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ABSTRACT 
We present recent results on the modeling and nu-
merical simulation of reservoir stimulation in Hot 
Dry Rocks. Our approach is based on a mechanisti-
cally faithful yet mathematically sound model, gener-
alizing Griffith's idea of competition between bulk 
and surface energies. At each time increment, the 
fracture and displacement configuration of a reservoir 
is sought as the minimizer of a global energy. In do-
ing so, the variational approach allows full crack path 
identification, interaction between multiple cracks, 
crack initiation and branching in two and three space 
dimensions. The numerical approach is based on 
building a regularized energy where cracks are repre-
sented by a smooth function, similar in spirit to a 
phase-field approach. In this paper, we focus on 
thermal stimulation. 

INTRODUCTION 
The concept of Enhanced Geothermal System relies 
on the ability to artificially generate optimally con-
nected fracture networks in hot dry rocks, maximiz-
ing heat transfer. A predictive understanding of the 
mechanisms used in creating a fracture network, of 
its evolution over time, and of its heat transfer prop-
erties is therefore essential to predicting and optimiz-
ing the performance of Enhanced Geothermal Sys-
tems. 
As cold water is circulated through a reservoir, rock 
contract, creating tensile stresses, and potentially 
leading to the nucleation of new cracks. Because of 
the difference of time scales required to achieve 
thermal and elastic equilibrium, it is reasonable to 
assume that at all time, the system achieves mechani-

cal equilibrium, while thermal loads are modeled 
through transient heat transfer. In this framework, 
fracture nucleation may be initiated for small times 
(i.e. small penetration depth), and many short cracks 
may be necessary in order to achieve any elastic en-
ergy release. In short, thermal stimulation can possi-
bly lead to the nucleation of many short cracks in 
relatively short times. In longer time scales, secon-
dary thermal cracks may also appear during produc-
tion and can potentially lead to dramatic changes in 
the heat transfer characteristics of a reservoir. 
The mechanical modeling and numerical simulation 
of such a thermal stimulation requires a framework in 
which cracks nucleation, path identification –
including complicated crack geometries–, interaction 
between existing and new cracks, must be properly 
accounted for in a three dimensional setting. In the 
following sections, we base our analysis on the 
mechanistically faithful yet mathematically rigorous 
variational formulation of brittle fracture (Francfort 
and Marigo, 1998, Bourdin et al. 2008). The numeri-
cal implementation is based on a concept of ap-
proximation by elliptic functional, similar to a phase-
field model (Bourdin 2006, Bourdin 2007). 

VARIATIONAL APPROACH TO FRACTURE 
In classical approaches to quasi-static brittle fracture, 
the elastic energy restitution rate G = −∂E /∂l  in-
duced by the infinitesimal growth of a single crack 
along an a priori know path (derived from the stress 
intensity factors) is compared to a critical energy rate 
Gc and propagation occurs when G = Gc , the cele-
brated Griffith criterion. The essence of the varia-
tional approach (Francfort and Marigo, 1998) is to 
recast the Griffith criterion in a variational setting, 
namely as the minimization over any crack set Γ  (i.e. 
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any curve in 2D or surface in 3D) and any kinemati-
cally admissible displacement field u  of a total en-
ergy consisting of the sum of the stored potential 
elastic energy and a surface energy proportional to 
the length of the cracks in 2D or their area in 3D. 
This model can be formulated in a time continuous 
manner but for the sake of simplicity, we restrict our 
exposition to a discrete in time formulation: we con-
sider a discretization of the time interval (0,T) into N 
intervals 0 = t0 < t1 <� < tN = T . We consider a body 
occupying a region Ω  of space. On a part ∂dΩ ⊂ ∂Ω, 
we prescribe a displacement g(t)  while the remain-
ing part of ∂Ω  is traction free. Then for any dis-
placement and crack configuration (u, Γ)  one defines 
the total energy  

 E u, Γ( ) = Π e(u)( ) + Gc HN−1 Γ( ),  (1) 
where Π e(u)( )  denotes the stored potential elastic 
energy of the considered system subject to a dis-
placement u and cracked along Γ , HN−1 Γ( )  denotes 
the N−1–dimensional Hausdorff measure of ī, i.e. its 
length in 2D and its surface area in 3D, and e(u) the 
linearized strain field. We then extend Griffith’s ide-
as by postulating that at each time step ti, the dis-
placement and crack sets (ui, Γi )  are given by the 
global minimizers of E  satisfying the boundary con-
dition ui = g(ti )  on ∂dΩ, and the irreversibility  con-
dition Γi ⊃ Γi−1 . We insist that in this approach, the 
reliance on small increment of a single pre-existing 
crack growing along a pre-existing path of Griffith’s 
classical theory has been fully replaced with global 
minimization. In particular, at each time step, nuclea-
tion of new cracks or changes in cracks topology are 
allowed, if they lead to a sufficient elastic energy 
release. We also note that the formulation applies 
identically to the two and three-dimensional cases, 
and that evolutions computed through this approach 
satisfy Griffith’s widely accepted criterion. For a 
more in-depth presentation of the variational ap-
proach to brittle fracture, we refer to the references 
previously cited. 
 

Numerical implementation 
The numerical implementation of (1) is a challenging 
problem. The admissible displacement fields are dis-
continuous, but the location of their discontinuities is 
not known in advance, a requirement of many classi-
cal discretization methods. Also, the incremental 
fracture or surface energy term in (1) requires ap-
proximating the location of cracks, together with 
their length, a much more challenging issue. In par-
ticular, special consideration needs to be given to the 
possible anisotropy induced by the grid (Chambolle 
1999) or the mesh (Negri, 1999). 

The numerical approach we present here is based on 
the variational approximation by elliptic functionals 
originally proposed by Ambrosio and Tortorelli, 
(1990) in the context of image segmentation and ex-
tended to brittle fracture (Bourdin et al 2000, Bourdin 
2007). A small regularization parameter ε  is intro-
duced and the location of the crack is represented by 
a smooth “crack regularization function” v  taking 
values 0 close to the crack and 1 far from them. More 
precisely, one can prove (see the references cited 
above) that as ε → 0 , the regularized energy  

Eε u, v( ) = v2Π e(u)( ) dx
Ω
³ + Gc

(1− v)2

4εΩ
³ +ε ∇v 2 dx  (2) 

approaches E  in the sense of ī–converges, and that 
the sequence of minimizers for Eε  is compact, which 
implies that the minimizers of Eε  converge as ε → 0  
to that of E. 
The main feature of the regularized problem is that it 
does not require an explicit representation of the 
crack network. Instead all computations are carried 
out on a fixed mesh and the arguments of Eε  are 
smooth functions, which can be approached using 
standard finite elements. Indeed, in the anti-plane 
case, one can show that the restriction Eε,h  of Eε  to 
a linear finite element space ī–converges to E , pro-
vided that the mesh size h is such that h = o(ε) . The-
se two convergence results combined show that the 
solutions of the variational fracture model can be 
approximated by solving a linear finite elements dis-
cretization of (2) for “small” ε  and h . 
The actual minimization of (2) can be challenging, 
due to its stiffness and non-convexity. The key ob-
servation is that while it is not convex, the regular-
ized energy is convex in each of the (u, •)  and (•, v)  
directions. We make full use of this property by im-
plementing an alternate minimizations algorithm in 
which the regularized energy is successively mini-
mized with respect to u and v until convergence is 
reached. This approach is similar to a block Newton 
or a multi-physic preconditioner. It is globally con-
vergent and each minimization step can be achieved 
using a fully implicit scheme, therefore avoiding the 
issue encountered while using explicit schemes on 
stiff problems. 
The numerical implementation is based on a fully 
parallel object-oriented unstructured finite element 
library developed by the authors. By design, it sepa-
rates unstructured mesh management, evaluation of 
the variational forms, discretization scheme (i.e. ele-
ment types), and solvers. The mesh management and 
solver layers of the code are based on the Sieve 
framework (Knepley and Karpeev 2009). The parallel 
linear algebra is implemented using PETSc (Balay et 
al. 1997, 2009, 2010) while the scalable constrained 
and unconstrained optimization routines are provided 
by TAO (Benson et al. 2007). 
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A 2D EXAMPLE 
We illustrate the strength of our approach by revisit-
ing a now classical convective cooling of a heated 
glass slab experiment described in depth in Geyer 
and Nemat-Nasser (1982), Bahr et al. (1988), or 
Tester (1989) for instance.  
We consider a rectangular glass slab of width W  and 
height L  with Hooke’s law A  associated with a 
Young’s modulus E  and Poisson ratio ν , and ther-
mal expansion coefficient α . The sample’s initial 
temperature is T (x, y, 0) = T0 and at t = 0 , its lower 
edge is brought in contact with dry ice held at tem-
perature Ts . In this setting, the temperature profile 
can be computed explicitly, assuming null flux 
through the lateral and superior edges of the domain, 
and when the heat penetration depth is small com-
pared to L . 
As the time scale for heat transfer is large compared 
to the elastic wave speed in glass, we make the usual 
assumption that at each time the sample reaches an 
elastic equilibrium, while the temperature field is 
given by transient heat transfer. We also neglect the 
effect of cracks on the heat transfer throughout the 
sample, and thermoelastic effects, i.e. assume that the 
deformation is slow enough that it induces no chang-
es in the temperature fields. These assumptions, 
while not technically necessary in our approach allow 
us to compare our numerical experiments with the 
experimental, numerical and analytical literature. In 
this setting, we simply compute the temperature field 
at each time step, then minimize the total energy in 
which thermal expansion is accounted for by replac-
ing the elastic potential Π e(u)( )  in (1) or (2) with  

 Π e(u),T( ) = 1
2 A e(u)−αT( ) : e(u)−αT( ) dx

Ω
³ .  (3) 

 

Numerical experiments, and comparison with 
analytical solutions 
Using classical dimension analysis, it is easy to see 
that up to a rescaling, our model can be reduced to a 
domain of unit height, unit Young’s modulus, frac-
ture toughness and thermal expansion coefficient, and 
normalized temperature β∆T , where β  can be inter-
preted as the ratio between the elastic energy due to 
the thermal stress and the energy of a unit length 
fracture (see Bahr et al. 1988 or Jenkins 2005, for 
instance). As often in heat transfer problem, we con-
sider a characteristic time scale τ = t . We first fo-
cus on the case of a domain of width 5 under a nor-
malized temperature contrast β∆T = 54 treated at 
length in Bahr et al. (1988), case III.  
In this setting, a careful energy balance and stability 
analysis based on Griffith’s criterion leads to the fol-

lowing: until a critical time τ 0 , the sample remains 
intact, then a network of periodic cracks of length 
a0 ≈ .06  and spacing p ≈ .1285 is nucleated. These 
cracks grow at the same speed until τ = τ1 ≈ .09  
where the cracks reach a length a1 ≈ .14 . At τ = τ1 , 
the fracture network has propagated deep enough that 
the thermal stresses are not sufficient to lead to prop-
agate each crack tips, and half of the cracks stall. For 
τ1 ≤ τ ≤ τ 2 ≈ .225 , the same arrest mechanism acti-
vates once more at a crack length a2 ≈ .335. The 
remaining cracks continue growing until τ = τ 3 ≈ .3  
then stop upon reaching a final length a3 ≈ .453 . In a 
first set of experiment, we tried to prescribe the frac-
ture network geometry by using a Cartesian mesh and 
a regularization parameter ε  of the order of a frac-
tion of the mesh size, a choice known to lead to mesh 
dependency. 
 

 

 

 

 
Figure 1: Convective heat transfer in a glass slab. 

Snapshots of the crack set and iso-
temperatures for τ = τ 0,τ1,τ 2,τ 3 . 

 
Figure 1 represents the v–field representing the crack 
set and the level lines of the temperature field for 
τ = τ 0,τ1,τ 2,τ 3  (top to bottom). From a quantitative 
standpoint, the evolution is similar to that describe 
above: initiation of a network of cracks, propagation, 
arrest of half of the cracks and propagation of the 
remaining half, arrest of half of the remaining cracks, 
followed by propagation then arrest of the remaining 
ones. Again, we insist that while we tuned our ap-
proximation to favor straight cracks, no other hy-
pothesis was made on the crack network geometry. 
Its periodic structure (up to boundary effects) and the 
successive crack parking come up as the optimal 
crack geometry minimizing the total energy (2). 
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Table 1: Comparison between numerical and ana-
lytical solutions. 

 p  a0  τ 0  a1  τ1  a2  τ 2  a3  τ 3  
Bahr .13 .06 n/a .14 .09 .35 .23 .45 .3 
BMK .15 .02 .02 .08 .05 .33 .16 .48 .25 

 
Table 1 compares our numerical values with that of 
Bahr et al. (1988). The quantitative agreement of the 
critical lengths a2  and a3  is excellent. The critical 
length a0  and a1 are underestimated, leading to an 
underestimation of the critical times τ 0  and τ1 . This 
is due in part to the difficulty of accurately represent-
ing small cracks whose length is of the order of the 
mesh size in our approach. Another factor is the dif-
ficulty to properly capture the critical bifurcation 
between stable branches of the total energy (2) in the 
case of nucleation of cracks with non-zero length. 
This issue can be in parts alleviated through the use 
of a backtracking algorithm (Bourdin 2007a), but this 
was not done here. 

CONCLUSIONS AND EXTENSIONS 
The simple experiment presented above is a perfect 
illustration of our numerical approach and of its abil-
ity of accurately rendering crack nucleation, interac-
tion between multiple cracks, and crack path. Figures 
2 and 3 represent early numerical results for a three 
dimensional versions of the same experiment for  two 
domain geometries. These numerical experiments 
serve as an illustration of the potential of our ap-
proach to deal with potentially complicated three-
dimensional geometries. 
 

 

 
Figure 2: A three dimensional version of the experi-

ment above highlights the potential com-
plexity of crack patterns 3D, and the chal-
lenge in devising a suitable fracture mod-
el and numerical implementation. 

 
At this point, we have not yet been able to perform 
quantitative comparison between our numerical simu-
lations and experiments.  From a qualitative stand-
point, we notice that as the computational domain 
becomes large compared to the fracture propagation 
depth and spacing, network of polygonal cells are 
created, not unlike that of drying basaltic columns. In 
Figure 3, we performed computations on brick 
shaped domain. The material properties and experi-
mental conditions are similar, but the domain size 
along each coordinate axis were doubled. Global 
properties of the fracture network, such as the aver-
age cell size and penetration depth remained un-
changed. We are now investigating the quantitative 
comparison of these fracture networks with experi-
ments, in particular with the scaling properties given 
in Bahr et al. (2010). 
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Figure 3: Numerical experiment on parallelepiped. 

As the domain size is changed, the critical 
fracture cell size and penetration depth 
appears to remain unchanged. 

 
In all the computations presented above, we assume 
that the domain consist of a simple isotropic homo-
geneous material. Our approach can easily deal with 
material anisotropy or multiple materials. We have 
not yet investigated the role of heterogeneity on 
thermal cracks. We also have relied on a closed form 
solution of the heat equation in the domains. We are 
also currently coupling our fracture model with a 
reservoir simulator. 
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