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Abstract We propose a discrete time model for
dynamic fracture based on crack regularization. The
advantages of our approach are threefold: first, our reg-
ularization of the crack set has been rigorously shown
to converge to the correct sharp-interface energy Am-
brosio and Tortorelli (Comm. Pure Appl. Math., 43(8):
999–1036 (1990); Boll. Un. Mat. Ital. B (7), 6(1):105–
123, 1992); second, our condition for crack growth,
based on Griffith’s criterion, matches that of quasi-
static settings Bourdin (Interfaces Free Bound 9(3):
411–430, 2007) where Griffith originally stated his
criterion; third, solutions to our model converge, as
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the time-step tends to zero, to solutions of the correct
continuous time model Larsen (Math Models Methods
Appl Sci 20:1021–1048, 2010). Furthermore, in imple-
menting this model, we naturally recover several fea-
tures, such as the elastic wave speed as an upper bound
on crack speed, and crack branching for sufficiently
rapid boundary displacements. We conclude by com-
paring our approach to so-called “phase-field” ones. In
particular, we explain why phase-field approaches are
good for approximating free boundaries, but not the
free discontinuity sets that model fracture.

Keywords Dynamic fracture · Phase field ·
Griffith’s criterion · Crack regularization ·
Variational fracture

1 Introduction

Griffith’s criterion for quasi-static fracture evolution in
perfectly brittle materials Griffith (1921) supposes that
as a crack grows, the displacement field is instantly in
a new equilibrium, with a resulting decrease in stored
elastic energy that matches the surface energy of the
crack increment. More precisely, at any given time,
a crack propagates only if the rate of elastic energy
decrease per unit surface area of increment equals the
(quasi-static) critical energy release rate. The crack
stalls if the elastic energy release rate is less than that
critical rate. It is unstable if the release rate exceeds
the critical rate Lawn (1993)[Sects. 1.2 and 4]. As
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134 B. Bourdin et al.

described in Griffith (1921)[Sect. 2], this critical rate
is related to the surface energy increase due to the
crack, with a proportionality constant that depends on
the material point. For ideal isotropic linear materials,
this critical energy release rate is linked to the stress
intensity factors by Irwin’s formula, and we refer to it
as the fracture toughness in this context.

Making this principle mathematically precise began
with Ambrosio and Braides (1995) in the static case
and for gradient flows, and was extended to quasi-static
evolutions by Francfort and Marigo (1998). They pro-
posed minimizing the sum of the stored elastic energy
and the surface energy of discontinuity sets, to obtain
displacements that are stable in the sense of Griffith.
That is, for displacements u ∈ SBV (!), the space of
special functions of bounded variation, with ! ⊂ RN

representing the reference configuration of a body (u
taking real values, modeling antiplane displacement),
they consider energy functionals of the form

E(u) := µ

2

∫

!

|∇u|2dx + GcHN−1(S(u)).

Here µ is the shear modulus of the considered mate-
rial, Gc is its fracture toughness, S(u) denotes the dis-
continuity set of u,HN−1 is the N − 1 dimensional
Hausdorff measure, and the minimization is subject to
a Dirichlet condition on a part ∂!D of its boundary
while the remaining part ∂!N := ∂!\∂!D remains
traction-free. The idea is that, if u is a minimizer of E
then it is stable in the sense of Griffith, as adding any
increment to its crack set S(u) cannot reduce the stored
elastic energy by more than the cost of the increment.

We introduce a discrete time model for brittle frac-
ture dynamics, based on only two principles: First, the
displacement u should follow elastodynamics off the
crack, and second, the crack should grow based only
on the stress at the crack “tip” together with the mate-
rial properties at the tip, in a way that is consistent with
Griffith’s criterion for crack growth. Our guiding prin-
ciple for crack growth is this: if the elastic field near
the crack is such that the crack would grow based on
Griffith’s quasi-static criterion, then the crack should
also grow, in the same infinitesimal way, if the stresses
are due to elastodynamics.

Putting this criterion on a precise mathematical foot-
ing is considerably more difficult than the quasi-static
formulation of Francfort and Marigo (1998). The rea-
son is that Griffith’s criterion in the quasi-static
setting is in essence an energy comparison—for a

potential crack increment #C , there is a correspond-
ing and instantaneous decrease in stored elastic energy.
The length, or surface energy, of the crack increment
can be compared with the elastic decrease, and the
increment that results in the best, and sufficiently large,
elastic reduction is deemed to be the actual crack incre-
ment.

Extending this principle to dynamics is not straight-
forward, since crack increments do not result in instan-
taneous decreases in stored elastic energy (and the
effect on kinetic energy is expected to be an increase).
There is, however, a rigorous approximation procedure
for quasi-static fracture based on a regularization of
the crack Ambrosio and Tortorelli (1990, 1992), where
the energy functional

Eε(u, v) : = µ

2

∫

!

(
v2 + ηε

)
|∇u|2 dx

+Gc

∫

!

(1 − v)2

4ε
+ ε |∇v|2 dx (1)

is shown to be an approximation of the total elastic
energy plus the surface energy of a crack K :

E(u, K ) := µ

2

∫

!\K

|∇u|2 dx + GcHN−1(K ).

Formally, when ε is “small”, the second term in (1)
forces v to be close to one except on a small set, an
approximation of K , while the first term allows u to
have large variation wherev is close to zero. The param-
eter ηε is such that ηε % ε and can be seen as a vanish-
ing residual stiffness of the cracks. Although it is not
technically necessary from a mathematical standpoint
(see Braides (1998)), it is used in the numerical imple-
mentation to prevent ill-posedness of the minimization
of Eε for a given ε.

It is tempting to interpret the regularization param-
eter ε as the critical length of a process zone, or Eε

as a gradient damage model; however, we stand clear
from giving a mechanical interpretation to the regular-
ized functional for a fixed ε > 0. Using the mathemati-
cal framework of &–convergence, one can construct an
entire class of functionals similar to Eε, and show that
they all approximate E (see again Braides (1998)). In
our view, the resemblance to a damage model is purely
coincidental. As long as the &–convergence property is
satisfied, the asymptotic behavior of all these function-
als as ε → 0 is identical. In view of the finite elements
discretization of the regularized energy, we also recall
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A time-discrete model for dynamic fracture based 135

that there is a comprehensive literature starting, with
Bellettini and Coscia (1994), proving that the conver-
gence property is preserved by finite element discreti-
zation, provided that the mesh size h is such that h % ε.

In our approach, the energy corresponding to the
phase-field function v is minimized at each discrete
time (subject to irreversibility constraints as in Bour-
din (2007); Giacomini (2005)), while the displacement
u follows dynamics, affected by v only on a small
set modeling the crack, where u is effectively allowed
to be discontinuous. More precisely, given u(x, 0) =
u0(x), ut (x, 0) = u1(x), we first solve for v(x, 0)

by minimizing v '→ Eε(u0, v). The dynamics are
governed by

ρutt − µ div
[(

v2 + ηε

)
∇u

]
= f, (2)

where f is the applied load. To find u(x,#t), we do
one time step in (2) starting at time zero and using
v = v(x, 0). This gives u(x,#t), and v(x,#t) is then
found by minimizing v '→ Eε(u(x,#t), v), etc. The
corresponding continuous-time model is

ρutt − µ div
[(

v2 + ηε

)
∇u

]
= f,

together with

v ∈ argmin Eε(u, ·), v decreasing in time.

In fact, we also get (see Larsen et al. (2010)) that the
total energy (including the energy dissipated in forming
the crack, and subtracting the work of external forces)
is constant in time, and that solutions to our discrete-
time model converge to solutions of this continuous-
time model as the time step goes to zero. While in the
quasi-static case, the (&) limit as ε → 0 of the regular-
ized model is well known, its derivation in our model
is a very complicated and largely open mathematical
problem which we do not address in this study. For
a discussion of corresponding sharp-interface models,
see Larsen (2010).

The work presented here is quite theoretical by
nature. The mode of operation is based on induction: we
start from the rigorously derived and well studied varia-
tional approach to quasi-static fracture, and incorporate
inertial effects. We conjecture that our model is a nat-
ural extension of the existing theory in the sense that it
is compatible with the quasi-static one when appropri-
ate, while addressing unphysical quasi-static evolutions
arising from unstable evolutions (see the discussion in
Sect. 3.2), and use numerical experiments to highlight
this claim.

To be clear, we make no claims regarding the opti-
mality of our numerical approach—our emphasis in
this paper is not about implementation, but instead our
goal is the introduction of a mathematically and theoret-
ically sounder formulation of dynamic fracture based
on Griffith’s criterion. In light of what we believe are
very encouraging preliminary results, we will focus on
a more efficient implementation in the future. Similarly,
we are not concerned at this point about quantitative
comparison with actual experiments. In summary, the
focus of this paper is on the verification of the model,
including comparison with quasi-static evolutions in
the case of slow loading rates, rather than on the val-
idation against real experiments or comparison with
competing models, two important issues that will be
the center of future works.

2 The discrete time model

Let ! ⊂ RN be a bounded connected domain with
Lipschitz boundary. As in Francfort and Larsen (2003),
we enforce boundary conditions by considering an ex-
tended domain !′, bounded and open with Lipschitz
boundary, such that ! ⊂ !′.

In this section, we will describe our algorithm for
computing the evolution of cracks in the case of
dynamic antiplane shear. As described in Sect. 1, the
idea of this computational model is to describe the evo-
lution of the system “away from the crack” by a PDE
governing the dynamics of an elastic body, and com-
bine this with an evolution law for the crack set based
on minimizing an energy motivated by Griffith.

Specifically, given boundary conditions g ∈ H1(!′),
a static model of antiplane shear with fracture is given
by minimizing

E(u) := µ

2

∫

!

|∇u|2 dx + GcHN−1(S(u))

over u ∈ SBV (!) with u = g in !′\!, µ and Gc
being the shear modulus and fracture toughness of the
homogeneous, isotropic material considered. Follow-
ing Bourdin (2007) and Bourdin et al. (2000), we
define an Ambrosio-Tortorelli approximation of this
static energy. We introduce

F(u, v) :=
{

E(u) if v ≡ 1,

+∞ otherwise.
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136 B. Bourdin et al.

Then, for any ε > 0 and ηε % ε, define the functionals

Eε(u, v) : = µ

2

∫

!

(
v2 + ηε

)
|∇u|2 dx

+Gc

∫

!′\∂!N

(1 − v)2

4ε
+ ε |∇v|2 dx

and

Fε(u, v) :=
{

Eε(u, v) if u∈W 1,2(!′\∂!N ; R); v∈W 1,2(!′\∂!N ; R),

+∞ otherwise.

It is a well known result that

Fε
&→ F as ε → 0,

which implies, using a classical argument for &–con-

vergence Braides (2002); Dal Maso (1993), that the
minimizers of Fε converge to that of F as ε → 0.

In the dynamic case, we have a time dependent load-
ing given by g ∈ L∞ (

[0, T ]; L∞(!′)
)

∩ W 1,1
(
[0, T ]; W 1,1(!)

)
. As in Bourdin (2007), we note that

for fixed u, Fε(u, ·) is strictly convex and that the unique
minimizing v can be directly computed. Thus, for any
ε > 0, and given an intial condition uε(x; 0) such that
uε(x; 0) = g(x; 0) in !′\!, we find vε(x; 0) by

vε(x; 0) = argmin
v

Fε(uε(x; 0), v).

Then, we advance the elastic dynamics by a finite dif-
ference discretization of the PDE

ρ(uε)t t = µ div
[(

v2
ε + ηε

)
∇uε

]
, (3)

where ρ is the density of the material we consider.

In order to obtain a stable scheme, we use backward
differences in time: we consider the time range (0, T )

discretized into N intervals of length δt = T/N , and set

(uε)t (x; t) = uε(x; t) − uε(x; t − δt )

δt
,

and

(uε)t t (x; t)=uε(x; t)−2uε(x, t − δt )+uε(x, t − 2δt )

δ2
t

.

After some simple algebra, the discrete version of (3)
becomes then

ρ(uε)(x; t) − µδ2
t div

[(
v2
ε + ηε

)
∇uε(x; t)

]

= 2uε(x; t − δt ) − uε(x; t − 2δt ). (4)

We repeat this process for each timestep. The steps
of this computational model are summarized in
Algorithm 1.

Algorithm 1 Time–discrete algorithm
Require: uε(x; 0), (uε)t (x; 0), δt = T/N
1: Set uε(x; −δt ) = δt (uε(x; 0) − (uε)t (x; 0)).
2: for i = 1 to N do
3: Set t = iδt .
4: Find uε solution of (4).
5: Find vε(x; t) ∈ H1(!′) minimizing Fε(uε(x; t), v) under

the irreversibility constraint v(x) = 0 on
{

x ; vε(x;
t − δt ) ≤ αε

}

6: end for

Note that at each time step, one now needs to solve
two linear elliptic problems instead of only one for the
v–minimization. The additional cost of such an implicit
scheme is offset by an increased stability and scalabil-
ity when implemented in parallel supercomputers (see
for instance Keyes et al. (2006)).

A critical choice in the numerical implementation
of the discrete model is the hyperbolic solver for the
u–step (4). Our numerical implementation is derived
from the quasi-static model, as presented in Bourdin
et al. (2000); Bourdin (2007); Bourdin et al. (2008). It
is based on linear finite elements, and the underlying
infrastructure for the parallel implementation on super-
computers is provided by PETSc Balay et al. (2008,
2009). Linear finite elements may not be the most appro-
priate discretization scheme for the u–step. However,
as the scope of this study is to give a quick insight on
the properties of our model, we do not believe that this
is a problem at this stage. Of course, a more suited
numerical method (using a discontinuous Galerkin or
a finite volume based discretization, for instance) will
be studied in the future.

For the sake of simplicity, we restricted ourselves to
the antiplane shear case. To use our model in the set-
ting of two and three dimensional elasticity does not
require major changes to the structure of the model
or its implementation. This is due to the fact that the
representation of the cracks is not geometry or mesh–
based, as compared to approaches based on discontinu-
ous, cohesive, or extended finite element methods. The
chief issue is to prevent interpenetration of material
across the crack surfaces under compressive stresses.
This can be handled by suitable adjustments to the
energy, as in Amor et al. (2009); Del Piero et al. (2007);
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A time-discrete model for dynamic fracture based 137

Freddi and Royer Carfagni (2010). One can also deviate
from ideally brittle linear elastic materials and account
for different elastic and fracture response under traction
and compression, as in Lancioni and Royer-Carfagni
(2009), for instance.

3 Experiments

3.1 Some properties of the hyperbolic solver

Before conducting dynamic fracture experiments, we
seek to illustrate the adequacy of our numerical
approach. To do this, we conducted a series of simple
computations on an essentially unidimensional prob-
lem. Consider a rectangular domain ! = (0, 1) ×
(0, .05). To its left edge, we apply a time-dependent
Dirichlet boundary condition g(y; t) given by

g(y; t) =
{ 1

2 (1 − cos(π t/tl)) if t ≤ tl
g0 if t > tl ,

with g0 = 1 and tl = .1. We prescribed a null displace-
ment boundary condition on the right edge, while the
upper and lower edge are left free. The material proper-
ties are µ= 1 (corresponding to an idealized homoge-
neous isotropic material with E = 2 and ν = 0), ρ = 1.
We set the fracture toughness Gc to 10, high enough
that the domain remains purely elastic. For such a load-
ing, the elasto-dynamic displacement consists in a sin-
gle smooth transverse wave traveling at speed ω =√

µ/ρ = 1, and reflecting on the left and right edges.
Figure 1 represents the evolution of the bulk, surface
and kinetic energies as a function of time for vari-
ous values of the time step δt . All computations were
performed on a Delaunay-Voronoi mesh of size h =
2.5E−2, consisting of approximately 25,000 vertices
and 50,000 elements. As we expected, the numerical
scheme is dissipative (see how the total energy decays
after the initial loading phase), and the amount of dis-
sipation decreases with the time step. As δt becomes
small compared to h, the computed solution devel-
ops high frequency oscillations, leading to the small
amplitude, high frequency oscillations of the individual
components of the energy for δt = 1E−4. This is also
expected, as the smoothing effect of the second order
term in (4) vanishes when δt → 0.

We then studied the dispersivity of our numerical
scheme. Figure 2 compares the profile of the defor-
mation field as the traveling wave crosses the midline

of the domain, traveling to the right, for the first, sec-
ond and third time. The parameters correspond to that
of Fig. 1 (bottom-left). That the profile spreads out is
consistent with the presence of the smoothing term on
the left hand side of (4), and the loss of bulk energy
highlighted in Fig. 1 as time increases. Notice how-
ever how the peaks of the bulk and kinetic energies in
Fig. 1 are 1 unit of time apart, which is consistent with
a transverse wave speed of 1 and a domain length of 1.

3.2 A tearing experiment

One of the strengths of the variational approach is its
ability to consider any crack path, including kinking,
branching, nucleation, etc. In some cases (typically a
subset of crack evolution labelled as unstable in the
classical Griffith-type analysis), this can lead to unphys-
ical evolutions. An example of such an evolution is
the antiplane tearing experiment presented in detail in
Bourdin et al. (2008), and which we revisit here.

Consider a rectangular domain occupying the
domain (0, L) × (−H, H), and assume H % L . To
its left edge, one applies a monotonically increasing
mode-III displacement g(x, y; t) = g0(t) sgn(y) along
the z–axis, sgn representing the sign function, and g0(t)
an arbitrary monotonically increasing function. Addi-
tionally, we consider only single cracks occupying the
region (0, l(t)) × {0} along the domain’s symmetry
axis. Figure 3(left), adapted from Bourdin et al. (2008),
represents the evolution of the bulk, surface and to-
tal energies as a function of t for this problem. As
the magnitude of the fixed displacement increases, the
crack grows linearly until it reaches a critical length
lV ∼ L/2 then propagates instantly throughout the
remaining half of the domain. The paradox here is not
so much the instant propagation as it is the value of the
threshold lV . Indeed, the crack tip has to “know” when
it has reached the mid-point. This is especially puz-
zling in the one dimensional limit (i.e. as H/L → 0),
as the displacement field for 0 ≤ x ≤ l(t) does not
depend on L but lV = L . Note that going back to the
classical Griffith theory does not address this issue in
a satisfying way. In the classical framework, the crack
tip also propagates at a constant speed until it reaches
a threshold lG > lV , corresponding to a displacement
magnitude tV . For t > tV , Griffith’s criterion cannot
be satisfied. From the variational standpoint, the only
local minimizers of Eε for t > tG corresponds again to
a crack propagating instantly throughout the domain.
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138 B. Bourdin et al.

Fig. 1 Evolution of the
bulk, surface, kinetic and
total energies for
δt = 1E−3 (top left),
δt = 5E−4 (top right),
δt = 2.5E−4 (bottom left)
and δt = 1E−4 (bottom
right)

Fig. 2 Profile of the
deformation field at t = and
t =, as the elastic wave
crosses the midline of the
domain traveling left to
right. The color field
corresponds to the value
of u. In order to facilitate
the comparison of the
profile, a few level lines
have been added

The paradox here is that this cannot be accomplished
while preserving the total energy (see Fig. 3(right)).
That the Ambrosio-Tortorelli–based approach approxi-
mates this crack evolution is also somewhat unexpected
since there is no guarantee a priori that the local mini-
mizers of the regularized energy converge to that of the
variational one (for lV ≤ l ≤ lG).

We implemented this problem using the dynamic
model presented in Sect. 2. In order to avoid shocks in
the loading, we consider a smooth (C1 in time) loading
given by g(x, y; t) = g0(t) sgn(y) with

g0(t) =
{

k
2tl

t2 if 0 ≤ t ≤ tl ,
kt − ktl

2 if tl ≤ t ≤ T,
(5)

tl and T being two arbitrarily chosen thresholds with
tl % T .

In a first set of experiments, we prescribed the crack
path along the symmetry axis of the domain by replac-
ing the coupling term div

[(
v2 + ηε

)
∇u

]
in (4) with

∂2u
∂x2 + ∂

∂y

[(
v2 + ηε

)
∂u
∂y

]
. It is easy to see that this

modification of the energy allows only discontinuities
of u with normal direction (0,1) (since ∂u/∂x has to
remain in L2). We fixed the dimensions of domain
(L = 6 and H = 1), the material properties (E = 1,

ν = 0, leading to µ= .5, Gc = 1.0E−2, and ρ = 1).
We generated a structured mesh by decomposing the
domain into squares with size h = 2E−2, and subdi-
viding each square into 4 similar triangular elements.
The regularization parameters are ε = 1E−2, and ηε =
1E−6. For this choice of h, ε, and Gc, the effective
toughness, i.e. the surface energy associated with a
discretized crack of length 1 is 1.5E−2 (see Bourdin
et al. (2008) for a discussion of the effective toughness).
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Fig. 3 A mode-III tearing
experiment: (left) global
minimization leads to an
unphysical evolution, (right)
total energy is not conserved
during “unstable” evolution

Fig. 4 A typical crack
evolution along the
symmetry axis. The v–field
indicates the position of the
crack at t = 6
(g0 = .322), t = 12
(g0 = .683), t = 18
(g0 = 1.05), and t = 18
(g0 = 1.4)

Fig. 5 Evolution of the
surface energy as a function
of t (left) and of the loading
g0 (right) and for various
loading speeds k

We varied the loading speed k and time T in such a way
that g0(T )= 1.5, and set tl = T/20. We discretized the
loading interval (0, T ) in 6,000 time steps. Figure 4
represents a typical crack evolution in this setting (the
specific computation corresponds to k = 5E−2). The
domain is colored using the v-field, the color blue is
associated to v = 1 (uncracked material) while the area
where v = 0 (associated to the crack location) is colored
in red.

Figure 5 represents the evolution of the surface
energy as a function of time (left) and the loading inten-
sity g0(t) (right) for various loading velocities k rang-
ing from 1.5E−1 to 5.0E−3. We observe that as the
loading velocity decreases, the solution of the dynamic
model converge to that of the quasi-static variational

model, when the quasi-static model leads to progres-
sive crack propagation. In other words, we recover a
crack evolution similar to that of the quasi-static vari-
ational formulation, when the variational formulation
satisfies Griffith’s criterion. Our formulation sets itself
free of the paradoxes created by the quasi-static for-
mulation while preserving its main strength, the ability
to fully predict crack path, as we will see in the next
experiments. As the loading speed k increases, a larger
part of the total energy gets transfered into the kinetic
energy, forcing a reduction of crack length (compare
the position of the crack tips i.e. the magnitude of the
surface energy for a given load in Fig. 5(right)).

Figure 6 represents the evolution of cracktip speed
for loads in (.4,.8) as a function of the loading
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140 B. Bourdin et al.

velocity. It is obtained by dividing the variation of the
surface energy by the effective fracture toughness. For
low loading velocities, the cracktip velocity depends
linearly on the loading speed. This is consistent with our
previous observation that our dynamic model leads to
evolutions compatible with the variational approach in
the low loading velocity case. Indeed from the asymp-
totic analysis in Bourdin et al. (2008), we know that in
the high aspect ratio, the surface energy is proportional
to the opening magnitude. As the loading velocity
increases, the crack velocity approaches the transverse
wave speed of 1/

√
2 for the material we considered.

Note that the existence of a maximum crack tip velocity
is hinted in Fig. 5(left). As the loading speed increases,
the slope of the surface energy which is proportional
to the crack tip velocity seems to approach a high but
finite value.

In a second set of experiments, we allow the crack
to grow along arbitrary paths. Again, when the loading
velocity is low enough (k < 3E−2), a single crack
propagates along the symmetry axis, and the crack
position as a function of the loading intensity approaches
that of the quasi-static case as k → 0. As k increases,
we observe a broader range of crack shapes. We first
observe asymmetric paths where the crack starts prop-
agating along the symmetry axis, then branches toward
one of the lateral edges. Depending on the experimen-
tal conditions (including possible asymmetry of the
mesh or accuracy of the linear solvers for instance),
we obtain branching toward either edge. This is con-
sistent with the fact that we do not expect the crack
evolution to be unique. For faster loading velocities,
we observe more complicated crack geometries involv-
ing multiple splits. Again, we stress that we did not
include supplemental branching criteria to recover this
expected crack behavior. As in the variational approach
to quasi-static problems, our dynamic model leads to
full crack path identification, without additional
criteria.

Figure 7 represents the crack set at t = T for various
loading speeds. The color coding is similar to Fig. 4.
Here, we use a finer mesh (h =1.0E−2) and smaller
time steps (the loading phase from g0 = 0 to g0 =1.5
is discretized in 12,000 time steps), while the mate-
rial properties remain unchanged. The regularization
parameter ε is 5.0E−3 so that the effective toughness
remains unchanged from the previous set of computa-
tions. As one would expect from a dynamic model, as
the loading speed increases, one observes increasingly

Fig. 6 Evolution of the cracktip velocity (obtained from the sur-
face energy) as a function of the loading speed. The green line
represents the transverse wave speed for the considered material

complicated crack patterns, including branching and
splitting.

Lastly, Fig. 8, represents snapshots of a crack evo-
lution at an even higher speed (k = .15). Again, we
observe multiple crack splitting and branching.

4 Conclusions and comparison with phase-field
approaches

In the last few years, there have been several attempts at
adapting the phase-field formalism to dynamic fracture
problems. We cite in particular Aranson et al. (2000);
Corson et al. (2009); Eastgate et al. (2002); Hakim
and Karma (2009); Karma et al. (2001); Karma and
Lobkovsky (2004); Marconi and Jagla (2005). There
are two main differences between our approach and
the aforementioned ones come from the form of the
phase-field, and from the nature of the evolution. Our
phase-field approach is derived from a rigorous approx-
imation of free-discontinuity energies devised in
Ambrosio and Tortorelli (1990, 1992), and the evo-
lution of the crack regularization function v is given
by a global minimization principle. In Aranson et al.
(2000); Corson et al. (2009); Eastgate et al. (2002);
Hakim and Karma (2009); Karma et al. (2001); Karma
and Lobkovsky (2004), the authors introduce a phase
function whose evolution is given by some variation
of a gradient flow of a Ginsburg-Landau–type of free
energy. This type of energy is sometimes referred to
in the mathematics community as the Modica-Mort-
ola energy Modica and Mortola (1977a,b). Its generic
form is
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Fig. 7 Final crack path for
various loading speeds:
k = 3E−2 (top left),
k = 3.75E−2 (top right),
k = 4.28E−2 (bottom left),
and k = 5E−2 (bottom
right)

Fig. 8 High speed loading
leads to complex crack path.
Snapshots of a branched
crack evolution for
k = .15 at t = 1.20
(g0 = 2.16E−3), t = 2.40
(g0 = 8.64E−3), t = 3.60
(g0 = 1.94E−2), t = 4.80
(g0 =3.46E−2)

Pε(φ) =
∫

!

[
W (φ)

ε
+ ε|∇φ|2

]
dx, (6)

where W is a double well function such that W (0) =
W (1) = 0 and W (x) > 0 if x 0∈ {0, 1}. It is well known
(see for instance Braides (1998)) that as ε → 0, Pε&–
converges to P defined by

P(φ)

=
{

cHN−1(S(φ)) if u ∈ BV (!), φ ∈ {0, 1} a.e.
∞ otherwise, (7)

with c = 1
2

∫ 1
0

√
W (t) dt . That is, P(φ) = cHN−1

(∂{φ = 0}), or c times the perimeter of the set where
φ is zero. In the setting of an evolution problem, it is
known that the gradient flow of (7) converges to the
mean-curvature motion of almost all of its level lines,
and one can estimate the normal velocity of the transi-
tion layers of φ (see Bronsard and Kohn (1990)). This
implies in particular that the phase field may continue
to evolve away from the crack tip, even if the sample
is brought back to equilibrium in its reference config-
uration. Roughly speaking, even if the field φ in (6)
initially represents an elongated domain (say for in-
stance φ(x) = 0 if d(x, K ) ≤ η, where η is a given pos-
itive parameter and K is a given curve), given enough
time, φ will evolve into a “thick” domain instead of
remaining focused along a curve. For the numerical

Fig. 9 Evolution of the level line .4 of v throughout the time
evolution for the computation presented in Fig. 8. Note how the
width of the area identified with the crack remains constant

implementation of dynamic fracture propagation, when
crack tips propagate at a significant fraction of the
wave speed, this effect is negligible. From a practical
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standpoint, the actual form of the potential does not
seem to have a strong impact on numerical results;
however, from a mathematical standpoint, while Pε

can be used to represent the length of a discontinu-
ity set in a free boundary problem, we have no hope
of establishing the convergence of a regularized model
based on a double-well potential to a free-discontinu-
ity one. Moreover, in this paper, we are interested in
accounting for the wide range of crack speeds, rang-
ing from the infinitely slow quasi-static limit up to the
transverse wave speed, and comparing dynamic simu-
lations with quasistatic evolustions based on an energy
balance. We need to be concerned with the long time
evolution of the phase field and focus on our ability
to maintain the same accuracy in our approximation
of the surface energy at all times. With our approach,
the phase field v does not evolve away from the crack
tips, regardless of the curvature of the crack, as Fig. 9
illustrates.
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