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a b s t r a c t 

This continues the study of the effective toughness of layered materials started in Hossain 

et al. (2014) and Hsueh et al. (2018), with a focus on anisotropy. We use the phase-field 

model and the surfing boundary condition to propagate a crack macroscopically at various 

angles to the layers. We study two idealized situations, the first where the elastic modulus 

is uniform while the toughness alternates and a second where the toughness is uniform 

and the elastic modulus alternates. We find that in the first case of toughness heterogene- 

ity the effective toughness displays ‘anomalous isotropy’ in that it is independent of the 

propagation direction and equal to that of the tougher material except when the crack 

propagation is parallel to the layers. In the second case of elastic heterogeneity, we find 

the behavior more anisotropic and consistent with the toughening effects of stress fluctu- 

ation and need for crack renucleation at the compliant-to-stiff interface. In both cases, the 

effective toughness is not convex in the sense of interfacial energy or Wulff shape reflect- 

ing the fact that crack propagation follows a critical path. Further, in both cases the crack 

path is not straight and consistent with a maximal dissipation principle. Finally, the effec- 

tive toughness depends on the contrast and pinning, rather than on the extent of crack 

fluctuation. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Layered media composed of alternating layers of distinct materials are commonly found in nature and used in engineer-

ing. They have also served as an useful example in the study of the overall or effective behavior of heterogeneous media

Milton (2002) . The interest in the current work concerns the effective toughness, as it is well known that heterogeneities

are a toughening mechanism Faber and Evans (1983a,b) ; He and Hutchinson (1989) ; Hutchinson and Suo (1992) . 

Hossain et al. (2014) use phase-field simulations to show that the overall toughness of a layered medium can be sig-

nificantly larger than that of the constituent materials, a fact that was confirmed experimentally by Wang and Xia (2017) .

Hsueh et al. (2018) show through both phase-field simulations and experiments that the enhanced toughening in elastically

heterogeneous materials is due to two reasons – the fluctuations in stress and the need for the crack to renucleate as it

passes from the compliant to the stiff material. These works considered the situation where a Mode I crack propagates

normal to the layers, and the crack path is straight. 
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The current work studies the situation where the overall direction of crack propagation is at an arbitrary angle to the

layers. This overall direction of propagation is enforced using a surfing boundary condition ( Hossain et al., 2014 ). We show

that the crack path meanders and the overall toughness may depend on the direction of propagation. We consider two

idealized situations. 

In the first, the elastic modulus is uniform while the pointwise toughness alternates between two values. The interfacial

toughness is taken equal to the lower of the two values. In this situation, we find that the computed crack meanders – with

the deflection depending on the angle of overall propagation – though the uniform elasticity and principle of local symmetry

predicts a straight path. We show that the computed crack path can be predicted using a maximum dissipation principle.

Even though the crack path fluctuates, the effective or overall toughness is surprisingly isotropic – it is equal to that of the

tougher material for all angles of overall propagation except the case when it propagates along the layer where the effective

toughness is equal to the value of the brittle material. We call this anomalous isotropy . Finally, the overall toughness is not

convex in the sense of interfacial energy or Wulff shapes ( Herring, 1951 ). In other words, it is not stable against faceting.

This reflects the fact that fracture follows a critical state rather than energy minimization. 

We then consider the case where the pointwise and interfacial toughness are uniform, but the elastic modulus alternates

between two values. The computed crack deflects as it approaches the stiffer material as anticipated by He and Hutchin-

son (1989) . The overall toughness is still higher than that of the uniform pointwise value, though the amount of toughening

decreases as the direction of overall propagation deviates from the normal to the layers. We show that this behavior is

consistent with the decreasing fluctuation in the crack opening stress. Again, the overall toughness is not convex. 

2. Computational approach 

2.1. Variational phase-field method 

We follow the variational phase-field method introduced by Bourdin et al. (20 0 0, 20 08) . In this framework, sharp cracks

or displacement discontinuities are regularized via a spatially-smooth continuum formulation, by introducing a scalar reg-

ularized phase-field α ∈ [0, 1] such that α = 0 corresponds to the intact material and α = 1 to a complete fracture. Given a

heterogeneous material �, which exhibits a linearly-elastic isotropic behavior, phase-field methods minimize the regularized

total energy functional 

E � ( u , α) = 

∫ 
�

1 

2 

ε : (η + (1 − α) 2 ) C : ε d� + 

∫ 
�

3 G c 

8 

[ 
α

� 
+ � |∇α| 2 

] 
d� (1)

where ε = (∇ u + ∇ u t ) / 2 is the symmetrized gradient of the displacement field u , � is a regularization parameter, C (with

E the Young’s modulus and ν the Poisson’s ratio) is the local energy release rate, G c is the local toughness (critical energy

release rate) and η = o (� ) is a small residual stiffness. The first term approximates the elastic energy stored in unfractured

regions while the second term approximates the work of fracture. 

We use non-dimensional units in the rest of the paper. Let L 0 be a characteristic lengthscale, so that ˜ � = �/L 0 is the

non-dimensional domain, ̃  z = z /L 0 is a point in 

˜ �, ˜ u = u /L 0 is the non-dimensional displacement and 

˜ � = �/L 0 is the non-

dimensional regularization parameter. We take a characteristic Young’s modulus E 0 and set ˜ C = C /E 0 and 

˜ G c = G c / (E 0 L 0 ) to

be the non-dimensional modulus and toughness. Note that the strain 

˜ ε = ε, the phase field variable ˜ α = α and 

˜ η = η since

these are non-dimensional. The non-dimensional energy is now 

˜ E � ( ̃  u , ̃  α) = 

∫ 
˜ �

1 

2 

˜ ε : 
(˜ η + (1 − ˜ α) 2 

)˜ C : ̃  ε d ̃  � + 

∫ 
˜ �

3 ̃

 G c 

8 

[ ˜ α˜ � 
+ ̃

 � | ̃  ∇ ̃

 α| 2 
] 

d ̃  �. (2)

For the sake of compactness, the tilde appearing above the non-dimensional parameters is dropped in what follows.

Further, η = 10 −6 , � = 0 . 25 , E = 1 , ν = 0 . 2 and G c = 1 if it is not specified otherwise. Note that the choice E = G c = 1 is

consistent with L 0 ∼ 1 μm for stiff polymers and metals, and L 0 ∼ 1 nm for brittle ceramics. This means that our results hold

for layers and domains that are larger than these scales. 

2.2. Effective toughness 

Following Hossain et al. (2014) , the effective fracture toughness is determined by using a surfing boundary condition . Ac-

cordingly, a steadily-translating opening displacement u ( z , t ) = U ( z − t e x ) is applied at the exterior boundary of the domain,

with t denoting the time variable and where U is the far-field Mode I crack Zehnder (2012) , 

U = 

√ 

EG c (1 + ν) 

E 

(
3 − ν

1 + ν
− cos φ

)√ 

r 

2 π

(
cos 

φ

2 

e x + sin 

φ

2 

e y 

)
(3)

As such, the crack is driven to propagate steadily macroscopically in the e x direction, while it can freely interact with the

material heterogeneities at the local lengthscale. 

At each time-step, the far-field energy-release rate is determined by computing the J -integral ( Cherepanov, 1967; Rice,

1968 ) at the boundary of the computational domain. This quantity identifies the macroscopic driving force necessary to

sustain crack propagation throughout the microstructure. This macroscopic driving force oscillates as the crack interacts with
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Fig. 1. Computational domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the material heterogeneities. Thus, we define the effective fracture toughness G 

eff
c as the smallest driving force necessary

to propagate the crack through macroscopic distances. This corresponds to the maximum value attained by the far-field

J -integral during the entire propagation: G 

eff
c = max t J(t) . 

This boundary condition was introduced and studied extensively in Hossain et al. (2014) . In the case of propagation

normal to the layers (and other examples), it was shown that the effective property is independent of (i) the spatial and

temporal discretization; (ii) the amplitude of the surfing loading (which is kept constant in this paper); (iii) the particular

expression of the opening displacement. Further, the approach was experimentally validated in Hsueh et al. (2018) . 

2.3. Computational domain 

The computational domain � is a two-dimensional rectangular domain of (non-dimensional) length L and width H , com-

prising two materials (marked as 1 and 2 in Fig. 1 ) with alternating elastic/toughness properties. Let the Cartesian reference

system ( e x , e y ) be introduced as in Fig. 1 : so the crack is driven macroscopically in the horizontal direction in the figure.

The layers are oriented at an angle θ with respect to e x : so the layers are aligned horizontally for θ = 0 and vertically for

θ = π/ 2 in the figure. The (non-dimensional) thickness τ of the layers is defined normal to the layer and thus independent

of θ . The domain width is set equal to H = 40 unless specified otherwise. 

2.4. Numerical implementation and data sets 

The fracture problem is solved by alternatively minimizing the total energy functional in Eq. (2) with respect the two

state variables u and α. The constrained minimization with respect to the fracture field α is implemented using the vari-

ational inequality solvers provided by PETSc Balay et al. (2013a, 2013b, 1997) , whereas the minimization with respect to

displacement field u is a linear problem, solved by using preconditioned conjugated gradients. All computations are per-

formed by means of the open source code mef90 Bourdin (2019) . Input and output files can be found at the repository

Brach et al. (2019) . After discretization in finite elements with mesh size δ = 0 . 1 , the numerical toughness results equal to

G 

num 

c = G c (1 + 3 δ/ 8 � ) Bourdin et al. (2008) . 

3. Toughness heterogeneity 

3.1. Computational results 

Consider the layered material comprised of alternating brittle (material 1) and tough (material 2) materials with identical

elastic moduli. The toughness is G 

1 
c = G c and G 

2 
c = 2 G c in material 1 and 2 respectively, while the elastic moduli are uniform

with E 1 = E 2 = E and ν1 = ν2 = ν . 

Fig. 2 shows the computed crack path for various values of the layer angle θ . The corresponding evolution of the J -

integral and the work of fracture (proportional to the weighted crack length) as a function of time are shown in Fig. 3 . 

For θ = π/ 2 , the crack advances straight through the microstructure. Nevertheless, its propagation is not continuous

in time. When heading from the brittle to the tough material, the crack gets arrested at the interface between the two

layers. The far-field energy-release rate increases up to the highest value of the point-wise toughness ( Fig. 3 a). Subsequently,

the propagation resumes and the crack grows steadily through the material till it reaches the interface with the brittle

material ( Fig. 3 b). At that point, the propagation becomes unstable, the crack jumps and the macroscopic energy-release

rate instantaneously drops. This is because the macroscopic J is higher than the toughness of the brittle material as the

crack tip first arrives at the brittle-to-tough interface. 

As the layer angle θ decreases, the crack does not propagate straight throughout the microstructure but it deviates as

soon as it reaches the interface with the tough material ( Fig. 2 ). The fracture process then continues along the interface

by diverting from the macroscopically-imposed direction. The deviation and the distance along the interface increase with
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Fig. 2. Layered material with toughness heterogeneity. Crack propagation for different values of the layer angle θ . The thickness of the layers is τ = 16 . 

Fig. 3. Layered material with toughness heterogeneity. (a) Far-field J -integral normalized with respect to the numerical toughness G num 
c . (b) Work or fracture 

proportional to the weighted crack length. The thickness of the layers is τ = 16 . 
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Fig. 4. Layered material with toughness heterogeneity. Normalized effective toughness G eff
c /G num 

c as a function of the angle θ for different values of the 

layers thickness τ . 

Table 1 

Layered material with toughness heterogeneity. Normalized effective toughness 

G eff
c /G num 

c for θ = π/ 2 for various values of width H and two different values of layers 

thickness τ . The domain length L is constant in these calculations. 

Width H Thickness τ = 4 Thickness τ = 16 

10 2.046028 2.059314 

20 2.046928 2.058361 

40 2.045154 2.065222 

60 2.050661 2.074267 

80 2.051068 2.068809 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decreasing angle. At some point, the surfing boundary condition manages to drive the propagation back towards the original

path, the crack then kinks and penetrates the tough material with a small jump. The crack then propagates through the

tough material till it reaches the interface with the brittle material which it penetrates with a jump accompanied by a drop

in macroscopic J . The final crack path then consists of a zig-zag pattern of alternating regimes of propagation: the first

along the brittle-to-tough interface that deviates the crack from the macroscopic path and the second through the tough

and brittle regions that brings it back to the macroscopic path. 

Interestingly, the layer angle θ does not influence the maximum value of the macroscopic J -integral ( Fig. 3 a). The amount

of time that the crack needs to reach the interface with the upcoming tough layer is of course different, but the maximum

value of the J -integral is always equal to the toughness of the tough constituent as long as the crack interacts with both

materials (that is, for θ � = 0). Therefore, according to our definition, the macroscopic toughness G 

eff
c is equal to the largest

pointwise value. 

Fig. 4 collects the results above in a polar plot of the effective toughness G 

eff
c as a function of the layer angle θ . The

effective toughness is equal to the toughness of the tough material for any angle θ � = 0, but falls to that of the brittle material

for θ = 0 . In the latter case, the layers are parallel to the macroscopic direction of propagation, thus the crack only evolves

through the brittle material. Fig. 4 also shows that the effective toughness is independent of the thickness τ of the layers

(as long as it is sufficiently larger than the internal length � ). Further, the result is independent of the width H of the

computational domain as documented in Table 1 . 

3.2. Analysis 

The classical Griffith criterion ( Griffith, 1921 ) states that a crack advances along a prescribed smooth crack path when

the energy-release rate is equal to the toughness. However, it is silent about the crack path itself. The determination of

crack paths has been the subject of a large literature and a number of criteria have been proposed ( Chambolle et al., 2009 ).

Three are widely used: (i) the principle of local symmetry, (ii) the principle of maximum energy-release rate and (iii) the

principle of maximum energy dissipation. In homogeneous materials under far-field loading, the path predicted by the three
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is quite close to each other, thus it is difficult to distinguish between them. However, the three criteria can lead to different

predictions in heterogeneous media, including in the current situation. 

The principle of local symmetry postulates that the crack propagates along a path where it locally experiences a strictly

crack-opening local elastic field. In other words, the crack is always in Mode I propagation and the second stress-intensity

factor is equal to zero, i.e. K II = 0 . In the current example, the elastic moduli are uniform and the surfing boundary condition

at any instant of time imposes a purely Mode I far-field displacement. Therefore, the principle of local symmetry implies that

the local crack path will follow the macroscopic one and consequently be straight. This is different from our computational

results. 

The principle of maximum energy-release rate states that the crack propagates or kinks in a direction that maximizes

the energy-release rate. Denoting as t the vector tangent to the crack path at the tip, this propagation criterion can thus be

rephrased as t = argmax t J( t ) . Again, this would predict a straight path and this is different from our computational results.

Finally, the principle of maximum energy dissipation states that the crack propagates or kinks in a direction that maxi-

mizes the rate of energy dissipation, t = argmax t (J( t ) − G c ( t )) . We now show that the computed crack path broadly follows

this criterion. 

For this analysis, consider a layer angle θ away from π /2. It is convenient to define the vector j as follows: 

j = 

∮ 
C 

(
W I − ∇ u 

T σ
)
n ds (4)

where C is any contour around the crack tip, W is the elastic energy density and n the outward normal to the contour. Note

that the J -integral is obtained as the component of j that is tangential to the crack at the crack tip, that is 

J = j · t (5)

Consider a straight crack advancing along the prescribed macroscopic path in the brittle material 1 approaching an in-

terface with the tough material 2 as shown in Fig. 5 (a) at the point marked 1. The crack tip is sufficiently distant from the

interface for the toughness to be equal to that of the brittle material (namely, G 

1 
c ) in all directions, as shown by the bold red

circle on the left of the figure. Since the crack is straight, the vector j is horizontal as shown in the figure. Further, the crack

propagates exactly when J = 

∣∣ j 
∣∣ = G 

2 
c also as shown. This continues till the crack propagates all the way to the interface and

the crack tip reaches the point marked 2. 

The crack would see now a different toughness if it were to propagate in different directions as shown by the solid red

curve in Fig. 5 (b). This curve is discontinuous: If the crack were to propagate in any direction that takes it to the tough

material, it would see a toughness G 

2 
c while it would see a toughness G 

1 
c if it were to propagate in any direction that

retains it in the brittle layer. However, since j is still at the previous value (denoted as 2 − in the figure), the crack is unable

to propagate and it arrests. As the loading proceeds, the vector j gradually increases in magnitude while maintaining the

direction until it reaches the magnitude marked as 2 + in the figure. At this point, the component of the vector along the

interface or the J -integral is exactly equal to G 

1 
c . So the crack begins to propagate along the interface. 

As it propagates along the interface, it is no longer straight and the direction of the vector j changes as shown in Fig. 5 (c).

However, for the crack to continue propagating along the interface, it goes along the dashed line where the component

along the interface is equal to G 

1 
c as shown. As the crack continues to propagate along the interface and deviates from the

macroscopic path, the vector j rotates away from the interface; however the magnitude increases to keep it along the dashed

line so that J = G 

1 
c . 

This proceeds till the vector j has magnitude G 

2 
c as shown in the point marked 4 in Fig. 5 (d). At this point, the crack

can penetrate the tough material 2 at the same angle made by the vector j at the point marked 4. Consequently, the crack

moves towards the horizontal line determined by macroscopic loading and the vector j rotates along the circle of radius G 

2
c 

till it reaches the horizontal when the crack is completely restored to the macroscopic horizontal trajectory. 

This crack path is consistent with the computational results. Further, as the angle θ increases, so does the deviation of

the crack from the macroscopically-imposed path. This is consistent with results in Fig. 2 . Thus, the computational results

follow the principle of maximum dissipation. 

Finally, the toughness domain G 

eff
c (θ ) : θ �→ G 

eff
c is not convex in the sense of interfacial energy and Wulff construction

Zangwill (1988) . Consider a straight crack where the crack face normal is at an angle θ̄ to the horizontal. Now suppose the

crack is broken up into a zig-zag crack where the normal to one segment makes an angle θ1 while the normal to the other

segment makes an angle θ2 . A short trigonometric calculations shows that the straight crack would have less energy if and

only if 

G 

eff
c ( ̄θ ) ≤ G 

eff
c (θ1 ) 

1 

cos (θ1 − θ̄ ) + sin (θ1 − θ̄ ) cot ( ̄θ − θ2 ) 
+ G 

eff
c ( θ2 ) 

1 

cot ( θ1 − θ̄ ) sin ( ̄θ − θ2 ) + cos ( ̄θ − θ2 ) 
(6)

This is the stability condition for interfaces. The failure of this condition means that the crack can lower its energy by

faceting. Taking θ1 = 2 ̄θ, θ2 = 0 , this inequality for the computed G 

eff
c reduces to 

2 ≤ 3 

2 

1 

¯
(7)
cos θ
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Fig. 5. Layered material with toughness heterogeneity. Analysis of crack paths. Material 1 and 2 are respectively brittle and tough. 

 
which fails for θ̄ small enough. Thus, the effective energy is not stable in the sense of interfaces. The relaxation of this is

given by the Wulff shape: the set of points p that satisfy 

p ·
(

cos θ
sin θ

)
≤ G 

eff
c (θ ) . (8) 

The Wulff shape for this is shown in Fig. A1 (a). 
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Fig. 6. Layered material with elastic heterogeneity. Crack propagation for different values of the layer angle θ . The thickness of the layers is τ = 32 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that the resulting effective toughness is not stable against faceting is not surprising: it indicates that crack

propagation in this simulation follows a critically stable path, and not energy minimization. 

4. Elastic heterogeneity 

4.1. Computational results 

The layered material is now assumed to be comprised of alternating compliant (material 1) and stiff (material 2) phases

with uniform toughness. The elastic moduli are equal to E 1 = E, E 2 = 2 E and ν1 = ν2 = ν, whereas the local toughness is

uniform, G 

1 
c = G 

2 
c = G c . 

The fracture path is shown in Fig. 6 for various layer angles θ . The crack proceeds along the macroscopic direction

perpendicular to the layers at θ = π/ 2 . However, the propagation is not steady: it gets pinned at the compliant-to-stiff

interface as the J -integral increases, and breaks through with a jump when the macroscopic J -integral reaches a critical

value that is significantly higher than the uniform toughness. The current results are consistent with the systematic previous

studies Hossain et al. (2014) ; Hsueh et al. (2018) and Wang and Xia (2017) . 

As the layer angle θ decreases from π /2, the crack begins to meander away from the macroscopically imposed direction

of propagation. However, there are two regimes. When the deviation from π /2 is relatively small (see the case θ = 3 π/ 8 , θ =
5 π/ 24 in Fig. 6 ), the crack meanders as it approaches the compliant-to-stiff interface, but penetrates the interface at a single

point. However, when the deviation from π /2 becomes large (see the cases θ = π/ 6 , π/ 8 in Fig. 6 ), the crack propagates

along the compliant-to-stiff interface before penetrating into the stiff material. 

Fig. 7 (a) shows further details of the first regime focussing on θ = 3 π/ 8 . While in the compliant material, the crack

begins to deviate from the horizontal and attempts to become tangential to the interface as it approaches the upcoming

stiff layer (just prior to the time marked A). The progress also considerably slows down and stalls at the interface as it is

evident from the work of fracture vs. time. The J -integral correspondingly increases up to a value which is strictly larger
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Fig. 7. Layered material with elastic heterogeneity. Far-field J -integral /G num 
c and work of fracture for a layer angle equal to (a) θ = 3 π/ 8 and (b) π /8. The 

thickness of the layers is τ = 32 . 
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Fig. 8. Layered material with elastic heterogeneity. (a) Normalized effective toughness J c /G num 
c and (b) crack angle γ as a function of θ . The thickness of 

the layers is τ = 32 . The angle γ has been computed when the crack is at the compliant-to-rigid interface. 

 

 

 

 

 

 

 

than the local toughness. Finally, at the point marked A, the J -integral reaches a critical value, when it breaks into the

stiff material with a kink and a jump accompanied by a drop in the J -integral to the value of the local toughness (step

B). The crack propagates and returns to the macroscopic path accompanied with a drop in the macroscopic J -integral and

acceleration of the crack tip as it approaches the stiff-to-compliant interface (step C). It also reaches the macroscopically

imposed path by this time. The crack is briefly arrested as it enters the stiff material and the J -integral recovers to the

toughness of the material. It then begins a steady propagation and the entire cycle repeats (steps D and E). 

The details of the second regime are shown in Fig. 7 (b) focussing on the case θ = π/ 8 . The crack again deviates from the

horizontal as it approaches the compliant-to-stiff interface. It is almost tangential as it reaches it and propagates along the
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Fig. 9. Layered material with elastic heterogeneity. (a) Effective toughness G eff
c as a function of the angle θ for different values of the thickness τ of the 

layers. (b) Influence of the width H of the computational domain on the computed effective toughness for θ = π/ 2 . 

 

 

 

 

 

 

 

 

 

 

 

interface as the J -integral increases. As the J -integral reaches a critical value (step A), it penetrates the stiff material with a

jump, a kink and a drop in the J -integral (step B). Notice that the peak value of the J -integral is smaller than that observed

in the case θ = 3 π/ 8 . The crack subsequently propagates smoothly as it returns to the macroscopically imposed axis with

an attendant drop in the J -integral till reaches the stiff-to-compliant interface (step C). The crack is briefly arrested as it

enters the stiff material and the J -integral recovers to the toughness of the material. It then begins a steady propagation and

the entire cycle repeats (steps D and E). 

Fig. 8 shows a polar plot of the effective toughness G 

eff
c as a function of the layer angle θ . The macroscopic toughness

G 

eff
c decreases as the layers become more and more aligned with the prescribed crack path, and it finally equals the local

toughness for θ = 0 . The same figure also reports the computed values of the angle γ , which the crack makes with the

compliant-to-stiff interface. As the layers are rotated from θ = π/ 2 towards θ = 0 , the crack angle γ monotonically increases

from π /2 (perpendicular to the interface) to values close to π (tangential to the interface). 

Finally, Fig. 9 shows the effect of layer thickness τ and domain width H on the effective toughness The macroscopic

toughness G 

eff
c decreases as the layers become more and more aligned with the prescribed crack path, and it finally equals

the local toughness for θ = 0 . It increases with both τ and H but eventually saturates. 
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Fig. 10. Layered material with elastic heterogeneity. Intensity of the stress singularity (1 − λ) as a function of the layer angle θ . The thickness of the layers 

is τ = 32 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Analysis 

He and Hutchinson (1989) studied the problem of a Mode I crack approaching an interface separating two semi-infinite

solids. As the crack approaches the interface at an angle different from perpendicular, it begins to experience shear stress.

They argued on the basis of the principle of local symmetry that the crack would deflect and that the deflection would

depend on the elastic moduli of the two materials. The computationally observed tendency of the crack to turn towards the

tangent to the interface as it approaches the stiff layer is consistent with their argument (see the case α > 0 in Fig. 8 of

He and Hutchinson (1989) ). 

The computations also show that the effective toughness decreases with the layer angle θ . Hsueh et al. (2018) argued

that there are two contributions to the change of toughness. The first comes from the fact that the nominal stress fluctuates

through the layered material. It is an easy calculation to use compatibility and equilibrium to compute the nominal stresses

in a layered material, and show that the crack opening stress in the two layers is given by 

σ 1 , 2 
yy = 

(
(1 + ν) 

(
E 1 , 2 
〈 E〉 − 1 

)
cos 4 θ − (2 + ν) 

(
E 1 , 2 
〈 E〉 − 1 

)
cos 2 θ + 

E 1 , 2 
〈 E〉 

)
�yy (9)

where �yy is the macroscopic applied stress, E 1 = E, E 2 = 2 E and 〈 E〉 = 3 E/ 2 is the average elastic modulus. The stress is

smaller in the compliant material and higher in the stiff material. So, if the crack were propagating along the macroscopic

direction, the macroscopic applied stress would have to be higher to sustain crack propagation. This would result in an

effective toughness of 

G 

eff,fluc 
c = G c 

(
−1 + ν

3 

cos 4 θ + 

2 + ν

3 

cos 2 θ + 

2 

3 

)−1 

. (10)

The second effect comes from re-nucleation. When the crack-tip is at the compliant-to-stiff interface, the stress singu-

larity is no longer 1/2, but depends on the angle γ that the tangent to the crack tip makes to the interface and on the

elastic properties of both layers. This singularity λ( θ ) can be computed using the results of Bogy (1971a,b) reported in the

Appendix and the observed angle γ for each layer angle. This is shown in Fig. 10 . Note that this λ is greater than 1/2 for

each θ so that the driving force on the crack tip is zero. This means that the crack has to renucleate at the interface. Tanné

et al. (2018) studied nucleation at a wedge and proposed a criterion for nucleation of a crack when the stress is less singular

than 1/2. Hsueh et al. (2018) adopted this argument to interfaces. Following their argument, 
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Fig. 11. Layered material with elastic heterogeneity. (a) Toughening due to stress fluctuations and crack renucleation. (b) Comparison between the 

numerically-computed (for τ = 32 ) and theoretical-predicted ( Eq. 12 effective toughness. 

 

 

�G 

nuc 
c = 

G c 

1 − ν2 
ρ2 λ(θ ) −1 sin 

4 θ (11) 

where ρ is a dimensional parameter. 

Putting these effects together, 

G 

eff,th 
c = G c 

((
−1 + ν

3 

cos 4 θ + 

2 + ν

3 

cos 2 θ + 

2 

3 

)−1 

+ ρ2 λ(θ ) −1 sin 

4 θ

)
(12) 

We use the value at θ = π/ 2 to fit ρ and find 0.2630. Fig. 11 (a) shows the two terms individually, while Fig. 11 (b) compares

the result (12) with the computed value. We see that the trends are similar, though this analysis predicts less toughening

than the computations as the overall direction of propagation deviates from the layer normal. 
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Fig. A1. Layered material with toughness (a) and elastic (b) heterogeneity, with layer thickness respectively equal to τ = 16 and τ = 32 . Wulff shapes and 

computed results. 

 

 

 

 

 

 

Finally, it is possible to verify as in the previous section that the resulting effective energy in Fig. 9 is not stable in the

sense of interfaces. The Wulff shape for this is shown in Fig. A1 (b). Again, the fact that the resulting effective toughness is

not stable against faceting is not surprising: it indicates that crack propagation in this simulation follows a critically stable

path, and not energy minimization. 

5. Concluding remarks 

This continues the study of the effective toughness of layered materials started in Hossain et al. (2014) and

Hsueh et al. (2018) , with a focus on anisotropy. We use the phase-field model and the surfing boundary condition to prop-

agate a crack macroscopically at various angles to the layers. We study two idealized situations, the first where the elastic
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modulus is uniform while the toughness alternates and a second where the toughness is uniform and elastic modulus alter-

nates. 

In the first situation, we find that the computed crack meanders – with the deflection depending on the angle of overall

propagation – though the uniform elasticity and principle of local symmetry predicts a straight path. We show that the

computed crack path can be predicted using a maximum dissipation principle. Even though the crack path fluctuates, the

effective or overall toughness displays anomalous isotropy – it is equal to that of the tougher material for all angles of

overall propagation except the case when it propagates along the layer where the effective toughness is equal to the value

of the brittle material. An important observation here is that the overall or effective toughness is unaffected by the amount

of crack deflection – the overall toughness remains the same independent of the angle, but the amount of crack deflection

changes with it. Thus, the effective toughness is independent from the integrated pointwise work of fracture, but governed

by crack arrest instead. 

In the second situation, the computed crack deflects as it approaches the stiffer material as anticipated by He and

Hutchinson (1989) . The overall toughness is higher than that of the uniform pointwise value, the amount of toughening

decreases as the direction of overall propagation deviates from the normal to the layers. We show that the toughening is a

result of fluctuation in the nominal stress as well as the need to renucleate at the compliant-to-stiff boundary. 

Finally, the resulting anisotropic overall toughness is not convex in the sense of interfacial energy. This reflects the fact

that crack propagation follows a critically stable path, and not energy minimization. 
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Appendix 

Elastic singularity for a crack impinging on an interface 

Accordingly to Bogy Bogy (1971a,b) , the order λ of the singularity for a crack with a tip at an elastic interface (see

Fig. 8 (b)) is computed by solving 

K 1 (γ , β, λ) α2 + K 2 (γ , β, λ) α + K 3 (γ , β, λ) = 0 (13)

where α ∈ [ −1 , 1] and β ∈ [ −0 . 5 , 0 . 5] are the Dunders parameters Dunders (1969) 

α = 

μ1 m 2 − μ2 m 1 

μ1 m 2 + μ2 m 1 

β = 

μ1 (m 2 − 2) − μ2 (m 1 − 2) 

μ1 m 2 + μ2 m 1 

(14) 

with m 1 = 4(1 − ν1 ) and m 2 = 4(1 − ν2 ) and where the indexes 1 and 2 respectively refer to the material containing the

crack and to its adjacent intact counterpart. Coefficients in Eq. (13) are equal to 

K 1 (γ , β, λ) = Aβ2 + (2 A − B ) β + A − B + 1 

K 2 (γ , β, λ) = (−2 A + B + C) β3 + (−4 A + 2 B + C − D − 2) β2 

+(−2 A + B − C) β − C + D 

K 3 (γ , β, λ) = (A − B − C + D + E + 1) β4 + (2 A − B − C) β3 

+(A + C − D − 2 E) β2 + Cβ + E (15) 

with 

A (λ, γ ) = 4 λ4 sin 

4 (γ ) + sin 

2 
[ λ(2 γ − π)] 

B (λ, γ ) = 4 λ2 sin 

2 (γ ) + 2 sin 

2 
[ λ(2 γ − π)] 

C(λ, γ ) = 4 λ2 sin 

2 (γ ) { sin 

2 (λγ ) + sin 

2 
[ λ(γ − π)] − 1 } 

D (λ, γ ) = 2 { sin 

2 (λγ ) + sin 

2 
[ λ(γ − π)] − 1 } 

E(λ) = 1 − sin 

2 (λπ ) 

(16) 

Notice that for a normal crack when γ = π/ 2 , the roots of Eq. (13) are real for any choice of Dunder’s parameters α and

β . Further, for an interfacial crack when γ = π, the roots of Eq. (13) are complex for any choice of Dunder’s parameters α
and β . For intermediate values of the angle γ the roots may be real or complex depending on the Dunder’s parameters. For

our elastic (Dunder’s) parameters and our computed γ , the root is real for θ ∈ ( π /8, π /2) and shown in Fig. 10 . 

Wulff shape The Wulff shape for the effective toughness in both cases is shown in Fig. A1 . 

https://doi.org/10.13039/100000001
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