 

κ , and the temperature distri-
bution 

€ 

T  is such that 

€ 

T(x,y,0) = T0 . We assume that the glass is perfectly brittle, and be-
haves like linearly away from the cracks, i.e. that the elastic energy in (2) is given by  
   

€ 

Π e(u),T( ) = 1
2 A e(u) −αT( ) : e(u) −αT( ) dx
Ω

∫ . (3) 

As the time scale for heat transfer is very large compared to the elastic wave speed in 
glass, we assume that at each time, the sample reaches an elastic equilibrium while the 
temperature field is given by transient heat transfer. We also neglect the effect of cracks 
on the heat transfer throughout the sample, and thermoelastic effects, i.e. assume that the 
deformation is slow enough that it induces no changes in the temperature fields. These 
assumptions, while technically necessary in our approach allow us to compare our nu-
merical experiments with the experimental, numerical and analytical literature. In this 
setting, we simply compute the temperature field at each time step then minimize the to-
tal energy (2) modified to account for (3). 

Heat transfer 
At 

€ 

t = 0 , the lower edge of the sample is brought in contact with dry ice with temper-
ature 

€ 

Ts, and the temperature distribution for 

€ 

t > 0  is given by the transient heat equation: 

 

€ 

∂T
∂t

−κ∇2T = 0, (4) 

in the domain, while along the lateral and upper edges we assume null flux:   
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€ 

∂T
∂n

= 0, 

and Newtonian cooling along its lower edge:  

 

€ 

∂T
∂y

= h T(x,0,t( ) −Ts( ). (5) 

Here, 

€ 

h = hL /k denotes the Biot number, 

€ 

h  being the heat transfer coefficient and 

€ 

k  the 
thermal conductivity of the plate. In this setting, the solution of (4) depends only on the 

€ 

y  
coordinate and can be approximated (see for instance) by  
 

€ 

Th
∞ y, t( ) = −(Ts −T0)Erfc(y /2τ) − e(h y +h 2τ 2 ) Erfc(y /2τ + h τ)  (6) 

where 

€ 

τ = t .  
 

 

€ 

p  

€ 

a0 

€ 

τ0 

€ 

a1 

€ 

τ1 

€ 

a2 

€ 

τ2 

€ 

a3 

€ 

τ3 
Bahr &al .13 .06 n/a .14 .09 .35 .23 .45 .3 
Numerical values .15 .02 .02 .08 .05 .33 .16 .48 .25 

Table 1: Comparison between numerical and analytical solutions. 

Numerical experiments and comparison with the literature 
Using classical dimension analysis, it is easy to see that up to a rescaling, our model 

can be reduced to a domain of unit height, unit Young’s modulus, fracture toughness and 
thermal expansion coefficient, and normalized temperature 

€ 

βΔT , where 

€ 

β can be inter-
preted as the ratio between the elastic energy due to the thermal stress and the energy of a 
unit length fracture (see [12, 15] for instance). We focus on the case of a domain of width 
5 under a normalized temperature contrast 

€ 

βΔT = 54 treated at length in [12] (case III). In 
this setting, a careful energy balance and stability analysis based on Griffith’s criterion 
leads to the following: until a critical time 

€ 

τ0, the sample remains intact, then a network 
of periodic cracks of length 

€ 

a0 ≈ .06  and spacing 

€ 

p ≈ .1285 is nucleated. These cracks 
grow at the same speed until 

€ 

τ = τ1 ≈ .09  where the cracks reach a length 

€ 

a1 ≈ .14 . At 

€ 

τ = τ1, the fracture network has propagated deep enough that the thermal stresses are not 
sufficient to lead to propagate each crack tips, and half of the cracks stall. For 

€ 

τ1 ≤ τ ≤ τ2 ≈ .225 , the same arrest mechanism activates once more at a crack length 

€ 

a2 ≈ .335 . The remaining cracks continue growing until

€ 

τ = τ3 ≈ .3 then stop upon reach-
ing a final length 

€ 

a3 ≈ .453.  
 

 
Figure 1: Convective heat transfer in a glass slab. Snapshots of the crack set and iso-temperatures at times 
t=5E-4, 2.25E-3, 2.5E-2, and 8.E-2. 

 
We ran the same experiment using the method described above. Figure 1 represents 

the 

€ 

v–field representing the crack set and the level lines of the temperature field for τ = 
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τ0 (top left), 

€ 

τ = τ1 (top right), 

€ 

τ = τ2  (bottom left), and 

€ 

τ = τ3  (bottom right). From a 
quantitative standpoint, the evolution is similar to that describe above: initiation of a net-
work of cracks, propagation, arrest of half of the cracks and propagation of the remaining 
half, arrest of half of the remaining cracks, followed by propagation then arrest of the re-
maining ones. Again, we insist that no hypothesis was made on the crack network geome-
try. Instead, its periodic structure (up to boundary effects) comes up as the optimal crack 
geometry minimizing the total energy (2). Table 1 compares our numerical values with 
that of [12]. The quantitative agreement of the critical lengths 

€ 

a2 and 

€ 

a3 is excellent. The 
critical length 

€ 

a0 and a1 are underestimated, leading to an underestimation of the critical 
times 

€ 

τ0 and 

€ 

τ1. This is due in part to the difficulty of accurately representing small 
cracks whose length is of the order of the mesh size in our approach. 

Conclusions and extensions 
The simple experiment presented above is a perfect illustration of our numerical ap-

proach and of its ability of accurately rendering crack nucleation, interaction between 
multiple cracks, and crack path. Figure 2 represents early numerical results for a three 
dimensional version of the same experiment in different domain geometry and tempera-
ture contrast. At this point, we have not yet been able to perform quantitative comparison 
between our numerical simulations and experiments. These numerical experiments serve 
as an illustration of the potential of our approach to deal with potentially complicated 
three-dimensional geometries. 

 

 
Figure 2: Convective heat transfer in a glass brick. Geometry of the final fracture system. 

 
In all the computations presented above, we assume that the domain consist of a sim-

ple isotropic homogeneous material. Our approach can easily deal with material anisotro-
py or multiple materials. We have not yet investigated the role of heterogeneity on ther-
mal cracks. We also have relied on a closed form solution of the heat equation in the do-
mains. We are currently coupling transient heat transfer analysis and crack propagation. 
In doing so, we can harness the mathematical properties of the approximation of the frac-
ture energy by a “phase–field”–like model and use the 

€ 

v–field to account for the effect of 
cracks on the heat transfer problem. 
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